20.01.2015 Views

Durability of concrete: ability to resist weathering action, chemical ...

Durability of concrete: ability to resist weathering action, chemical ...

Durability of concrete: ability to resist weathering action, chemical ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Dur<strong>ability</strong></strong><br />

<strong>Dur<strong>ability</strong></strong> <strong>of</strong> <strong>concrete</strong>: <strong>ability</strong> <strong>to</strong> <strong>resist</strong><br />

<strong>weathering</strong> <strong>action</strong>, <strong>chemical</strong> attack,<br />

abrasion, or any process <strong>of</strong> deterioration.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Water<br />

Water Causes:<br />

•Chemical processes <strong>of</strong><br />

degradation<br />

• Physical processes <strong>of</strong><br />

degradation<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Water in the Capillary<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Perme<strong>ability</strong><br />

• Perme<strong>ability</strong> - the property that governs the rate<br />

<strong>of</strong> flow <strong>of</strong> a fluid in<strong>to</strong> a porous solid.<br />

• Darcy’s law: For steady-state flow, the<br />

coefficient <strong>of</strong> perme<strong>ability</strong>, K, is determined from<br />

Darcy's expression:<br />

dq/dt = K∙(∆H∙A)/(L∙μ)<br />

Where: Dq/dt = rate <strong>of</strong> fluid flow, μ = viscosity <strong>of</strong><br />

the fluid, ∆H = pressure gradient, A = surface<br />

area, and L = thickness <strong>of</strong> the solid.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Perme<strong>ability</strong> <strong>of</strong> Cement Paste<br />

•Age (days) Perme<strong>ability</strong> (cm/s 10 -11 )<br />

•Fresh 20,000,000<br />

•5 4,000<br />

•6 1,000<br />

•8 400<br />

•13 50<br />

•24 10<br />

•ultimate 6<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Perme<strong>ability</strong> <strong>of</strong> Cement Paste<br />

•When porosity decreases from 40 <strong>to</strong> 30%,<br />

the perme<strong>ability</strong> drops from 110 <strong>to</strong> 20 x 10 -12<br />

cm/sec.<br />

•However, a decrease in porosity from 30%<br />

<strong>to</strong> 20% results in a small drop in<br />

perme<strong>ability</strong>.<br />

•Reasons:<br />

•Large pores are reduced in size and<br />

number.<br />

•There is creation <strong>of</strong> <strong>to</strong>rtuosity.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Perme<strong>ability</strong> <strong>of</strong> Aggregate<br />

• Compared <strong>to</strong> 30 <strong>to</strong> 40 percent capillary<br />

porosity <strong>of</strong> typical cement pastes in<br />

hardened <strong>concrete</strong>, the volume <strong>of</strong> pores in<br />

most natural aggregates is usually under 3<br />

percent, and it rarely exceeds 10 percent.<br />

• However, the coefficient <strong>of</strong> perme<strong>ability</strong> <strong>of</strong><br />

aggregates are as variable as those <strong>of</strong><br />

hydrated cement pastes <strong>of</strong> water/cement<br />

ratios in the range 0.38 <strong>to</strong> 0.71<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Perme<strong>ability</strong> <strong>of</strong> Aggregate<br />

Reason:<br />

• Some aggregates have much higher<br />

perme<strong>ability</strong> than the cement paste<br />

because their capillary pores are much<br />

larger.<br />

• Most <strong>of</strong> the capillary porosity in a mature<br />

cement paste lies in the range 10 <strong>to</strong> 100<br />

nm, while pore size in aggregates are, on<br />

average, larger than 10 microns.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Perme<strong>ability</strong> <strong>of</strong> Aggregates<br />

Type <strong>of</strong> Rock Perme<strong>ability</strong> (cm/sec )<br />

dense trap 2.47 x 10 -12<br />

quartz diorite 8.24 x 10 -12<br />

marble 2.39 x 10 -10<br />

granite 5.35 x 10 -9<br />

sands<strong>to</strong>ne 1.23 x 10 -8<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Physical Causes <strong>of</strong> Concrete Deterioration<br />

•1. Deterioration by surface wear.<br />

•Abrasion: dry attrition (wear on<br />

pavements and industrial floors by traffic)<br />

•Erosion: wear produced by abrasive<br />

<strong>action</strong> <strong>of</strong> fluids containing solid particles<br />

in suspension (canal lining, spillways and<br />

pipes).<br />

•Cavitation: loss <strong>of</strong> mass by formation <strong>of</strong><br />

vapor bubbles and their subsequent<br />

collapse.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Physical Causes <strong>of</strong> Concrete Deterioration<br />

Abrasion - Erosion<br />

•The deterioration starts at the surface,<br />

therefore special attentions should be given<br />

<strong>to</strong> quality <strong>of</strong> the <strong>concrete</strong> surface.<br />

•Avoid laitance (layer <strong>of</strong> fines from cement<br />

and aggregate).<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Physical Causes <strong>of</strong> Concrete Deterioration<br />

3. Deterioration by Frost Action<br />

•When water freezes, there is an expansion <strong>of</strong> 9%.<br />

However, some <strong>of</strong> the water may migrate through<br />

the boundary, decreasing the hydraulic pressure.<br />

•Hydraulic pressure depends on:<br />

•Rate at which ice is formed.<br />

•Perme<strong>ability</strong> <strong>of</strong> the material.<br />

•Distance <strong>to</strong> an "escape boundary."<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


3. Deterioration by Frost Action<br />

Problem:<br />

The transformation <strong>of</strong> ice from<br />

liquid water generates a<br />

volumetric dilation <strong>of</strong> 9%. If<br />

the transformation occurs in<br />

small capillary pores, the ice<br />

crystals can damage the<br />

cement paste by pushing the<br />

capillary walls and by<br />

generating hydraulic pressure.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro<br />

Mehta and Monteiro: Concrete


3. Deterioration by Frost Action<br />

Solution:<br />

Air voids can provide an<br />

effective escape boundary<br />

<strong>to</strong> reduce this pressure.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


3. Deterioration by Frost Action<br />

Air-Entraining<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro<br />

Mehta and Monteiro: Concrete


This image cannot currently be displayed.<br />

Freezing <strong>of</strong> Concrete<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


This image cannot currently be displayed.<br />

Freezing <strong>of</strong> Concrete<br />

Does <strong>concrete</strong> freezing<br />

cause the air-entrained<br />

bubbles <strong>to</strong> get larger or<br />

smaller<br />

Answer: Smaller. Since<br />

the paste is expanded, the<br />

air-voids are compressed.<br />

Mehta and Monteiro: Concrete<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Frost Action on Aggregate<br />

•Aggregates likelihood <strong>to</strong> cause freezing damage depends on<br />

pore:<br />

•Sizes<br />

•Number<br />

•Continuity<br />

•3 classes <strong>of</strong> aggregate<br />

•(1) Low perme<strong>ability</strong> and high strength: No problem! The rock is strong<br />

enough <strong>to</strong> support the hydraulic pressure.<br />

•(2) Intermediate perme<strong>ability</strong>: Potential depending on (a) rate <strong>of</strong><br />

temperature drop. (b) distance the water must travel <strong>to</strong> find an escape<br />

boundary – Critical Aggregate Size (a large aggregate may cause<br />

damage but smaller particles won't).<br />

•(3) High perme<strong>ability</strong>: May cause problem with the transition zone.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Fac<strong>to</strong>rs Controlling Frost Resistance <strong>of</strong> Concrete<br />

MSA (in) air content (%)<br />

3/8<br />

1/2<br />

3/4<br />

1<br />

2<br />

3<br />

7.5<br />

7<br />

6<br />

6<br />

5<br />

4.5<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Deterioration by Fire<br />

•Concrete is able <strong>to</strong> retain sufficient strength<br />

for a reasonably long time.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Consequence<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Fire in the Chunnel<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Effect <strong>of</strong> High Temperature<br />

•Effect <strong>of</strong> High Temperature on Cement Paste<br />

•Depends on:<br />

•Degree <strong>of</strong> hydration<br />

•Moisture state<br />

•Causes de-hydration:<br />

•Ettringite > 100 C<br />

•Ca(OH) 2 500-600 C<br />

•CSH ~ 900 C<br />

•Effect <strong>of</strong> High Temperature on Aggregate<br />

•Siliceous quartz: 573 C --sudden volume<br />

change ( quartz)<br />

•Carbonate: MgCO3 > 700 C, CaCO3 > 900 C<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Corrosion <strong>of</strong> Reinforced Concrete<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Electro<strong>chemical</strong> Process <strong>of</strong> Steel Corrosion in Concrete<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Volumetric Change


Carbonation <strong>of</strong> Concrete<br />

Painting with Phenolphthalein<br />

Concrete exposed <strong>to</strong> CO 2<br />

(accelerated test)<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro<br />

Carbonated <strong>concrete</strong>


Alkali-Silica Re<strong>action</strong><br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


ASR Chemistry<br />

1) The high pH in the cement paste promotes the<br />

hydrolysis <strong>of</strong> silica:<br />

Si-O-Si + H OH Si-OH + Si-OH<br />

aggregate paste<br />

2) Si-OH react with the paste <strong>to</strong> form Si-O-<br />

3) Si-O-, adsorbs Na, K, and Ca <strong>to</strong> form a gel.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


ASR Optical Image<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


ASR Optical Image<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Repairing ASR Damage <strong>to</strong> a Concrete<br />

Dam<br />

Typical Options:<br />

Moni<strong>to</strong>ring<br />

Slot cut<br />

Upstream face membrane<br />

Roller compacted <strong>concrete</strong><br />

Decrease the reservoir<br />

Dam Removal<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro<br />

Mehta and Monteiro: Concrete


ASR Damage Examples<br />

Built in 1965, this deteriorated bridge is located 9.7 miles west <strong>of</strong> Lee<br />

Vining at 9400 feet elevation on the eastern slope <strong>of</strong> the Sierra Nevada.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro<br />

Mehta and Monteiro: Concrete


ASR Damage Examples<br />

Airfield parking apron at Naval Air Station Point Mugu, California .<br />

courtesy <strong>of</strong> U.S. Navy, NFESC<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro<br />

Mehta and Monteiro: Concrete


Sulfate Attack<br />

Importance<br />

• Sulfate attack on <strong>concrete</strong> has been reported<br />

from many other parts <strong>of</strong> the world.<br />

• As early as 1936 the <strong>concrete</strong> construction<br />

manual published by the U. S. Bureau <strong>of</strong><br />

Reclamation warned that concentrations <strong>of</strong><br />

soluble sulfates greater than 0.1 percent in soil<br />

may have a deleterious effect on <strong>concrete</strong>, and<br />

more than 0.5 percent soluble sulfate in soil may<br />

have a serious effect.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Sulfate Attack<br />

Origin <strong>of</strong> the problem<br />

• Most soils contain some sulfate in the form <strong>of</strong> gypsum<br />

(typically 0.01 <strong>to</strong> 0.05 percent expressed as SO 4 ); this<br />

amount is harmless <strong>to</strong> <strong>concrete</strong>.<br />

• Higher concentrations <strong>of</strong> sulfate in groundwaters are<br />

generally due <strong>to</strong> the presence <strong>of</strong> magnesium and<br />

alkali sulfates.<br />

• Ammonium sulfate is frequently present in agricultural<br />

soil and water. Effluents from furnaces that use highsulfur<br />

fuels and from the <strong>chemical</strong> industry may<br />

contain sulfuric acid.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Expansion <strong>of</strong> Concrete<br />

• When <strong>concrete</strong> cracks, its perme<strong>ability</strong><br />

increases and the aggressive water<br />

penetrates more easily in<strong>to</strong> the interior,<br />

thus accelerating the process <strong>of</strong><br />

deterioration.<br />

• Sometimes, the expansion <strong>of</strong> <strong>concrete</strong><br />

causes serious structural problems.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Loss <strong>of</strong> Strength and Mass<br />

•Sulfate attack can also take the<br />

form <strong>of</strong> a progressive loss <strong>of</strong><br />

strength and loss <strong>of</strong> mass due <strong>to</strong><br />

loss <strong>of</strong> cohesiveness in the cement<br />

hydration products.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Expansive Re<strong>action</strong><br />

• C 3 A + 3C$H 2 + 26H C 3 A∙3C$∙32H (ettringite)<br />

In the presence <strong>of</strong> sulfates<br />

C 3 A·C$·18H (monosulfate)<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro<br />

Mehta and Monteiro: Concrete


Sulfate Attack<br />

• Gypsum formation leads <strong>to</strong> reduction <strong>of</strong><br />

stiffness and strength, then by<br />

expansion and cracking.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Sodium Sulfate Attack<br />

• Na 2 SO 4 +Ca(OH) 2 +2H 2 O <br />

CaSO 4 ∙2H 2 O + 2NaOH<br />

• The formation <strong>of</strong> sodium hydroxide as a byproduct<br />

<strong>of</strong> the re<strong>action</strong> ensures the continuation<br />

<strong>of</strong> high alkalinity in the system, which is essential<br />

for the st<strong>ability</strong> <strong>of</strong> the cementitious material<br />

C-S-H.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Magnesium Sulfate Attack<br />

• MgSO 4 +Ca(OH) 2 +2H 2 O <br />

CaSO 4 ∙2H 2 O + Mg(OH) 2<br />

• 3MgSO 4 + 3CaO∙2SiO 2 ∙3H 2 O + 8H 2 O<br />

3CaSO 4 ∙2H 2 O + 3Mg(OH) 2 + 2SiO 2 ∙H 2 O<br />

• The conversion <strong>of</strong> calcium hydroxide <strong>to</strong> gypsum is<br />

accompanied by the simultaneous formation <strong>of</strong><br />

relatively insoluble magnesium hydroxide.<br />

• In the absence <strong>of</strong> hydroxyl ions in the solution C-S-H<br />

is no longer stable and is also attacked by the sulfate<br />

solution.<br />

• The magnesium sulfate attack is, therefore, more<br />

severe on <strong>concrete</strong>.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


Fac<strong>to</strong>rs Influencing Sulfate Attack<br />

• Amount and nature <strong>of</strong> the sulfate present<br />

• Level <strong>of</strong> the water table and its seasonal<br />

variation<br />

• Flow <strong>of</strong> groundwater and soil porosity<br />

• Form <strong>of</strong> construction<br />

• Quality <strong>of</strong> <strong>concrete</strong><br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


ACI Building Code 318<br />

• Negligible attack: When the sulfate content is<br />

under 0.1 percent in soil, or under 150 ppm<br />

(mg/liter) in water, there shall be no restriction<br />

on the cement type and water/cement ratio.<br />

• Moderate attack: When the sulfate content is<br />

0.1 <strong>to</strong> 0.2 percent in soil, or 150 <strong>to</strong> 1500 ppm in<br />

water, ASTM Type II portland cement or<br />

portland pozzolan or portland slag cement shall<br />

be used, with less than an 0.5 water/cement<br />

ratio for normal-weight <strong>concrete</strong>.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro


ACI Building Code 318<br />

• Severe attack: When the sulfate content is 0.2<br />

<strong>to</strong> 2.00 percent in soil, or 1500 <strong>to</strong> 10,000 ppm in<br />

water, ASTM Type V portland cement, with less<br />

than an 0.45 water/cement ratio, shall be used.<br />

• Very severe attack: When the sulfate content is<br />

over 2 percent in soil, or over 10,000 ppm in<br />

water, ASTM Type V cement plus a pozzolanic<br />

admixture shall be used, with less than an 0.45<br />

water/cement ratio.<br />

CE 60<br />

Instruc<strong>to</strong>r: Paulo Monteiro

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!