20.01.2015 Views

The ecology of eelgrass meadows in the Pacific Northwest: A ...

The ecology of eelgrass meadows in the Pacific Northwest: A ...

The ecology of eelgrass meadows in the Pacific Northwest: A ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

~~~/0~-84/24<br />

September 1984<br />

THE ECOLOGY OF EELGRASS MEADOWS IN THE PACIFIC NORTHWEST:<br />

A COMMUNITY PROFILE<br />

Ronald C. Phillips<br />

Schml <strong>of</strong> Natural and Ma<strong>the</strong>matical Sciences<br />

Seattle <strong>Pacific</strong> University<br />

Seattle, WA 98119<br />

Project Officer<br />

Jay F. Watson<br />

U.S. Fish and Wildlife Service<br />

Lloyd 5@0 Build<strong>in</strong>g, Suite 1692<br />

580 NE Multnanah Street<br />

Portland, OR 97232<br />

Performed for<br />

National Cmstal Ecosystans Team<br />

Division <strong>of</strong> Biological Services<br />

Research and Developnent<br />

Fish and Wildlife Service<br />

U. S. Department <strong>of</strong> <strong>the</strong> Interior<br />

Wash<strong>in</strong>gton, DC 20240


DISCLAIMER<br />

<strong>The</strong> mention <strong>of</strong> trade names <strong>in</strong> this report does not constitute endorsement or<br />

reccmneradation for use by <strong>the</strong> Federal Government.<br />

Library <strong>of</strong> Congress Card Number 84-601122<br />

This report should be cited:<br />

Phillips, RC. 1984. <strong>The</strong> <strong>ecology</strong> <strong>of</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> ~odwest: A<br />

carmunity pr<strong>of</strong>ile. u.S. Fish Wildl. Serv. FWS/OBS-84/24. 85 pp.


PREFACE<br />

Nearly half <strong>the</strong> population <strong>of</strong> <strong>the</strong> United<br />

States lives adjacent to coastal waters or<br />

to <strong>the</strong> shores <strong>of</strong> <strong>the</strong> Great Lakes. <strong>The</strong><br />

recreational and economic pressures that<br />

accompany this residential pattern are<br />

<strong>in</strong>variably exerted on <strong>the</strong> nearshore<br />

coastal environment and its estuaries.<br />

Until recently, we have been accustomed to<br />

view<strong>in</strong>g <strong>the</strong> oceanic prov<strong>in</strong>ce as be<strong>in</strong>g<br />

immune to adverse impacts result<strong>in</strong>g from<br />

mild human activity. However, s<strong>in</strong>ce <strong>the</strong><br />

large-scale decl<strong>in</strong>e <strong>of</strong> <strong>eelgrass</strong> (zostera<br />

mar<strong>in</strong>a L.) <strong>in</strong> <strong>the</strong> North Atlantic <strong>in</strong> <strong>the</strong><br />

1930'~~ caused by a natural rise <strong>in</strong> water<br />

temperature, we are aware that dramatic<br />

and important changes can and do occur <strong>in</strong><br />

mar<strong>in</strong>e ecosystems. Human activity now is<br />

<strong>in</strong>creas<strong>in</strong>g so that we may no longer be<br />

passive observers <strong>of</strong> such changes. This<br />

community pr<strong>of</strong>ile has been developed to<br />

syn<strong>the</strong>size <strong>in</strong>formation on <strong>the</strong> structure<br />

and function <strong>of</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong> and <strong>the</strong>ir<br />

<strong>in</strong>terrelationships with adjacent<br />

communities <strong>in</strong> <strong>the</strong> estuar<strong>in</strong>e environment.<br />

Coward<strong>in</strong> et al. (1979) classified this<br />

habitat as occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> Columbian<br />

prov<strong>in</strong>ce, estuar<strong>in</strong>e system, <strong>in</strong>tertidal and<br />

subtidal subsystems, aquatic bed class,<br />

and rooted vascular subclass. Water<br />

regimes vary from irregularly exposed<br />

(<strong>in</strong>tertidal) to subtidal. Water chemistry<br />

is mesohal<strong>in</strong>e (mixohal<strong>in</strong>e: 5.0 ppt-18.0<br />

ppt; polyhal<strong>in</strong>e: 18.0 ppt-30.0 ppt) and<br />

euhal<strong>in</strong>e (30.0 ppt-40.0 ppt).<br />

<strong>The</strong> text is organized on a taxonomic and<br />

functional basis. In Chapter 1 <strong>the</strong><br />

physiographic sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Pacific</strong><br />

<strong>Northwest</strong> <strong>eelgrass</strong> habitats is presented.<br />

Chapter 2 describes <strong>the</strong> biology <strong>of</strong><br />

<strong>eelgrass</strong> <strong>in</strong> <strong>the</strong> prov<strong>in</strong>ce. In <strong>the</strong> next<br />

chapters <strong>the</strong> functional roles (Chapter 3)<br />

and components <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong> community<br />

(Chapter 4) are described. Chapter 5<br />

describes <strong>the</strong> <strong>in</strong>teractions <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong><br />

community with adjacent communities. <strong>The</strong><br />

report concludes with management<br />

considerations (Chapter 6).<br />

As with research on specific communities<br />

<strong>in</strong> any area, <strong>the</strong>re are certa<strong>in</strong> gaps <strong>in</strong> <strong>the</strong><br />

data on <strong>eelgrass</strong> <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>.<br />

Research <strong>in</strong> this region has emphasized <strong>the</strong><br />

biology, biotic components, trophic<br />

relationships, and productivity <strong>of</strong> <strong>the</strong><br />

plants. Thus, <strong>in</strong>formation on energy flow,<br />

nutrient cycl<strong>in</strong>g, decomposition, and<br />

sediment stabilization roles <strong>of</strong> <strong>eelgrass</strong><br />

learned <strong>in</strong> Alaska and along <strong>the</strong> Atlantic<br />

coast <strong>of</strong> North America will be applied to<br />

<strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong> for <strong>the</strong> purpose <strong>of</strong><br />

fill<strong>in</strong>g <strong>in</strong> <strong>the</strong> gaps <strong>in</strong> <strong>the</strong> research.<br />

This report is not an exhaustive survey <strong>of</strong><br />

<strong>the</strong> literature on <strong>the</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>of</strong><br />

<strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>. It is <strong>in</strong>tended to<br />

characterize <strong>the</strong> major components and<br />

processes that occur and drive <strong>the</strong><br />

<strong>eelgrass</strong> community and to form a basis for<br />

plac<strong>in</strong>g value on this munity.<br />

Comments on or requests for this publication<br />

should be directed to <strong>the</strong> follow<strong>in</strong>g<br />

address.<br />

Infomtion Transfer Specialist<br />

National Ca3stal Ecosystems Team<br />

U.S. Fish and Wildlife Service<br />

NASA-Slidell CaTlputer Canplex<br />

1010 Gause Blvd.<br />

Slidell, LA 7k3.458<br />

(504) 255-6511


CONVERSION TABLES<br />

Metric to U.S.<br />

Customary<br />

Mu1 tiply<br />

mill imeters (mm)<br />

centimeters (an)<br />

meters (m)<br />

ki 1 ometers ( km)<br />

2<br />

square meters (m ) 10.76<br />

square ki 1 ometers ( km ) 0.3861<br />

hectares (ha) 2.471<br />

<strong>in</strong>ches<br />

<strong>in</strong>ches<br />

feet<br />

miles<br />

To Obta<strong>in</strong><br />

square feet<br />

square miles<br />

acres<br />

liters (1)<br />

cubic meters (m )<br />

cubic meters<br />

0.2642 gal 1 ons<br />

35.31 cubic feet<br />

0.00081 10 acre-feet<br />

mil 1 igrams (mg) 0.00003527 ounces<br />

grams (g) 0.03527 ounces<br />

kil ograms (kg) 2.205 pounds<br />

metric tons (t) 2205.0 pounds<br />

metric tons 1.102 short tons<br />

ki 1 ocal ories ( kcal ) 3.968 ~ t u<br />

Cel sius degrees 1.8(C0) + 32 Fahrenheit degrees<br />

U.S.<br />

Customary to Metric<br />

<strong>in</strong>ches 25.40<br />

<strong>in</strong>ches 2.54<br />

feet (ft) 0.3048<br />

fa thorns 1.829<br />

miles (mi) 1.609<br />

nautical miles (nmi) 1.852<br />

2<br />

square feet (ft )<br />

acres<br />

2<br />

square miles (mi )<br />

gallons (gal)<br />

cubic feet (ft )<br />

acre- feet<br />

ounces (oz) 28.35<br />

pounds (lb) 0.4536<br />

short tons (ton) 0.9072<br />

British <strong>the</strong>rmal units (Btu) 0.2520<br />

mil 1 imeters<br />

centimeters<br />

meters<br />

meters<br />

kil ometers<br />

ki 1 meters<br />

square meters<br />

hectares<br />

square kilometers<br />

1 i ters<br />

cubic meters<br />

cubic meters<br />

grams<br />

ki 1 og rams<br />

metric tons<br />

ki 1 ocal ories<br />

Fahrenheit degrees 0.5556(F0 - 32) Celsius degrees


CONTENTS<br />

PREFACE ..................................<br />

CONVERSIONTABLES .............................<br />

FIGURES ..................................<br />

TABLES ..................................<br />

AOWLEDGMEWTS ..............................<br />

Page<br />

iii<br />

iv<br />

vii<br />

viii<br />

ix<br />

CHAPTER 1 . THE PHYSIOGKAPHIC SEVTING .................<br />

1.1 Geological History <strong>of</strong> Region ................<br />

1.2 Climate <strong>of</strong> Region .....................<br />

1.3 Eelgrass Distribution <strong>in</strong> Region ..............<br />

CHAPTER 2 . THE BIOm OF EELGRASS ..................<br />

2.1 Vegetative Grmth Strategies ................<br />

2.2 Reproductive Strategies ..................<br />

2.3 Physiological Requirements and Functions ..........<br />

Temperature ......................<br />

Sal<strong>in</strong>ity ........................<br />

Sediments .......................<br />

Current Velocity ....................<br />

Oxygen .........................<br />

Solar Radiation ....................<br />

Zonation ........................<br />

....................<br />

CHAPTER 3 . THE EELGRASS S S ~<br />

3.1 Functions <strong>of</strong> <strong>the</strong> Eelgrass System ..............<br />

3.2 Bianass ...........................<br />

3.3 Productivity and Measurement ................<br />

3.4 Organic and Inorganic Nutrient Cycl<strong>in</strong>g ...........<br />

3.5 Plant Constituents .....................<br />

3.6 Species and Process Succession ...............<br />

CHAPTER 4 . m S OF THE EELGRASS ~ITY-STRUCl!URE AND FUNCTION .<br />

Horizontal and Vertical Structure .....<br />

Benthic Algae ...............<br />

Epiphytes .................<br />

Epibenthos ................<br />

In fauna .................<br />

Nekton ..................<br />

Birds ...................<br />

Trophic Relationships and General structure


ImRACTION WITH AWACXNT SYSTEMS .............. 58<br />

HUMAN IM~AC!~.. CONSIDERATIONS ........... 61<br />

Dredg<strong>in</strong>g and Fill<strong>in</strong>g .................... 61<br />

Eutrophication and Sewage .................. 62<br />

Oil and Organic Chemicals .................. 2<br />

Boatuse .......................... 64<br />

Temperature and Sal<strong>in</strong>ity .................. 64<br />

Management Needs ...................... 65<br />

Undesirable Effects <strong>of</strong> Eelgrass ............ 66<br />

Camercial and Recreational Fisheries ......... 66<br />

'Transplant<strong>in</strong>g Programs ................. 69


FIGURES<br />

Number<br />

1<br />

2<br />

....................<br />

Eelgrass meadow <strong>in</strong> Puget Sound<br />

Effect <strong>of</strong> wave shock on rhizome mat <strong>of</strong> <strong>eelgrass</strong>,<br />

22 February 1964. West side <strong>of</strong> Whidbey Island,<br />

Wash<strong>in</strong>gton ..............................<br />

Map <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong> coastl<strong>in</strong>e show<strong>in</strong>g <strong>the</strong><br />

locations <strong>of</strong> <strong>the</strong> estuaries and river systems conta<strong>in</strong><strong>in</strong>g<br />

<strong>eelgrass</strong> ...............................<br />

Topographic and bathymetric features <strong>of</strong> <strong>the</strong> nor<strong>the</strong>ast<br />

<strong>Pacific</strong> ...............................<br />

Eelgrass (a) Vegetative plant (b) Part <strong>of</strong> spadix with<br />

mture seeds .............................<br />

Relative productivity <strong>of</strong> <strong>eelgrass</strong> at vary<strong>in</strong>g temperatures ......<br />

Sediment composition <strong>of</strong> four <strong>eelgrass</strong> beds <strong>in</strong> an Alaskan lagoon ...<br />

Oxygen changes <strong>in</strong> an <strong>eelgrass</strong> bed over time .............<br />

Production <strong>of</strong> organic carbon and release <strong>of</strong> oxygen by <strong>eelgrass</strong> <strong>in</strong><br />

Charlestown Pond, Rhode Island ....................<br />

Eelgrass at Blakely Island, San Juan Islands, ksh<strong>in</strong>gton, show<strong>in</strong>g very<br />

heavy epiphyte loads ........................<br />

Proportional relations <strong>of</strong> stand<strong>in</strong>g crops and productivity <strong>in</strong> a<br />

North Carol<strong>in</strong>a estuary: A. Relations among stand<strong>in</strong>g crops<br />

(<strong>in</strong> terns <strong>of</strong> carbon) or organisms <strong>in</strong> an estuary near Beaufort;<br />

B. Organic production by <strong>the</strong> mjor plants <strong>in</strong> <strong>the</strong> system ......<br />

Oxic and anoxic detrital decomposition and <strong>the</strong> cycle <strong>of</strong> sulfur <strong>in</strong><br />

seagra ss beds ............................<br />

Vertical distribution <strong>of</strong> <strong>eelgrass</strong> epibiota ..............<br />

Dungeness crab (Cancer mgister) <strong>in</strong>-<strong>eelgrass</strong> bed <strong>in</strong> Puget Sound ...<br />

Kelp crabs (Pugettia gracilis) <strong>in</strong> <strong>eelgrass</strong> bed <strong>in</strong> Puget Sound ....<br />

Pycnopodia helianthoides <strong>in</strong> <strong>eelgrass</strong> meadow <strong>in</strong> Puge t Sound at tempt<strong>in</strong>g<br />

to extract a clam out <strong>of</strong> <strong>the</strong> bottom .................<br />

Tubesnouts <strong>in</strong> <strong>eelgrass</strong> meadow, Puget Sound .............<br />

Flounders mov<strong>in</strong>g <strong>in</strong>to transplanted <strong>eelgrass</strong>, Puget Sound ....-.<br />

Eelgrass completely covered by <strong>Pacific</strong> herr<strong>in</strong>g eggs, British Columbia<br />

Canada..................... ...........<br />

Composite food wed characteristic <strong>of</strong> protected mud/<strong>eelgrass</strong>, shallow<br />

sublittoral habitats <strong>in</strong> nor<strong>the</strong>rn Puget Sound and <strong>the</strong> Strait <strong>of</strong><br />

Juan & Fuca .............................<br />

Food web diagram <strong>of</strong> <strong>eelgrass</strong> at Grays Harbor, Msh<strong>in</strong>gton ......<br />

Pr<strong>in</strong>cipal energetic pathways <strong>in</strong> an <strong>eelgrass</strong> meadow ..........<br />

Sand dollars m endr raster sp.) digg<strong>in</strong>g up <strong>eelgrass</strong> <strong>in</strong> Puget Sound . -<br />

vii


TABLES<br />

....................<br />

Precipitation. taryeraturer and tidal data for selected<br />

locations <strong>in</strong> <strong>the</strong> pacific <strong>Northwest</strong> 3<br />

Distribution and extent <strong>of</strong> <strong>eelgrass</strong> growth <strong>in</strong> <strong>the</strong> <strong>Pacific</strong><br />

<strong>Northwest</strong> ................................. 5<br />

Seasonal changes <strong>in</strong> leaf dimensions <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> Puget<br />

Sound. Wash<strong>in</strong>gton ............................ 10<br />

Field observations on <strong>eelgrass</strong> phenolqy <strong>in</strong> <strong>the</strong> <strong>Pacific</strong><br />

<strong>Northwest</strong> ................................. 11<br />

Calculations for methods <strong>of</strong> determ<strong>in</strong><strong>in</strong>g leaf growth and<br />

release ................................. 12<br />

Numerical characteristics <strong>of</strong> <strong>eelgrass</strong> habitat factors .......... 14<br />

Representative 12elyrass density and stand<strong>in</strong>g crop ............ 22<br />

Prhnary production <strong>of</strong> ccmponents <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong> ecosystem ........ 23<br />

Nutrient content <strong>of</strong> eely rass 31<br />

.......................<br />

Comparison <strong>of</strong> elemental canposition <strong>of</strong> <strong>eelgrass</strong> and <strong>the</strong><br />

mean .................................. 32<br />

Bacteria <strong>in</strong> <strong>the</strong> eelyrass habitat ..................... 36<br />

Thirty-six . nost abundant diatm epiphytes on <strong>eelgrass</strong> <strong>in</strong><br />

<strong>the</strong> Yaqu<strong>in</strong>a Estuary. Oregon. and a mall list <strong>of</strong> epiphytes<br />

found <strong>in</strong> Puget Sound. Wash<strong>in</strong>gton ..................... 38<br />

List <strong>of</strong> <strong>in</strong>vertebrates found <strong>in</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>of</strong> <strong>the</strong><br />

~acif<br />

ic Northwst. arranged <strong>in</strong> functional categories ........... 40<br />

List <strong>of</strong> fish found <strong>in</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>of</strong> <strong>the</strong> <strong>Pacific</strong><br />

wrthwest. arranged <strong>in</strong> functional categories ............... 43<br />

List <strong>of</strong> birds found <strong>in</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>of</strong> <strong>the</strong> pacific<br />

<strong>Northwest</strong>. arranged <strong>in</strong> functional categories ............... 45<br />

waterfowl that use <strong>eelgrass</strong> <strong>meadows</strong> <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong> ....... 54<br />

Energy <strong>in</strong> various ccrrpartments <strong>of</strong> an <strong>eelgrass</strong> bed <strong>in</strong><br />

wrth Carol<strong>in</strong>a .............................. 55<br />

........................<br />

~arvests and value <strong>of</strong> cormnerc ially important animals f ram<br />

<strong>eelgrass</strong>. Wash<strong>in</strong>gton State 68<br />

Page .<br />

viii


ACKNOWLEDGMENTS<br />

I wish to acknowledge <strong>the</strong> help <strong>of</strong> <strong>the</strong> many<br />

students and colleagues who have aided <strong>in</strong><br />

<strong>the</strong> research done on <strong>eelgrass</strong> over <strong>the</strong><br />

years. Specifically, Mr. Anthony Lambert,<br />

Seattle, has worked endlessly <strong>in</strong> <strong>the</strong><br />

library and <strong>in</strong> visit<strong>in</strong>g numerous<br />

scientists who could provide <strong>in</strong>formation.<br />

<strong>The</strong> follow<strong>in</strong>g persons have all been most<br />

helpful <strong>in</strong> provid<strong>in</strong>g reports and<br />

<strong>in</strong>formation: Drs. David McIntire and Mary<br />

Kentula, Botany Department, Oregon State<br />

University, Corvallis; Dr. Hal Kibby, EPA,<br />

Corvallis; Drs. Ken Chew, Bruce Miller,<br />

and Charles Simenstad, and Mr. Jeff<br />

Cordell, College <strong>of</strong> Fisheries, University<br />

<strong>of</strong> Wash<strong>in</strong>gton; Dr. Ron Thom, Army Corps <strong>of</strong><br />

Eng<strong>in</strong>eers, Seattle; Mr. Craig Staude,<br />

Friday Harbor Labs, University <strong>of</strong><br />

Wash<strong>in</strong>gton; Drs. Bob Trumbull, Lynn<br />

Gocdw<strong>in</strong>, and Mr. Baumgartner, Wash<strong>in</strong>gton<br />

State Department <strong>of</strong> Fisheries; Dr. Donald<br />

Outram, Biological Station, Nanaimo,<br />

British Columbia; and Mr. Range Bayer,<br />

Newport, Oregon; and Drs. Dennis Paulson<br />

and Eugene Kozl<strong>of</strong> f , Zoology Department,<br />

University <strong>of</strong> Wash<strong>in</strong>gton; Mr. G. Ballew,<br />

Seattle Aquarium; and Messrs. J. Cordell<br />

and Rick Albright, University <strong>of</strong><br />

Wash<strong>in</strong>gton.<br />

A portion <strong>of</strong> my research was funded by <strong>the</strong><br />

National Science Foundation, International<br />

Decade <strong>of</strong> Ocean Exploration, Liv<strong>in</strong>g<br />

Resources Program, under grants OCE 76-<br />

84259 and OCE 77-25559. <strong>The</strong> Institute for<br />

Research, Seattle <strong>Pacific</strong> University,<br />

aided <strong>in</strong> <strong>the</strong> research.<br />

This docment was sponsored primarily by<br />

North <strong>Pacific</strong> Division and Seattle District<br />

<strong>of</strong> <strong>the</strong> Army mrps <strong>of</strong> mg<strong>in</strong>eers and<br />

<strong>the</strong> National Coastal Ecosystems Team <strong>of</strong><br />

<strong>the</strong> U. S. Fish and Wildlife Service (FWS) .<br />

special thanks to Dennis Peters and Jay<br />

Watson <strong>of</strong> <strong>the</strong> FWS Portland Fegional Office<br />

for <strong>the</strong>ir help <strong>in</strong> secur<strong>in</strong>g fund<strong>in</strong>g.<br />

I thank all those who reviewed and<br />

improved <strong>the</strong> manuscript, especially Jay<br />

Watson and <strong>the</strong> National mas tal Ecosystems<br />

Team.<br />

Illustrations were prepared with <strong>the</strong> aid<br />

<strong>of</strong> Mr. Steven Lmbert, Mangrove Systems,<br />

Inc., Tampa, Florida. Mr. Anthony Lambert<br />

not only helped <strong>in</strong> data collection but<br />

also <strong>in</strong> <strong>the</strong> smarizat ion arid organization<br />

<strong>of</strong> data. Mrs. Debbie W<strong>in</strong>sberg and Mrs.<br />

Kathy Eknerson spent many hours prepar<strong>in</strong>g<br />

<strong>the</strong> manuscript for sulxnission.


INTRODUCTION<br />

Eelgrass (Zostera mar<strong>in</strong>a L.) is 1 <strong>of</strong> 48<br />

species <strong>of</strong> seagrasses found <strong>in</strong> <strong>the</strong> nearshore<br />

coastal environments and estuaries<br />

<strong>of</strong> <strong>the</strong> wrld. Seagrasses have horizontal<br />

rhizmes and eree t leafy shoots extend<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> water column (pigure 1). <strong>The</strong>ir<br />

roots yrow <strong>in</strong> unconsolidated s<strong>of</strong>t substrate<br />

(except for surfgrass,<br />

Phyllospadix,<br />

- . -- .-- - - -- <strong>in</strong> <strong>the</strong> mrth pacific, which<br />

attaches to t surface <strong>of</strong>. rocks on<br />

exposed coasts) .<br />

Accord<strong>in</strong>g to Coward<strong>in</strong> et al. (l979), <strong>the</strong><br />

eelyrass cmun i ty is classif it4 as <strong>the</strong><br />

follow<strong>in</strong>g : SYS'I'kM : Estuar<strong>in</strong>e; SIJBSYSTM :<br />

SubtidaL; CLASS: Aquatic kd; SUfKLASS:<br />

Suherged mat ic ; WATER REGIME : Subt idal;<br />

and WATER CIIFMISTRV: Mixasal<strong>in</strong>e. Xnasnuch<br />

as <strong>the</strong> plants are rated <strong>in</strong> an unconsoli-<br />

dated substrate, <strong>of</strong>ten <strong>of</strong> uniform relief,<br />

and project a "torest" <strong>of</strong> leaves <strong>in</strong>to <strong>the</strong><br />

water colmn, <strong>the</strong> meadow creates a structured<br />

habitat £ran an o<strong>the</strong>rwise unstructured<br />

one. <strong>The</strong> rooted plants and leaf<br />

baffle provide protect ion and sed iment<br />

stabilization that result <strong>in</strong> a much<br />

greater diversity <strong>of</strong> animals with<strong>in</strong> <strong>the</strong><br />

meadow than <strong>in</strong> adjacent unvegetated areas.<br />

It is wll recqnized that estuaries are<br />

important <strong>in</strong> cmercial and sport fisheries.<br />

Many fishes depend on estuaries<br />

for all or part <strong>of</strong> <strong>the</strong>ir life cycle.<br />

S<strong>in</strong>ce estuaries <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong><br />

have extensive <strong>eelgrass</strong> <strong>meadows</strong>, <strong>eelgrass</strong><br />

beds must have an important role <strong>in</strong> <strong>the</strong><br />

life cycles <strong>of</strong> <strong>the</strong>se fishes.<br />

Figure 1. Eelgrass eel ad ow <strong>in</strong> Puget Sound (courtesy National Oceanic & Atmospheric<br />

-stration, m r<br />

. Fish Rev. 39: 18-22) .<br />

X


Because <strong>eelgrass</strong> is a rooted plant, it<br />

performs a vital function <strong>of</strong> stabiliz<strong>in</strong>y<br />

coastal sediment, thus prevent<strong>in</strong>g erosion.<br />

Studies done <strong>in</strong> England (wilson 19491,<br />

Denmark (Rasmussen 1977), <strong>the</strong> Chesapeake<br />

Bay (Orth 1977a), and <strong>in</strong> Puget Sound,<br />

Wash<strong>in</strong>gton hilli ips 1972) have documented<br />

<strong>the</strong> ability <strong>of</strong> <strong>eelgrass</strong> to stabilize<br />

bottom sediments (Figure 2). <strong>The</strong> <strong>eelgrass</strong><br />

meadow provides direct and <strong>in</strong>direct food<br />

sources for mar<strong>in</strong>e food cha<strong>in</strong>s; it also<br />

provides habitat and protection and acts<br />

as a nursery for many mar<strong>in</strong>e species.<br />

Follow<strong>in</strong>g <strong>the</strong> die-<strong>of</strong>f <strong>of</strong> 90% to 100% <strong>of</strong><br />

<strong>the</strong> <strong>eelgrass</strong> <strong>in</strong> <strong>the</strong> North Atlantic <strong>in</strong><br />

1931-33, mny animls associated with<br />

<strong>eelgrass</strong> disappeared. Impacts to <strong>the</strong><br />

humn economy were severe. Scallops, fish,<br />

clams, and crabs decl<strong>in</strong>ed or disappearedr<br />

and <strong>the</strong> brant geese changed <strong>the</strong>ir migration<br />

patterns and went <strong>in</strong>land to feed. In<br />

Europe, brant geese numbers decl<strong>in</strong>ed<br />

severely (E<strong>in</strong>arsen 1965) follow<strong>in</strong>g <strong>the</strong><br />

"wast<strong>in</strong>g disease." In <strong>the</strong> Ne<strong>the</strong>rlands <strong>the</strong><br />

overw<strong>in</strong>ter<strong>in</strong>g population <strong>of</strong> brant decl<strong>in</strong>ed<br />

from more than 10,000 birds to at most 100<br />

by 1953.<br />

<strong>The</strong> <strong>Pacific</strong> <strong>Northwest</strong> region extends from<br />

sou<strong>the</strong>rn British Colmbia, Canada, to<br />

Humboldt Bay <strong>in</strong> northwestern California<br />

(Figure 3), a distance <strong>of</strong> about 900 km<br />

(560 mi) (Proctor et al. 1980a). In<br />

Figure 2. Effect <strong>of</strong> wave shock on rhizome mat <strong>of</strong> <strong>eelgrass</strong>, 22 February 1964. West side<br />

<strong>of</strong> Wdbey Island, Wash<strong>in</strong>gton (shows persistence <strong>of</strong> <strong>eelgrass</strong>).


<strong>Pacific</strong> <strong>Northwest</strong> Coastal Region<br />

Oraya<br />

Cape<br />

Harbor<br />

Nehalem River 4 /0>rA<br />

'.-<br />

----+<br />

Netartr Bay<br />

Nestucca Rlver<br />

siletz River '7<br />

Yaqu<strong>in</strong>e Bay 4 C<br />

Alaea Bay<br />

contrast to sou<strong>the</strong>rn California, <strong>the</strong><br />

coastl<strong>in</strong>e <strong>of</strong> this region is sparsely<br />

populated. It has not been without<br />

modification, however. In sou<strong>the</strong>rn<br />

British Columbia, Moody (1978) reported<br />

that <strong>the</strong> sdnd and mud flats <strong>of</strong> <strong>the</strong> Fraser<br />

River foreshore, which supports extensive<br />

<strong>meadows</strong> <strong>of</strong> <strong>eelgrass</strong>, were threatened by an<br />

<strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> residential,<br />

<strong>in</strong>dustrial, and recreational developnents.<br />

<strong>The</strong> largest <strong>meadows</strong> <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong> occur <strong>in</strong> protected<br />

estuar<strong>in</strong>e areas away from <strong>the</strong> open coast;<br />

i.e., Padilla and Willapa Bays <strong>in</strong><br />

Wash<strong>in</strong>gton State, and Humboldt Bay <strong>in</strong><br />

nor<strong>the</strong>rn California. <strong>The</strong> largest stand <strong>in</strong><br />

nor<strong>the</strong>rn Oregon occurs <strong>in</strong> Netarts Bay,<br />

while small stands are conf<strong>in</strong>ed to several<br />

narrow river valleys (Figure 3). This<br />

report also <strong>in</strong>cludes Z. japonica Aschers.<br />

& Graebn., s<strong>in</strong>ce <strong>the</strong>species is heavily<br />

used as food by black brant geese.<br />

CO~UIII~ RIV.~ --yf r(<br />

Six08 Rlver<br />

Chetco Rlvet<br />

OR<br />

Humboldt Bay 4<br />

Cape Mendoclno<br />

Figure 3. Map <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong><br />

coastl<strong>in</strong>e show<strong>in</strong>g <strong>the</strong> locations <strong>of</strong> <strong>the</strong><br />

estuaries and river systems conta<strong>in</strong><strong>in</strong>g<br />

<strong>eelgrass</strong> (after Proctor et al. 1980b).<br />

N<br />

xii


CHAPTER 1<br />

THE PHYSIOGRAPHIC SETTING<br />

1.1 GM)LM;ICAL HISIWRY OF REGION<br />

Bedrock <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong> was bent,<br />

folded, fractured, and uplifted by <strong>the</strong><br />

collision <strong>of</strong> <strong>the</strong> Juan de Fuca and Gorda<br />

Plates with <strong>the</strong> North American Plate<br />

(Figure 4). Wea<strong>the</strong>r<strong>in</strong>g has modified <strong>the</strong><br />

uplifted formation, with riverborne<br />

sediments deposited <strong>in</strong> estuaries and<br />

beaches (Proctor et al. 1980b). In many<br />

places <strong>the</strong>re are long stretches <strong>of</strong> sand<br />

beaches, broken by steep, resistant sea<br />

cliffs, rock headlands, and <strong>the</strong> mouths <strong>of</strong><br />

bays and small streams (~efferson 1975).<br />

Figure 4. Topographic and bathymetric<br />

features <strong>of</strong> <strong>the</strong> nor<strong>the</strong>ast <strong>Pacific</strong> (after<br />

Proctor et al. 1980b).<br />

<strong>The</strong> long, narrow coastal strip <strong>of</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong> slopes steeply from east<br />

to west (Proctor et al. 1980a). <strong>The</strong> coast<br />

has experienced geologically recent<br />

orogenic activity with result<strong>in</strong>g coastal<br />

subsidence (proctor et al. 1980b). In <strong>the</strong><br />

region <strong>the</strong> cont<strong>in</strong>ental shelf extends from<br />

16 km (10 mi) <strong>of</strong>f Cape Mendoc<strong>in</strong>o <strong>in</strong><br />

nor<strong>the</strong>rn California to 65 km (40 mi) <strong>in</strong><br />

central Oregon to 48 km (30 mi) <strong>of</strong>f<br />

nor<strong>the</strong>rn Wash<strong>in</strong>gton (Proctor et al.<br />

1980b). Offshore subduction is or was<br />

until recently occurr<strong>in</strong>g along a l<strong>in</strong>e<br />

co<strong>in</strong>cid<strong>in</strong>g with <strong>the</strong> coast <strong>of</strong> North America<br />

between Vancouver Island and Cape<br />

Mendoc<strong>in</strong>o (<strong>the</strong> area <strong>of</strong> concern <strong>in</strong> this<br />

pr<strong>of</strong>ile) .<br />

<strong>The</strong> geology <strong>of</strong> <strong>the</strong> coast south <strong>of</strong> <strong>the</strong><br />

Salmon River <strong>in</strong> Oregon differs from that<br />

to <strong>the</strong> north (Proctor et al. 1980b). In<br />

<strong>the</strong> sou<strong>the</strong>rn coast ranges, formations <strong>of</strong><br />

metamorphic rocks are Pre-Tertiary<br />

(~iedemann et al. 1974). Geologic history<br />

began dur<strong>in</strong>g early Eocene with <strong>the</strong><br />

deposition <strong>of</strong> pillow basalts near Alsea,<br />

Oregon. Later <strong>in</strong> <strong>the</strong> Eocene vast<br />

sedimentary beds (~yee formation) were<br />

deposited along most <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn end<br />

<strong>of</strong> <strong>the</strong> coast dur<strong>in</strong>g coastal subsidence.<br />

This subsidence wasdue to a geosyncl<strong>in</strong>e<br />

from <strong>the</strong> Klamath Mounta<strong>in</strong>s (sou<strong>the</strong>rn<br />

Oregon) north to Vancouver Island<br />

(Wiedemann et al. 1974). Scattered<br />

igneous <strong>in</strong>trusions occurred dur<strong>in</strong>g <strong>the</strong><br />

Oligocene. In <strong>the</strong> Miocene localized<br />

deposits <strong>of</strong> sedimentary and volcanic rocks<br />

occurred near Newport and Coos Bay,<br />

Oregon. No new deposits were made <strong>in</strong> <strong>the</strong><br />

Pliocene, but rapid erosion <strong>of</strong> <strong>the</strong> thick<br />

beds <strong>of</strong> sediments occurred as coastal<br />

uplift occurred (Wiedemann et al. 1974;<br />

Proctor et al. 1980b). In <strong>the</strong> Pleistocene<br />

new sandy deposits were made throughout


<strong>the</strong> area dur<strong>in</strong>g a period <strong>of</strong> ris<strong>in</strong>g sea<br />

level.<br />

North <strong>of</strong> <strong>the</strong> Salmon River all rock<br />

formations are Tertiary. Eocene<br />

formations are widespread and <strong>in</strong>clude<br />

volcanic (basalts with tuffs and breccias)<br />

and sedimentary rocks (siltstones and<br />

sandstones) (proctor et al. 1980b). In <strong>the</strong><br />

01 igocene 1 irnited sedimentary formations<br />

developed (siltstones, shales,<br />

sandstones). In <strong>the</strong> Miocene extensive<br />

basalt flows occurred <strong>in</strong> nor<strong>the</strong>rn Oregon<br />

and southwestern Wash<strong>in</strong>gton. Dur<strong>in</strong>g <strong>the</strong><br />

Pleistocene, extensive erosion occurred<br />

dur<strong>in</strong>g coastal uplift<strong>in</strong>g.<br />

It appears that <strong>the</strong> late Pliocene and<br />

Pleistocene were characterized by<br />

alternat<strong>in</strong>g coastal submergence and<br />

uplift, with result<strong>in</strong>g deposition and<br />

erosion, respectively. <strong>The</strong> Puget Sound<br />

Bas<strong>in</strong>-Willamette Trough was formed <strong>in</strong> <strong>the</strong><br />

late pliocene (ca. 3 million years ago)<br />

when a general north-south uplift, form<strong>in</strong>g<br />

<strong>the</strong> Olympic and Cascade Mounta<strong>in</strong>s, was<br />

accompanied by a downwarp between <strong>the</strong> two<br />

ranges (Yosh<strong>in</strong>aka and Ellifrit 1974).<br />

Present coastal con£ igurations and<br />

sediments <strong>in</strong> estuaries to <strong>the</strong> north are<br />

<strong>the</strong> result <strong>of</strong> <strong>the</strong> melt<strong>in</strong>g <strong>of</strong> lobes <strong>of</strong> <strong>the</strong><br />

Vashon glacier <strong>of</strong> <strong>the</strong> Wiscons<strong>in</strong> period<br />

(17,000 to 9,01i70 years ago) (Wiedemann et<br />

al. 1974; Yosh<strong>in</strong>aka and Ellifrit 1974;<br />

Jefferson 1975). As <strong>the</strong> glaciers melted,<br />

erosion occurred with bay deposits form<strong>in</strong>g<br />

beds, fill<strong>in</strong>g <strong>in</strong> all river mouths<br />

(Jefferson 19751.<br />

Coastal submergence<br />

occurred aga<strong>in</strong>, creat<strong>in</strong>g <strong>the</strong> general<br />

features <strong>of</strong> <strong>the</strong> present coastl<strong>in</strong>e. Even<br />

though <strong>the</strong> glaciers did not extend south<br />

<strong>of</strong> <strong>the</strong> olympic Mounta<strong>in</strong>s (~umler 1969),<br />

<strong>the</strong> glacial melt<strong>in</strong>g did result <strong>in</strong> a<br />

general rise <strong>in</strong> sea level 120 to 150 m<br />

(400-500 ft) above its recent level<br />

(Jefferson 1975).<br />

1.2 CLIMATE OF REGION<br />

<strong>The</strong> climate <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong><br />

coastal region is mar<strong>in</strong>e (Proctor et al.<br />

1980b). ~t is characterized as a midlatitude,<br />

west-~oast-m~ he type, with wet<br />

w<strong>in</strong>ters and dry summers. <strong>The</strong> region is<br />

located <strong>in</strong> <strong>the</strong> Center <strong>of</strong> <strong>the</strong> prevail<strong>in</strong>g<br />

westerlies, with local w<strong>in</strong>ds rang<strong>in</strong>g from<br />

northwest to southwest througlmut most <strong>of</strong><br />

<strong>the</strong> year. <strong>The</strong> w<strong>in</strong>ds exchange heat with<br />

<strong>the</strong> ocean and become nearly saturated with<br />

moisture from evaporation. <strong>The</strong> air rises<br />

as it reaches land, cools, and gives up<br />

considerable moisture. Thus <strong>the</strong> climate<br />

is moderated by <strong>the</strong> <strong>Pacific</strong> ocean and<br />

characterized by high ra<strong>in</strong>fall and a<br />

moderate temperature range. <strong>The</strong>re is<br />

little north-to-south variation <strong>in</strong><br />

temperature and only a slight <strong>in</strong>crease <strong>in</strong><br />

precipitation to <strong>the</strong> north <strong>in</strong> <strong>the</strong> region.<br />

Two semipermanent pressure patterns, <strong>the</strong><br />

Aleutian Low and <strong>the</strong> North <strong>Pacific</strong> high,<br />

control <strong>the</strong> climate. <strong>The</strong> Aleutian Low,<br />

consist<strong>in</strong>g <strong>of</strong> a series <strong>of</strong> low pressure<br />

centers, lies over southwest Alaska and<br />

<strong>the</strong> Aleutian Islands. W<strong>in</strong>ds blow<br />

counterclockwise around <strong>the</strong> low, br<strong>in</strong>g<strong>in</strong>g<br />

a series <strong>of</strong> wet onshore frontal storms<br />

which are <strong>of</strong>ten characterized by strong<br />

w<strong>in</strong>ds. This pressure system dom<strong>in</strong>ates <strong>the</strong><br />

w<strong>in</strong>ter wea<strong>the</strong>r from Octcber to March. <strong>The</strong><br />

low shifts southward dur<strong>in</strong>g w<strong>in</strong>ter,<br />

result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>creased frequency <strong>of</strong><br />

frontal storms reach<strong>in</strong>g <strong>the</strong> coast. Eighty<br />

percent <strong>of</strong> <strong>the</strong> annual precipitation falls<br />

dur<strong>in</strong>g this period able 1).<br />

<strong>The</strong> North <strong>Pacific</strong> High dom<strong>in</strong>ates <strong>the</strong><br />

summer wea<strong>the</strong>r <strong>of</strong> <strong>the</strong> region. As summer<br />

approaches, <strong>the</strong> high expands over <strong>the</strong><br />

eastern <strong>Pacific</strong> north <strong>of</strong> 2g0 N almost to<br />

Alaska and westward to 16g0 E. Storms are<br />

veered northward from <strong>the</strong> region by <strong>the</strong><br />

high. Only 5% <strong>of</strong> <strong>the</strong> annual precipitation<br />

falls <strong>in</strong> July and August. W<strong>in</strong>ds flow<br />

clockwise and br<strong>in</strong>g predom<strong>in</strong>antly fair<br />

wea<strong>the</strong>r. Dur<strong>in</strong>g this time coastal w<strong>in</strong>ds<br />

are from <strong>the</strong> northwest and north.<br />

Seasonal shifts <strong>in</strong> w<strong>in</strong>d direction<br />

<strong>in</strong>fluence nearshore ocean currents,<br />

result<strong>in</strong>g <strong>in</strong> upwell<strong>in</strong>g which br<strong>in</strong>gs cooler<br />

water to <strong>the</strong> surface near slmre <strong>in</strong> summer.<br />

'This produces fog, reduced <strong>in</strong>solation, and<br />

lclwer air temperatures.<br />

Precipitation <strong>in</strong> w<strong>in</strong>ter varies from a high<br />

<strong>of</strong> 32 cm (13 <strong>in</strong>ches) at Tatoosh Island <strong>in</strong><br />

northwestern Wash<strong>in</strong>gton to 27 cm (11<br />

<strong>in</strong>ches) at North Bend <strong>in</strong> southwestern<br />

Oregon to 18 cm (7 <strong>in</strong>ches) at Eureka <strong>in</strong><br />

nor<strong>the</strong>rn California, all <strong>in</strong> December<br />

(Proctor et al. 1980b). In summer,<br />

precipitation varies from a low <strong>of</strong> 5 cm (2<br />

<strong>in</strong>ches) <strong>in</strong> August at Tatoosh Island, to 2<br />

cm (0.8 <strong>in</strong>ch) <strong>in</strong> July at North Bend, to 0<br />

at Eureka <strong>in</strong> July.


Table 1. Precipitation, temperature, and tidal data for selected locations <strong>in</strong> <strong>the</strong><br />

pacific ~orthmst (from Wiedemann et al. 1974; Jefferson 1975; Moody 1978; Proctor et<br />

al. 1980a, 1980b).<br />

Location<br />

Mean annual precipitation Mean annual air temp. Rage <strong>of</strong> surface water Mean tidal ranges<br />

an (<strong>in</strong>ches) O C (O F) temp. " c (O F) m (ft)<br />

Hunblilt Bay,<br />

Califorrlia 101 (39.8)<br />

North Bend,<br />

Oregon<br />

Astoria,<br />

Oreyon<br />

So. British Colmnbia,<br />

Canada --<br />

Air and water temperatures are diurnally<br />

and seasonally mild and show relatively<br />

little variation. At Aberdeen,<br />

Wash<strong>in</strong>gton, normal daily summer air<br />

temperatures range from 21° C (70O F) to<br />

10O C (50O F). W<strong>in</strong>ter air temperatures<br />

usually range between 7O (45O F) and 1.6~<br />

C (35O F) from Astoria, Oregon, <strong>in</strong> <strong>the</strong><br />

north and North Bend, Oregon, <strong>in</strong> <strong>the</strong> south<br />

(Wiedemann et al. 1974). Air temperature<br />

extremes are 40O C (lmO F) and -14O C (7O<br />

F): Arrny Corps <strong>of</strong> Eng<strong>in</strong>eers, July 1977)<br />

for <strong>the</strong> Aberdeen area <strong>in</strong> southwest<br />

Wash<strong>in</strong>gton. At Brook<strong>in</strong>gs <strong>in</strong> sou<strong>the</strong>rn<br />

Oregon, <strong>the</strong> mean low air temperature <strong>in</strong><br />

January is 4.4O (40O F), while <strong>the</strong> mean<br />

high te<strong>in</strong>perature <strong>in</strong> August is 19.5O C (67O<br />

F; Jefferson 1975).<br />

Coastal water temperatures <strong>in</strong> nor<strong>the</strong>rn<br />

Wash<strong>in</strong>gton range from 8O C (46O F) <strong>in</strong><br />

w<strong>in</strong>ter to 14O C (57O F) <strong>in</strong> summer (proctor<br />

et al. 1980a). In Humboldt Bay, nor<strong>the</strong>rn<br />

California, water temperatures varied from<br />

8.5O C (47.3O F) <strong>in</strong> January to 11° C (52O<br />

F) <strong>in</strong> May (Proctor et al. 1980b). In an<br />

<strong>eelgrass</strong> meadow at Roberts Bank, sou<strong>the</strong>rn<br />

British Columbia, Moody (1978) recorded a<br />

maximum range <strong>of</strong> surface temperatures <strong>of</strong><br />

7.5O C (45.5O F) <strong>in</strong> January to 17.5O C<br />

(63.5O F) <strong>in</strong> July.<br />

<strong>The</strong> relative humidity <strong>in</strong> <strong>the</strong> region is<br />

quite high, ow<strong>in</strong>g to low evaporation rates<br />

due to low temperatures (Wiedemann et al.<br />

1974). Values range <strong>in</strong> March from 79% at<br />

4:00 pm to 96% at 4:08 am at Tatoosh<br />

Island <strong>in</strong> northwest Wash<strong>in</strong>gton (proctor et<br />

al. 1980b). Values were almost identical<br />

<strong>in</strong> Astoria <strong>in</strong> nor<strong>the</strong>rn Oregon.<br />

Tides <strong>in</strong> <strong>the</strong> region are a mixture <strong>of</strong> semidiurnal<br />

(twice daily) and diurnal (daily)<br />

components, with <strong>in</strong>equality appear<strong>in</strong>g<br />

primarily <strong>in</strong> <strong>the</strong> successive low waters<br />

(proctor et al. 1980b).<br />

Tidal ranges<br />

<strong>in</strong>crease along a gradient from south to<br />

north able 1).<br />

1.3 EELGRASS DISTRIBUTION IN REGION<br />

Five seagrass species are found <strong>in</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong>. Three <strong>of</strong> <strong>the</strong>se are<br />

species <strong>of</strong> surfgrass (~hyllospadix<br />

scouleri, 5 torreyi, 5 serrulatus; cf.,<br />

Phillips 1979 for an analysis <strong>of</strong> <strong>the</strong><br />

distribution and morphology <strong>of</strong> <strong>the</strong>se<br />

species <strong>in</strong> this region). All three<br />

species occur on rocky substrate <strong>in</strong><br />

exposed waters. <strong>The</strong> first two species<br />

range from <strong>the</strong> nor<strong>the</strong>rn end <strong>of</strong> Vancouver<br />

Island, Canada, to <strong>the</strong> lower end <strong>of</strong> Ba ja<br />

California. <strong>The</strong> third, P. serrulatus,<br />

extends from Cape Arago, Oregon, northward<br />

and westward to at least Adak Island <strong>in</strong><br />

<strong>the</strong> Aleutians. <strong>The</strong> o<strong>the</strong>r two species are<br />

<strong>in</strong> <strong>the</strong> genus Zostera: <strong>eelgrass</strong> (Zostera


mar<strong>in</strong>a; Figure 5) and <strong>the</strong> dim<strong>in</strong>utive under consideration. Both can be easily<br />

Zostera japonica. species are found dist<strong>in</strong>quished, not only - by - tidal elevation<br />

on a muddy or mixed mud and sand substrate but al& size. Zostera japonica is a very<br />

<strong>in</strong> areas sheltered from turbulent Water.<br />

small plant, produc<strong>in</strong>q leaves no wider<br />

nica is usually found from than f mm (0:88 <strong>in</strong>chj and usually no<br />

," j-1 to c2.4 m (8.0 ft)<br />

longer than 10-15 cm (4-6 <strong>in</strong>cks).<br />

(Harrison 197g), while <strong>eelgrass</strong> occurs<br />

Rhizomes are no more than 2-3 cm (6.8-1.2<br />

from +1.8 rn (6.0 ft) down to -6.6 m (-22.0 <strong>in</strong>ches) deep <strong>in</strong> <strong>the</strong> sediment. Leaf tips<br />

ft) deep (Phillips 1972, 1974). In Canada<br />

may be slightly notched, while those <strong>in</strong><br />

<strong>the</strong> two species overlap <strong>in</strong> <strong>the</strong> +1.0 m (3.3 <strong>eelgrass</strong> are rounded. Leaf sheaths are<br />

ft) to +1.5 m (5 ft) region (Harrison open, while those <strong>in</strong> <strong>eelgrass</strong> are closed.<br />

1979) .<br />

In <strong>eelgrass</strong>, plants and leaves are much<br />

A standard key to separate species is<br />

unnecessary s<strong>in</strong>ce only two species are<br />

j<br />

i<br />

I<br />

larger (a full analysis <strong>of</strong> seasonal<br />

cha"9es <strong>in</strong> dimensions is given <strong>in</strong> chapter<br />

2, Section 2.1, Vegetative Growth<br />

strategies) .<br />

<strong>The</strong> <strong>Pacific</strong> <strong>Northwest</strong> conta<strong>in</strong>s at least<br />

three very large stands <strong>of</strong> <strong>eelgrass</strong>: (1)<br />

Padilla Bay <strong>in</strong> nor<strong>the</strong>rn Wash<strong>in</strong>gton; (2)<br />

Willapa Bay and Grays Harbor <strong>in</strong><br />

southwestern Wash<strong>in</strong>gton; and ( 3 ) Hurnboldt<br />

Bay <strong>in</strong> nor<strong>the</strong>rn California. <strong>The</strong>re are<br />

large stands <strong>in</strong> some parts <strong>of</strong> sou<strong>the</strong>rn<br />

British Columbia and on Vancouver Island,<br />

Canada (~arrison 1979, Haegele and Hamey<br />

1982). Phillips (1972, 1974) calculated<br />

that <strong>eelgrass</strong> covered up to 98 <strong>of</strong> <strong>the</strong><br />

bottom area <strong>of</strong> Puget Sound below mean<br />

lower low water (MLLW). <strong>The</strong> largest stand<br />

<strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> Oregon is at Netarts Bay<br />

(~igure 3). Table 2 lists <strong>the</strong> various<br />

locations <strong>in</strong> <strong>the</strong> region where <strong>eelgrass</strong> has<br />

been found and <strong>the</strong> extent <strong>of</strong> areal<br />

coverage <strong>of</strong> growth where documented.<br />

Eelgrass is found throughout <strong>the</strong> <strong>Pacific</strong><br />

<strong>Northwest</strong> <strong>in</strong> sheltered water on an<br />

unconsolidated substrate and where<br />

currents do not exceed 3.5 knots. Depth<br />

<strong>of</strong> growth does not exceed -6.6 m (-22 ft),<br />

and sal<strong>in</strong>ity is not less than 20 ppt<br />

(except near river mouths at low tide).<br />

Zostera japonica was probably <strong>in</strong>troduced<br />

<strong>in</strong>to <strong>the</strong> region from Japan through <strong>the</strong><br />

oyster <strong>in</strong>dustry (~arrison 1976). Japanese<br />

oysters were <strong>in</strong>troduced <strong>in</strong>to Willapa Bay<br />

<strong>in</strong> 1928, and <strong>the</strong> species was first<br />

collected by Hotchkiss <strong>in</strong> 1957 (Harrison<br />

and Bigley 1982). <strong>The</strong>se oysters were<br />

<strong>in</strong>creas<strong>in</strong>gly imported after 1928 (Harrison<br />

Figure 5. Eelgrass--(a) Vegetative plant and Biyley 1982). <strong>The</strong> species is<br />

(b) Part <strong>of</strong> spadix with mature seeds presently found from Coos Bay (Phillips,<br />

(after Phillips 1980) (~llustration unpublished research), to Netarts Bay,<br />

courtesy <strong>of</strong> <strong>the</strong> U.S. Army Coastal Oregon; <strong>in</strong> Willapa Bay and Grays Harbor,<br />

Eng<strong>in</strong>eer<strong>in</strong>g Research Center, Fort Belvoir, Wask<strong>in</strong>gton; and extensively from Padilla<br />

~irg<strong>in</strong>ia) . Bay, Wash<strong>in</strong>gton; to Nanaimo on Vancouver


Table 2.<br />

Distribution and extent <strong>of</strong> <strong>eelgrass</strong> growth <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>.<br />

Extent <strong>of</strong><br />

Location Size <strong>of</strong> estuary <strong>eelgrass</strong> growth Fe f erence<br />

( bottm coverage)<br />

British Colunbia,<br />

Canada<br />

North cmst <strong>of</strong><br />

Vancouver<br />

Island<br />

Mberts Bank<br />

Boundary Bay<br />

Haegele and Hamey<br />

1982<br />

-- Moody 1978<br />

25 h2 Harrison 1979<br />

(6,447 acres) :<br />

shares with<br />

Zostera japonica<br />

Wash<strong>in</strong>g ton<br />

Near Bell<strong>in</strong>gham<br />

Drayton Harbor<br />

Birch Bay<br />

Lmi Bay<br />

Simenstad et al. 1979<br />

Simenstad et al. 1979<br />

Simenstad et al. 1979<br />

Sari Juan Islands<br />

Numerous locations,<br />

part icularly<br />

around<br />

San Juan Is.,<br />

Grcas Is. ,<br />

mpez IS.<br />

Padilla Bay<br />

near Anacortes<br />

Fidalgo Bay near<br />

Anacortes<br />

Whidbey Island<br />

77.6 km2<br />

(20,000 acres)<br />

Significant Pryne 1979<br />

stand<br />

-- Phillips 1981<br />

-- Phillips 1972<br />

Snohcmish Estuary 11.63 km2 40percentcov- Driscoll1978<br />

(3,000 acres) ered by <strong>eelgrass</strong><br />

met Sound proper<br />

9 percent <strong>of</strong> Phillips 1972, 1974<br />

bottm below MLLW<br />

Strait <strong>of</strong> Juan<br />

de Fuca<br />

Eeckett m<strong>in</strong>t<br />

Wrt Williams<br />

Crescent Bay<br />

Simenstad et al. 1979<br />

Simenstad et al. 1979<br />

Phillips and Grant<br />

1965


Table 2.<br />

(Cont<strong>in</strong>ued)<br />

Extent <strong>of</strong><br />

bation Size <strong>of</strong> estuary <strong>eelgrass</strong> growth Feference<br />

( bottm coverage)<br />

-<br />

Canal<br />

Nearly cont<strong>in</strong>- --<br />

uous band<br />

around canal.<br />

Sane very large<br />

<strong>meadows</strong>.<br />

Phillips and<br />

Fleenor 1970<br />

Willapa ~ay 347 h2 6,208 ha (15,520 Snith 1976;<br />

(74,207 acres) acres) ; signif i- Wilson 1981<br />

cant stand<br />

Grays Harbor 95.5 q2 Significant Army Corps <strong>of</strong><br />

(38 mi , stand; 4,455 ha Eng<strong>in</strong>eers ~ uly 1977a;<br />

24,636acres)<br />

at MLUJ<br />

(11,000acres)<br />

<strong>of</strong> <strong>eelgrass</strong>; half<br />

Snith 1976<br />

<strong>of</strong> this is <strong>in</strong><br />

dense stands.<br />

<strong>The</strong>re are 275 ha<br />

(680 acres) <strong>of</strong><br />

- 2. japonica<br />

(Dense def iaed as<br />

70 shoots/mL.<br />

knsity could be<br />

asfewa 7<br />

Oregon<br />

Necanicun River --<br />

Nehalem Bay --<br />

Tillamook Bay --<br />

shoots/m<br />

2 .).<br />

Low to moderate<br />

percent <strong>of</strong><br />

<strong>eelgrass</strong><br />

Low to moderate<br />

percent <strong>of</strong><br />

eelg rass<br />

Eloderate percent<br />

<strong>of</strong> <strong>eelgrass</strong><br />

Proctor et al. 1980a<br />

Proctor et al. 1980a<br />

Proctor et al. 1980a<br />

Netarts Bay 612 ha (1,520 161 ha (395 Stout 1976;<br />

acres) tide- acres) on tide- Kentula 1983<br />

lands and lands (48%;<br />

329 ha (806<br />

acres) sub<br />

175 ha (429<br />

acres) sulmerged<br />

merged (52%)<br />

Nestucca Bay -- Moderate percent Proctor et al. 1980a<br />

<strong>of</strong> <strong>eelgrass</strong><br />

cont<strong>in</strong>ued


Table 2.<br />

(Concluded)<br />

Extent <strong>of</strong><br />

mat ion Size <strong>of</strong> estuary <strong>eelgrass</strong> growth I& ference<br />

( bottm coverage)<br />

Salmon River --<br />

Siletz Bay --<br />

Moderate percent<br />

<strong>of</strong> <strong>eelgrass</strong><br />

Moderate percent<br />

<strong>of</strong> <strong>eelgrass</strong><br />

Proctor et al. 1980a<br />

Proctor et al. 1980a<br />

Yaqu<strong>in</strong>a Bay 15.8 $L Eloderate to high Proctor et al. 1980a<br />

(6.1 mi ) percent <strong>of</strong><br />

<strong>eelgrass</strong><br />

Alsea Bay --<br />

Unpqua River --<br />

Low to merate<br />

percent <strong>of</strong><br />

<strong>eelgrass</strong><br />

Low percent <strong>of</strong><br />

<strong>eelgrass</strong><br />

Proctor et al. 1980a<br />

Proctor et al. 1980a<br />

Ooos Bay<br />

Coquille River --<br />

Sixes River --<br />

~cgue River --<br />

Pistol River; --<br />

W<strong>in</strong>chuck River<br />

Chetco River --<br />

California<br />

Low to high percent<br />

<strong>of</strong> <strong>eelgrass</strong><br />

Low to moderate<br />

percent <strong>of</strong><br />

<strong>eelgrass</strong><br />

Lowpercent<strong>of</strong><br />

<strong>eelgrass</strong><br />

Low to moderate<br />

percent <strong>of</strong><br />

<strong>eelgrass</strong><br />

Low percent <strong>of</strong><br />

<strong>eelgrass</strong><br />

Lowtomoderate<br />

percent <strong>of</strong><br />

<strong>eelgrass</strong><br />

Proctor et al. 1980a<br />

Proctor et al. 1980a<br />

Proctoretal.1980a<br />

Proctor et al. 1980a<br />

Proctor et al. 1980a<br />

Proctoretal. 1980a<br />

Humboldt Bay<br />

Total surface --<br />

area at high<br />

tide is 52.4 km<br />

(24.1 mi )<br />

Proctor et al. 1980b<br />

North Bay -- 435 ha ( 1,088 Hard<strong>in</strong>g and Butler<br />

acres 1 1979<br />

South Bay -- 786 ha (1,965 Hard<strong>in</strong>g and Butler


Island, and Vancouver, Canada (Harrison<br />

and Bigley 1982). No attempt will be made<br />

to list all known <strong>eelgrass</strong> distribution,<br />

with one exception.<br />

However, because so little is known <strong>of</strong><br />

<strong>eelgrass</strong> distribution <strong>in</strong> Oregon, it is<br />

worthwhile to list <strong>in</strong> Table 2 distribution<br />

as it is known (Proctor et al. 1980a).


CHAPTER 2<br />

THE BIOLOGY OF EELGRASS<br />

2.1 VEGETATIVE GlXWlTd STRATEGIES<br />

Sauvageau (1889, 1890, 1891), Setchell<br />

(19291, Phillips (1972), and Toml<strong>in</strong>son<br />

(1974, 1980) described <strong>the</strong> morphology and<br />

anatomy <strong>of</strong> <strong>eelgrass</strong>. Eelgrass leaves<br />

possess an anatomy typical <strong>of</strong> submerged<br />

hydrophytes: namely, cut<strong>in</strong> on <strong>the</strong> leaf is<br />

th<strong>in</strong>, <strong>the</strong>re are no stomata, chloroplasts<br />

are densely packed and lie pr<strong>in</strong>cipally <strong>in</strong><br />

<strong>the</strong> epidermis, <strong>the</strong> <strong>in</strong>ternal cellular<br />

structure consists <strong>of</strong> large th<strong>in</strong>-walled<br />

aerenchyma cells with numerous air canals<br />

(lacunae), and <strong>the</strong> vascular tissue has<br />

reduced xylem (Toml<strong>in</strong>son 1980). As with<br />

grass-like monocots whose leaves stand<br />

erect, <strong>the</strong>re are no dorsal or ventral<br />

sides to <strong>the</strong> leaf blade. <strong>The</strong> lacunae are<br />

cont<strong>in</strong>uous from <strong>the</strong> leaf blade through <strong>the</strong><br />

rhizome to <strong>the</strong> root tips and carry o2 and<br />

C02 throughout <strong>the</strong> plant. Because <strong>the</strong>se<br />

lacunae may also store and recycle 02, <strong>the</strong><br />

standard method <strong>of</strong> measur<strong>in</strong>g prlmary<br />

productivity by measur<strong>in</strong>g O2 changes <strong>in</strong><br />

<strong>the</strong> water around <strong>eelgrass</strong> plants is not<br />

accurate (Hartmanand Brown1967; Jacobs<br />

1979; Zieman and Wetzel 1980). <strong>The</strong> leaftips<br />

are rounded, while <strong>the</strong> blades are<br />

straplike. Leaf width depends on <strong>the</strong><br />

severity <strong>of</strong> <strong>the</strong> climate <strong>in</strong> a region, <strong>the</strong><br />

season, and tidal zone (Setchell 1920,<br />

1929; Phillips 1972; Kentula 1983). <strong>The</strong><br />

leaves are produced by a meristem term<strong>in</strong>al<br />

on a short shoot (erect branch from <strong>the</strong><br />

horizontal rhizome). <strong>The</strong> oldest shoot<br />

(def<strong>in</strong>ed as an erect branch with a bundle<br />

<strong>of</strong> leaves) is term<strong>in</strong>al on <strong>the</strong> rhizome.<br />

Occasionally <strong>the</strong> meristem on <strong>the</strong> term<strong>in</strong>al<br />

shoot gives rise to a lateral rhizome<br />

branch with a meristem that produces<br />

leaves.<br />

Depend<strong>in</strong>g on <strong>the</strong> length <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g<br />

season, <strong>the</strong> number <strong>of</strong> leaves produced <strong>in</strong> a<br />

year, and<strong>the</strong> number <strong>of</strong> lateral branches<br />

produced, <strong>the</strong> <strong>in</strong>dividual <strong>eelgrass</strong> plant<br />

has a variable growth and expansion rate<br />

over <strong>the</strong> bottom. <strong>The</strong>re is one rhizome<br />

ncde prcduced for each new leaf <strong>in</strong>itiated;<br />

<strong>the</strong> same meristem which produces a leaf<br />

also produces a new <strong>in</strong>ternode for <strong>the</strong><br />

elongat<strong>in</strong>g branch. Setchell (1929)<br />

<strong>the</strong>orized that <strong>eelgrass</strong> plants produced<br />

two lateral branches dur<strong>in</strong>g a grow<strong>in</strong>g<br />

season and that <strong>the</strong> term<strong>in</strong>al shoot always<br />

flowered dur<strong>in</strong>g <strong>the</strong> second year follow<strong>in</strong>g<br />

development from a seed. In this scheme<br />

<strong>eelgrass</strong> is a biennial plant.<br />

Eelgrass rhizome are buried from 3-4 cm<br />

(1.2-1.6 <strong>in</strong>ches) up to 20 cm (8.0 <strong>in</strong>ches)<br />

deep <strong>in</strong> sediment, depend<strong>in</strong>g on <strong>the</strong><br />

sediment consistency. In firmer<br />

substrates, rhizomes may be only half as<br />

deep as <strong>in</strong> s<strong>of</strong>t muddy substrates. Two<br />

bundles <strong>of</strong> roots are produced at each<br />

rhizome node.<br />

New leaves grow on alternat<strong>in</strong>g sides from<br />

<strong>the</strong> meristem on <strong>the</strong> shoot. Subtidal<br />

shoots <strong>in</strong> Puget Sound typically carry five<br />

leaves each dur<strong>in</strong>g summer and four <strong>in</strong><br />

w<strong>in</strong>ter e hilli ips 1972), while <strong>in</strong>tertidal<br />

shoots <strong>in</strong> Oreyon averaged four leaves each<br />

<strong>in</strong> June and as few as 2.5 each <strong>in</strong> August<br />

(Kentula 1983). Keller and Harris (1966)<br />

reported that <strong>the</strong> number <strong>of</strong> leaves per<br />

shoot <strong>in</strong> Humboldt Bay ranged from two to<br />

thirteen but averaged three to four.<br />

Kentula (1983) analyzed <strong>the</strong> growth <strong>of</strong> a<br />

leaf <strong>in</strong> relation to its age-position on<br />

<strong>the</strong> shoot. <strong>The</strong> youngest leaf was<br />

designated No. 1. <strong>The</strong> greatest proprtion<br />

<strong>of</strong> growth occurred <strong>in</strong> position No. 2. In<br />

April-May <strong>the</strong>se leaves accounted for 48%-<br />

65% <strong>of</strong> <strong>the</strong> total growth <strong>of</strong> <strong>the</strong> shoot and<br />

from 75%-95% <strong>of</strong> <strong>the</strong> growth from June-<br />

October.


<strong>The</strong>re are seasonal differences <strong>in</strong> leaf<br />

dimensions <strong>of</strong> <strong>eelgrass</strong>. Intertidal and<br />

subtidal leaves are longer and wider <strong>in</strong><br />

summer than <strong>in</strong> w<strong>in</strong>ter (Table 3) (Tut<strong>in</strong><br />

1938, Burlholder and Doheny 1968, Phillips<br />

1972, Kentula 1983). <strong>The</strong>se changes <strong>in</strong><br />

dimension not only affect functional<br />

aspects <strong>of</strong> <strong>the</strong> ecosystem (productivity,<br />

reduced eipiphyte load, amount <strong>of</strong> litter<br />

for decomposition), but also <strong>the</strong><br />

structural aspects (density <strong>of</strong> leaf cover<br />

for <strong>the</strong> refuge and nursery functions <strong>of</strong><br />

<strong>the</strong> animal communities) .<br />

Setchell (1929) noted that <strong>eelgrass</strong> growth<br />

was seasonal and correlated with 5O C<br />

<strong>in</strong>tervals <strong>of</strong> temperature. While <strong>eelgrass</strong><br />

activity <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong> does not<br />

fall neatly <strong>in</strong>to <strong>the</strong>se <strong>in</strong>tervals, it does<br />

appear that <strong>eelgrass</strong> shows dist<strong>in</strong>ct<br />

seasonal patterns <strong>of</strong> activity,<br />

particularly <strong>in</strong> <strong>the</strong> case <strong>of</strong> vegetative<br />

growth and reproductive cycles. Phillips<br />

(1976) created a Phenolcgical Index <strong>of</strong> 14<br />

separate characteristics <strong>of</strong> seagrass<br />

activity, but shortened <strong>the</strong> list to three<br />

reproductive phases follow<strong>in</strong>g a 4-year<br />

collection program <strong>of</strong> turtle grass<br />

(Thalassia testud<strong>in</strong>um Banks ex Konig) arid.<br />

eelsrass from a wide distributional range<br />

<strong>in</strong> iorth America (Phillips et al. 1983~).<br />

<strong>The</strong> three phases were significantly<br />

correlated with water temperature. <strong>The</strong><br />

three events were <strong>in</strong>itial date <strong>of</strong> flower<br />

buds, <strong>in</strong>itial date <strong>of</strong> an<strong>the</strong>sis, and<br />

<strong>in</strong>itial date <strong>of</strong> visible fruits. Dates <strong>of</strong><br />

maximum and m<strong>in</strong>imum biomass were analyzed,<br />

but no significant correlations with water<br />

temperature appeared. T data also<br />

<strong>in</strong>dicated that both species may <strong>in</strong>clude<br />

genotypes with different temperature<br />

requirements for reproductive activity<br />

that are selectively adapted to different<br />

habitats. This study does not rule out<br />

<strong>the</strong> <strong>in</strong>fluence <strong>of</strong> o<strong>the</strong>r factors which could<br />

control phenology; namely, day length<br />

(photoperiod) and nutritional status <strong>of</strong><br />

<strong>the</strong> plants.<br />

Despite a lack <strong>of</strong> correlation <strong>of</strong><br />

vegetative activity with environmental<br />

variables , <strong>eelgrass</strong> demonstrates seasonal<br />

regularity <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong><br />

hilli ips 1972, Puget Sound; Kentula 1983,<br />

Netarts Bay, Oregon). Leaves typical <strong>of</strong><br />

w<strong>in</strong>ter growth (narrower, shorter) appeared<br />

<strong>in</strong> September <strong>in</strong> Netarts Bay, with a<br />

complete change to <strong>the</strong> w<strong>in</strong>ter forrn by<br />

December. In Puget Sound <strong>the</strong> w<strong>in</strong>ter<br />

leaves beg<strong>in</strong> to appear <strong>in</strong> November. In<br />

both areas new vegetative growth events<br />

occur before <strong>the</strong> water cools and warms,<br />

respectively. Table 4 lists <strong>the</strong> field<br />

observations made on <strong>eelgrass</strong> phenology <strong>in</strong><br />

<strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>.<br />

In Denmark, Ostenfeld (1908) calculated<br />

that a shoot <strong>of</strong> <strong>eelgrass</strong> produced four to<br />

six new leaves annually. Petersen (1913)<br />

stated that <strong>eelgrass</strong> shoots <strong>in</strong> Denmark<br />

each produced ten leaves <strong>in</strong> summer and<br />

five more <strong>in</strong> w<strong>in</strong>ter. In Puget Sound,<br />

Phillips calculated that <strong>eelgrass</strong> shoots<br />

produced an annual crop <strong>of</strong> 15 leaves<br />

Table 3.<br />

Seasonal changes <strong>in</strong> leaf dimensions <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> Puget Sound, Wash<strong>in</strong>gton.<br />

Season Tidal Zone Width <strong>in</strong> mn (<strong>in</strong>ches) Length <strong>in</strong> an (ft) NO. <strong>of</strong> leaves/<br />

shoot (X)<br />

W<strong>in</strong>ter Intertidal 3-5 (0.1243.20) Up to 25 (1)<br />

Slntnner Intertidal 4-7 (0.16-0.28) Up to 58 (1.67) 4 <strong>in</strong> June; 2.5 <strong>in</strong><br />

ALKJUS~~


Table 4. Field observations on <strong>eelgrass</strong> phenology <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong> hilli ips<br />

1972; Kentula 1983).<br />

Event Earliest mnth and range Water temperature <strong>in</strong><br />

OC (OF)<br />

1. New gro.43 Of roots, rhizanes, and leaves February<br />

typical <strong>of</strong> sumner<br />

2. Appearance <strong>of</strong> flcxrrer<strong>in</strong>g stalks larch (to July) 6.5 (43.7)<br />

3. Seed germ<strong>in</strong>ation April (to ~uly)<br />

(occurs all year but<br />

predan<strong>in</strong>antly £ran<br />

Fpril to July)<br />

4. Vegetative growth burst July<br />

5. Seed production July (to October)<br />

6. Seed dispersal Mid-August (to October)<br />

7. End <strong>of</strong> smmer leaves and production <strong>of</strong> November<br />

w<strong>in</strong>ter leaves<br />

Zostera japnica (sou<strong>the</strong>rn British Colunbia, Canada; Harrison 1982a)<br />

1. Seed germ<strong>in</strong>ation<br />

2. Vegetative gr-<br />

3. Appearance <strong>of</strong> f lcwers<br />

Mid-March (maximum <strong>in</strong> April-May;<br />

to August)<br />

April (maximum <strong>in</strong> August; to<br />

January)<br />

July (maximum <strong>in</strong> August; to<br />

December)<br />

(Phillips 1972). In Oregon, Kentula<br />

(19831, work<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>in</strong>tertidal zone,<br />

calculated that mean lifetimes <strong>of</strong> leaves<br />

were 34-34.8 days <strong>in</strong> April, 49 days <strong>in</strong><br />

May, and 40.7-55.7 days <strong>in</strong> June-October.<br />

<strong>The</strong> shorter periods <strong>in</strong> April were due to<br />

leaves slough<strong>in</strong>g from <strong>the</strong> plant faster<br />

than <strong>the</strong>ir production. <strong>The</strong> longer period<br />

<strong>of</strong> 55.7 days was attributed to shoots <strong>in</strong><br />

<strong>the</strong> lower <strong>in</strong>tertidal region. This study<br />

also determ<strong>in</strong>ed that <strong>the</strong> time <strong>in</strong>terval<br />

between <strong>the</strong> slough<strong>in</strong>g <strong>of</strong> two successive<br />

leaves on one shoot varied from as few as<br />

7.1 days (~ay-June 1981) to as many as<br />

23.3 days (~ay 1981). Table 5 lists <strong>the</strong><br />

methods <strong>of</strong> calculat<strong>in</strong>g <strong>the</strong>se time<br />

<strong>in</strong>tervals. In Oregon it appears that<br />

<strong>in</strong>tertidal <strong>eelgrass</strong> may also produce about<br />

four to five crops <strong>of</strong> leaves/year (Kentula<br />

1983). Sand-Jensen (1975), us<strong>in</strong>g a leaf<br />

mark<strong>in</strong>g technique, calculated that <strong>the</strong><br />

mean lifetime <strong>of</strong> leaves <strong>in</strong> Denmark was 56<br />

days and that new leaves were produced<br />

every 14 days.<br />

Under most conditions <strong>eelgrass</strong> forms<br />

perennial stands. Under certa<strong>in</strong><br />

conditions <strong>of</strong> stress, <strong>eelgrass</strong> may act as<br />

an annual plant with a very heavy<br />

production <strong>of</strong> seeds (Felger and McRoy<br />

1975, Mexico; Keddy and Patriqu<strong>in</strong> 1978,<br />

Nova Scotia, Canada; Bayer 1979a, Oregon;<br />

Jacobs 1982, Europe; Phillips et al.<br />

1983b, Wash<strong>in</strong>gton). Stress factors may<br />

<strong>in</strong>clude high and low water temperatures,<br />

reduced water sal<strong>in</strong>ity, and <strong>in</strong>tertidal<br />

locations. Recent work has shown that<br />

seagrass species may form genotypes that<br />

are selectively adapted to different<br />

habitats (McMillan and Phillips 1979;<br />

Phillips and Lewis 1983; Phillips et al.<br />

1983a,b). Environmental factors that<br />

appear to correlate with genotypic<br />

formation <strong>in</strong>clude temperature, sal<strong>in</strong>ity,


Table 5. Calculations for mthods <strong>of</strong> determ<strong>in</strong><strong>in</strong>g leaf growth and release (~ml<strong>in</strong>son<br />

1972, 1974; Patriqu<strong>in</strong> 1973; Jacobs 1979; Kentula 1983).<br />

- -<br />

Method<br />

Calculations<br />

Plastochrone Interval (P.I.)<br />

(~epresents time <strong>in</strong>terval between<br />

<strong>the</strong> <strong>in</strong>itiation <strong>of</strong> two successive<br />

leaves on one shoot)<br />

Exprt Interval (E. I. )<br />

(Represents time <strong>in</strong>terval between<br />

slough<strong>in</strong>g <strong>of</strong> tm successive leaves<br />

on one shoot)<br />

No. <strong>of</strong> shoots marked x observation pericd <strong>in</strong> days<br />

No. <strong>of</strong> new leaves on marked shoots<br />

No. <strong>of</strong> shoots marked x observation period <strong>in</strong> days<br />

No. <strong>of</strong> leaves sloughed frcm marked shoots<br />

Multiply <strong>the</strong> P. I. x mean no. <strong>of</strong> leaves/shmt to get<br />

mean lifetime <strong>of</strong> a leaf on a shoot<br />

light, and comb<strong>in</strong>ations <strong>of</strong> temperaturelight<br />

along a depth gradient. Work has<br />

also shown that <strong>eelgrass</strong> may exhibit a<br />

phenotypically plastic growth respse to<br />

changes <strong>in</strong> env irorunental conditions<br />

(Phillips 1972; Backman 1983; Phillips and<br />

Lewis 1983). Eklgrass fran stressed enviroments<br />

typically shows genotypic ( ecotypic)<br />

differentiation, while <strong>eelgrass</strong><br />

fran envirormentally optimm ( least<br />

stressed) conditions shows a phenotypically<br />

plastic response to <strong>the</strong> envirorment.<br />

2.2 REPFODWIVE STRATEGIES<br />

<strong>of</strong> range from California to Alaska: a.<br />

Intertidal plants subjected to wide<br />

fluctuations <strong>in</strong> temperature, sal<strong>in</strong>ity,<br />

radiation, graz<strong>in</strong>g, erosion, and wave<br />

action. <strong>The</strong>se plants have a much higher<br />

<strong>in</strong>cidence <strong>of</strong> flower and seed production<br />

than plants <strong>in</strong> subtidal zones; b.<br />

Subtidal plants are relatively undisturbed<br />

physically and biologically, and show <strong>the</strong><br />

least flower<strong>in</strong>g response, <strong>in</strong>dicat<strong>in</strong>g<br />

perennial plants and a K-selected trait.<br />

Bayer (1979a) found an upper <strong>in</strong>tertidal<br />

zone <strong>of</strong> eelyrass <strong>in</strong> <strong>the</strong> Yaqu<strong>in</strong>a estuary,<br />

Oregon, made up <strong>of</strong> annual <strong>eelgrass</strong>. He<br />

also found that <strong>the</strong> <strong>in</strong>cidence <strong>of</strong> flower<strong>in</strong>g<br />

decl<strong>in</strong>ed over <strong>the</strong> gradient from <strong>the</strong> upper<br />

<strong>in</strong>tertidal to <strong>the</strong> subtidal zone.<br />

recent studies have<br />

HarriMn ('979) capared <strong>the</strong> reprductive<br />

sexual reproductive patterns <strong>of</strong> <strong>eelgrass</strong><br />

effort <strong>of</strong> <strong>eelgrass</strong> and - 2. japonis and<br />

<strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong> (Phillips 1972: concluded 2. ,a nica was an r-<br />

Harrison 1979; Kentula 1983; Phillips et<br />

a1 198313). <strong>The</strong> events and tim<strong>in</strong>g are<br />

strategist, while <strong>eelgrass</strong> was a K-<br />

summarized <strong>in</strong> Table 4. Harrison (1982a)<br />

strategist. Z. japonica <strong>in</strong>habits a high<br />

reported <strong>the</strong> phenology <strong>of</strong> 2 japonica<br />

<strong>in</strong>tertidal loc~tion, while <strong>eelgrass</strong> grows<br />

ee able 4).<br />

below it. Harrison (1982a) concluded that<br />

<strong>eelgrass</strong> may be a facultative annual <strong>in</strong><br />

With <strong>the</strong> study <strong>of</strong> phenology <strong>of</strong> <strong>eelgrass</strong> areas where plants are exposed to<br />

and & japnica has come an application to conditions too harsh for its adaptive<br />

<strong>the</strong> r-K selection <strong>the</strong>ory (~acArthur and tolerance and that 2. japonica is an op<br />

~ilson 1967) and use <strong>of</strong> <strong>the</strong> word portunist that over-w<strong>in</strong>ters predom<strong>in</strong>antly<br />

"strategies" to describe growth patterns as seed and can quickly complete its life<br />

and <strong>in</strong>teractions <strong>in</strong> <strong>the</strong> field. It appears cycle <strong>in</strong> 6-7 mo. (<strong>in</strong> sou<strong>the</strong>rn Canada). It<br />

that on <strong>the</strong> <strong>Pacific</strong> coast <strong>of</strong> North America is important that we determ<strong>in</strong>e if annual<br />

<strong>eelgrass</strong> has three dist<strong>in</strong>ct life-history <strong>eelgrass</strong> <strong>in</strong> <strong>the</strong> Gulf <strong>of</strong> California and <strong>in</strong><br />

strategies (Phillips et al. 1983b): (1) <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong> is really annual or<br />

Gulf <strong>of</strong> California, where all plants whe<strong>the</strong>r p~pulations may really behave<br />

flower <strong>in</strong> March, produce seed <strong>in</strong> April and facultatively. Harrison (1982b) found<br />

May, and decay as water temperatures that both <strong>eelgrass</strong> and Z. japonica could<br />

exceed 27O C (80.6O F), an annual habit live toge<strong>the</strong>r <strong>in</strong> spr<strong>in</strong>g,but Z. japonica<br />

and r-selected trait: (2) Central portion decl<strong>in</strong>ed <strong>in</strong> summer as <strong>the</strong> longer <strong>eelgrass</strong>


leaves overtopped <strong>the</strong>m and created deeper<br />

shade.<br />

In <strong>the</strong> subtidal zone sexual reproduction<br />

does not play an important role <strong>in</strong> <strong>the</strong><br />

growth and ma<strong>in</strong>tenance <strong>of</strong> an <strong>eelgrass</strong><br />

meadow (Phillips 1972; Kentula 1983).<br />

Dur<strong>in</strong>g a study <strong>in</strong> Puget Sound, Phillips<br />

(1972) tagged numerous seedl<strong>in</strong>gs <strong>in</strong> <strong>the</strong><br />

subtidal and found 100% mortality. In one<br />

denud<strong>in</strong>g experiment only one seedl<strong>in</strong>g<br />

colonized a 1-m2 plot <strong>in</strong> <strong>the</strong> subtidal,<br />

while five seedl<strong>in</strong>gs appeared <strong>in</strong> an<br />

<strong>in</strong>tertidal plot.<br />

<strong>The</strong>re appears to be a direct relationship<br />

between <strong>the</strong> amount <strong>of</strong> physical disturbance<br />

(high or low water temperatures,<br />

<strong>in</strong>tertidal conditions) and a dependence on<br />

sexual reprduction (dqree <strong>of</strong> flower and<br />

seed production and survival <strong>of</strong> seedl<strong>in</strong>gs)<br />

to ma<strong>in</strong>ta<strong>in</strong> an <strong>eelgrass</strong> meadow <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>tertidal zone. In <strong>the</strong> subtidal zone<br />

<strong>the</strong>re is a dependence on vegetative growth<br />

to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> meadow s hilli ips 1972;<br />

Phillips et al. 1983b).<br />

2.3 PHYSI0IXX;ICAL REQUI~S AND<br />

FUNCTIONS<br />

Table 6 <strong>in</strong>cludes a general list <strong>of</strong> habitat<br />

factors under which eelyrass grows<br />

(phillips 1974).<br />

Temperature<br />

Eelgrass worldwide survives under a wide<br />

range <strong>of</strong> water temperatures. It appears<br />

that an overall range <strong>of</strong> 5O C to 27O C<br />

(41° F to 80.5O F) would <strong>in</strong>clude most<br />

areas where <strong>the</strong> plant is established.<br />

Extreme limits at which <strong>eelgrass</strong> is known<br />

to survive are a m<strong>in</strong>imum <strong>of</strong> -6O C (21.2O<br />

F) <strong>in</strong> Alaska (Biebl and McRoy 1971) and a<br />

maximum <strong>of</strong> 40.5' C (104.9' F) (Arasaki<br />

1950) measured at a substrate depth <strong>of</strong> 3-5<br />

cm. qptirnm temperatures for growth<br />

seem to lie between l@ C and 200 C (5a0 F<br />

to 68O F) <strong>in</strong> most areas <strong>of</strong> <strong>the</strong> world<br />

hilli ips 1974). In Puget Sound<br />

vegetative and reproductive activity<br />

occurs <strong>in</strong> a temperature range <strong>of</strong> 6.0O C to<br />

12.5O C (42.8O F to 54.5O F). In local<br />

areas water temperatures may warm to 18O C<br />

(64.4O F) dur<strong>in</strong>g daytime summer low tides.<br />

In <strong>the</strong> Gulf <strong>of</strong> California, Mexico,<br />

<strong>eelgrass</strong> decays when <strong>the</strong> water temperature<br />

exceeds 27O C (~0.5~ F).<br />

In Netarts Bay, Oregon, water temperature<br />

varies from 8O C to 11° C (46.4O F to<br />

51.8O F) <strong>in</strong> w<strong>in</strong>ter to ~ 6 . 0 C ~ to 28.5O C<br />

(60.8O F to 83.3O F) <strong>in</strong> summer (Stout<br />

1976). <strong>The</strong> latter temperature was rare<br />

and only occurred over a tideflat dur<strong>in</strong>g<br />

daytime summer low tides.<br />

All seagrass species appear to have upper/<br />

lower temperature tolerance levels (Thayer<br />

et al. 1975a; McMillan 1978). McMillan<br />

(1978) subjected three different Puget<br />

Sound <strong>eelgrass</strong> populations, each with<br />

different leaf widths, to three<br />

temperature treatments. After 4 mo. each<br />

population cont<strong>in</strong>ued to ma<strong>in</strong>ta<strong>in</strong> its<br />

orig<strong>in</strong>al dist<strong>in</strong>ct genetic limits <strong>of</strong><br />

ecoplasticity to <strong>the</strong>ir environment. <strong>The</strong>se<br />

tolerance levels vary with <strong>the</strong> local area<br />

(~c~illan 1979; Phillips et a1 1983a).<br />

Eelgrass at <strong>the</strong> nor<strong>the</strong>rn and sou<strong>the</strong>rn<br />

extremes <strong>of</strong> distribution on both <strong>the</strong><br />

Atlantic and <strong>Pacific</strong> coasts appears to<br />

tolerate a much broader temperature range<br />

than <strong>eelgrass</strong> <strong>in</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> ranye<br />

(Phillips 1980).<br />

<strong>The</strong> relationship <strong>of</strong> water temperature to<br />

<strong>eelgrass</strong> reproductive @ysiology was shown<br />

by Phillips et al. (1983a). Analyz<strong>in</strong>g<br />

collections from a wide distributional<br />

range on both coastl<strong>in</strong>es <strong>in</strong> North America,<br />

<strong>the</strong>y demonstrated a significant<br />

correlation <strong>of</strong> plant activity with water<br />

temperature. It was also suggested that<br />

<strong>eelgrass</strong> may form genotypes with different<br />

temperature requirements that are<br />

selectively adapted to conditions at local<br />

sites and over a latitud<strong>in</strong>al gradient.<br />

Biebl and ~cRoy(1971) demonstrated that<br />

<strong>eelgrass</strong> <strong>in</strong> Izembek Lagoon possessed a<br />

broad response to temperature. Local<br />

plants survived freez<strong>in</strong>g <strong>in</strong> ice at -6O C<br />

(21.1° F) , but <strong>eelgrass</strong> from Wash<strong>in</strong>gton<br />

State and California could not. Tidepool<br />

<strong>eelgrass</strong> <strong>in</strong> Izembek Lagoon showed<br />

<strong>in</strong>creased photosyn<strong>the</strong>sis and survival up<br />

to 35O C (95O F), while photosyn<strong>the</strong>sis and<br />

survival <strong>in</strong> subtidal plants decl<strong>in</strong>ed above<br />

30O C (86O F).<br />

Short (1975) diagrammed a relationship <strong>of</strong><br />

<strong>eelgrass</strong> productivity and water<br />

13


Table 6. Numerical characteristics <strong>of</strong> <strong>eelgrass</strong> habitat factors (Phillips 1974).<br />

Habitat factor Vegetative growth Flcwer<strong>in</strong>g state Seed gem<strong>in</strong>ation<br />

Temperature<br />

opt<strong>in</strong>am lo0 C to 20" C 15O-20O C (a0 C-go C <strong>in</strong> Puget sound) 5O-10O C (41.0° F-<br />

(50.0" F to 68.0° F) (59°Fto680F;46.40Fto48.20~) 50-00F)<br />

Sal<strong>in</strong>ity<br />

Optimm<br />

Depth Light<br />

Freshwater - 42 ppt --<br />

10-30 ppt %me as optimum<br />

1.8 m above M U<br />

to 30 m deep<br />

--<br />

4.5-9.1 ppt<br />

--<br />

MLLW - 6.6 m belw MLLW<br />

(11 rn at high tide)<br />

Effect unkmwn<br />

LJo effect<br />

Substrate<br />

Range<br />

Pure firm sand to plre<br />

s<strong>of</strong>t ~md<br />

Mix& sand and mud<br />

7.3-9.0<br />

No effect<br />

Effect unkm<br />

No effect<br />

Effect u r ~ k m ~<br />

Water Wtion<br />

w e Waves to stagnant water<br />

--<br />

opt imm<br />

Little wave action.<br />

Gentle currents to<br />

3.5 kmts<br />

Effect l.dcrmm<br />

--<br />

Effect unkmm<br />

temperature (after BiebL and McRoy 1971; (~stenfeld 1908). In <strong>the</strong> Baltic Sea<br />

Figure 6). sal<strong>in</strong>ities are seasonally diluted to 6<br />

ppt. At this time <strong>eelgrass</strong> becomes<br />

Sal<strong>in</strong>ity stunted (Kikuchi and Peres 1977).<br />

Eelgrass is an euryhal<strong>in</strong>e species<br />

a able 6). It grows at stream mouths when<br />

<strong>the</strong> water is fresh at low tide (~sterhout<br />

1917; Phillips unpublished research, Hood<br />

Canal, Wash<strong>in</strong>gton) but does not grow <strong>in</strong><br />

persistent fresh water. Tut<strong>in</strong> (1938)<br />

found <strong>eelgrass</strong> at Chesil Beach, Borest,<br />

England, where summer water sal<strong>in</strong>ity was<br />

as high as 42 ppt. In Puget Sound<br />

<strong>eelgrass</strong> grows best <strong>in</strong> a sal<strong>in</strong>ity range <strong>of</strong><br />

20 ppt-32 Ppt. A sal<strong>in</strong>ity range <strong>of</strong> 10<br />

ppt-30 ppt is optimum for growth<br />

In Alaska <strong>eelgrass</strong> ma<strong>in</strong>ta<strong>in</strong>ed an osmotic<br />

resistance to sal<strong>in</strong>ity changes from<br />

freshwater to 93 ppt (~iebl and McRoy<br />

1971). In 124 ppt leaves were killed.<br />

Positive net production was found <strong>in</strong> a<br />

range from freshwater to 56 ppt, with a<br />

maximum <strong>in</strong> 31 ppt (normal seawater).<br />

Respiration was depressed <strong>in</strong> freshwater<br />

but was only slightly affected from 31 ppt<br />

to 93 ppt. Tide pool and subtidal plants<br />

showed <strong>the</strong> same reactions. Leaves <strong>of</strong> both<br />

populations were pretreated by soak<strong>in</strong>g <strong>in</strong>


1.0- <strong>in</strong>fluence <strong>the</strong> redox potential <strong>of</strong> <strong>the</strong><br />

>- sediments and m<strong>in</strong>eral cycl<strong>in</strong>g processes<br />

w '-<br />

2 2 (Sw<strong>in</strong>chatt 1965, Fenchel and Riedl 1970,<br />

5 6 0.5- Burrell and Schubel 1977, Kenworthy et al.<br />

~ ' 2 1982). Not only do <strong>the</strong> rooted plants<br />

" g<br />

a<br />

extract and entrap f<strong>in</strong>e particles from <strong>the</strong><br />

o o*<br />

water, and form and reta<strong>in</strong> particles<br />

0 10 20<br />

30 produced with <strong>the</strong> grass bed, but <strong>the</strong><br />

TOC<br />

rhizome-root system b<strong>in</strong>ds and stabilizes<br />

Figure 6. Relative productivity <strong>of</strong> eel- <strong>the</strong> substrate (Burrell and Schubel 1977).<br />

grass at vary<strong>in</strong>g temperatures (after Short Orth (1977a) found that <strong>eelgrass</strong> density<br />

1975 ). was directly related to <strong>the</strong> degree <strong>of</strong><br />

sediment stability.<br />

water <strong>of</strong> 93 ppt and <strong>the</strong>n heat<strong>in</strong>g. Tide<br />

pool plants showed greater heat resistance<br />

than did subtidal plants.<br />

Phillips (1972) found that sal<strong>in</strong>ity was<br />

<strong>the</strong> pr<strong>in</strong>cipal factor <strong>in</strong>fluenc<strong>in</strong>g <strong>eelgrass</strong><br />

seed germ<strong>in</strong>ation. Up to 708 <strong>of</strong> <strong>eelgrass</strong><br />

seeds tested germ<strong>in</strong>ated <strong>in</strong> sal<strong>in</strong>ities from<br />

5 ppt-10 ppt at all temperatures.<br />

However, at 10 pt seed germ<strong>in</strong>ation <strong>of</strong>ten<br />

doubled from 10 B<br />

C to 15O C but did not do<br />

so <strong>in</strong> full strength seawater (30 ppt).<br />

<strong>The</strong> relationship <strong>of</strong> seed germ<strong>in</strong>ation and<br />

sal<strong>in</strong>ity was also found by Tut<strong>in</strong> (1938;<br />

England) and Arasaki (1950; Japan).<br />

Recently, McMillan (pers. comm. 1983),<br />

work<strong>in</strong>g <strong>in</strong> Mexico, found that <strong>eelgrass</strong><br />

seed germ<strong>in</strong>ation <strong>in</strong> <strong>the</strong> annual populations<br />

<strong>the</strong>re was related to temperature.<br />

Sediments<br />

Eelgrass colonizes sediments vary<strong>in</strong>g from<br />

firm sand with moderate wave action to<br />

s<strong>of</strong>t mud <strong>in</strong> quiet bays (~stenfeld 1908;<br />

Phillips 1974). Plants have been found on<br />

gravel mixed with ccarse sand where growth<br />

is patchy (Tut<strong>in</strong> 1938). Sediments are not<br />

merely a static medium where <strong>the</strong> plants<br />

s<strong>in</strong>k roots and anchor. Plants absorb<br />

nutrients from <strong>the</strong> sediments which<br />

stimulate leaf formation. When leaves<br />

slough from <strong>the</strong> plants, <strong>the</strong>y are broken<br />

down by mechanical processes and micrcjbes,<br />

and add organic and <strong>in</strong>organic materials to<br />

<strong>the</strong> sediment. As this happens, shoot<br />

density may <strong>in</strong>crease which not only adds<br />

more leaf litter but also forms a dense<br />

baffle and a dense rhizome-root mat that<br />

stabilizes bottom materials (G<strong>in</strong>sburg and<br />

Lowenstam 1958, Fonseca et al. 1982a).<br />

Thus, <strong>in</strong> time, seagrasses affect <strong>the</strong> mean<br />

gra<strong>in</strong> size, sort<strong>in</strong>g, skewness, and shape<br />

<strong>of</strong> sediment particles, parameters that<br />

Ow<strong>in</strong>g to <strong>the</strong> volume <strong>of</strong> fall<strong>in</strong>g particulate<br />

matter <strong>in</strong> <strong>the</strong> seagrass leaf baffle, an<br />

anoxic layer forms with<strong>in</strong> several<br />

millimeters <strong>of</strong> <strong>the</strong> sediment surface<br />

(Fenchel and Riedl 1970). <strong>The</strong>se<br />

conditions are appropriate for sulfur<br />

bacteria and <strong>the</strong> sulfur cycle, which<br />

rem<strong>in</strong>eralize nutrients from <strong>the</strong> entrapped<br />

litter. <strong>The</strong>se bacteria reduce sulfate to<br />

sulfide and ma<strong>in</strong>ta<strong>in</strong> a sufficiently low Eh<br />

and pH so that nitrogen m<strong>in</strong>eralization<br />

particularly, proceeds faster than its use<br />

by <strong>the</strong> microbial community. Kenworthy et<br />

al. (1982) found that <strong>the</strong> highest pools <strong>of</strong><br />

nitrogen were with<strong>in</strong> <strong>the</strong> sediments <strong>of</strong><br />

midbed locations. Smith et al. (1981a)<br />

described endobacteria <strong>in</strong> <strong>the</strong> roots <strong>of</strong><br />

<strong>eelgrass</strong> that were associated with<br />

nitrogen fixation (Smith et al. 1981b8 <strong>in</strong><br />

Zieman 1982). Earlier, Patriqu<strong>in</strong> and<br />

Knowles (1972) described nitrogen fixation<br />

<strong>in</strong> <strong>the</strong> root systems <strong>of</strong> <strong>eelgrass</strong>. <strong>The</strong><br />

develop<strong>in</strong>g sediment-microbial-nutrientseagrass<br />

complex thus develops as a<br />

system, and physical disturbances have<br />

serious effects on <strong>the</strong> substrate as a<br />

suitable site for seagrass growth. Stout<br />

(1976) and Marshall and Lukas (1970)<br />

reported <strong>the</strong> highest organic carbon<br />

content <strong>in</strong> sediments <strong>of</strong> <strong>eelgrass</strong> beds.<br />

Eelgrass <strong>in</strong>creases sedimentation rates <strong>in</strong><br />

<strong>the</strong> beds, result<strong>in</strong>g <strong>in</strong> <strong>the</strong> concentration<br />

<strong>of</strong> f<strong>in</strong>e particles (positive skewness),<br />

decrease <strong>of</strong> mean particle size, <strong>in</strong>crease<br />

<strong>of</strong> organic content, <strong>in</strong>crease <strong>of</strong> sediment<br />

sort<strong>in</strong>g, and <strong>in</strong>crease <strong>of</strong> sediment<br />

stabilization. <strong>The</strong>se functions were<br />

clearly demonstrated by Stout (1976),<br />

Burrell and Schubel (1977), Orth (1977a),<br />

Churchill et al. (1978), Fonseca (1981),<br />

Fonseca et al. (1982b) and Kenwori31y et al.<br />

(1982). In North Carol<strong>in</strong>a, Thayer et al.<br />

(1975b) determ<strong>in</strong>ed that mean sedimentation


ate and percent organic carbon (14 mm/yr;<br />

1.8%, respectively) <strong>in</strong> an <strong>eelgrass</strong> bed<br />

were <strong>in</strong>termediate between an open<br />

estuar<strong>in</strong>e site and a protected island<br />

site. In Izembek lagoon, Alaska, sediment<br />

composition was f<strong>in</strong>d to be quite variable<br />

(McRoy 1966; Figure 7). Orth (1977a)<br />

reported that sediment stability resulted<br />

<strong>in</strong>high <strong>in</strong>faunal diversity with<strong>in</strong> <strong>eelgrass</strong><br />

beds.<br />

It is possible that <strong>the</strong> sediment texture<br />

may <strong>in</strong>fluence <strong>the</strong> <strong>eelgrass</strong> growth form.<br />

In Denmark, Ostenfeld (1908) found a<br />

narrow-leaved form on wave-exposed coasts<br />

on firm sand, a narrow-leaved form <strong>in</strong><br />

shallow water on mixed sand and mud, and a<br />

wideleaved form <strong>in</strong> deeper water on s<strong>of</strong>t<br />

mud. He concluded that leaf width and<br />

length were directly related to <strong>the</strong> nature<br />

<strong>of</strong> <strong>the</strong> substrate.<br />

Gross effects <strong>of</strong> <strong>eelgrass</strong> on sediment<br />

stabilization have been observed. Sand<br />

banks, formerly covered by <strong>eelgrass</strong>, were<br />

lowered by 30 cm (12 <strong>in</strong>ches) almost<br />

overnight <strong>in</strong> Salcombe Harbor, Great<br />

Brita<strong>in</strong>, after <strong>the</strong> plants disappeared <strong>in</strong><br />

1931 (Wilson 1949). Many species <strong>of</strong><br />

filter-feed<strong>in</strong>g <strong>in</strong>vertebrates, mollusks,<br />

and several flatfishes also disappeared.<br />

Up to 29 cm (8 <strong>in</strong>ches) <strong>of</strong> sediment eroded<br />

from unvegetated sand banks follow<strong>in</strong>g a<br />

s<strong>in</strong>gle storm <strong>in</strong> Chesapeake Bay, while<br />

little, if any, sediment disappeared from<br />

with<strong>in</strong> a nearby <strong>eelgrass</strong> meadow (Orth<br />

1977a).<br />

Current Velocity<br />

Moderate current speeds appear to enhance<br />

<strong>eelgrass</strong> growth. In Puget Sound, Phillips<br />

(1972, 1974) observed <strong>the</strong> most luxuriant<br />

<strong>eelgrass</strong> where tidal currents reach 3.5<br />

knots. Conover (1958) found that <strong>the</strong><br />

optimum current speeds were about <strong>the</strong><br />

average neap and spr<strong>in</strong>g tidal current<br />

speeds <strong>in</strong> <strong>the</strong> range <strong>of</strong> 0.6-0.0 knots (30-<br />

40 cm/sec) . Inferential evidence suggests<br />

that rapid currents break down diffusion<br />

gradients across <strong>the</strong> leaf surface and make<br />

more C02 and nutrients available to <strong>the</strong><br />

plants (conover 1968). Conover also found<br />

that <strong>eelgrass</strong> biomass and production were<br />

strongly <strong>in</strong>fluencedby currentvelocity.<br />

If currents are too slow, <strong>eelgrass</strong> grows<br />

poorly and algae tend to dom<strong>in</strong>ate (Proctor<br />

et al. 1900b). Too much current tears<br />

leaves from <strong>the</strong> plant or erodes <strong>the</strong><br />

substrate.<br />

Several studies, especially <strong>the</strong> work by<br />

Fonseca on <strong>eelgrass</strong> (G<strong>in</strong>sburg and<br />

Lohenstan 1958; Fonseca 1981; Fonseca et<br />

al. 1982a) docunented tb effect <strong>of</strong> seagrass<br />

leaf canopies on reduc<strong>in</strong>g current<br />

flow velocity and turbulence. This<br />

effect, coupled with <strong>the</strong> dense network <strong>of</strong><br />

rhizanes and roots, established an environment<br />

<strong>of</strong> deposit ion with<strong>in</strong> <strong>the</strong> boundaries<br />

<strong>of</strong> an <strong>eelgrass</strong> meadow, lead<strong>in</strong>g to<br />

large p ls <strong>of</strong> nitrogen <strong>in</strong> <strong>the</strong> sediment.<br />

Figure 7. Sediment composition <strong>of</strong> four<br />

<strong>eelgrass</strong> beds <strong>in</strong> an Alaskan lagoon.<br />

Percentages are by weight (a£ ter McRoy<br />

1966 ).<br />

Eelgrass does not grow where wave shock is<br />

regular (Ostenfeld 1908; Phillips 1974).<br />

Tut<strong>in</strong> (1938) observed only patchy growth<br />

<strong>of</strong> <strong>eelgrass</strong> on <strong>the</strong> south coast <strong>of</strong> England<br />

that was exped to fairly heavy seas.


Oxygen<br />

<strong>The</strong>re are Little data to <strong>in</strong>dicate that<br />

oxygen is a limit<strong>in</strong>g factor or constitutes<br />

a stress on <strong>the</strong> system. Diurnal changes<br />

can be extreme, however. Broekhuysen<br />

(1935) reported on O2 changes <strong>in</strong> <strong>the</strong> water<br />

over an <strong>eelgrass</strong> meadow <strong>in</strong> Holland.<br />

Anoxic conditions prevailed from 1:00 am<br />

until 6:00 am. At 3:00 pm <strong>the</strong>re was a<br />

360% saturation <strong>of</strong> O2 <strong>in</strong> <strong>the</strong> water<br />

(Figure 8). He reasoned that animals<br />

with<strong>in</strong> <strong>the</strong> <strong>eelgrass</strong> meadow must be adapted<br />

to <strong>the</strong> anoxic conditions and to <strong>the</strong><br />

lowered pH levels attendant with <strong>the</strong> low<br />

02. Imai et al. (1951) recorded that <strong>the</strong><br />

dissolved O2 concentrat ion marked1 y<br />

decreased when large mats <strong>of</strong> <strong>eelgrass</strong><br />

blades decayed. However, this led to a<br />

bloom <strong>of</strong> Monas sp., which was eaten by<br />

oysters and o<strong>the</strong>r filter-feed<strong>in</strong>g<br />

macrobenthos. Apparently low 02<br />

concentrations <strong>in</strong> water aver <strong>eelgrass</strong> beds<br />

do not harm animal communities <strong>in</strong> <strong>the</strong><br />

system.<br />

Suda (1974) found gross oxygen production<br />

and respiration <strong>of</strong> an <strong>eelgrass</strong> community<br />

<strong>in</strong> summer to be 5.49-10.87 g02/m2/day (X<br />

=8.07) while respiration was 3.92-7.99<br />

g02/m !2 /day (9=5.70). Short (1975)<br />

diagrammed <strong>the</strong> variation <strong>of</strong> <strong>eelgrass</strong><br />

production by its relationship to O2<br />

evolution over a period <strong>of</strong> a year (Figure<br />

9).<br />

McRoy (1966) demonstrated that <strong>eelgrass</strong> is<br />

capable <strong>of</strong> anerobic respiration.<br />

K<br />

W ><br />

K<br />

W rn<br />

m<br />

o<br />

W<br />

x<br />

I-<br />

0<br />

w<br />

0 x<br />

4<br />

W<br />

a<br />

t a!<br />

W<br />

K<br />

K<br />

3<br />

0<br />

0<br />

0<br />

1<br />

S<br />

~r<br />

m<br />

rn<br />

W<br />

W<br />

J<br />

m<br />

I-<br />

a<br />

W<br />

K 0<br />

W 0.<br />

I-<br />

rn<br />

E<br />

LL<br />

260 Solar Radiation<br />

2%<br />

240 Although light energy is <strong>the</strong> s<strong>in</strong>gle most<br />

- 230 important forc<strong>in</strong>g function on all<br />

ecosystems, it is seldom measured, even <strong>in</strong><br />

- 220<br />

studies <strong>of</strong> productivity ( ~ieman and Wetzel<br />

-210<br />

1980). Recent studies, however, noted a<br />

- 200 relationship <strong>in</strong> <strong>eelgrass</strong> production as a<br />

- 100 function <strong>of</strong> radiative energy illon on 1971;<br />

180 McRoy and McMillan 1977; Dennison 1979;<br />

- 170 Dennison and Alberte 1982). In North<br />

Carol<strong>in</strong>a, Di llon (1971 found production<br />

-160, 1<br />

to be 6.6-9.3 mg~/m /langley, while<br />

-Iso <strong>eelgrass</strong> production <strong>in</strong> Alaska was 12.9-<br />

-140 5 14.4 mgc/m2/langley. Eelgrass <strong>in</strong> North<br />

+<br />

g Carol<strong>in</strong>a produced 7.5-44 mg~/dry<br />

- 126 $<br />

wt/ langley, while <strong>in</strong> Alaska production was<br />

-110 13.5-17 mg~/g dry wt/langley. McRoy<br />

-100<br />

- 90<br />

10<br />

-80<br />

I<br />

2<br />

><br />

lu<br />

i -70 L CI<br />

1 -40<br />

- 60 \<br />

hl<br />

x \<br />

\<br />

t<br />

-50<br />

cn I<br />

I<br />

0"<br />

s" cn I<br />

. 10 0 0<br />

-30<br />

- 20<br />

1 1 1 1 . 1 1 1 1 1 1<br />

0<br />

5 6 7 8 9 10 11 I2 13 14 15 16 17<br />

d.<br />

J FMAMJ J A S O N D<br />

Figure 9. Production <strong>of</strong> organic carbon<br />

HOUUS<br />

and release <strong>of</strong> oxmen by <strong>eelgrass</strong> <strong>in</strong><br />

Figu~ 2 8. Oxygen changes <strong>in</strong> an <strong>eelgrass</strong> Charlestown Pond, Rhode Island (after<br />

bed ( ver time (after Broekhuysen 1935). Short 1975).


(1974) and Williams and McRoy (1982)<br />

reported that seagrass productivity <strong>in</strong><br />

seven North American seagrass species was<br />

a function <strong>of</strong> irradiance (estimated by 14c<br />

uptake). <strong>The</strong>y also found that <strong>in</strong><br />

multispecies systems, colonizer species<br />

had uptake rates up to four times greater<br />

than climax species.<br />

Lower depth limits <strong>of</strong> seagrass growth<br />

depend on a number <strong>of</strong> <strong>in</strong>terrelated<br />

factors: availability <strong>of</strong> suitable<br />

substrate, current velocity, light<br />

penetration, exposure to waves, and<br />

turbidity (~hayer et al. 1975a; Phillips<br />

1980). In Puget Sound and <strong>in</strong> Oregon,<br />

light penetration <strong>in</strong> w<strong>in</strong>ter appears to be<br />

a limit<strong>in</strong>g factor (Phillips 1972; Stout<br />

1976). Eelgrass transplants were made <strong>in</strong><br />

July 1970 at 1.5 m (5 ft), 3 m (10 ft),<br />

and 4.5 m (15 ft) deeper than <strong>the</strong> lowest<br />

depth limit <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> Puget Sound.<br />

All transplants survived until w<strong>in</strong>ter. In<br />

March 1971 <strong>the</strong> <strong>eelgrass</strong> at 3 m and 4.5 rn<br />

lower than <strong>the</strong> natural depth limit had<br />

died. Stout (1976) <strong>the</strong>orized that<br />

sedimentation and turbidity brought about<br />

by logg<strong>in</strong>g aremajor limit<strong>in</strong>g factors on<br />

depth <strong>of</strong> <strong>eelgrass</strong> growth <strong>in</strong> <strong>the</strong> <strong>Pacific</strong><br />

<strong>Northwest</strong>. Burkholder and Doheny (1968)<br />

stated that <strong>eelgrass</strong> was limited to<br />

substrates where at least 1% <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>cident light rema<strong>in</strong>s. <strong>The</strong>y noted <strong>in</strong><br />

South Oyster Bay, Long Island Sound, New<br />

York, that <strong>eelgrass</strong> leaves were longer <strong>in</strong><br />

shallow water 1 m (3 ft) deep than at 1.8<br />

m (6 ft) deep. Leaves <strong>in</strong> water 2.4 m (9<br />

ft) deep were only 25% as long as those at<br />

1 m deep. At many stations light<br />

<strong>in</strong>tensity at 1 m deep was only 19%-30% <strong>of</strong><br />

its <strong>in</strong>cident value at <strong>the</strong> surface.<br />

Optimum light <strong>in</strong>tensity for <strong>eelgrass</strong><br />

production varies between 0.42 and 0.92<br />

langleys/m<strong>in</strong>ute (Short 1975). McRoy<br />

(1974) and Burkholder and Doheny (1968)<br />

found <strong>the</strong> optimum light level for growth<br />

to be 50% <strong>of</strong> <strong>the</strong> maximum <strong>in</strong>cident light<br />

occurr<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> growth period.<br />

Eelgrass has been reported down to 30 m<br />

(100 ft) deep <strong>of</strong>f San Diego, California<br />

(Cottam and Munro 1954). O<strong>the</strong>r depth<br />

records <strong>of</strong> <strong>eelgrass</strong> extend to 18 m (60 ft)<br />

<strong>in</strong> <strong>the</strong> Triest Gulf (~echet 1906) and to 20<br />

m (67 ft) <strong>in</strong> <strong>the</strong> Black Sea (Caspers 1957).<br />

In Denmark, Ostenfeld (1908) found that<br />

<strong>eelgrass</strong> grew to 11 m (37 ft) <strong>in</strong> clear<br />

water but only to 5.4 m (18 ft) <strong>in</strong> turbid<br />

water. Depth is even less when water is<br />

more turbid (~urkholder and Doheny 1x8).<br />

One study done <strong>in</strong> an Oregon estuary<br />

determ<strong>in</strong>ed that <strong>the</strong> most important water<br />

quality parameter related to <strong>eelgrass</strong> was<br />

turbidity (OSU 1977). <strong>The</strong> amount <strong>of</strong> light<br />

reach<strong>in</strong>g <strong>the</strong> leaf blades is limited by<br />

shad<strong>in</strong>g, by plant density, leaf length and<br />

width, and <strong>the</strong> age <strong>of</strong> <strong>the</strong> leaf surface as<br />

it accunulates epiphytic growth (Proctor<br />

et dl. 1980b). In Alaska, Ennison (1979)<br />

found that <strong>eelgrass</strong> leaf parameters<br />

respond to changes <strong>in</strong> light quality and<br />

quantity. <strong>The</strong>se light changes occur<br />

seasonally and at different tidal stages<br />

as <strong>the</strong> leaf canopy is erect or bends as<br />

<strong>the</strong> tide recedes. <strong>The</strong> greatest leaf area<br />

was found <strong>in</strong> <strong>the</strong> lower one-third <strong>of</strong> <strong>the</strong><br />

canopy height and dim<strong>in</strong>ished above and<br />

below that po<strong>in</strong>t (an adjustment to shad<strong>in</strong>g<br />

when leaves were bent over), while leaf<br />

biomass was greatest near <strong>the</strong> bottom and<br />

decreased near <strong>the</strong> top <strong>of</strong> <strong>the</strong> canopy.<br />

When light to <strong>the</strong> plants was <strong>in</strong>creased<br />

us<strong>in</strong>g reflectors, <strong>in</strong>creased leaf<br />

prduction rates were obta<strong>in</strong>ed. Dennison<br />

and ALberte (1982) noted that <strong>eelgrass</strong> is<br />

adapted to very low light conditions; <strong>in</strong><br />

particular <strong>the</strong> light compensation rates,<br />

saturation p<strong>in</strong>ts, photosyn<strong>the</strong>tic rates,<br />

and respiration rates are much lower than<br />

o<strong>the</strong>r higher plants. <strong>The</strong>y found that<br />

deeper water <strong>eelgrass</strong> adjusts to changes<br />

<strong>in</strong> <strong>the</strong> light regime by chang<strong>in</strong>g its leaf<br />

production rates (a lowered light regime<br />

results <strong>in</strong> a greatly lowered production<br />

rate). Eelgrass <strong>in</strong> shallow water was nut<br />

affected by light changes. Shad<strong>in</strong>g<br />

experiments have shown that rapid<br />

reductions <strong>in</strong> density and stand<strong>in</strong>g stock<br />

occurred as a result <strong>of</strong> decreased<br />

irradiance (~ackman and Barilotti 1976;<br />

Dennison 1979; Dennison and Alberte 1982).<br />

In California, eelyrass density decreased<br />

18 days after <strong>in</strong>stallation <strong>of</strong> shad<strong>in</strong>g<br />

canopies which resulted <strong>in</strong> a decrease <strong>in</strong><br />

down-well<strong>in</strong>g illum<strong>in</strong>ance <strong>of</strong> 63% (~aclanan<br />

and Barilotti 1976). After 9 months shoot<br />

densities decl<strong>in</strong>ed to 5% <strong>of</strong> <strong>the</strong> adjacent<br />

unshaded control. Flower<strong>in</strong>g percentage<br />

was also reduced under <strong>the</strong> shad<strong>in</strong>g<br />

canopies.<br />

It is evident that turbidity caused by<br />

dredg<strong>in</strong>g, sewage, oil, and plankton blooms<br />

can have far-reach<strong>in</strong>g effects on <strong>eelgrass</strong>.<br />

It is possible that if <strong>eelgrass</strong> decl<strong>in</strong>es


enough, <strong>in</strong>creased erosion <strong>of</strong> bottom sediments<br />

could occur which would affect <strong>the</strong>ir<br />

recovery. Follow<strong>in</strong>g <strong>the</strong> disappearance <strong>of</strong><br />

<strong>eelgrass</strong> <strong>in</strong> some lagoons <strong>in</strong> Denmark <strong>in</strong><br />

1931, sediment eroded away down to <strong>the</strong><br />

cobble base, and Fucus sp. <strong>in</strong>vaded. No<br />

<strong>eelgrass</strong> ever re<strong>the</strong>d~~asmussen 1977).<br />

Zonation<br />

Harrison (1979) noted that Z. japonica<br />

grows hiqher on <strong>the</strong> shore-than does<br />

<strong>eelgrass</strong>. Desiccation has been given as<br />

<strong>the</strong> major factor limit<strong>in</strong>g <strong>the</strong> upper<br />

<strong>in</strong>tertidal distribution <strong>of</strong> <strong>eelgrass</strong><br />

(Johnson and York 1915; Phillips 1972).<br />

Harrison ( 198213) experimentally con£ irmed<br />

<strong>the</strong> low resistance <strong>of</strong> <strong>eelgrass</strong> to<br />

desiccation and found that 5 japonica was<br />

much more resistant to desiccation.<br />

Occasionally, <strong>eelgrass</strong> is so dense that it<br />

retards <strong>the</strong> run<strong>of</strong>f <strong>of</strong> water over a<br />

tideflat <strong>of</strong> low relief at ebb tide. This<br />

occurs <strong>in</strong> Izembek Lagoon, Alaska (~ennison<br />

1979) and <strong>in</strong> Netarts Bay, Oregon (stout<br />

1976). In <strong>the</strong>se areas it is likely that<br />

plant production is greatly enhanced <strong>in</strong><br />

<strong>the</strong>se lagoons.<br />

<strong>The</strong>re have been a limited number <strong>of</strong><br />

attempts to place <strong>eelgrass</strong> <strong>in</strong> a<br />

successional scheme lead<strong>in</strong>g to <strong>the</strong><br />

creation <strong>of</strong> a marsh (Jefferson 1975). It<br />

is true that <strong>eelgrass</strong> <strong>meadows</strong> trap and<br />

stabilize a great quantity <strong>of</strong> sediment and<br />

that <strong>the</strong> sediment level may be raised aver<br />

time. <strong>The</strong>re is absolutely no evidence,<br />

however, that this type <strong>of</strong> habitat<br />

succession has ever occurred anywhere.<br />

<strong>The</strong> presence <strong>of</strong> <strong>eelgrass</strong> leaf fragments<br />

underly<strong>in</strong>g marsh litter (Jefferson 1975)<br />

is not evidence that <strong>eelgrass</strong> succeeded to<br />

a marsh habitat. It means that <strong>eelgrass</strong><br />

leaf litter became trapped by an adjacent<br />

marsh and was buried under litter from <strong>the</strong><br />

marsh.


CHAPTER 3<br />

THE EELGRASS SYSTEM<br />

3.1 E'UNCI'IONS OF THE EET-GRASS SYSTEM 2. Food and feed<strong>in</strong>g pathways<br />

All seagrasses perform a number <strong>of</strong><br />

functions <strong>in</strong> <strong>the</strong>ir environments.<br />

Depend<strong>in</strong>g on <strong>the</strong> size and growth form <strong>of</strong><br />

<strong>the</strong> plant, <strong>the</strong> seagrass species can modify<br />

<strong>the</strong> physical and biological environment t6<br />

some degree. In <strong>the</strong> tropics, early<br />

success~onal genera, ~aio~hila an;<br />

Halcdule, and temperate species such as &<br />

japnica and - Z. noltii, have shallow root 3.<br />

systems and small blades and produce<br />

little litter. As ecological succession<br />

<strong>in</strong> multispecies systems proceeds to climax<br />

species with <strong>the</strong>ir large dimensions, high<br />

litter production, and deep penetrat<strong>in</strong>g<br />

roots, <strong>the</strong> environment can be modified <strong>in</strong><br />

more dramatic ways. Except for surfgrass,<br />

Phyllospadix, which grows on rocky 4.<br />

substrates, seagrasses occur on<br />

unconsolidated substrates, mostly <strong>of</strong><br />

uniform relief. Ow<strong>in</strong>g to <strong>the</strong>ir presence<br />

on and penetration <strong>in</strong>to <strong>the</strong>ir substrates,<br />

seagrasses create a diversity <strong>of</strong> habitats<br />

and substrates, provid<strong>in</strong>g a structured<br />

habitat from a structureless one (Phillips<br />

1972, 1978).<br />

Zieman (1982) recently revised a list <strong>of</strong><br />

seagrass functions that were orig<strong>in</strong>ally<br />

enmerated by Wxd et al. ( 1969 : 5.<br />

1. High prduction and growth<br />

<strong>The</strong> ability <strong>of</strong> seagrasses to exert a<br />

major <strong>in</strong>fluence on <strong>the</strong> mar<strong>in</strong>e<br />

seascape is due <strong>in</strong> large part to<br />

<strong>the</strong>ir extremely rapid growth and high<br />

net productivity (leaves typically<br />

grow 5 rnm/day but can atta<strong>in</strong> 18<br />

4-1<br />

Seagrass material may follow two<br />

energy pathways: direct graz<strong>in</strong>g on<br />

<strong>the</strong> liv<strong>in</strong>g plant material or<br />

utilization <strong>of</strong> detritus from decay<strong>in</strong>g<br />

seagrass material, prirnar ily leaves.<br />

Both liv<strong>in</strong>g and detrital material may<br />

be exprted £ran its orig<strong>in</strong>al source.<br />

Shelter<br />

Seagrass beds serve as a nursery<br />

ground for food and shelter for<br />

juveniles <strong>of</strong> 3 variety <strong>of</strong> f<strong>in</strong>fish and<br />

shellfish <strong>of</strong> commercial and<br />

recreational importance.<br />

Habitat stabilization<br />

Seagrass stabilizes sediments <strong>in</strong> two<br />

ways: a. leaves slow and retard<br />

current flow, reduc<strong>in</strong>g water velocity<br />

near <strong>the</strong> sediment-water <strong>in</strong>terface,<br />

which promotes sedimentation <strong>of</strong><br />

particles and <strong>in</strong>hibits resuspension<br />

<strong>of</strong> organic and <strong>in</strong>organic material; b.<br />

rhizomes and roots form an<br />

<strong>in</strong>terlock<strong>in</strong>g matrix, which bonds<br />

sediment and retards erosion.<br />

Nutrient effects<br />

Detrital production and sedimentation<br />

provide organic matter for sediments<br />

and ma<strong>in</strong>ta<strong>in</strong> an active environment<br />

for nutrientrecycl<strong>in</strong>g. Seagrasses<br />

and epiphytic algae can fix nitrogen,<br />

add<strong>in</strong>g to <strong>the</strong> nutrient pool.<br />

Seagrass absorbs nutrients from <strong>the</strong><br />

sediments and releases <strong>the</strong>m <strong>in</strong>to <strong>the</strong><br />

water from <strong>the</strong> leaves, act<strong>in</strong>g as a<br />

nutrient pt~np for <strong>the</strong> sediment.


<strong>The</strong> terms used to describe biomass will<br />

follow <strong>the</strong> def<strong>in</strong>itions <strong>in</strong> Zieman and<br />

Wetzel (1980): stand<strong>in</strong>g crop refers to<br />

above-sediment material, while biomass<br />

refers to <strong>the</strong> weiyht <strong>of</strong> all liv<strong>in</strong>g plant<br />

material. mth are expressed as mask per<br />

unit area.<br />

Representative densities are reported, but<br />

density can vary seasonally, with depth,<br />

and with substrate nutrients and texture.<br />

A few values w i l l be listed for<br />

comparative purposes able 7).<br />

As with density values, biomass also<br />

varies widely. It appears that <strong>the</strong><br />

pattern first noted by Ostenfeld (1908) <strong>of</strong><br />

decreased density on firm sand and<br />

<strong>in</strong>creased density on s<strong>of</strong>ter substrates may<br />

be <strong>the</strong> only correlation possible. Most <strong>of</strong><br />

<strong>the</strong> biomass <strong>of</strong> <strong>eelgrass</strong> is <strong>in</strong> <strong>the</strong><br />

sediments. Depend<strong>in</strong>g on <strong>the</strong> season, <strong>the</strong><br />

ratio <strong>of</strong> 1eaves:rhizomes-roots varies from<br />

1: 1 <strong>in</strong> summer to 1:2 or greater <strong>in</strong> w<strong>in</strong>ter<br />

<strong>in</strong> Puget Sound (Phillips 1972). <strong>The</strong>se<br />

same ratios were found <strong>in</strong> <strong>eelgrass</strong> <strong>in</strong><br />

Denmark (Sand-Jensen 1975 ). In Long<br />

Island, New York, Burkholder and Doheny<br />

(1968) found <strong>eelgrass</strong> leaf-shoot:rhizome<br />

ratios <strong>of</strong> 2:3 <strong>in</strong> sand and 10:3 <strong>in</strong> mud. In<br />

sou<strong>the</strong>rn British Columbia, Canada,<br />

<strong>eelgrass</strong> ratios varied from 0.8 to 1.6<br />

(~arrison 1982~). He has made <strong>the</strong> only<br />

analysis <strong>of</strong> 1eaf:rhizome-root ratios <strong>in</strong> Z,<br />

a onica (2.0-2.6). Recently, Kenworthy<br />

f-r 1981 also reported a shift <strong>in</strong> 1eaf:root<br />

ratios from those <strong>in</strong> favor <strong>of</strong> leaves to<br />

roots with a shift <strong>in</strong> substrates from mud<br />

to coarse sand. Kentula (1983) reported<br />

leaf-shoot: rhizome-root ratios vary<strong>in</strong>g<br />

from 1:l to 1:10 along <strong>in</strong>tertidal<br />

transects <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> Netarts Bay,<br />

Oregon. In one study, Smith et al. (1979)<br />

determ<strong>in</strong>ed that <strong>eelgrass</strong> root and roo<br />

hair surface areas were 48.2 and 138.9 mm<br />

5<br />

root, respectively. In <strong>the</strong> tropical<br />

coloniz<strong>in</strong>g species Halodule wrightii, <strong>the</strong><br />

root and root-hair surface areas were 34.8<br />

and 19.2 mix2 root, respectively.<br />

In Table 7 only stand<strong>in</strong>g crops will be<br />

reported. <strong>The</strong> smallest seagrass stand<strong>in</strong>g<br />

crop was 6g dry wgt/rn2 <strong>in</strong> Humboldt Bay,<br />

California (waddell 1964), while <strong>the</strong><br />

highest value was 2,@60 dry wgt/m2<br />

(~urkholder and Doheny 1968). Work done<br />

to date implies that biomass parameters<br />

reflect <strong>the</strong> nature <strong>of</strong> <strong>the</strong> substrate.<br />

Caloric values <strong>of</strong> <strong>eelgrass</strong> tissue have<br />

only rarely been reported. In North<br />

Carol<strong>in</strong>a, caloric values ranged from 3.54<br />

cal/mg ash-free dry wt <strong>in</strong> January to 4.82<br />

cal/mg ash-free dry wt <strong>in</strong> June to 5.73<br />

cal/mg ash- f ree dry wt from Apr il-May<br />

dur<strong>in</strong>g flower<strong>in</strong>g (annual mean was 4.48<br />

cal/mg; Thayer et al. 1975b). <strong>The</strong>re was<br />

seasonal variation noted. In Izembek<br />

Lagoon, Alaska, McRoy (1966) reported a<br />

mean <strong>of</strong> 4.125 cal/mg ash-free dry wt for<br />

leaves and 3.967 cal/mg ash-free dry wt<br />

for rhizomes.<br />

3.3 PROCUCI'IVITY AND MEASlJWPEER<br />

A number <strong>of</strong> reports have documented<br />

seagrass <strong>meadows</strong> as one <strong>of</strong> <strong>the</strong> richest arid<br />

most productive <strong>of</strong> ecosystems, rival<strong>in</strong>g<br />

cultivated tropical agriculture <strong>in</strong><br />

productivity (summarized by Zieman and<br />

Wetzel 1980). <strong>The</strong> earliest work to relate<br />

<strong>the</strong> value <strong>of</strong> <strong>eelgrass</strong> to <strong>in</strong>shore<br />

ecosystems was <strong>the</strong> work <strong>of</strong> Petersen (1891,<br />

1913, 1918) and coworkers at <strong>the</strong> Danish<br />

Mar<strong>in</strong>e Biological Station (Petersen and<br />

Boysen-Jensen 1911; Ostenfeld 1908;<br />

Boysen-Jensen 1914; Blegvad 1914, 1916).<br />

<strong>The</strong>se scientists concluded that organic<br />

detritus, derived chiefly frorn <strong>the</strong> decay<br />

<strong>of</strong> <strong>eelgrass</strong>, was <strong>the</strong> basic source <strong>of</strong><br />

nutrition <strong>of</strong> animals <strong>in</strong> Danish coastal<br />

waters, especially <strong>the</strong> benthic<br />

<strong>in</strong>vertebrates and that <strong>the</strong> abundance <strong>of</strong><br />

fish <strong>in</strong> Denmark was due chiefly to<br />

<strong>eelgrass</strong>.<br />

Estimates have shown that <strong>eelgrass</strong> can<br />

atta<strong>in</strong> productivities up to 8 g~/m2/da<br />

and an annual production <strong>of</strong> 500 g~/m<br />

2' .<br />

Several factors are directly correlated<br />

with <strong>eelgrass</strong> productivity: light,<br />

temperature, carbon supply, nutrient<br />

supply, and plant density. Thus, <strong>the</strong>re<br />

are hourly, daily, and seasonal<br />

differences at local sites as well as over<br />

a geographic gradient. In addition,<br />

methds <strong>of</strong> analyz<strong>in</strong>g productivity vary <strong>in</strong><br />

reliability from leaf mark<strong>in</strong>g (Zieman<br />

19681, 14C uptake i it taker and Iverson<br />

1976), harvest method (Petersen 1913;<br />

Phillips 1972; Mukai et al. 1979), to relat<strong>in</strong>g<br />

biomass to <strong>the</strong> plastochrone <strong>in</strong>terval<br />

(P.I.; Patriqu<strong>in</strong> 1973; Jacobs 1979). No


2<br />

Table 7. Representative <strong>eelgrass</strong> density and stand<strong>in</strong>g crop (g dry wt/m ). Numbers<br />

represent means for stations sampled.<br />

Species Location No. <strong>of</strong> veg. No. <strong>of</strong> repro. Stand<strong>in</strong>g crop Source<br />

shoots/n shmts/n<br />

Zostera Mexico 0 555 (April)<br />

mr<strong>in</strong>a Gulf <strong>of</strong> California<br />

California<br />

Hunboldt Bay<br />

31-361 --<br />

Oregon<br />

Yaqu<strong>in</strong>a Bay 17-913 (less 209<br />

at MUM:<br />

greatest at<br />

higher<br />

elevations)<br />

Phillips et al. 1983b<br />

Keller 1963, Waddell<br />

1964, Keller and<br />

Harris 1966<br />

Hard<strong>in</strong>g ad Butler 1979<br />

Bayer 1979a<br />

Netarts Bay 500-3,845 5-65 7-256 Kentu1.a 1983<br />

Wash<strong>in</strong>gton<br />

Grays Harbor 74 -- -- Smith 1976<br />

Hccd Canal 62-287 7-10 -- Phillips et al. 1983b<br />

Whidbey island 71-861 5-66 95-540 Phillips 1972,<br />

Phillips et al. 1983b<br />

So. British Colunbia 25-150 1-18 4-88(bianass)Mady 1978,<br />

Harrison 1982c<br />

Alaska<br />

Various locations 243-650 4-100 -- Phillips et al. 1983b<br />

Iz&k Lagoon 740-4,380 48-653 186-1,840<br />

North Carol<strong>in</strong>a -- -- 50-550 Dillon 1971, Thayer<br />

et al. 1975a, Penhale<br />

1977, Phillips et al.<br />

1983b<br />

New York .- -- 250-2,060 Burkholder and Doheny<br />

1968<br />

Rhde Island 629-2,044 67 -- Phillips et al. 1983b<br />

Canada<br />

- Z. japonica So. Brltish Colunbia 160-450 70-150 4-20 (bionass)~arrison 1982c


estimates are reported on work done us<strong>in</strong>g<br />

metabolic techniques; namely, <strong>the</strong> O2<br />

production method, ow<strong>in</strong>g to <strong>the</strong><br />

uncerta<strong>in</strong>ty <strong>of</strong> equilibration <strong>of</strong> O2 <strong>in</strong><br />

seagrass leaves, its rate <strong>of</strong> <strong>in</strong>ternal use,<br />

and periods <strong>of</strong> extremely rapid release<br />

(~ieman 1982). Table 8 lists<br />

representative production values <strong>of</strong><br />

<strong>eelgrass</strong>, epiphytes, and microphytic and<br />

macrophytic algae among <strong>the</strong> <strong>eelgrass</strong>, as<br />

well as list<strong>in</strong>g <strong>the</strong> leaf area <strong>in</strong>dex (LAI)<br />

for comparative purposes. For <strong>the</strong> most<br />

part <strong>the</strong> values reflect above ground<br />

product ion. Few rhi zome-root production<br />

estimates have been made. Those made by<br />

Mukai et al. (1979) were done us<strong>in</strong>g <strong>the</strong><br />

Table 8. Primary production <strong>of</strong> compnents <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong> ecosystem.<br />

Canpnent Location Prductivity Turnover rate L9I Source<br />

(gc/d/yr)<br />

Eelgrass plant California 266 (assune grow<strong>in</strong>g -- --<br />

Hmkaldt Bay season Apr. to Oct.)<br />

oreqon 712 (<strong>in</strong>tertidal; 10 times per 0.3-15.9<br />

Netarts Bay aboveground) year<br />

474 (<strong>in</strong>tertidal; 6.3 times per --<br />

belmqrod) Year<br />

Hard<strong>in</strong>g ad Butler 1979<br />

Kentula 1983<br />

Wash<strong>in</strong>gton<br />

met Sound 84-480 Phillips 1972<br />

Alaska 180-320<br />

396-456<br />

North Carol<strong>in</strong>a 90-306<br />

330<br />

Denmark 328 (aboveground) --<br />

87 (belowgrod) --<br />

France 389 (aboveground) -- --<br />

183 (belowgrod) -- --<br />

Jacobs 1979<br />

Epiphytes<br />

Oregon<br />

Netarts Bay 23-75 -- -- Kentula 1983<br />

North Carol<strong>in</strong>a 60 -- --<br />

Massachusetts 20 -- --<br />

Microphyte algae Oregon 81 (ass- 163-hr day;<br />

Netarts Bay grow<strong>in</strong>g season Apr.<br />

to Oct.)<br />

Macrophyte algae Oregon 490 (ulva) 7-19<br />

-<br />

Coos Bay 1,700-r total green<br />

algal mat)<br />

Netarts Bay 8,100 (assme 10-hr day; --<br />

gm<strong>in</strong>g season Apr.<br />

to Oct.)<br />

Penhale 1977<br />

Marshall 1970<br />

Davis 1981<br />

Pregnall 1983<br />

Davis 1981<br />

Wash<strong>in</strong>gton 2,122 (Entercm-orpha: -<br />

Grays Harbr (same assmptions as<br />

for Netarts Bay)<br />

- Than 1981


harvest method, while those done by Jacobs<br />

(1979) and Kentula (1983) <strong>in</strong>corporated <strong>the</strong><br />

P.I. method.<br />

In most cases production values were made<br />

as g dry ~t/rn~/~r. <strong>The</strong>se were converted<br />

to g~/m2/yr with a conversion factor <strong>of</strong><br />

37% (Westlake 1963).<br />

Leaf mark<strong>in</strong>g methods have been used<br />

successfully to estimate net production<br />

(~iernan 1974, stapl<strong>in</strong>g; Sand-Jem n 1975,<br />

felt-tip pen; Kentula 1983, plastic l<strong>in</strong>e).<br />

Blades are marked at <strong>the</strong> base, harvested<br />

after a time period, and weighed. This<br />

method gives results where <strong>the</strong> standard<br />

error is at most 15% <strong>of</strong> <strong>the</strong> mean<br />

(Kentula, pers. comm.). This method does<br />

not account for below-ground production,<br />

excreted carbn, herbivory, or leaf loss.<br />

<strong>The</strong> 14c method measures production near<br />

net productivity (Bittaker and Iverson<br />

1976). After correction for several<br />

factors, differences from estimates made<br />

by leaf mark<strong>in</strong>gs were <strong>in</strong>significant. <strong>The</strong><br />

method is highly sensitive but requires<br />

sophisticated and expensive field and<br />

laboratory equipment.<br />

<strong>The</strong> harvest method estimates net<br />

production by subtract<strong>in</strong>g m<strong>in</strong>imum from<br />

maximum biomass or by doubl<strong>in</strong>g maximum<br />

stand<strong>in</strong>g crop (Peterson 1913, Grontved<br />

1958, Phillips 1972). <strong>The</strong>se estimates do<br />

not account for leaf loss. Zieman and<br />

Wetzel (1980) stated that this method<br />

should be avoided, ow<strong>in</strong>g to gross<br />

<strong>in</strong>accuracies.<br />

<strong>The</strong> last method <strong>in</strong>corporated a series <strong>of</strong><br />

biomass changes to <strong>the</strong> P.I. (Patriqu<strong>in</strong><br />

1973, Jacobs 1979). <strong>The</strong> technique appears<br />

to be <strong>the</strong> only practical method <strong>of</strong><br />

determ<strong>in</strong><strong>in</strong>g below-ground production where<br />

equipment necessary for 1% is not<br />

available.<br />

Relatively little work has been done on<br />

<strong>the</strong> primary production <strong>of</strong> <strong>the</strong> o<strong>the</strong>r<br />

components <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong> ecosystem<br />

(Table 8). It is evident that epiphyte<br />

loads on <strong>eelgrass</strong> leaves have a dramatic<br />

effect. On <strong>the</strong> one hand heavy growths may<br />

weigh down <strong>the</strong> leaves and remove Ehem from<br />

<strong>the</strong> optimal portion <strong>of</strong> <strong>the</strong> light column<br />

and shade <strong>the</strong>m (Figure 10). Sand-Jensen<br />

(1977) reported that <strong>eelgrass</strong><br />

photosyn<strong>the</strong>sis was reduced 31% by<br />

epiphytes, primarily <strong>the</strong> diatom Cocconeis<br />

scuttelum, a common species on <strong>eelgrass</strong> <strong>in</strong><br />

<strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>. Penhale (1977)<br />

found that <strong>eelgrass</strong> epiphytes could<br />

constitute up to 24% <strong>of</strong> <strong>the</strong> stand<strong>in</strong>g crop<br />

<strong>of</strong> <strong>eelgrass</strong> (24.7 g dry wt/m2) with an<br />

hourly productivity nearly equal to that<br />

<strong>of</strong> <strong>the</strong> <strong>eelgrass</strong> (0.65 mgC/g/hr for<br />

epiphytes; 8.88 ngC/g/hr for <strong>eelgrass</strong>).<br />

Ow<strong>in</strong>g to <strong>the</strong> slnall biomass, <strong>the</strong> annual<br />

production <strong>of</strong> epiphytes was estimated to<br />

be 18% <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong>. McRoy and<br />

McMillan (1977) found that <strong>in</strong> Alaska<br />

growths <strong>of</strong> a diatom, Isthmia nervosa, may<br />

constitute up to 50% <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong> plus<br />

epiphyte dry weight. In Oregon, Kentula<br />

(1983) found epiphyte biomasses vary<strong>in</strong>g<br />

from 25%-31% <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong> biomass,<br />

depend<strong>in</strong>g on <strong>the</strong> season (0.4 g epiphytes/g<br />

leaf to 2.3 g epiphytes/g leaf).<br />

Microphyke algae have received much less<br />

attention. Brown (1962) estimated net<br />

prduction at a.24 g/m2/day <strong>in</strong> New pgland<br />

salt pond (<strong>eelgrass</strong> was 2.2 g/m /day).<br />

Gargas (1972) reported values <strong>of</strong> 50<br />

mgc/m2/day <strong>in</strong> an <strong>eelgrass</strong> bed (maximum<br />

value <strong>in</strong> summer: 5 g~/~2/yr). McRoy et<br />

al. (1973) found that <strong>eelgrass</strong> epiphytes<br />

could fix nitrogen <strong>in</strong> some tropical<br />

species.<br />

Davis (1981), work<strong>in</strong>g <strong>in</strong> Netarts Bay,<br />

Oregon, found that net production <strong>of</strong><br />

microalgae ( predm<strong>in</strong>antly diatoms) was<br />

2<br />

0.045 gCJm /hr, Shat <strong>of</strong> Enteranorpha and<br />

Ulva was 4.5 gum /hr , and <strong>of</strong> Gracilaria<br />

c 0 . 2 q2/m2/hr (<strong>the</strong> latter three are<br />

macroalgae cornmonly found among <strong>eelgrass</strong>).<br />

Figure 11 diagrams <strong>the</strong> proportional<br />

relationships <strong>of</strong> stand<strong>in</strong>g crop and<br />

productivity <strong>in</strong> an estuary (after Thayer<br />

et al. 1975a).<br />

<strong>The</strong> excretion rate from <strong>eelgrass</strong> was shown<br />

to be 1.5% <strong>of</strong> <strong>the</strong> carbon fixed <strong>in</strong><br />

photosyn<strong>the</strong>sis, while that <strong>of</strong> <strong>the</strong><br />

epiphytes on <strong>eelgrass</strong> was 2.0%; <strong>the</strong><br />

excretion rate from heavily epiphyt ized<br />

<strong>eelgrass</strong> was 0.9% (Penhale and Snith<br />

1977). In <strong>the</strong> estuar<strong>in</strong>e system near<br />

Beaufort, North Carol<strong>in</strong>a, <strong>the</strong>y also<br />

established that <strong>eelgrass</strong> excreted 5.0<br />

g~/rn2/yr, and <strong>the</strong> epiphytes excreted 1.5<br />

g~/m2/yr. <strong>The</strong>y concluded that <strong>eelgrass</strong><br />

and its epiphytes contributed 47% <strong>of</strong> <strong>the</strong>ir


Figure 10. Eelgrass at Blakely Island, San Juan Islands, Wash<strong>in</strong>gton, show<strong>in</strong>g<br />

very heavy epiphyte loads.<br />

SECONDARY<br />

CARN l VORES<br />

0.4 gc/m2<br />

PRIMARY<br />

CARN l VORES<br />

2.1 gC/m 2<br />

SMOOTH CC<br />

14 g~/m2/<br />

DEPOSIT FEEDER<br />

2<br />

1.0 gC/m<br />

I<br />

BENTHIC FILTER<br />

FEEDERS<br />

0.5 gc/m2<br />

Figure 11. proportional relations <strong>of</strong> stand<strong>in</strong>g crops and productivity <strong>in</strong><br />

a North Carol<strong>in</strong>a estuary: A. Relation among stand<strong>in</strong>g crops (<strong>in</strong> terms <strong>of</strong><br />

carbon) or organisms <strong>in</strong> an estuary near Beaufort; B. organic production<br />

by <strong>the</strong> major plants <strong>in</strong> <strong>the</strong> system (after Thayer et al. 1975a).


total annual primary prduction and 14% <strong>of</strong><br />

<strong>the</strong>ir total excreted material <strong>in</strong>to <strong>the</strong><br />

estuar<strong>in</strong>e system.<br />

3.4 ORGANIC AND INORGANIC NUTEUENI'<br />

CYCLING<br />

<strong>The</strong> anatomy <strong>of</strong> <strong>eelgrass</strong>, like that <strong>of</strong> all<br />

o<strong>the</strong>r seagrasses, is modified for<br />

metabolism, growth, and reproduction <strong>in</strong><br />

<strong>the</strong> sea.<br />

1. <strong>The</strong> cut<strong>in</strong> layer over <strong>the</strong> leaf is<br />

th<strong>in</strong>.<br />

2. Leaf blades are flattened and th<strong>in</strong><br />

with a very high surf ace-to-volume<br />

ratio.<br />

3. <strong>The</strong>re is an extensive lacuna1 system<br />

which gives buoyancy (<strong>the</strong>y store and<br />

transport a great quantity <strong>of</strong> O2 and<br />

a2'<br />

4. Chloroplasts are densely packed <strong>in</strong><br />

<strong>the</strong> epidermal layer suround<strong>in</strong>g<strong>the</strong><br />

leaf.<br />

5. <strong>The</strong>re is an aerenchyma composed <strong>of</strong><br />

large, th<strong>in</strong>-walled cells which adjo<strong>in</strong><br />

<strong>the</strong> lacunae and facilitate gas and<br />

solute diffusion.<br />

6. <strong>The</strong>re is a reduced amount <strong>of</strong><br />

mechanical support, allow<strong>in</strong>g <strong>the</strong><br />

leaves to f Lex and bend on an ebb<strong>in</strong>g<br />

tide, which ma<strong>in</strong>ta<strong>in</strong>s <strong>the</strong>ir wetness<br />

and guarantees expos<strong>in</strong>g as much<br />

photosyn<strong>the</strong>tic surface to solar<br />

radiation as possible. At <strong>the</strong> same<br />

time <strong>the</strong> leaves are strong enough to<br />

resist break<strong>in</strong>g when <strong>the</strong>y are whipped<br />

dur<strong>in</strong>g wave action e erg us on et al.<br />

1980; Zieman 1982) .<br />

<strong>The</strong> major problem with procurement <strong>of</strong><br />

certa<strong>in</strong> nutrients, such as carbon, by<br />

seagrasses is that rates <strong>of</strong> gaseous<br />

diffusion <strong>in</strong> water are several orders <strong>of</strong><br />

magnitude lower than <strong>in</strong> air. Also, when<br />

<strong>the</strong> pH <strong>of</strong> seawater rises dur<strong>in</strong>g very<br />

active photosyn<strong>the</strong>sis (from 8.2 to 8.9 or<br />

higher), free C02 <strong>in</strong> <strong>the</strong> water is greatly<br />

reduced or becomes unavailable, as does<br />

<strong>the</strong> KO3-ion. It is now known that<br />

seagrasses obta<strong>in</strong> most <strong>of</strong> <strong>the</strong>ir nutrients<br />

from <strong>the</strong> sediments, which ma<strong>in</strong>ta<strong>in</strong> a much<br />

lower pH <strong>in</strong> <strong>the</strong> deep anoxic layer beneath<br />

<strong>the</strong> very th<strong>in</strong> surface oxic zone.<br />

Numerous papers have documented <strong>the</strong> uptake<br />

<strong>of</strong> nutrients (carbon, phosphorus, and<br />

nitrogen, <strong>in</strong> particular) from <strong>the</strong><br />

sediments by <strong>the</strong> root system,<br />

translocation through <strong>the</strong> seagrass plant,<br />

and release to <strong>the</strong> epiphytes and water<br />

column. <strong>The</strong> plants and epiphytes can also<br />

absorb <strong>the</strong>se nutrients from <strong>the</strong> water to<br />

release <strong>the</strong>m to <strong>the</strong> <strong>in</strong>terstitial water <strong>in</strong><br />

<strong>the</strong> sediments (MCRO~ and Barsdate 1970;<br />

Mcmy et al. 1972; McWy and Wr<strong>in</strong>g 1974;<br />

Harl<strong>in</strong> 1975, 1980; Penhale and 3nith 1977;<br />

Wtzel and Penhale 1979; Penhale and<br />

Thayer 1980; Short 1981) . All <strong>the</strong> available<br />

work done states that sediments are<br />

<strong>the</strong> preferred source for nutrient uptake.<br />

<strong>The</strong>se laboratory experiments were<br />

re<strong>in</strong>forced by recent field experiments<br />

us<strong>in</strong>g fertilizers. Orth (197733) used<br />

Osmacote (14-14-14; a slow-release<br />

fertilizer), placed <strong>in</strong> <strong>the</strong> sediments, and<br />

observed dramatic <strong>in</strong>creases <strong>in</strong> plant<br />

stand<strong>in</strong>g crops. Eelgrass root/rhizomes<br />

<strong>in</strong>creased 30%, <strong>the</strong> leaf crop was three to<br />

four times higher, and shoot density<br />

<strong>in</strong>creased. Increases <strong>in</strong> <strong>the</strong> stand<strong>in</strong>g crop<br />

were also observed follow<strong>in</strong>g fertilization<br />

<strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> mode Island (Harl<strong>in</strong> and<br />

Thorne-Miller 1981) .<br />

Even though <strong>eelgrass</strong> needs a variety <strong>of</strong><br />

macro- and micronutrients, most <strong>of</strong> <strong>the</strong><br />

research has concentrated on carbon,<br />

phosphorus, and nitrogen. Phosphorus<br />

supply does not appear to be limit<strong>in</strong>g. In<br />

Alaska, McRoy and Barsdate (1970) found<br />

that <strong>eelgrass</strong> plants were a phosphorus<br />

pump from <strong>the</strong> sediments to <strong>the</strong> water<br />

column, but <strong>in</strong> North Carol<strong>in</strong>a <strong>the</strong> roots<br />

reta<strong>in</strong>ed most <strong>of</strong> <strong>the</strong>ir absorbed phosphorus<br />

(Penhale and Thayer 1980). McRoy et al.<br />

(1972) estimated that phosphorus turnover<br />

times <strong>in</strong> <strong>the</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>in</strong> Izembek<br />

Lagoon, Alaska, vary from two turnovers<br />

per year to one every 2 years.<br />

Eelgrass has three sources <strong>of</strong> <strong>in</strong>organic<br />

carbon (C02, HCO~-) : recycled from<br />

respiration and p otorespiration, <strong>the</strong><br />

water column (which is not a likely source<br />

dur<strong>in</strong>g active photcsyn<strong>the</strong>sis, ow<strong>in</strong>g to an


<strong>in</strong>crease <strong>in</strong> p~), and <strong>the</strong> sediments (Wetzel<br />

and Penhale 1979). Penhale and Thayer<br />

(1980) found that most <strong>of</strong> <strong>the</strong> <strong>in</strong>organic<br />

carbon found <strong>in</strong> <strong>the</strong> <strong>eelgrass</strong> plant entered<br />

through <strong>the</strong> root system. Of that amount<br />

72.4% rema<strong>in</strong>ed <strong>in</strong> <strong>the</strong> roots, 24.4% was<br />

transported to <strong>the</strong> leaves, and 3.2% was<br />

transferred to <strong>the</strong> epiphytes (bacteria,<br />

micro- and macroalgae). Eelgrass,<br />

however, is very <strong>in</strong>efficient <strong>in</strong> us<strong>in</strong>g<br />

<strong>in</strong>organic carbon <strong>in</strong> photosyn<strong>the</strong>sis. <strong>The</strong><br />

photosyn<strong>the</strong>tic use <strong>of</strong> this transwrted<br />

carbon was only 5%-20%, <strong>the</strong> rema<strong>in</strong><strong>in</strong>g a)2<br />

pass<strong>in</strong>g through <strong>the</strong> leaves was released to<br />

<strong>the</strong> water as CO (~etzel and Penhale<br />

1979). <strong>The</strong>y also Zound that <strong>the</strong> supply <strong>of</strong><br />

<strong>in</strong>organic carbon fro<strong>in</strong> <strong>the</strong> comb<strong>in</strong>ed sources<br />

<strong>of</strong> respiration, photorespiration, and <strong>the</strong><br />

water is <strong>in</strong> excess <strong>of</strong> that needed for<br />

photosyn<strong>the</strong>sis.<br />

Eelgrass leaks an appreciable arnount <strong>of</strong><br />

its photosyn<strong>the</strong>tically fixed carbon as<br />

dissolved organic carbon (DOC). Penhale<br />

and Smith (1977) £ound that <strong>eelgrass</strong> lost<br />

1.5% <strong>of</strong> its fixed carbon as DOC (epiphytes<br />

removed), heavily epiphytized plants lost<br />

just 0.9% as DOC, while <strong>the</strong> epiphytes<br />

alone lost 2.9% as DOC. Wetzel and<br />

Penhale (1979) found somewhat higher<br />

amounts. <strong>The</strong>y reported that <strong>eelgrass</strong><br />

could excrete as much as 5.2% <strong>of</strong> <strong>the</strong> fixed<br />

carbon as WC. Excretion rates were much<br />

higher <strong>in</strong> <strong>the</strong> light than <strong>in</strong> <strong>the</strong> dark;<br />

<strong>the</strong>se rates <strong>in</strong>creased when <strong>the</strong> plants were<br />

dried.<br />

In 1976 Benedict and Scott suggested that<br />

c4 metabolism occurs <strong>in</strong> some seagrasses.<br />

It is now known that <strong>of</strong> 11 species <strong>of</strong><br />

seagrasses, <strong>in</strong>clud<strong>in</strong>g <strong>eelgrass</strong>, only one<br />

species (Cymodocea nodosa) has C4<br />

metabolism.<br />

Various isotopes <strong>of</strong> carbon occur <strong>in</strong> <strong>the</strong><br />

water. Seagrasses do not use <strong>the</strong>se<br />

isotopes <strong>in</strong> <strong>the</strong> ratios found <strong>in</strong> nature but<br />

tend to accumulate <strong>the</strong> lighter more<br />

mobile 12c isotope over <strong>the</strong> l3C form<br />

ieman and Wetzel 1980). <strong>The</strong> ratios <strong>of</strong><br />

14C/12C , called <strong>the</strong> 6 13c or del 13c<br />

ratio, are relatively high <strong>in</strong> seagrasses.<br />

In a review <strong>of</strong> 12 genera and 47 species,<br />

McMillan et al. (1980) found that 45<br />

species were with<strong>in</strong> <strong>the</strong> range <strong>of</strong> -3 to -19<br />

ppt (two species <strong>of</strong> Halophila were lower).<br />

Several studies determ<strong>in</strong>ed that animals<br />

approximate <strong>the</strong> isotopic composition <strong>of</strong><br />

<strong>the</strong>ir diets and that <strong>the</strong> del 13c ratio <strong>of</strong><br />

seagrasses may be used as a natural food<br />

tracer (Thayer et al. 1978; Fry and Parker<br />

1979; McConnaughey and McRoy 1979).<br />

McMi1I.p et al. (1980) determ<strong>in</strong>ed that <strong>the</strong><br />

del C ratio for <strong>eelgrass</strong> varied from<br />

-7.8 to -12.4 (X = -9.9) and that for 2.<br />

japonica <strong>in</strong> Willapa BayI_ wash<strong>in</strong>gton,<br />

varied £ram -15.3 to -16.3 (X = 15.8).<br />

Nitrogen is needed <strong>in</strong> much greater<br />

quantities and can be rate limit<strong>in</strong>g (McRay<br />

and McMillan 1977; Short 1981). <strong>The</strong>re are<br />

four potential sources <strong>of</strong> nitrogen <strong>in</strong> an<br />

<strong>eelgrass</strong> meadow: (1) nitrogen fixation,<br />

(2) nitrogen <strong>in</strong> <strong>the</strong> water column, (3)<br />

recycled nitrogen <strong>in</strong> <strong>the</strong> sediments, and<br />

(4) leaf deposition (Kenworthy et al.<br />

1982; Zianan 1982).<br />

Patriqu<strong>in</strong> and Knowles (1972) first<br />

reported nitrogen fixation <strong>in</strong> <strong>the</strong><br />

rhizosphere <strong>of</strong> <strong>eelgrass</strong>. This was refuted<br />

by McRoy et al. (1973) but is now<br />

considered to occur. Smith et al. (1981a)<br />

reported endobacteria <strong>in</strong> roots <strong>of</strong><br />

<strong>eelgrass</strong>. <strong>The</strong>se endobacteria were<br />

associated with nitrogen fixation (Smith<br />

et al. 1981b). Nitrogen fixation<br />

def<strong>in</strong>itely occurs <strong>in</strong> <strong>the</strong> rhizosphere <strong>of</strong><br />

Thalassia <strong>of</strong> <strong>the</strong> tropical Atlantic (~apone<br />

et al. 1979; Zieman 1982). Nitrogen<br />

fixation also occurs on <strong>the</strong> phyllosphere<br />

<strong>of</strong> <strong>eelgrass</strong> blades. McRoy and Goer<strong>in</strong>g<br />

(1974) found that <strong>the</strong> amount fixed by<br />

epiphytic blue-green algae was greatest <strong>in</strong><br />

tropical species but was not unimportant<br />

<strong>in</strong> <strong>eelgrass</strong>, consider<strong>in</strong>g <strong>the</strong> great need<br />

for nitrogen <strong>in</strong> <strong>the</strong> system. In Thalassia,<br />

Capone et al. (1979) found that nitrogen<br />

fixed at <strong>the</strong> blade contributed primarily<br />

to <strong>the</strong> epiphytic community. Zieman (1982)<br />

reported that 20% to 50% <strong>of</strong> <strong>the</strong> nitrogen<br />

requirements <strong>of</strong> <strong>the</strong> Thalassia meadow could<br />

be supplied by nitrogen fixation <strong>in</strong> <strong>the</strong><br />

rhizosphere. Nitrification <strong>in</strong> ~halassia<br />

<strong>meadows</strong> was highest on <strong>the</strong> develop<strong>in</strong>g<br />

marg<strong>in</strong>s and lower <strong>in</strong> <strong>the</strong> center where<br />

trapp<strong>in</strong>g and retention <strong>of</strong> <strong>the</strong> particulate<br />

material was greater. This was also found<br />

<strong>in</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>in</strong> Alaska by Short<br />

(1981).<br />

<strong>The</strong> nitrogen <strong>in</strong> <strong>the</strong> leaves and that fixed<br />

by epiphytes is carried down to <strong>the</strong><br />

sediments as whole leaf matter and<br />

detritus (~arrison and Mann 1975b).<br />

Nitrogen <strong>in</strong> <strong>the</strong> sediments arises also from


plant and animal excretion and dead<br />

root/ rhizome decay (NO2-, NO3-). In<br />

seagrasses <strong>the</strong> primary source <strong>of</strong> nitrogen<br />

for leaf production is recycled material<br />

from sediments (Thalassia: Capone and<br />

Taylor 1980, Orth 1973). Until recently<br />

it was difficult to understand how<br />

nitrification could occur <strong>in</strong> <strong>the</strong> reduced<br />

root zone, but Iizumi et al. (1980)<br />

deomonstrated that <strong>eelgrass</strong> roots excrete<br />

o2 <strong>in</strong>to <strong>the</strong> anoxic sediments. This<br />

creates oxygenated microzones around <strong>the</strong><br />

roots, result<strong>in</strong>g <strong>in</strong> <strong>the</strong> nitrification <strong>of</strong><br />

ammonia (which can be readily assimilated<br />

by <strong>eelgrass</strong> roots, rhizomes, and leaves)<br />

to nitrate for uptake by roots.<br />

Kenworthy et al. (1982) found highly<br />

significant correlations between density<br />

<strong>of</strong> <strong>eelgrass</strong> vegetation (related to<br />

prcduction <strong>of</strong> detached leaf material and<br />

detritus and ability to trap and hold it),<br />

organic matter <strong>in</strong> <strong>the</strong> sediment, f<strong>in</strong>e<br />

sediments, and <strong>the</strong> total nitrogen pool.<br />

<strong>The</strong>y reported an <strong>in</strong>creas<strong>in</strong>g gradient <strong>in</strong><br />

all parameters from unvegetated sediments<br />

to <strong>the</strong> edge <strong>of</strong> a meadow to <strong>the</strong> midbed<br />

region. <strong>The</strong> nitrogen pool <strong>in</strong> <strong>the</strong> midbed<br />

regions was composed <strong>of</strong> exchangeable<br />

ammonium, ammonium dissolved <strong>in</strong> <strong>the</strong><br />

sediment <strong>in</strong>terstitial pores, and total<br />

nitrogen.<br />

Recently several studies have shown <strong>the</strong><br />

cycl<strong>in</strong>g <strong>of</strong> trace metals <strong>in</strong> an <strong>eelgrass</strong><br />

system. In North Carol<strong>in</strong>a, Wolfe et al.<br />

(1976) analyzed more than 50 species <strong>of</strong><br />

organisms <strong>in</strong> an <strong>eelgrass</strong> bed for<br />

manganese, iron, copper, and z<strong>in</strong>c. <strong>The</strong>se<br />

organisms <strong>in</strong>cluded <strong>eelgrass</strong>, dom<strong>in</strong>ant<br />

macroalgae, epi fauna, <strong>in</strong> fauna, and nekton.<br />

<strong>The</strong> detritus and sediments were also<br />

analyzed. Results showed that <strong>eelgrass</strong><br />

accumulated significant fractions <strong>of</strong> <strong>the</strong>se<br />

metals but that <strong>the</strong> metal contents <strong>in</strong> all<br />

o<strong>the</strong>r trophic mnpartments were very small<br />

relative to that <strong>in</strong> <strong>eelgrass</strong>. <strong>The</strong>y did<br />

f<strong>in</strong>d high manganese contents <strong>in</strong> bay<br />

scallops. In ano<strong>the</strong>r study <strong>in</strong> <strong>the</strong> same<br />

estuary, Drifmeyer et al. (198d) found<br />

that content <strong>of</strong> <strong>the</strong> four metals varied<br />

significantly <strong>in</strong> different parts <strong>of</strong> <strong>the</strong><br />

<strong>eelgrass</strong> plant (aboveground tissues<br />

conta<strong>in</strong>ed <strong>the</strong> mast), and that imprted and<br />

exported blade particles did rmt differ <strong>in</strong><br />

metal content. Eelgrass biomass was <strong>the</strong><br />

largest biological reservoir, and blade<br />

senescence and decomposition were<br />

responsible for <strong>the</strong> largest biological<br />

flux <strong>of</strong> <strong>the</strong>se elements <strong>in</strong> <strong>the</strong> system.<br />

Br<strong>in</strong>khuis et al. (1980) found that cadmium<br />

and manganese, specifically, rema<strong>in</strong><br />

complexed <strong>in</strong> <strong>the</strong> sediments under anoxic<br />

conditions. When <strong>the</strong> sediments become<br />

oxidized, <strong>the</strong>se metals may become<br />

bioavailable. Eelgrass absorbs cadmium<br />

and manganese through both <strong>the</strong> roots and<br />

leaves. Cadmium is transported both<br />

upwards and downwards, but <strong>the</strong> roots form<br />

a cadmium s<strong>in</strong>k (also found by Faraday and<br />

Churchill 1979). Old roots/rhizomes<br />

deposit <strong>the</strong>ir greater contents <strong>of</strong> cadmium<br />

<strong>in</strong> <strong>the</strong> sediment s<strong>in</strong>k. Manganese is more<br />

readily fixed by leaves with little<br />

transport between leaves and<br />

rhizomes/roots. Some manganese does enter<br />

<strong>the</strong> anoxic s<strong>in</strong>k. <strong>The</strong>y also warned that<br />

<strong>the</strong> mechanics <strong>of</strong> <strong>the</strong> metal ions varied<br />

widely from element to element and species<br />

to species <strong>in</strong> <strong>the</strong> same genus.<br />

<strong>The</strong> role <strong>of</strong> detritus <strong>in</strong> mar<strong>in</strong>e food webs<br />

was first recognized by Danish<br />

<strong>in</strong>vestigators (~oysen- ens en 1914,<br />

Petersen 1918). This view was enlarged by<br />

Mann (1972). Detritus is not described as<br />

<strong>the</strong> driv<strong>in</strong>g force <strong>in</strong> <strong>the</strong> exchange <strong>of</strong><br />

nutrients <strong>in</strong> most seagrass ecosystems<br />

(wood et al. 1969, Earsdate & Nebert 1974,<br />

Thayer et al. 1975a).<br />

<strong>The</strong> degradation <strong>of</strong> plant material <strong>in</strong>volves<br />

its reduction through a spectrum <strong>of</strong> sizes<br />

to a level <strong>of</strong> smaller molecues (~arnell<br />

1964). Wetzel et al. (1972) def<strong>in</strong>ed<br />

detritus as organic carbon lost by<br />

nonpredatory means from any trophic level<br />

(egestion, excretion, secretion) or <strong>in</strong>puts<br />

from external sources that enter <strong>the</strong> cycle<br />

<strong>in</strong> <strong>the</strong> system. Senescent seagrass leaves<br />

recently released may be <strong>in</strong>itially broken<br />

by physical fragmentation, but ultimate1 y<br />

become detrital matter through microbial<br />

(bacteria, fungi, flagellates, ciliates)<br />

colonization and activities and physical<br />

handl<strong>in</strong>g by consumers (amphipods, etc; cf,<br />

Zieman C1982j and Klug C1981dl for<br />

reviews). Burkholder and Dolleny (1968)<br />

determ<strong>in</strong>ed that <strong>eelgrass</strong> was nearly<br />

completely processed <strong>in</strong>to particulate<br />

matter <strong>in</strong> 30 days. Harrison and Mann<br />

(1975a) found a 35% reduction <strong>of</strong> <strong>eelgrass</strong><br />

detrital dry weight after 100 days at 20O<br />

C (68O F), conclud<strong>in</strong>g that <strong>eelgrass</strong><br />

detritus decomposes slowly. Gcdshalk and<br />

Wetzel (1978) also found that <strong>eelgrass</strong>


particulate matter and DOM were highly<br />

resistant to decomposition. <strong>The</strong>y related<br />

this to <strong>the</strong> ultrastructure <strong>of</strong> <strong>eelgrass</strong>;<br />

i.e., a high content <strong>of</strong> structural tissue<br />

(23.28 hemicellulose, 22.1% cellulose,<br />

7.3% lign<strong>in</strong>), and adaptation to a harsh<br />

environment.<br />

As senescence <strong>of</strong> <strong>eelgrass</strong> blades beg<strong>in</strong>s,<br />

<strong>the</strong> nitrogen content decl<strong>in</strong>es (~oysen-<br />

Jensen 1914; Harrison and Mann 1975b;<br />

Thayer et al. 1977) but <strong>in</strong>creases <strong>in</strong> <strong>the</strong><br />

detritus (Harrison and Mann 1975b; Thayer<br />

et al. 1977) as does <strong>the</strong> phosphorus<br />

content (~hayer et al. 1975b; Fenchel<br />

1977). Thayer et al. (1977) also reported<br />

that <strong>the</strong> organic carbon content <strong>in</strong>creased<br />

on a gradient from liv<strong>in</strong>g to dead leaves<br />

to detritus (on an ash-free dry weight<br />

basis). <strong>The</strong> <strong>in</strong>crease <strong>of</strong> nitrogen <strong>in</strong><br />

detritus relative to <strong>the</strong> dead leaves<br />

suggested nitrogen mobilization from <strong>the</strong><br />

water <strong>in</strong>to <strong>the</strong> detritus by <strong>the</strong> microbial<br />

coat<strong>in</strong>g.<br />

Detritus as such tends to be poor <strong>in</strong><br />

essential nutrients. Bacteria locate as a<br />

film around <strong>the</strong> particles, and while<br />

act<strong>in</strong>g enzymatically on <strong>the</strong>m, enrich <strong>the</strong>m<br />

with nitrogen, phosphorus, and organic<br />

carbon. In this sense detritus may act as<br />

a nutrient pump from <strong>the</strong> water column to<br />

<strong>the</strong> sediment when detritus settles to <strong>the</strong><br />

bottorn. Thus, microbial decomposition <strong>of</strong><br />

detritus is <strong>of</strong> prime importance <strong>in</strong><br />

nutrient release and cycl<strong>in</strong>g.<br />

<strong>The</strong>re is much evidence that <strong>the</strong> real<br />

nourishment for animals which utilize<br />

detritus is <strong>the</strong> microbial layer (~ewell<br />

1965; Fenchel 1970, 1972; Mann 1972;<br />

Tenore 1977). After stripp<strong>in</strong>g <strong>of</strong>f <strong>the</strong><br />

microbial layer, <strong>the</strong> <strong>in</strong>vertebrates egest<br />

<strong>the</strong> particles which aga<strong>in</strong> become clo<strong>the</strong>d<br />

with a microbial layer. As this cont<strong>in</strong>ues<br />

<strong>the</strong> particle size becomes reduced, ow<strong>in</strong>g<br />

to enzymatic activity <strong>of</strong> <strong>the</strong> microbes. As<br />

<strong>the</strong> particle sizes decl<strong>in</strong>e, <strong>the</strong>y become<br />

available to various classes <strong>of</strong> consumers,<br />

e.g., filter feeders and deposit feeders,<br />

pol ychaetes , zooplankton, and gastropxls,<br />

which are only able to <strong>in</strong>gest f<strong>in</strong>e<br />

particles less than 0.5 mm <strong>in</strong> diameter<br />

(Zieman 1982). Harrison (1977) found that<br />

<strong>the</strong> detrital material was repeatedly<br />

<strong>in</strong>gested until it was completely utilized.<br />

Gammarid amphipods were particularly<br />

important <strong>in</strong> <strong>in</strong>gest<strong>in</strong>g <strong>eelgrass</strong> particles,<br />

result<strong>in</strong>g <strong>in</strong> <strong>the</strong>ir reduction <strong>in</strong> size.<br />

<strong>The</strong>re is some evidence that physical<br />

fragmentation <strong>of</strong> <strong>the</strong> particles leads to an<br />

<strong>in</strong>creased microbial respiration rate which<br />

is also stimulated by <strong>the</strong> feed<strong>in</strong>g<br />

activities <strong>of</strong> animals ( Fenchel 1977;<br />

Harrison and Mann 1975a). Decomposition<br />

rates <strong>of</strong> detrital particles are directly<br />

related to <strong>the</strong> particle size (Harrison<br />

1977; Godshalk and Wetzel 1978). This is<br />

due to <strong>the</strong> much higher surface volune<br />

ratios <strong>of</strong> <strong>the</strong> snaller particles and <strong>the</strong><br />

<strong>in</strong>creased microbial respiration rates on<br />

<strong>the</strong>m. Larger plant material and detritus<br />

may ei<strong>the</strong>r bec~ne deposited onto <strong>the</strong> sediment<br />

surface and <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong><br />

sediments, or exported from <strong>the</strong> <strong>eelgrass</strong><br />

system. <strong>The</strong> smaller <strong>the</strong> particle (less<br />

than 0.5 mm), <strong>the</strong> more easily it is<br />

resuspended and dispersed (Ziemn 1982).<br />

Ow<strong>in</strong>g to <strong>the</strong> high rate <strong>of</strong> detrital<br />

deposition on <strong>the</strong> bottom, and <strong>the</strong> great<br />

numbers <strong>of</strong> microbes on <strong>the</strong> plant material<br />

and <strong>in</strong> <strong>the</strong> sediments, anaerobic (reduc<strong>in</strong>g)<br />

conditions are ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> sediments<br />

<strong>of</strong> <strong>eelgrass</strong> beds below a th<strong>in</strong> (few<br />

millimeters) surface oxidized layer. O2<br />

diffusion is decreased by <strong>the</strong>se<br />

conditions. Seagrass and o<strong>the</strong>r plant<br />

detritus is m<strong>in</strong>eralized under <strong>the</strong>se<br />

anaerobic conditions. <strong>The</strong>se conditions<br />

favor <strong>the</strong> development <strong>of</strong> sulfur bacteria,<br />

form<strong>in</strong>g sulfides that create a s<strong>in</strong>k for<br />

organic nutrients and metals <strong>in</strong> <strong>the</strong><br />

sediments.<br />

Several decomposition processes occur<br />

which are characteristic <strong>of</strong> <strong>the</strong> anaerobic<br />

layers (Fenchel 1977): (1) bacteria<br />

ferment <strong>the</strong> detritus <strong>in</strong> <strong>the</strong> absence <strong>of</strong> 0<br />

as a respiratory electron acceptor: (27<br />

C02, NO3, and SO4 are also used as<br />

respiratory electron acceptors ; and (3)<br />

end products <strong>of</strong> <strong>the</strong> amerobic pWys are<br />

methane, ammonia, or nitragen gas, and H2S<br />

(Figure 12). H2S reacts with metals,<br />

form<strong>in</strong>g a s<strong>in</strong>k for many heavy metals,<br />

releas<strong>in</strong>g phosphate to <strong>the</strong> system <strong>in</strong> <strong>the</strong><br />

process. <strong>The</strong>re is evidence that anaerobic<br />

decomposition <strong>in</strong> <strong>the</strong> presence <strong>of</strong> sulfate<br />

produces six times more organic matter<br />

than aerobic decomposition produces<br />

(Fenchel 1972).<br />

3.5 PLANT CONSrITUENTS<br />

A number <strong>of</strong> studies have been done on <strong>the</strong>


02<br />

4<br />

\<br />

Photosynlhefic -sso<br />

Oxic<br />

Anoxic<br />

C<br />

Low molecu/ur,<br />

orgunk end pmducfs<br />

<strong>of</strong> fermenfafion<br />

f lucfufe, acetote, efc. I<br />

Anaerobic<br />

FeS<br />

hie++<br />

Jnorgonics<br />

A<br />

Figure 12. Oxic and anoxic detrital decomyx,sition and <strong>the</strong> cycle <strong>of</strong> sulfur <strong>in</strong> seagrass<br />

Ms (after Fenchel 1977).<br />

proximate constitutents <strong>of</strong> <strong>eelgrass</strong><br />

( Boysen-Jensen 1914; Candussio 1960;<br />

E<strong>in</strong>arsen 1965; Burkholder and Doheny 1968;<br />

Park 1979; Stahlheber 1982; Felyer and<br />

Moeer 1973, 1976; Table 9). No studies<br />

have been made on 5 japonica, a large<br />

staple <strong>of</strong> <strong>the</strong> black brant geese <strong>in</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong>.<br />

Prote<strong>in</strong> contents <strong>of</strong> <strong>eelgrass</strong> Leaves range<br />

from a low <strong>of</strong> 8.1% <strong>of</strong> dry weight to 20.3%.<br />

<strong>The</strong> value for <strong>the</strong> rhizomes ranges from<br />

2.8% to 6,143. Unfortunately, no seasonal<br />

comparisons have been conducted for<br />

<strong>eelgrass</strong>, as have been done for <strong>the</strong><br />

tropical seagrasses (cf, Zieman 1982 for a<br />

summary). This area needs a lot <strong>of</strong> work.<br />

Lipid amtents <strong>of</strong> all plant para are low<br />

(0.84% <strong>of</strong> <strong>the</strong> dry weight to 2.29% <strong>in</strong><br />

leaves; 0.91% for rhizomes; 1.0% for<br />

seeds). Fiber contents are relatively<br />

high <strong>in</strong> leaves and rhizomes (a low <strong>of</strong><br />

5.45% <strong>of</strong> dry weight <strong>in</strong> one analysis to<br />

61.7%). Ash contents range from a low <strong>of</strong><br />

8&% <strong>of</strong> dry weight to 32.6%. Carkrhydrate<br />

contents are highly variable (1.3% <strong>of</strong> dry<br />

weight to 44.6% <strong>in</strong> leaves to 50.9% <strong>in</strong><br />

seeds). <strong>The</strong>re have been so few studies<br />

made and no systematic analyses ei<strong>the</strong>r<br />

seasonally or regionally that it is<br />

difficult to draw any conclusions from <strong>the</strong><br />

few results reported.<br />

McRoy (1970a) collected data on <strong>the</strong><br />

elemental composition <strong>of</strong> <strong>eelgrass</strong> as<br />

compared to <strong>the</strong> ocean (28 elements;<br />

Table 10). It is apparent that <strong>eelgrass</strong><br />

is actively accumulat<strong>in</strong>g great quantities<br />

<strong>of</strong> many m<strong>in</strong>erals.<br />

Caution must be used <strong>in</strong> assum<strong>in</strong>g that <strong>the</strong><br />

nitrogen content <strong>of</strong> <strong>eelgrass</strong> vegetation is<br />

a good <strong>in</strong>dicator <strong>of</strong> food value. Harrison<br />

and Mann (1975b) have shown that up to<br />

two-thirds <strong>of</strong> <strong>the</strong> nitrogen content <strong>of</strong><br />

young green leaves may represent lowmolecular-weight<br />

soluble compounds<br />

(nonprote<strong>in</strong> nitrogen). Actual prote<strong>in</strong><br />

content should be determ<strong>in</strong>ed for foodvalue<br />

analyses.<br />

Recent studies show that <strong>eelgrass</strong> conta<strong>in</strong>s<br />

phenolic acids, suggested to be among <strong>the</strong><br />

primary allelopathic agents <strong>of</strong> land plants<br />

(cf, Zapata and McMillan 1979 for a<br />

review). In a follow<strong>in</strong>g study, McMillan<br />

et al. (1980) demonstrated that <strong>eelgrass</strong><br />

and 2. japonica conta<strong>in</strong> flavone sulphates.<br />

he^-suggested that if <strong>the</strong>se seagrasses


Table 9.<br />

Nutrient content <strong>of</strong> <strong>eelgrass</strong> (percentage dry weight).<br />

~1alt part Proteln Llpld Flber @rWlyirate Re fereuce<br />

Ash<br />

New leaves 10.0 - -- -- --<br />

-- -- Ibysml-Jerlsen 1914<br />

old leaves 8.49 -- --<br />

Leaves 10.63 2.29 61.7 8.8 5.6 Durkholder


Table 10. rison <strong>of</strong> elemental oanp<br />

sition <strong>of</strong> <strong>eelgrass</strong> and tk man (after<br />

Mclby 1970a).<br />

changes <strong>in</strong> primary production,<br />

decomposition <strong>of</strong> plant matter, and<br />

reliance on detritus for food and<br />

nutrients as <strong>the</strong> ecosystem develops <strong>in</strong><br />

time. It appears that processes change<br />

a long recognizable sequences, mcm r talt<br />

with species and structural cfmqes.<br />

Major elmnix<br />

~XMm<br />

kfydmqttn<br />

Carban<br />

'Iskosphorus<br />

Nitrogen<br />

M<strong>in</strong>or elmntrr<br />

Wiun<br />

Chlor<strong>in</strong>e<br />

Magnee iun<br />

Pstassim<br />

SulEur<br />

(=Qlcim<br />

lk3m<br />

Silicrm<br />

Iditw<br />

Z<strong>in</strong>c<br />

Irotl<br />

A1 unir~un<br />

Mrqipf14a~e<br />

McRoy and Williams (LY7k3) def<strong>in</strong>ed<br />

process<strong>in</strong>g as all brotic and dblotrc<br />

<strong>in</strong>teractions result<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

transformation <strong>of</strong> particulate organic<br />

matter. Temperature, chernrcal<br />

composif ion, animal, dnd nlicrobral<br />

activity, desiccation, aerobrc and<br />

anerob~c condit~ons, and particle slze<br />

affect procosslng rates.<br />

It is krrown that <strong>eelgrass</strong> processes change<br />

along tem~ral and spatial gratlrents. 'he<br />

spatial gradient may lie frorn <strong>the</strong> edge to<br />

<strong>the</strong> center <strong>of</strong> a s<strong>in</strong>gle meadow or along a<br />

latitud<strong>in</strong>al gradient fro<strong>in</strong> an ared wlth<br />

optimal environmental conditions where<br />

ecoeystefn developmetat has proceeded<br />

raprdly to stressed dress dt <strong>the</strong> twr<strong>the</strong>rly<br />

anJ wu<strong>the</strong>rly l~mits <strong>of</strong> distribution where<br />

ecosystem development has been retarded.<br />

Kenworthy et al. (1982) described a<br />

sequence <strong>in</strong> nitrqen accumulation alimg a<br />

local spatial gradient <strong>in</strong> an estuary <strong>in</strong><br />

North Carol<strong>in</strong>a. <strong>The</strong> greatest pool <strong>of</strong><br />

rlitrogen was <strong>in</strong> <strong>the</strong> midbed; <strong>the</strong><br />

mtenn&iate level was at <strong>the</strong> edge <strong>of</strong> <strong>the</strong><br />

meatlow, and <strong>the</strong> least nitrogen was <strong>in</strong><br />

unvogeti-ited sediment. <strong>The</strong>se nitroyen<br />

changes were correlated with<br />

concentrations <strong>of</strong> f<strong>in</strong>e particle slze <strong>in</strong><br />

<strong>the</strong> sedirnents, a clmracteristic assoclatd<br />

with <strong>the</strong> <strong>eelgrass</strong>. Dennison (1979)<br />

cbcurnented <strong>the</strong> charyes <strong>in</strong> leaf area <strong>in</strong>fex<br />

and light responses <strong>of</strong> <strong>eelgrass</strong> as a<br />

~[~itial gradlent <strong>of</strong> ecosystem development<br />

<strong>in</strong> Zzembek Lagoon, Alaska. It has been<br />

possible to transplant <strong>eelgrass</strong> frorn Puget<br />

M, Wash<strong>in</strong>gton, to Izembek Lagoon, but<br />

not vice Versa. This suggests that<br />

<strong>eelgrass</strong> has a much broader adaptive<br />

tolerarice from an area with optlmtll<br />

<strong>Pacific</strong> WrUzwe~t, particularly <strong>in</strong> Orqm enviraunenkal mutitions and can tolerate<br />

arrtl. eouthweaterr~ Wash<strong>in</strong>gton, just as 2.- tlle stress <strong>in</strong> Xzembek Lagoon. <strong>The</strong> plants<br />

jawnlg grow8 <strong>in</strong>termrxec3 with <strong>eelgrass</strong> fran Xzembuk Lagoon do rmt appear to have<br />

itlong rts Xswer timrt <strong>of</strong> growth (fidrrison as broad an adaptive tolerance to<br />

1979). This mixmcj cannot be <strong>in</strong>terpreted corxiitions elsewhere (Phillips and Lewis<br />

L~I elcher case to be species s~~cc~*ession. 1983) .<br />

Functional or process succession relates What appears to be a simple ecosystem,<br />

to <strong>the</strong> quantitative and qualitative structurally and functionally, merely<br />

3 2


ecause it is dom<strong>in</strong>ated by a s<strong>in</strong>gle<br />

species, is <strong>in</strong> reality a highly complex<br />

structural and functional system, composed<br />

<strong>of</strong> differ<strong>in</strong>g adaptive responses related to<br />

<strong>the</strong> population characteristics, <strong>in</strong>clud<strong>in</strong>g<br />

differ<strong>in</strong>g genetic patterns, vegetative and<br />

reproductive growth patterns, trophic<br />

relationships, and variable process<br />

relationships. As <strong>in</strong> most <strong>of</strong> <strong>the</strong> climax<br />

ecosystems <strong>of</strong> <strong>the</strong> world, detrital food<br />

patterns predom<strong>in</strong>ate <strong>in</strong> <strong>the</strong> <strong>eelgrass</strong><br />

ecosystem. <strong>The</strong>re<strong>in</strong> are <strong>the</strong> structural and<br />

functional natures <strong>of</strong> <strong>the</strong> ecosystem<br />

brought toge<strong>the</strong>r. Because <strong>of</strong> this unit<br />

and complementarity <strong>of</strong> structure and<br />

function <strong>in</strong> both a s<strong>in</strong>gle plant and <strong>in</strong> <strong>the</strong><br />

entire ecosystem, complexity is revealed<br />

which is manifested as high species and<br />

trophic diversity and primary<br />

productivity.


CHAPTER 4<br />

COMPONENTS OF THE EELGRASS COMMUNITY-STRUCTURE AND FUNCTION<br />

A community is characterized by its<br />

species composition and related features<br />

(den Hartog 1980). <strong>The</strong> community can be<br />

described as a structural framework <strong>in</strong><br />

which to study plant and animal<br />

<strong>in</strong>terrelationships, while <strong>the</strong> ecosystem is<br />

a functional framework <strong>in</strong> which <strong>the</strong><br />

<strong>in</strong>terrelationships are viewed as processes<br />

and <strong>in</strong> which <strong>the</strong> effects <strong>of</strong> <strong>the</strong> abiotic<br />

environment are <strong>in</strong>tegrated.<br />

animals that may crawl onto <strong>the</strong> leaves<br />

from <strong>the</strong> sediment. Epibenthic organisms<br />

are those that live on <strong>the</strong> surface <strong>of</strong> <strong>the</strong><br />

sediment, both mobile and sessile forms.<br />

Infauna live buried <strong>in</strong> <strong>the</strong> sediments.<br />

Some organisms, such as shrimp and some<br />

crabs, lie partially buried dur<strong>in</strong>g <strong>the</strong> day<br />

and move on <strong>the</strong> sediment surface to feed.<br />

<strong>The</strong>se are treated as epibenthic organisms.<br />

Nekton live <strong>in</strong> or above <strong>the</strong> plant canopy.<br />

This chapter will, for <strong>the</strong> most part, be<br />

organized along a community orientation.<br />

Many studies have shown a great diversity<br />

<strong>of</strong> plant and animal life associated with<br />

<strong>eelgrass</strong> <strong>meadows</strong>, from epiphyte lists<br />

(Davis 1913; Kita and Harada 1962; Ledoyer<br />

1962; van den Ende and Haage 1963; den<br />

Hartog 1970; Ma<strong>in</strong> and McIntire 1974;<br />

Harl<strong>in</strong> 1980) to large lists, some <strong>of</strong> which<br />

also analyzed <strong>the</strong> functional<br />

<strong>in</strong>terrelationships <strong>of</strong> animals associated<br />

with <strong>eelgrass</strong> (~legvad 1914, 1916; Allee<br />

1923; Blois et al. 1961; Ledoyer 1962,<br />

1964a,b; Kikuchi 1966, 1968, 1974, 1980;<br />

Nagle 1968; Orth 1973, 1977a; Adams<br />

1976a,b; Kikuchi and Peres 1977; Simenstad<br />

et al. 1979; Jacobs and Huisman 1982).<br />

<strong>The</strong> animals organize conveniently <strong>in</strong>to<br />

functional group<strong>in</strong>gs, largely without<br />

concern for <strong>the</strong>ir taxonomic placement.<br />

<strong>The</strong> pr<strong>in</strong>cipal groups are (1) epiphytes,<br />

(2) e~ibenthic organisms, (3) <strong>in</strong>fauna, and<br />

(4) nekton. Birds will be treated as a<br />

separate category. <strong>The</strong>se four group<strong>in</strong>gs<br />

follow <strong>the</strong> classification set by Stauffer<br />

(1937).<br />

<strong>The</strong>re are at least two o<strong>the</strong>r ways <strong>in</strong> which<br />

to classify animals <strong>in</strong> an <strong>eelgrass</strong> meadow<br />

by function. Kikuchi (1966, 1980)<br />

proposed <strong>the</strong> follow<strong>in</strong>g system reflect<strong>in</strong>g<br />

<strong>the</strong> use <strong>of</strong> Japanese <strong>eelgrass</strong> <strong>meadows</strong>. I<br />

have attempted to classify <strong>the</strong> animals <strong>in</strong><br />

<strong>eelgrass</strong> systems <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong><br />

accord<strong>in</strong>g to this system: (1) permanent<br />

residents, (2) seasonal residents, (3)<br />

transients, and (4) casual species.<br />

Thayer et al. (1975b) subdivided <strong>the</strong><br />

<strong>in</strong>fauna <strong>in</strong>to deposit feeders and<br />

suspension feeders, but this ref<strong>in</strong>ement<br />

is not adopted here.<br />

It is <strong>in</strong>terest<strong>in</strong>g that Nagle (1968),<br />

work<strong>in</strong>g on epiphytes <strong>of</strong> <strong>eelgrass</strong> at Woods<br />

Hole, Massachusetts, concluded that<br />

general trophic abundances were <strong>the</strong> same<br />

geographically everywhere. In a recent<br />

paper, Lewis and Holl<strong>in</strong>gworth (1982),<br />

work<strong>in</strong>g <strong>in</strong> Thalassia <strong>meadows</strong> at Barbados,<br />

confirmed Nagle's observation.<br />

4.1 HORIZONTAL AND VEHTICAL STRUCTURE<br />

Throughout <strong>the</strong> limited geographic extent<br />

<strong>The</strong> term epiphyte means any organism <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>, <strong>the</strong>re appears to<br />

liv<strong>in</strong>g on a plant surface, plant or animal be little, if any, horizontal structure <strong>of</strong><br />

(Harl<strong>in</strong> 1980)- It <strong>in</strong>cludes both sessile <strong>the</strong> associated organisms <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong><br />

and mobile plants and animals, as well as community. Epiphytes, benthic algae,


epibenthos, and o<strong>the</strong>r components all<br />

appear to be homogenous throughout <strong>the</strong><br />

region.<br />

<strong>The</strong>re are two aspects <strong>of</strong> <strong>the</strong> vertical<br />

structure <strong>of</strong> <strong>the</strong> components. <strong>The</strong> first is<br />

that which exists from <strong>the</strong> water column<br />

downward and <strong>in</strong>to <strong>the</strong> sediment. Stauffer<br />

(1937) described this structure from <strong>the</strong><br />

viewpo<strong>in</strong>t <strong>of</strong> <strong>the</strong> <strong>in</strong>vertebrate community:<br />

(I) among <strong>the</strong> plants (nekton); (2) on <strong>the</strong><br />

plants (epiphytes); (3) on <strong>the</strong> sediment<br />

surface (epibenthos); and (4) <strong>in</strong> <strong>the</strong><br />

sediment (<strong>in</strong> fauna). One more category<br />

must be considered here--that <strong>of</strong> birds<br />

which feed on eelyrass or its epiphytes<br />

from <strong>the</strong> water surface or at low tide.<br />

<strong>The</strong> second type <strong>of</strong> vertical structure is<br />

that found on <strong>the</strong> <strong>eelgrass</strong> plant itself.<br />

This structure was diagrammed by Nagle<br />

(1968; Figure 13) for <strong>eelgrass</strong> from <strong>the</strong><br />

Woods ole, Massachusetts, region. <strong>The</strong><br />

diagram generally shows that <strong>the</strong> peak<br />

loads <strong>of</strong> epiphytes and epibiota occur near<br />

<strong>the</strong> center <strong>of</strong> <strong>the</strong> leaves. This was also<br />

found by van den Ende and Haage (1963) on<br />

<strong>the</strong> Brittany coast <strong>of</strong> France. This might<br />

be a community adjustment toward keep<strong>in</strong>g<br />

<strong>the</strong> leaf high <strong>in</strong> <strong>the</strong> water column as long<br />

as possible. It is also possible that <strong>the</strong><br />

center <strong>of</strong> <strong>the</strong> leaf is <strong>the</strong> most<br />

structurally <strong>in</strong>tact, giv<strong>in</strong>g <strong>the</strong> greatest<br />

attachment area, as <strong>the</strong> leaf ages. In<br />

Japan, Kita and Harada (1962) diagrammed<br />

<strong>the</strong> vertical distribution <strong>of</strong> diatoms on<br />

<strong>eelgrass</strong> blades. <strong>The</strong>y found that diatom<br />

abundances <strong>in</strong>creased dramatically toward<br />

<strong>the</strong> distal end <strong>of</strong> <strong>the</strong> leaf (oldest part).<br />

4.2 BENTHIC ALGAE<br />

Relatively few species <strong>of</strong> benthic algae<br />

grow with<strong>in</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong>. S<strong>in</strong>ce macroalgae need<br />

a hard substrate, <strong>the</strong>y can grow only where<br />

rock cobbles or shell fragments occur <strong>in</strong><br />

<strong>the</strong> sediments. It is not uncommon,<br />

however, for certa<strong>in</strong> genera, such as<br />

and Enteromorpha, to occur loose <strong>in</strong> large<br />

Figure 13. Vertical distribution <strong>of</strong> <strong>eelgrass</strong> epibiota (after ~agle<br />

1968). Dashed l<strong>in</strong>es <strong>in</strong>dicate animals which generally decrease <strong>in</strong><br />

abundance away from <strong>the</strong> bottom; solid l<strong>in</strong>es <strong>in</strong>dicate variation with<br />

epiphytes; s<strong>in</strong>gle ruled l<strong>in</strong>es signify variance with large epiphytes;<br />

double ruled l<strong>in</strong>es signify variance with diatoms.


masses among <strong>the</strong> <strong>eelgrass</strong> stalks. This<br />

commonly occurs <strong>in</strong> areas where tidal<br />

currents are aluggieh. <strong>The</strong>re are no<br />

rhizophytic benthic macrophytic algae <strong>in</strong><br />

<strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>.<br />

In <strong>the</strong> Hood Canal, Wash<strong>in</strong>gton, Sargassum<br />

muticum grows on shell fragments among<br />

eelyrass, In summer <strong>the</strong>se algae grow to<br />

2-3 m (6-L0 ftf long and could possibly<br />

shade <strong>the</strong> <strong>eelgrass</strong>. However, by October<br />

<strong>the</strong> planta die back and overw<strong>in</strong>ter as<br />

short stubs 2-4 cm (1-15 rnct~es) long.<br />

Qccas~~.rally, Lam<strong>in</strong>aria, Alaria, Gracilar-<br />

-- ea, ~smarestia, atxi Necxg2irdhiella occur<br />

&tween <strong>the</strong> eelgrasa shoots.<br />

Cbscnrations on benthic algae <strong>of</strong> elgrass<br />

wadows <strong>of</strong> tk Pacitic Nortkst have been<br />

made by Phill ips (1972; unpubl. research),<br />

Davis (1981), and Procjnall (1983).<br />

Often, Large mats <strong>of</strong> diatotns cover <strong>the</strong><br />

substrata between <strong>the</strong> shoots. This was<br />

observed by Phifer (1929) and has been<br />

corroborated many times. Recently,<br />

W~it<strong>in</strong>g (1983) anumeratal <strong>the</strong> micr-nthic<br />

alq&o E L S L ~ ~ C L with ~ ~ U <strong>the</strong> ~ setlimeut <strong>of</strong><br />

euLqraea tneadows <strong>in</strong> Netarts Hay, Oregon.<br />

Little has been done an <strong>the</strong> procluct~on<br />

values <strong>of</strong> Ulese algae.<br />

1975; McRoy and McMlllan 1977). Penhale<br />

(1977) observed that eelgrdss epiphytes<br />

can constitute up to 1~3% oE <strong>the</strong> annual<br />

production <strong>of</strong> carbon <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong><br />

primary production system (20Gt<br />

mgc/m2/day). Carbon, nltroyen, and<br />

phosphorus travel from t-lgrass blades to<br />

epiphytes to <strong>the</strong> water and vice versa<br />

(Harl<strong>in</strong> 1973, 1975, 19W; Wetzel ailti<br />

Penhale 1979; Penhale atd Thayer 1980:.<br />

In <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>, Keiltula (i983)<br />

found that epiphyte biomass coultf be as<br />

much as 2.3 tlmes that <strong>of</strong> <strong>the</strong> Leaf. she<br />

also estimated that <strong>the</strong> net prrrnary<br />

productlon <strong>of</strong> <strong>the</strong>se epiphytes accounted<br />

for approximately 85 <strong>of</strong> <strong>the</strong> cornbilled<br />

<strong>eelgrass</strong> (above- and below-ground) and<br />

epiphyte prorluction.<br />

<strong>The</strong> epiphyte list can be enornlous and<br />

varied urider <strong>the</strong> usage ddopted r11 th~s<br />

report. It may <strong>in</strong>clude sessrle plants axl<br />

animals, mobile epifauna and epibenthos<br />

+A&t crawl onto <strong>the</strong> plants, bacterld, and<br />

detritus (tlarlm 190B). Kikuchl ad Peres<br />

(1977) also <strong>in</strong>cluded In <strong>the</strong> rnobile<br />

epifauna a group <strong>of</strong> swir~n<strong>in</strong>g anrmals which<br />

<strong>of</strong>ten rest on <strong>the</strong> <strong>eelgrass</strong> leaves. Table<br />

11 I from Burkholder and 1)rjheriy l96U) lists<br />

<strong>the</strong> numbers <strong>of</strong> bacterla associated with<br />

<strong>the</strong> sediment, water, and <strong>eelgrass</strong> Ln New<br />

York .<br />

tlarl<strong>in</strong> I19751 listed <strong>the</strong> factors which<br />

~nf luetlce <strong>the</strong> coexistence between host an3<br />

c"pi#lyte r<br />

1. Physical substrate<br />

2. Rccwas to photic zone<br />

3. F'tw rrlde through w<strong>in</strong>g waters<br />

4. Nutrient excharge with host<br />

5. Oqctnic cdrborl wwcw<br />

<strong>The</strong> epiphytic plants, bacteria, and diatom<br />

coat<strong>in</strong>g on <strong>the</strong> leaf surface <strong>of</strong>ten form a<br />

brownish felt. This felt shelters and<br />

feeds members <strong>of</strong> <strong>the</strong> epifauna, as well as<br />

<strong>in</strong>at~y grassbed predators (amphipods and at<br />

least four species <strong>of</strong> ducks and some<br />

Table 11. Bacteria <strong>in</strong> <strong>the</strong> <strong>eelgrass</strong><br />

hbitat ( ~ ter f Burkholder and IBheny<br />

1968) .<br />

---- ----<br />

Ol.casion*Lly it; waters with little tidal<br />

movument, coat<strong>in</strong>g <strong>of</strong> blue-green algae Station '1- <strong>of</strong> sample bcteria/g<br />

my ba found otl <strong>the</strong> <strong>eelgrass</strong> blades (Davis<br />

--------<br />

or ml<br />

1913). Blue-green algae are occasionally<br />

found on <strong>the</strong> eelyrass <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> 1 Mud 1,388,0@0<br />

<strong>Northwest</strong>. McRy et al. (1973) found that Water 27,7W<br />

<strong>the</strong>se algae may fix a small amount oE Eelgrass 68,964,W<br />

nitrogen. Consider<strong>in</strong>g <strong>the</strong> nitrogen<br />

dsf iciency <strong>in</strong> <strong>eelgrass</strong> beds, this may be 2 Mud 2@0,L%M<br />

an hnprtant source. Water 30,000<br />

Young elgrass 1,600,000<br />

Epiphyt@ biomass at times equals <strong>the</strong> Old <strong>eelgrass</strong> 28,72c3,000<br />

biomass <strong>of</strong> <strong>the</strong> leaves (Marsh 1973; Harl<strong>in</strong><br />

36


shorebirds). From a recent thorough study<br />

done by Lewis and Holl<strong>in</strong>gworth (1982) <strong>in</strong><br />

Thalassia at Barbados, West Indies, and<br />

<strong>the</strong> work done by Kikuchi and Peres (1977)<br />

and Kikuchi (1980), it is known that <strong>the</strong><br />

various categories <strong>of</strong> epiphytes <strong>in</strong>clude<br />

<strong>the</strong> follow<strong>in</strong>g subgroups: (1) micr<strong>of</strong>auna<br />

and mei<strong>of</strong>auna: protozoans-ciliates,<br />

flagellates, fora~ns, nematodes,<br />

polychaetes, rotifers, tardigrades,<br />

copepods, ostracods (this group is made up<br />

<strong>of</strong> herbivores, detritivores, and<br />

carnivores) ; (2) sessile fauna: hydrozoa,<br />

anemones, bryozoa, tube-form<strong>in</strong>g<br />

polychaetes, compound ascidians; (3)<br />

mobile epi fauna: gastropods, polychaetes,<br />

tubellarians, nemert<strong>in</strong>ians, amphipods,<br />

isopods, some starfish, and sea urch<strong>in</strong>s;<br />

(4) swimm<strong>in</strong>g epifauna which may rest on<br />

<strong>the</strong> leaves: my sid shrimp, hydromedusae,<br />

small squids, and special fishes. Eggs <strong>of</strong><br />

snails, tectabranchs, and <strong>Pacific</strong> herr<strong>in</strong>g<br />

and smelt are deposited on <strong>the</strong> leaves<br />

also.<br />

Lewis and Holl<strong>in</strong>gworth (1982) and Nagle<br />

(1968) found a direct correlation between<br />

density <strong>of</strong> epiflora and epifauna. In<br />

Thalassia (<strong>in</strong> Japan) <strong>the</strong> epiphytic<br />

nematodes constituted over 62% <strong>of</strong> <strong>the</strong><br />

total epifauna on leaf blades (Kikuchi<br />

1966). At Woods Hole, Massachusetts,<br />

Nagle (1968) found that amphipods<br />

dom<strong>in</strong>ated <strong>the</strong> epifauna. All <strong>the</strong>se studies<br />

identified <strong>the</strong> specific animals <strong>in</strong> <strong>the</strong><br />

epifauna and found that <strong>the</strong>y were <strong>the</strong><br />

dom<strong>in</strong>ant food <strong>of</strong> fish <strong>in</strong> <strong>the</strong> seagrass<br />

systems. In all systems <strong>the</strong> epifauna was<br />

dom<strong>in</strong>ated by herbivores and detritivores.<br />

It is obvious that <strong>the</strong> role <strong>of</strong> <strong>eelgrass</strong> as<br />

a substrate for brown felt <strong>of</strong> diatoms,<br />

bacteria, detritus, and o<strong>the</strong>r algae is <strong>of</strong><br />

fundamental importance <strong>in</strong> provid<strong>in</strong>g a<br />

nursery for juvenile and adult forms <strong>of</strong><br />

recreationally and commercially important<br />

animls .<br />

Numerous studies have attested to <strong>the</strong> role<br />

<strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> provid<strong>in</strong>g physical<br />

substrate for epiphytes. Probably most <strong>of</strong><br />

<strong>the</strong> epiphytes reported are sessile.<br />

Certa<strong>in</strong>lyall<strong>of</strong><strong>the</strong>plants are. Many <strong>of</strong><br />

<strong>the</strong> animals are sessile, but a great<br />

number are mobile, and many move onto and<br />

<strong>of</strong>f <strong>the</strong> plant frcm <strong>the</strong> substrate.<br />

Davis (1913) listed 42 species <strong>of</strong> plants<br />

that occur on <strong>eelgrass</strong> at Woods Hole,<br />

Massachusetts. Most <strong>of</strong> <strong>the</strong>se algae<br />

belonged to <strong>the</strong> green and red algae. In<br />

Rhode Island, Brown (1962) listed 25<br />

species <strong>of</strong> microalgae which occur on<br />

<strong>eelgrass</strong> blades. In <strong>the</strong> Yaqu<strong>in</strong>a estuary,<br />

Oregon, Ma<strong>in</strong> and McIntire (1974)<br />

identified 221 epiphytic diatoms, but only<br />

listed <strong>the</strong> 36 most abundant (Table 12).<br />

<strong>The</strong> only species characteristically<br />

associated with <strong>eelgrass</strong> blades was<br />

Cocconeis scutellum. mey found that <strong>the</strong><br />

same taxa <strong>of</strong> diatoms were equally found on<br />

rocks, Ulva, ---- ~nteromor~ha, and<br />

Polysiphonia. Work<strong>in</strong>g <strong>in</strong> Netarts Bay,<br />

Oregon, Whit<strong>in</strong>g (1983) reported that<br />

Cocconeis, Synedra, ~avicula, Nitzschia,<br />

Gomphonema, and Rhoicosphenia (diatoms)<br />

were dom<strong>in</strong>ant from November tkrough July,<br />

while -- Cocconeis, -- Gomphonema, and<br />

Rhoicosphenia and different species <strong>of</strong><br />

Navicula and Nitzschia became dom<strong>in</strong>ant<br />

from August through October. Harl<strong>in</strong><br />

(1980) noted that Smithora naiadwn .and<br />

Ectocarpus sp. were <strong>the</strong> dom<strong>in</strong>ant<br />

macroalgae on <strong>eelgrass</strong> blades.<br />

For a thorough review <strong>of</strong> epiphytes found<br />

on <strong>eelgrass</strong>, one should consult <strong>the</strong><br />

reviews <strong>of</strong> Kikuchi and Peres (1977),<br />

Harl<strong>in</strong> (1980), and Kikuchi (1980). <strong>The</strong><br />

lists <strong>of</strong> plants and animals associated<br />

with <strong>eelgrass</strong> as epiphytes are too<br />

numerous to reproduce fully here.<br />

<strong>The</strong> development <strong>of</strong> <strong>the</strong> epiphytic community<br />

on <strong>eelgrass</strong> is thought to beg<strong>in</strong> with a<br />

cover<strong>in</strong>g <strong>of</strong> Cocconeis upon which <strong>the</strong><br />

bacteria and o<strong>the</strong>r algae attach. Sieburth<br />

and Thomas (1973 ) found few epiphytes on<br />

young leaves until Cocameis coat<strong>in</strong>gs were<br />

present.<br />

<strong>The</strong>re is one werrid<strong>in</strong>g constra<strong>in</strong>t placed<br />

on any epiphytic community on a seagrass<br />

blade. It does not matter whe<strong>the</strong>r <strong>the</strong><br />

<strong>in</strong>dividual leaf persists for 20 or 56<br />

days. <strong>The</strong> sessile portion <strong>of</strong> <strong>the</strong><br />

community must adapt its life span to <strong>the</strong><br />

longevity <strong>of</strong> <strong>the</strong> blade upon which it<br />

grows. <strong>The</strong> mobile epifauna can move to<br />

<strong>the</strong> younger blades. It appears, however,<br />

that <strong>the</strong> entire food web associated with<br />

<strong>the</strong> blade, a microcosm <strong>of</strong> <strong>the</strong> entire<br />

<strong>eelgrass</strong> ecosystem, is dependent on <strong>the</strong><br />

developnent <strong>of</strong> tk microphytic (diatcxns,<br />

bacteria) coat<strong>in</strong>g, detritus which is<br />

trapped, and <strong>the</strong> mcrophytic algae which<br />

attach to <strong>the</strong> blade. Without <strong>the</strong> <strong>in</strong>itial


Table 12. Thirty-six mst abunbnt diatan<br />

epiphytes on <strong>eelgrass</strong> <strong>in</strong> <strong>the</strong> Y~WFJIM<br />

Estuary, Oregon (after Ma<strong>in</strong> and ~1ntit-e<br />

19741 and a mll list <strong>of</strong> epiphytes found<br />

<strong>in</strong> Puget Sound, Wash<strong>in</strong>gton (after phillips<br />

1972).<br />

layer and its ability to colonize and<br />

complete a life cycle <strong>in</strong> a very short<br />

time, it appears that much <strong>of</strong> <strong>the</strong> nursery<br />

and trophic functions <strong>of</strong> an <strong>eelgrass</strong><br />

meadow would never develop.<br />

Many epibenthic animals are relatively<br />

large and conspicams. Some <strong>of</strong> than, such<br />

as Dungeness crabs (~igure 14), brokenback<br />

and coon-stripe shrimps, Erigl lsh<br />

sole, and starry flounders, are<br />

commercially important. <strong>The</strong>se anrlnals are<br />

listed <strong>in</strong> Table 13 ,A, b.<br />

Major reviews <strong>of</strong> <strong>the</strong> epibenthos which<br />

<strong>in</strong>clude lists <strong>of</strong> epifautla were <strong>in</strong>cluded <strong>in</strong><br />

A l l e e (1923), Ledoyer (1962,<br />

1964a,b), Kikuchi (1966, 19UB), and<br />

Kikuchi and Peres (1977).<br />

Scallops, crabs, sponges, mussels, sea<br />

urch<strong>in</strong>s, stwimps, flatfish, sea slugs, sea<br />

cucumbers, snails, brittle stars, ribbon<br />

worms, polychaete worms, flatworms,<br />

nematodes, and amphipods have been<br />

a890~iated with <strong>the</strong> sediment surface.<br />

Thayer et al. (1975b), work<strong>in</strong>g <strong>in</strong> a newly<br />

eetablished <strong>eelgrass</strong> meadow <strong>in</strong> North<br />

Carol<strong>in</strong>a, determ<strong>in</strong>ed that gastropods<br />

represented 72% <strong>of</strong> <strong>the</strong> total numbers <strong>of</strong><br />

epifauna found <strong>in</strong> <strong>the</strong> system. Deposit<br />

feeders represented 77% <strong>of</strong> <strong>the</strong> numbers;<br />

suspnaron feeders 18%; and carnivorescavengers<br />

5%. <strong>The</strong>re was a seasonal<br />

variation <strong>in</strong> numbers with max irnum<br />

abundance rn spr<strong>in</strong>g and early summer.<br />

This is also true for Puget Sound<br />

(~imenstad et al. 1979). Wolfe et al.<br />

(1976) analyzed transfers <strong>of</strong> Mn, Fe, Cu,<br />

and Zn through trophic levels <strong>in</strong> this<br />

<strong>eelgrass</strong> bed and found very l~ttle<br />

transfer from <strong>eelgrass</strong>.<br />

In Alaska, Dungeness crabs can best be<br />

fished <strong>in</strong> <strong>eelgrass</strong> beds. In summer <strong>the</strong><br />

crabs appear to consume <strong>eelgrass</strong>.<br />

Gotshall (1977) found 7-15 percent <strong>of</strong><br />

crab gut contents composed <strong>of</strong> <strong>eelgrass</strong>.<br />

In Puget Sound, Dungeness and red rock<br />

crabs scavenge <strong>in</strong> <strong>eelgrass</strong> <strong>meadows</strong> (~eak<br />

Consultants 1975).<br />

Prynt (1979) noted that Padilla Bay, one<br />

<strong>of</strong> <strong>the</strong> three largest <strong>eelgrass</strong> <strong>meadows</strong> on<br />

<strong>the</strong> <strong>Pacific</strong> coast, conta<strong>in</strong>s sigrlificant


p<strong>in</strong>k shrimp, and bottom fish (Proctor et<br />

al. 1980b).<br />

Very little work has focused on or even<br />

listed <strong>in</strong>fauna. <strong>The</strong> three best studies<br />

are those <strong>of</strong> Kikuchi (1966) <strong>in</strong> Japan,<br />

Thayer et al. (1975b) <strong>in</strong> North Carol<strong>in</strong>a,<br />

and Orth (1973) <strong>in</strong> <strong>the</strong> Chesapeake Bay.<br />

Extensive work has been done <strong>in</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong> by Dr. Carl Nyblade <strong>in</strong><br />

<strong>the</strong> North Puget Sound area, but this is<br />

largely unpublished <strong>in</strong> <strong>the</strong> scientific<br />

literature and not so widely known.<br />

Figure 14. Dungeness crab (Cancer<br />

mgister) <strong>in</strong> <strong>eelgrass</strong> bed <strong>in</strong> Puget Sound.<br />

populations <strong>of</strong> s<strong>of</strong>t-shell clams and crabs.<br />

In ano<strong>the</strong>r newspaper article, Lane (1980)<br />

stated that Dungeness crabs support a<br />

sport and commercial crab fishery <strong>in</strong><br />

Padilla Bay. Numerous species <strong>of</strong> worms,<br />

clams, snails, crabs, shrimp, and o<strong>the</strong>r<br />

<strong>in</strong>vertebrates were identified <strong>in</strong> Padilla<br />

Bay (NOAA 1980). <strong>The</strong> density <strong>of</strong><br />

epibenthic harpacticoid copepods, a<br />

favorite food <strong>of</strong> juvenile chum salmon <strong>in</strong><br />

<strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>, was four times as<br />

high <strong>in</strong> a thick stand <strong>of</strong> <strong>eelgrass</strong> than<br />

nearby <strong>in</strong> a sand habitat without <strong>eelgrass</strong><br />

(Simenstad et al. 198W). Dense schools <strong>of</strong><br />

juvenile chum salmon were feed<strong>in</strong>g upn and<br />

among <strong>the</strong> <strong>eelgrass</strong> blades.<br />

In Grays Harbor, Wash<strong>in</strong>gton, Dungeness<br />

crabs produce commercially important<br />

catches which range from 11,364 to 10D,000<br />

kg (25,080-220,000 lb) (Army Corps <strong>of</strong><br />

Eng<strong>in</strong>eers 1977b). Grays Harbor functions<br />

as a coastal estuary for coastal Dungeness<br />

crabs. <strong>The</strong> estuary has extensive <strong>eelgrass</strong><br />

<strong>meadows</strong>. Bayer (1979b) studied <strong>the</strong><br />

densities and seasonalities <strong>of</strong> Dungeness,<br />

hermit, kelp (Figure 15), and red rock<br />

crabs, and two species <strong>of</strong> crangonid<br />

shrimps <strong>in</strong> <strong>the</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>of</strong> <strong>the</strong><br />

Yaqu<strong>in</strong>a estuary, Oregon. Hwnboldt Bay is<br />

ano<strong>the</strong>r estuary with very large sport and<br />

commercial fisheries for Dungeness crabs,<br />

Orth (1973) found 117 macro<strong>in</strong>vertebrate<br />

taxa associated with <strong>eelgrass</strong> beds <strong>in</strong> <strong>the</strong><br />

Chesapeake Bay. Strictly speak<strong>in</strong>g, not<br />

all <strong>the</strong>se were <strong>in</strong>faunal, because he<br />

mentions seasonality <strong>of</strong> <strong>the</strong> fauna as many<br />

forms moved from <strong>the</strong> sediments and onto<br />

<strong>the</strong> leaves from March to July. He found<br />

that <strong>the</strong> recorded density <strong>of</strong> <strong>in</strong>fauna was<br />

higher from <strong>eelgrass</strong> than from any o<strong>the</strong>r<br />

benthic habitat <strong>in</strong> <strong>the</strong> Chesapeake Bay<br />

system. This was also found by Kikuchi<br />

(1980) <strong>in</strong> Japan.<br />

In North Carol<strong>in</strong>a, Thayer e t al. (1975b)<br />

found that <strong>the</strong> <strong>in</strong>fauna was composed <strong>of</strong> 40<br />

species and dom<strong>in</strong>ated by five species.<br />

Peleqpxls represented 58% and polychaetes<br />

41% <strong>of</strong> <strong>the</strong> total <strong>in</strong>dividuals. <strong>The</strong> <strong>in</strong>fauna<br />

was dom<strong>in</strong>ated by deposit feeders (53% and<br />

44% <strong>of</strong> <strong>the</strong> abundance and biomass,<br />

respectively), while suspension feeders<br />

represented 42% and 35k, respectively.<br />

<strong>The</strong>y noted a much lower density <strong>of</strong><br />

organisms and biomass as compared to <strong>the</strong><br />

Chesapeake Bay, and concluded it was due<br />

to <strong>the</strong> relatively recent establishment <strong>of</strong><br />

<strong>the</strong> <strong>eelgrass</strong> bed <strong>of</strong> <strong>the</strong>ir study.<br />

In one study done <strong>of</strong>f Skiff Po<strong>in</strong>t,<br />

B<strong>in</strong>bridge Island, Wash<strong>in</strong>gton, Thorn et al.<br />

(1979) reported that <strong>the</strong> <strong>eelgrass</strong> habitat<br />

conta<strong>in</strong>ed more <strong>in</strong>vertebrates at <strong>the</strong> +1.0 m<br />

(3.0 ft) level, than at <strong>the</strong> unvegetated<br />

sites. For crustacean species <strong>the</strong>re were<br />

few <strong>in</strong>dividuals, but a great number <strong>of</strong><br />

species; <strong>in</strong> mollusks and annelids, species<br />

richness was <strong>in</strong>termediate or above <strong>the</strong><br />

curves for o<strong>the</strong>r groups at <strong>the</strong> +1.0-m<br />

level. <strong>The</strong>y <strong>the</strong>orized that <strong>the</strong> substratestabiliz<strong>in</strong>g<br />

effect <strong>of</strong> <strong>eelgrass</strong> may be<br />

important <strong>in</strong> caus<strong>in</strong>g <strong>the</strong> <strong>in</strong>creased


lPable 1%. List <strong>of</strong> <strong>in</strong>vertebrates found <strong>in</strong> <strong>eelgrass</strong> madows <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> North-st,<br />

arranged <strong>in</strong> functional categories.<br />

Phylun, Class, and speckas<br />

scientific mme<br />

Sra fir<br />

Ootrlch plm hyf.ztc5<br />

--<br />

&a pl1m<br />

-"<br />

Plrnre l~ydroid<br />

P l w hydroid<br />

" -<br />

Omtrtp-stripd jelly1 ah<br />

PW\TYHEMlMTIV3<br />

nbrlnl lar ia<br />

Z~*-M$&. sf).<br />

HiMmrl wrm<br />

--<br />

Horn sr*l i l<br />

&kWilc ahell<br />

--<br />

--<br />

Wl~b-chlnk n-51 1<br />

Cli~nnola


Table 13 a. (Cont<strong>in</strong>ued)<br />

Phyltnn, class, and species<br />

scientific name<br />

Resident or Liv<strong>in</strong>g Feed<strong>in</strong>g<br />

Comnon name transienta Abundanceb modeC habitsd<br />

Pelecypoda<br />

Cl<strong>in</strong>ocardium nuttalli<br />

--<br />

Crassostrea gigas<br />

--<br />

Ostrea lurida<br />

--<br />

Ebcm iris<br />

-- M. balthica<br />

-- M. <strong>in</strong>ou<strong>in</strong>ata<br />

-- M. Msuta<br />

- M. obliqua<br />

--<br />

M. secta<br />

- M. -- <strong>in</strong>conspicua<br />

Mya arenaria<br />

Panope generosa<br />

~ecten sp.<br />

-- P. stan<strong>in</strong>ea<br />

mz philipp<strong>in</strong>arm<br />

Psephida<br />

Sax idanus y iyan teus<br />

Tagelus cal ifornianus<br />

- Tresus<br />

-- T. nuttalli<br />

--<br />

Solen sicarius<br />

Parviluc<strong>in</strong>a tenuisculpta<br />

--<br />

Tell<strong>in</strong>a .malesta<br />

Transenella tantilla<br />

Basket cockle<br />

Japnese oyster<br />

Ibtive oyster<br />

--<br />

--<br />

Polluted m c m<br />

Bent-nosed clam<br />

--<br />

Sand clam<br />

--<br />

Eastern s<strong>of</strong>t-shell clam<br />

Geoduck<br />

Scallop<br />

mck cockle<br />

Japanese littleneck<br />

--<br />

Washirq ton clam<br />

mmwn jackknife clan<br />

mrse clam<br />

Gaper clan<br />

Jackknite clam<br />

--<br />

A<br />

U<br />

U<br />

X<br />

A<br />

C<br />

A<br />

U<br />

C<br />

A<br />

C<br />

A-U<br />

U<br />

U<br />

U<br />

A<br />

U<br />

c-U<br />

C<br />

C<br />

U<br />

U<br />

C<br />

X<br />

SF<br />

SF<br />

SF<br />

D-DF<br />

D-DF<br />

C-DF<br />

D-DF<br />

D-DF<br />

D-DF<br />

SF<br />

SF<br />

SF<br />

SF<br />

SF<br />

SF<br />

SF<br />

SF<br />

SF<br />

SF<br />

SF<br />

SF<br />

SF<br />

SF<br />

SF<br />

ANNELIDA<br />

Pol~haeta<br />

Abarenicola clapared i i vagabunda<br />

--<br />

Armandia brevis<br />

Capitella capitata<br />

Capitella sp.<br />

Cistenides brevicma<br />

Glycera aoericana<br />

Glyc<strong>in</strong>de armibera<br />

Haploscolopus elongata<br />

Scoloplos aniqer<br />

Stbnelais fusca<br />

Wiunastus sp.<br />

Ne <strong>in</strong>ereis dendritica<br />

--<br />

Nereis brantl<br />

- N. procera<br />

Wnia justitomis<br />

Platynere is bicang icul<br />

Tharyx multifilis<br />

Medhastus sp.<br />

Malacooens glutaeus<br />

Notunastus tenuis<br />

Saccqelssus sp.<br />

Platynereis agassizi<br />

AffIHrnrnA<br />

Crustacea<br />

Longipedia sp.<br />

Clausidiun vancowerense<br />

Ecti1105cma sp,<br />

Helect<strong>in</strong>osma sp.<br />

Danielssenia typlca<br />

Harpaciticus uniremis<br />

- H. septentr ionali.<br />

- H. canpressus<br />

- H. sp<strong>in</strong>ulosus<br />

- H. spp.<br />

--<br />

Zaus aureli i<br />

-- Z. caeruleus<br />

2. sp<strong>in</strong>atus bpk<strong>in</strong>ski<br />

-<br />

mqhsk<strong>in</strong>ned llgmrm<br />

--<br />

Lugmm<br />

Lugmrm<br />

--<br />

--<br />

Polychaete worm<br />

Polychaete worm<br />

Folychaete worm<br />

--<br />

B<br />

B<br />

B<br />

B<br />

B<br />

B<br />

B<br />

B<br />

B<br />

Found <strong>in</strong><br />

KCOt lMSS<br />

B<br />

Found <strong>in</strong><br />

rwt mass<br />

B<br />

E<br />

B<br />

B<br />

B<br />

B<br />

B<br />

B<br />

B<br />

B<br />

s/c<br />

Unmensal with<br />

Qllia~essa<br />

californiensis<br />

s<br />

S<br />

X<br />

s/c<br />

S/C<br />

s/c<br />

S/c<br />

E<br />

S/C , E<br />

S/C, E<br />

S/C,E<br />

D<br />

D<br />

D<br />

D<br />

D<br />

C<br />

X<br />

X<br />

X<br />

X<br />

DF<br />

X<br />

CtH<br />

H<br />

X<br />

H<br />

D<br />

X<br />

X<br />

X<br />

X<br />

X<br />

cont<strong>in</strong>ued<br />

41


-<br />

Table 13a. (Cont<strong>in</strong>ued)<br />

Phylun, class, and spcles i)jaicknt or Lnv~ny ~L+I tnj<br />

Sclent~tic UnmCn naao translenta -dmL) nujt.' tknt~ I ts 3<br />

Zaus sp.<br />

C<br />

si C<br />

-- %& spp.<br />

C yc<br />

--- Scutellldiun -- arthuri<br />

C<br />

E<br />

Wrceltidiun sp.<br />

- ,<br />

C<br />

t'<br />

1t.yastes spp.<br />

C<br />

t<br />

Lhctylo@* crassLpe<br />

A<br />

S,/C<br />

D. vuigars =nit3<br />

C w (-<br />

- Paralac tylop&12 sp.<br />

C'<br />

X<br />

C Yl~nt rnllk3rs<br />

C<br />

X<br />

C<br />

X<br />

C<br />

S/C<br />

wta- - "--.<br />

I, I~wtu1~1<br />

1 . ="4"tp*<br />

'. w ~ly%""~L<br />

1. mp$e


Phylum, class, and<br />

Resident or Liv<strong>in</strong>g Feed<strong>in</strong>g<br />

species<br />

scientific mme Comnon came transienta Abundance<br />

b<br />

modeC habi tsd<br />

Pugettia ~ar<br />

Kelp crab<br />

- P. producta<br />

--<br />

Pagurus *<br />

Hermit crab<br />

- P. granosimanus<br />

Hermit crab<br />

- P. hirsutiusculus<br />

Hairy hermit crab<br />

Insecta<br />

Aedes dorsalis -- Mosquito<br />

ECHINODERMATA<br />

Asteroidea<br />

Evasterias troschelii<br />

Mottled star<br />

Leptoasterias texactis<br />

Six-rayed star<br />

Pycnopodia helanthoides<br />

Sunflower star<br />

-- Solaster chwsoni<br />

Sunstar<br />

- S. stimpsoni<br />

Morn<strong>in</strong>g sun star<br />

Ech<strong>in</strong>oidea<br />

Dendraster excentricus<br />

Ech<strong>in</strong>arachnius parma<br />

Snd dollar<br />

Sand dollar<br />

Holothuroidea<br />

Leptosynapta albicans Sea cucumber R C S-B D<br />

%esident status:<br />

R = resident; T = transient; Tf or R* = seasonal occurrence.<br />

b~bundance status: A = abundant, <strong>of</strong>ten seen on field trips; C = canon, present but not always seen on field trips;<br />

U = uncomnon, present <strong>in</strong> small numbers and seldom seen: X = unknown.<br />

'~iv<strong>in</strong>g mode status: C = cl<strong>in</strong>g<strong>in</strong>g to blades: B = burroer: E = Epiphyte: N - Nekton: S = feed<strong>in</strong>g on or slightly above<br />

sdiment surface; S/C = Epibenthic zooplankton.<br />

d~eed<strong>in</strong>g habit :<br />

H = herbivore; D = Detritivore: DF = deposit feeder; SF = suspension feeder: C = consunes fauna <strong>in</strong><br />

<strong>eelgrass</strong> and <strong>eelgrass</strong> substrate; F = filter feeder.<br />

Reference : ACOE 1976; 1977b: Banse and Hobson 1974; Behrens 1980; Cordell (pers. m., 1982); Farmer 1980;<br />

Gardner 1978; Guberlet 1962: Hartmn and Reish 1950; Hobson and Banse 1981: Kohn 1982; Kozl<strong>of</strong>f 1973: Kozl<strong>of</strong>f 1974: Kozl<strong>of</strong>f<br />

(pers. cm., 1983); Liburdi and Truitt 1973; ~o~~/State <strong>of</strong> Wash<strong>in</strong>gton Dept. <strong>of</strong> Ecology 1980: Ricketts and Qlv<strong>in</strong> 1968:<br />

Simenstad and K<strong>in</strong>ney 1978: Simenstad et al. 1979; Simenstad et al. 1980; Simenstad (pers. caran., 1982); Staude<br />

(pers. cam., 1982): Thayer and Phillips 1977; Thorn (pers. cm., 1983).<br />

Table 13b. List <strong>of</strong> fish found <strong>in</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>of</strong> <strong>the</strong> hcific <strong>Northwest</strong>, arranged <strong>in</strong><br />

functional categories.<br />

Resident or Liv<strong>in</strong>g Feed<strong>in</strong>g<br />

Phylum, class, and species<br />

scientific name Common mme transienta Tlbundanceb nudeC habits d<br />

CHORDATA<br />

Chondrichthves<br />

Sp<strong>in</strong>y dogfish<br />

Big skate<br />

Qsteichthves<br />

Clupea harengus pllasi<br />

<strong>Pacific</strong> herr<strong>in</strong>g<br />

Clupea larvae<br />

--<br />

Engraulis mordax<br />

Nor<strong>the</strong>rn anchovy<br />

Cncorhynchus gorbuscha<br />

P<strong>in</strong>k salmon<br />

(Juvenile)<br />

-- 0. keta (Juvenile)<br />

Chum salmon<br />

-- 0. kisutch (Juvenile)<br />

Coho salmon<br />

& tshawytscb (Juvenile) Ch<strong>in</strong>ook salmon<br />

-- Salmo clarki<br />

Sea-run cutthrw t trout<br />

Hypomesus pretiosus pretios Surf smelt<br />

ant <strong>in</strong>ued<br />

C<br />

C<br />

A-U<br />

C<br />

C<br />

A-U<br />

U<br />

C<br />

C


Thble 13b.<br />

(Cont<strong>in</strong>ued)<br />

Phylum, class, and species<br />

scientific name<br />

Resident or<br />

Caranon name transienta Abundance b<br />

Liv<strong>in</strong>g<br />

modeC<br />

Feed<strong>in</strong>g<br />

habits d<br />

Spir<strong>in</strong>chus thaleichthys<br />

A<strong>the</strong>r<strong>in</strong>ops aff <strong>in</strong>is<br />

Porichythus notatus<br />

Gobiesox meandricus<br />

Gadus mcrocephalus<br />

Microgadus proximus<br />

- M. proximus (Juvenile)<br />

<strong>The</strong>ragra chalcoqra~<br />

Lycodes plaeris<br />

Aulorhynchus flavidus<br />

- Gasterosteus aculeatus<br />

Syng~thus griseol<strong>in</strong>eatus<br />

Cwtogaster aggregata<br />

C . aggrega ta (Juveni le )<br />

Rnbiotoca lateralis<br />

- E. --<br />

lateralis (Juvenile)<br />

Hyperprosopon argentem<br />

Rhacochilus<br />

Tric hodon tr i chodon<br />

Anoplarchus purpurescens<br />

Lumpenus sagitta<br />

A~odichthys flavidus<br />

Pholis laeta<br />

P. laeta-venile)<br />

--<br />

Pholis . - ormta --- --. -.<br />

-<br />

Ammodytes hexapterus<br />

Sebastes caur<strong>in</strong>us<br />

S. melanops<br />

--<br />

Sebastes sp.<br />

-- S. mallger<br />

Hexagramus bugocephalus<br />

- H . decagrammus<br />

HL stelleri<br />

%hidon e lonaa tus<br />

_L--<br />

Hemilepidotus hemilepidotus<br />

Artedius fenestralis<br />

A. fenestralis (Juvenile)<br />

ias cirrhosus<br />

~nophrys bison<br />

--<br />

Gilbertidia sicjalutes<br />

Leptocottus armtus<br />

Myoxoceptn lus<br />

Oligocottus mculosus<br />

Psychrolutes paradoxus<br />

Cl<strong>in</strong>ocottus acuticeps<br />

Scorpaenichw mtmora tus<br />

Agonos acipenser <strong>in</strong>us<br />

Pallas<strong>in</strong>a barbata aix<br />

-- --<br />

Xeneretmus la tif rons<br />

---- Eunicrotremus - orbis<br />

Llpris callyodon<br />

L. -- florae<br />

- L. gclopus<br />

-- L. pulchellus<br />

-- L. rutteri<br />

Ieopsetta isolepis<br />

Lepidopsetta bil<strong>in</strong>eata<br />

L. bil<strong>in</strong>eata (Juvenile)<br />

-<br />

Microstcmus pcificus<br />

Longf<strong>in</strong> smelt T U<br />

Top snelt R C<br />

Pla<strong>in</strong>f<strong>in</strong> midshipn T U<br />

Nor<strong>the</strong>rn cl<strong>in</strong>gfish T U<br />

<strong>Pacific</strong> cod T U<br />

<strong>Pacific</strong> tmcod T U<br />

-- R* A<br />

Wlleye pollock T U<br />

Wattled eelpout T U<br />

Tubesnou t R A<br />

Threesp<strong>in</strong>e stickleback R A-C<br />

Bay pipef ish R C<br />

Sh<strong>in</strong>er perch R* A<br />

Striped seaperch R* A<br />

Striped seaperch R* A<br />

Striped seaperch R* A<br />

Walleye Surfperch R U<br />

Pile perch R* A<br />

<strong>Pacific</strong> sandfish T U<br />

High cockscomb R C<br />

Snake prickleback T* C<br />

Penpo<strong>in</strong>t gunnel R* C<br />

Crescent gunnel R* C<br />

Crescent gunnel R* C<br />

Saddleback gunnel R* A-C<br />

<strong>Pacific</strong> sand lance R* A<br />

Copper rockfish R U<br />

Black rockfish 'r U<br />

larvae/]uveniles R* C<br />

Quillback rockfish T U<br />

Rock green1 <strong>in</strong>g T U<br />

Kelp greenl<strong>in</strong>g T U<br />

White spotted greenl<strong>in</strong>g T U<br />

L<strong>in</strong>gcod T U<br />

Red Irish lord T U<br />

Padded sculp<strong>in</strong> R* U<br />

Padded sculp<strong>in</strong> R* U<br />

Silverspotted sculp<strong>in</strong> R* A-U<br />

Buffalo sculp<strong>in</strong> R A-C<br />

S<strong>of</strong>t sculp<strong>in</strong> T U<br />

<strong>Pacific</strong> staghorn sculp<strong>in</strong> R A<br />

Great sculp<strong>in</strong> T U<br />

Tidepi sculp<strong>in</strong> T C<br />

Tadpole sculp<strong>in</strong> T U<br />

Sharpnose sculp<strong>in</strong> R* C<br />

Cabezon T C<br />

Sturgeon poacher T U<br />

Tubenose poacher R C<br />

Blacktop poacher T U<br />

Sp<strong>in</strong>y lumpsucker R* C<br />

Spotted snailfish T U<br />

Tidepool snailfish T U<br />

R ~ b snailfish n<br />

T U<br />

Tadpole snail fish T U<br />

R<strong>in</strong>gtail snailfish R U<br />

Butter sole T U<br />

Rock sole R U<br />

Rock sole R U<br />

Dover sole T U<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

S<br />

S<br />

S<br />

s<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

cont<strong>in</strong>ued<br />

44


Table 13b.<br />

(concluded)<br />

Resident or Liv<strong>in</strong>g Feed<strong>in</strong>g<br />

Phylum, class, and species<br />

scientific name Conanon name transienta Abundance modeC habits d<br />

Pleuronichthys coenosus C-O sole<br />

-- P. coenosus (Juvenile)<br />

C-0 sole<br />

Parophrus vetulus<br />

Fx~gllsh sole<br />

-- P. vetulus (Juvenile)<br />

~nglis'h sole<br />

Pla tichvthus stellatus<br />

Starrv<br />

~ ~<br />

flounder<br />

d -<br />

Sand sole<br />

a~esident status: R = resident; T = transient: T* or R* = seasonal occurrence; Tk or R4 = life<br />

cycle occurrence such as juvenile, larval.<br />

b~bundance status: A = abundant, <strong>of</strong>ten seen on field trips; C = cononon, present but not always seen<br />

on field trips; U = uncmon, present <strong>in</strong> small numbers and seldom seen.<br />

C . .<br />

Llvlng mode status:<br />

d~eed<strong>in</strong>g kbi ts:<br />

N = nekton; S = feed<strong>in</strong>g on or slightly above sediment surface.<br />

H = herbivore on <strong>eelgrass</strong>; C = consunes fauna <strong>in</strong> <strong>eelgrass</strong> and <strong>eelgrass</strong> substrate<br />

References: ACOE 1977b; Bayer 1981; Brown 1982: Gardner 1978: Miller (pers. cm., 1982);<br />

NOAA/State <strong>of</strong> Wash<strong>in</strong>gton Dept. <strong>of</strong> Ecology 1980; Simenstad and K<strong>in</strong>ney 1978; Simenstad et al. 1979.<br />

Table 13c. List <strong>of</strong> birds found <strong>in</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> NortMst, arranged<br />

<strong>in</strong> functional categories.<br />

Liv<strong>in</strong>g Feed<strong>in</strong>g<br />

Phylm, class, and species<br />

scientific nane Cnnnon nane Abundancea modeb habitsC<br />

CHORDATA<br />

Ave s<br />

--<br />

Gavia imner<br />

- G. stellata<br />

Mchnophorus occidental is<br />

Podiceps aur i tus<br />

- P. griseyena<br />

- P. niaricollis<br />

&td ilynbus pod iceps<br />

Phalacrocorax auritus<br />

- P. pelagicus<br />

Branta canadensis<br />

- B.nicla<br />

Chen hyperborea<br />

Phi lac te canag ica<br />

Anas platyrhynchos<br />

- A. strepera<br />

-- A. crecca<br />

-- A. acuta<br />

A. clypeata<br />

- A. penelope<br />

A. mericana<br />

zthya val is<strong>in</strong>eria<br />

A. marila<br />

Chmnn loon<br />

Fed- throated loon<br />

Western grebe<br />

Horned grebe<br />

Fed-necked grebe<br />

Eared grebe<br />

Pied-billed grebe<br />

Double-cres ted cormorant<br />

Pelagic comrant<br />

Canada goose<br />

Bran t<br />

Snow goose<br />

nnperor goose<br />

Mallard<br />

Gadwall<br />

Green-w<strong>in</strong>ged teal<br />

P<strong>in</strong>tail<br />

Nor<strong>the</strong>rn shoveler<br />

European wigeon<br />

American wigeon<br />

Canvasback<br />

Greater scaup<br />

Lesser scaup<br />

cont<strong>in</strong>ued<br />

C<br />

c<br />

c*<br />

c<br />

c*<br />

c<br />

U<br />

U<br />

U<br />

U*<br />

A-C*<br />

A-c<br />

U*<br />

c*<br />

U*<br />

A-c<br />

c<br />

c<br />

U*<br />

A-c<br />

c<br />

U*<br />

U*


Table 13c.<br />

(Cont<strong>in</strong>ued)<br />

Phylun, class, and species<br />

scientitic nane<br />

-<br />

A. collaris<br />

Wephala claqula<br />

B. islandica<br />

- B. albeola<br />

*-<br />

Histrionicus histrionic\<br />

Melanitta deglandi<br />

M. perspicillata<br />

M. niqra<br />

Zyura ~maicensis<br />

- Olor colunbianus<br />

Hsrgus merganser<br />

- M, serrator<br />

Lnpkdytes cacullatu.!<br />

Pand ion halbe tus<br />

mrdias<br />

-.rk-1<br />

ica ~mer rcana<br />

Haematoz bac hnani<br />

Charadrrus -tus<br />

- C. _ a t<br />

C. canutus<br />

yall<strong>in</strong>ayo<br />

-*<br />

Larus glaucescens<br />

P<br />

- L, occidental is<br />

L. nu entatus<br />

- t. ca I ornlcus<br />

- L, delawarensis<br />

-- L, canus<br />

t. heemanni<br />

- L. philadelphia<br />

L. thayerl<br />

*- --<br />

~bmnon nane<br />

R<strong>in</strong>g neck duck<br />

Gmmon goldeneye<br />

Barrow' s galdeneye<br />

Buttlekad<br />

Harlequ<strong>in</strong> duck<br />

White-w<strong>in</strong>ged scoter<br />

Surt scoter<br />

Black scoter<br />

Rujdy duck<br />

Whistlitq swan<br />

OmKKl merganser<br />

kd-breasted merganser<br />

Wed meffjanser<br />

-Prey<br />

Wat blue heron<br />

herican coot<br />

Black oystercatcher<br />

Sem ipaltm ted plover<br />

Killdeer<br />

black-bellied plover<br />

frxly-hi1 led curlew<br />

Whimbrel<br />

Marbled gadwit<br />

lack sandpiper<br />

Dun1 <strong>in</strong><br />

&d knot<br />

Laast sandpiper<br />

Western sadpiper<br />

Sirnderl <strong>in</strong>y<br />

!5gmtted sandpiper<br />

Wander<strong>in</strong>g tattler<br />

Short-billed dowitcher<br />

Lony-billed dowitcher<br />

Surfbird<br />

tbddy turnstone<br />

Ellack turns-<br />

Greater yellowlegs<br />

Lesser yellowleys<br />

Nor<strong>the</strong>rn phalarope<br />

u3mnon snipe<br />

Glaucous-wiryed gull<br />

Western gull<br />

Herr<strong>in</strong>g gull<br />

California gull<br />

R<strong>in</strong>g-billed gull<br />

Mew gull<br />

Heemnn' s gull<br />

mnapar te ' s g ul 1<br />

Thayer's gull


Table 13c.<br />

(Concluded)<br />

Liv<strong>in</strong>g Feed<strong>in</strong>g<br />

Phylm, class, and species<br />

scientific name Ocrmnon nane &undancea deb habitsC<br />

Sterna hirundo<br />

--<br />

Hydroprcyne caspia<br />

Uria aalue<br />

Cepphus colmba<br />

Derorh<strong>in</strong>ca monocerata<br />

~rachyrGhus mamratun<br />

MegaceryLe alcyon<br />

Corvus caur<strong>in</strong>us<br />

Camnon tern<br />

Caspian tern<br />

Ccmmn murre<br />

Pigeon guillemot<br />

Rh<strong>in</strong>oceros auklet<br />

Marbled murrelet<br />

Eelted k<strong>in</strong>g£ isher<br />

Nor<strong>the</strong>stern crow<br />

c<br />

U*<br />

u*<br />

C<br />

C<br />

u<br />

c-u*<br />

C<br />

a Abundance status: A = abundant, <strong>of</strong>ten seen on field trips; C = caranon, present but<br />

not always seen on tield trips; U = uncarmon, present <strong>in</strong> mall nLmbers and seldm seen;<br />

* = seasonal occurrence.<br />

b . .<br />

Lrvrng mode: d = dippr; D = diver; G = grazer; W = wader; S = scavenger; BP =<br />

bird <strong>of</strong> prey.<br />

c Feed<strong>in</strong>g habits : H = herbivore on <strong>eelgrass</strong>; C = mnsunes fauna <strong>in</strong> <strong>eelgrass</strong> and<br />

<strong>eelgrass</strong> substrate .<br />

Fe ferences : Ballew (pers. cm., 1983); Bayer 1980; Eaton 1975; E<strong>in</strong>arsen 1965;<br />

Gardner 1978; Kortwright 1967; NOWState <strong>of</strong> Wash<strong>in</strong>gton Ept. <strong>of</strong> Ecology 1980; Outram<br />

1958; Paulson (pers, cm. , 1983) ; erres 1980; WaN and ~aulson 1971.<br />

abundance and biomass <strong>of</strong> bivalves over<br />

that <strong>of</strong> nearby unvegetated sandy areas.<br />

In <strong>the</strong> Hood Canal, Wash<strong>in</strong>gton, Yosh<strong>in</strong>aka<br />

and Ellifrit (1974) diagrammed <strong>the</strong><br />

presence <strong>of</strong> bent-nosed clams, butter<br />

clams, geoduck clams, jo<strong>in</strong>ted tube worms,<br />

red-banded tube worms, brittle stars, and<br />

clam worms as characteristic <strong>in</strong>fauna <strong>in</strong><br />

<strong>eelgrass</strong> <strong>meadows</strong>.<br />

Occasionally, <strong>the</strong> very large starfish,<br />

such as Pycnopodia can be observed with<strong>in</strong><br />

<strong>eelgrass</strong> Ms, attempt<strong>in</strong>g to extract clams<br />

out <strong>of</strong> <strong>the</strong> bottom (Figure 16).<br />

Figure 15. Kelp crabs (~ugettia gracilis)<br />

<strong>in</strong> <strong>eelgrass</strong> bed <strong>in</strong> Puget Sound.<br />

'She high mobility <strong>of</strong> fishes, cephalopods,<br />

and many decapod crustaceans enables <strong>the</strong>m<br />

to migrate to and from beds on a seasonal<br />

or diurnal basis. Consider<strong>in</strong>g <strong>the</strong>ir<br />

abundance arid functional relations with<strong>in</strong><br />

<strong>the</strong> <strong>eelgrass</strong> beds <strong>of</strong> sou<strong>the</strong>rn Japan,<br />

Kikuchi (1966) classified <strong>the</strong> nekton <strong>in</strong>to<br />

four categories: (1) permanent residents:<br />

f ilefish, sea catfish, syngnathids,<br />

gobies, blennies, and hipplytid and<br />

palaemonid shrimp; (2) seasonal residents:


Figure 16. Pycnopodia helianthoides <strong>in</strong> <strong>eelgrass</strong> meadow <strong>in</strong> Puget Sound<br />

attempt<strong>in</strong>g to extract a clam out <strong>of</strong> <strong>the</strong> bottcm.<br />

a. juvenile and subadult states: sea<br />

bass, rock fishes, alterids, yerreids, sea<br />

breams, groupers, and greenl<strong>in</strong>gs; b.<br />

residents <strong>in</strong> spawn<strong>in</strong>g season: squid,<br />

portunid crabs, and some shrimps; (3)<br />

transients: puffers; (4) casual species.<br />

He noted that some <strong>of</strong> <strong>the</strong> seasonal<br />

residents were commercially important,<br />

especially <strong>in</strong> <strong>the</strong> jwenile stage (Kikuchi<br />

1980). For commercially valuable <strong>in</strong>shore<br />

and affshore fish species, <strong>the</strong> <strong>eelgrass</strong><br />

meadow is most important <strong>in</strong> <strong>the</strong> juvenile<br />

stage <strong>in</strong> provid<strong>in</strong>g food and shelter; i.e.,<br />

<strong>in</strong> provid<strong>in</strong>g a nursery for <strong>the</strong>ir<br />

developnent .<br />

In North Carol<strong>in</strong>a, Adams (1976a,b)<br />

reported that fishes <strong>in</strong> <strong>eelgrass</strong> were<br />

characterized by low diversity (39<br />

species) and high stand<strong>in</strong>g crops <strong>of</strong><br />

biomass and energy, both <strong>of</strong> which showed<br />

seasonal variation. W<strong>in</strong>ter stocks<br />

(~ecember-~pril) averaged about 15% as<br />

high as durirng May-~ovember, a function <strong>of</strong><br />

water temperature. He also reported that<br />

stocks at night were twice as high as<br />

dur<strong>in</strong>g <strong>the</strong> day. Fish did not feed <strong>in</strong> <strong>the</strong><br />

<strong>eelgrass</strong> at night. Interest<strong>in</strong>gly, Adalns<br />

(1976b) noted that <strong>the</strong> feed<strong>in</strong>g<br />

relationship <strong>of</strong> certa<strong>in</strong> species changed<br />

with <strong>the</strong> developmental stage. <strong>The</strong> general<br />

trend for <strong>the</strong> p<strong>in</strong>£ ish, which dom<strong>in</strong>ated <strong>the</strong><br />

biomass <strong>of</strong> <strong>the</strong> fish community (45% and 67%<br />

<strong>in</strong> two systems), was that copepods were<br />

used first, <strong>the</strong>n <strong>eelgrass</strong> detritus, and<br />

f<strong>in</strong>ally an omnivorous stage was reached<br />

where plychaetes and plant material were<br />

used.<br />

Orth and Heck (1980) reported a different<br />

fish community <strong>in</strong> <strong>eelgrass</strong> <strong>of</strong> <strong>the</strong><br />

Chesapeake Bay (48 species), but noted<br />

similarlties <strong>in</strong> seasonal abundances. <strong>The</strong>y<br />

noted that <strong>the</strong> number <strong>of</strong> fish species<br />

associated with <strong>eelgrass</strong> was dramatically<br />

higher than nearby unvegetated substrates.<br />

This was also reported by Briggs and<br />

O'Connor (1971) <strong>in</strong> New York and by Kikuchi<br />

(1974) <strong>in</strong> Japan. In all <strong>of</strong> <strong>the</strong>se <strong>eelgrass</strong><br />

beds many species were important food and<br />

game fish. In New York, 38 species were<br />

collected <strong>in</strong> <strong>eelgrass</strong> 117 preferr<strong>in</strong>g


<strong>eelgrass</strong>) , while 29 species were found<br />

over sand (only six preferred sand).<br />

Specifically, <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>,<br />

Thayer and Phillips (1977) stated that<br />

most <strong>of</strong> <strong>the</strong> nekton associated with<br />

<strong>eelgrass</strong> <strong>in</strong> Puget Sound are carnivores,<br />

which feed on detritivores and conduct<br />

diurnal and seasonal movements <strong>in</strong>to and<br />

out <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong>. Numerous fish use<br />

<strong>the</strong> <strong>eelgrass</strong> as nursery grounds.<br />

Commercially important members were<br />

partially dependent on <strong>eelgrass</strong> for at<br />

least part <strong>of</strong> <strong>the</strong>ir life history: <strong>Pacific</strong><br />

herr<strong>in</strong>g, striped seaperch, and <strong>the</strong><br />

juvenile stage <strong>of</strong> <strong>the</strong> chum salmon.<br />

At least 57 species <strong>of</strong> fish were<br />

identified <strong>in</strong> Padilla Bay (NOAA 1980), a<br />

site with significant stands <strong>of</strong> <strong>eelgrass</strong><br />

<strong>in</strong> nor<strong>the</strong>rn Puget Sound (five species <strong>of</strong><br />

salmon, steelhead, sea run cutthroat<br />

trout, smelt, <strong>Pacific</strong> herr<strong>in</strong>g, sole,<br />

flounder, and 10 species <strong>of</strong> sculp<strong>in</strong>s have<br />

sport and cmercial importance). In<br />

nor<strong>the</strong>rn Puget Sound, Beak Consultants<br />

(1975) reported 20 species <strong>of</strong> shorel<strong>in</strong>e<br />

fishes as well as early stages <strong>of</strong> pelagic<br />

and demersal fishes <strong>in</strong> <strong>eelgrass</strong> <strong>meadows</strong>.<br />

<strong>The</strong>se fish <strong>in</strong>cluded various sculp<strong>in</strong>s,<br />

gunnels, rockfish, greenl<strong>in</strong>gs, and<br />

cabezon. This study emphasized <strong>the</strong><br />

juvenile stages, which used <strong>the</strong> <strong>eelgrass</strong><br />

<strong>meadows</strong> for shelter and food for a portion<br />

<strong>of</strong> <strong>the</strong>ir life cycle or throughout <strong>the</strong><br />

year. Open-water fishes such as <strong>Pacific</strong><br />

herr<strong>in</strong>g and young salmon (several<br />

species), are found <strong>in</strong> <strong>eelgrass</strong> tkroughaut<br />

<strong>the</strong> year.<br />

In a study done at Alki Po<strong>in</strong>t, Puget<br />

Sound, Brown (1982) found that six fish<br />

species were permanent residents. <strong>The</strong>se<br />

were composed <strong>of</strong> adult tube snouts (Figure<br />

17) and adult soles (English, rock, and<br />

C-O; Figure 18), buffalo and <strong>Pacific</strong><br />

staghorn sculp<strong>in</strong>s, and <strong>the</strong> adult bay<br />

pipef ish. Seasonal residents <strong>in</strong>cluded<br />

n<strong>in</strong>e species, most <strong>of</strong> which were juveniles<br />

(seaperch, perch, tomcod, gunnels, and<br />

sculp<strong>in</strong>s). A total <strong>of</strong> 41 fish species<br />

were found <strong>in</strong> <strong>the</strong> <strong>eelgrass</strong> bed. Brown<br />

concluded that <strong>the</strong> <strong>eelgrass</strong> habitat was an<br />

important spr<strong>in</strong>g and summer nursery ground<br />

for very young juveniles <strong>of</strong> several<br />

Figure 17.<br />

Tubesnouts <strong>in</strong> <strong>eelgrass</strong> meadow, Puget Sound.<br />

49


Figure 18. Flounders rnov<strong>in</strong>g <strong>in</strong>to transplanted <strong>eelgrass</strong>, Puget Sound.<br />

species, particularly juveniles <strong>of</strong> striped<br />

seaperch, padded sculp<strong>in</strong>, crcscer~t gunnel,<br />

drld Enqllsh sole. Seasonal maxima <strong>in</strong><br />

abundance and species rlchriess occurred In<br />

sumnier and autumn. Fish clbundance<br />

<strong>in</strong>creased at night as <strong>in</strong> North Carol<strong>in</strong>a<br />

and <strong>the</strong> Chesapeake Bay. <strong>The</strong> habitat<br />

complexity, l.e., eelyrass density, its<br />

leaf canopy and rhizo~~ie-root penetration<br />

irito <strong>the</strong> substrate, ard epiphyte co<strong>in</strong>plex,<br />

wds related to fish abundance and species<br />

richness (Brown 19b2). None <strong>of</strong> <strong>the</strong> fish<br />

were detritivores. All were carnivores,<br />

except <strong>the</strong> buffdl0 sculpirl which conta<strong>in</strong>~z<br />

- Ulva <strong>in</strong> 58% <strong>of</strong> its stomach contents.<br />

In nor<strong>the</strong>rn Puyet Sound, bllllcr et al.<br />

(1975) reported 04 tish species In<br />

<strong>eelgrass</strong>. C2f this number, three sprne<br />

sticklebacks, staghvrn sculp<strong>in</strong>, shlner<br />

perch, Paclf ic Ilerrlng, Chlnook salmon,<br />

and surf srnelt were dom<strong>in</strong>ant. 'rhey<br />

c.!ricludrxi that <strong>the</strong> <strong>eelgrass</strong> fish td.m was<br />

<strong>the</strong> rictiest, most auundarlt pelagic flsh<br />

tauria <strong>of</strong> any habrtat sampled.<br />

In Yaqu<strong>in</strong>a estuary, Oregon, Bayer (1961)<br />

collected 3J fish specles <strong>in</strong> an aclyrass<br />

meadow, <strong>of</strong> which four were dom<strong>in</strong>ant. He<br />

described seasonality <strong>in</strong> species number<br />

but also found seasonality i n<br />

developmental state. <strong>The</strong> s~nallest size<br />

stages were most abundant <strong>in</strong> <strong>eelgrass</strong> <strong>in</strong><br />

August and January-Play, but no diurnal<br />

changes <strong>in</strong> species were noted.<br />

Many studies have been done on <strong>the</strong><br />

dbut~dance, seasonality, aru dependence on<br />

eelyrass <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> i-lerrlny. 'fils is<br />

obviously due to tne com~nereial value <strong>of</strong><br />

<strong>the</strong> f lsh as balt for sprt sal~lon fish<strong>in</strong>g<br />

alld <strong>the</strong> dse <strong>of</strong> eggs as roe. mth Pdcific<br />

herr<strong>in</strong>g mi smelt depslt eggs on eelyrass<br />

as well as algae. 'Illis depsitlon occurs<br />

througtlout <strong>the</strong> Pcicl ilc Nortllwest region.<br />

Just to establish <strong>the</strong> value <strong>of</strong> trie crop <strong>of</strong><br />

eggs, Webb and iiourston (1979) reported<br />

that for british Colu~nbia alone <strong>the</strong> roe<br />

herr<strong>in</strong>g lndustry took U1,WdW tons<br />

(7~,636,3tj4 kg) In 1976-77 w~th a landed<br />

value <strong>of</strong> $29 mrllion. 'Phe food flsrlery<br />

took allo<strong>the</strong>r 7, wdd tons (o, 363,63b kg)<br />

worth 3b.9 mllllon. <strong>The</strong> peak f rshery<br />

occurred from 1953-54 to 1904-G5 when<br />

catches fluctuated from 17b,uc)3 tons<br />

(154,545,455 kg) to 26d,u36 tons


(239,d9~,9(ii9 kg) (outram and Hulnphreys<br />

1974) .<br />

Herrlng spwnlnys begjln In <strong>the</strong> flrst week<br />

<strong>of</strong> Yrbrudry drid contlnue untrl tile thlrd<br />

week <strong>of</strong> June, but 76% <strong>of</strong> all recorded<br />

deposltlon occurs In bldrch ebb and<br />

Hourston 1979). Some varlalllty 1s noted<br />

from yea to yedr, ~teperlci<strong>in</strong>g on <strong>the</strong> water<br />

temperature. one 3-year-old fernale may<br />

de~slt L~i,udw adhesrve eyys onto <strong>eelgrass</strong><br />

or one <strong>of</strong> several specles <strong>of</strong> bentlilc alyde<br />

(Plgure 13). Eyg development occurs In<br />

14-15 days at water temperature <strong>of</strong> do C.<br />

Upon deposltlon <strong>of</strong> <strong>the</strong> eggs and hatchlny<br />

<strong>of</strong> <strong>the</strong> fry, enormous swarrns <strong>of</strong> birds<br />

(seagulls and ducks) are attrdcted to <strong>the</strong><br />

<strong>eelgrass</strong> beds. 8lortallty <strong>of</strong> eggs and<br />

juvenile herr<strong>in</strong>g may be as great as 5d1&<br />

(Outrdrn 195b; pers. comln., 1931).<br />

In north temperate <strong>eelgrass</strong> beds,<br />

wdterfowl dre <strong>the</strong> prlrndry herbivores on<br />

llv<strong>in</strong>y plants. 'i'hls is <strong>in</strong> direct contrast<br />

to <strong>the</strong> troplcs where a larye number <strong>of</strong><br />

fish and sea urch<strong>in</strong>s are dlrect grazers.<br />

<strong>The</strong> blrds on <strong>the</strong> Pacifrc coast edt a<br />

varlety <strong>of</strong> products from <strong>the</strong> <strong>eelgrass</strong><br />

beds: waterfowl such as black bratlt,<br />

Canada y eese, emperor geese, wigeons,<br />

scoters, cnrivas~ack ducks, arid coots eat<br />

eelqrass vegetation; plntalls, mallards,<br />

and green-wlng tedls gorge on <strong>eelgrass</strong><br />

seeds and epiphytic pelecypods on <strong>the</strong><br />

blacles before ~nigratlng from Izentbek<br />

Lagwn (~cRoy and delfferlch 19Uld); and<br />

mdny shorebirds and solrle ducks go to<br />

<strong>eelgrass</strong> becis to fed or1 assa'latcxi fauna<br />

(mnollusks, armellcis, crustacems) . Gulls,<br />

Figure 19. Eelgrass completely covered by <strong>Pacific</strong> herr<strong>in</strong>g eggs, British Columbia,<br />

Canada (Photo, courtesy <strong>of</strong> Dr. D.N. Outram) .<br />

51


cuots, and surf scoters prey on herr<strong>in</strong>g<br />

eggs deposited on <strong>eelgrass</strong>. Bird use <strong>of</strong><br />

<strong>eelgrass</strong> <strong>meadows</strong> is heavy <strong>in</strong> terms <strong>of</strong><br />

abundance and species richness. Thls is<br />

possible, ow<strong>in</strong>g to <strong>the</strong> shallow nature <strong>of</strong><br />

muck <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong>. At low tide<br />

numerous shorebirds, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> great<br />

blue heron, pick animals from <strong>the</strong> beds.<br />

<strong>The</strong> niches <strong>of</strong> <strong>the</strong> waterfowl also appear to<br />

be divided. Div<strong>in</strong>g ducks eat animals,<br />

while <strong>the</strong> dabblers eat <strong>eelgrass</strong> blades.<br />

Once I did observe, however, a div<strong>in</strong>g<br />

scaup come up with an entire <strong>eelgrass</strong><br />

plant <strong>in</strong> its bill. <strong>The</strong> bird fauna<br />

associated with <strong>the</strong> <strong>eelgrass</strong> beds <strong>in</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong> is Listed <strong>in</strong> Table 13.<br />

Also <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> list <strong>of</strong> waterfowl<br />

which eat <strong>eelgrass</strong> <strong>in</strong> <strong>the</strong> <strong>Pacific</strong><br />

<strong>Northwest</strong> are r<strong>in</strong>g-necked ducks,<br />

buff lehead ducks, and ruddy ducks.<br />

<strong>The</strong>se birds obviously take a great<br />

quantity <strong>of</strong> energy from <strong>the</strong> <strong>eelgrass</strong><br />

system. In Alaska, McRoy (1x6) estimated<br />

that each black brant consumed 180 g dry<br />

wt <strong>eelgrass</strong>/bird/day (about 4% <strong>of</strong> <strong>the</strong><br />

stand<strong>in</strong>g stock). <strong>The</strong> total amount<br />

consumed by <strong>the</strong> o<strong>the</strong>r graz<strong>in</strong>g birds is as<br />

yet undeterm<strong>in</strong>ed, as is <strong>the</strong> amount <strong>of</strong> food<br />

taken by <strong>the</strong> epiphyte scrapers (Steller's<br />

eiders) and animal feeders.<br />

<strong>The</strong> waterfowl and shorebirds also add a<br />

great but as yet undeterm<strong>in</strong>ed amount <strong>of</strong><br />

nutrients to <strong>the</strong> <strong>eelgrass</strong> <strong>meadows</strong>. At low<br />

tides one can observe numerous large white<br />

patches <strong>of</strong> excrement dumped by gulls onto<br />

<strong>the</strong> <strong>eelgrass</strong>, while <strong>the</strong> water fowl add<br />

<strong>the</strong>irs directly to <strong>the</strong> water colunn.<br />

Ow<strong>in</strong>g to <strong>the</strong> economic value <strong>of</strong> <strong>the</strong> black<br />

brant on <strong>the</strong> <strong>Pacific</strong> coast from sport<br />

hunt<strong>in</strong>g, <strong>the</strong> populations <strong>of</strong> this species<br />

have been traced for years. Brant appear<br />

to eat primarily <strong>eelgrass</strong> leaves; however,<br />

some populations <strong>in</strong> <strong>the</strong> mid-1940's were<br />

observed consum<strong>in</strong>g rhizome-root sect ions<br />

(Wi<strong>the</strong>rby et al. 1943: Cottam et al.<br />

1944). <strong>The</strong> eastern brant depended on<br />

<strong>eelgrass</strong> for over 85% <strong>of</strong> its diet <strong>in</strong> <strong>the</strong><br />

north, while <strong>in</strong> North Carol<strong>in</strong>a where <strong>the</strong><br />

blades were shorter, Ruppia maritima<br />

averaged up to 12% <strong>of</strong> <strong>the</strong> w<strong>in</strong>ter food.<br />

Algae, mostly Ulvaceae <strong>of</strong> very low<br />

nutritional value, only constituted 1% <strong>of</strong><br />

<strong>the</strong> food used. Follow<strong>in</strong>g <strong>the</strong> wast<strong>in</strong>g<br />

disease <strong>of</strong> <strong>the</strong> 1930's, <strong>eelgrass</strong> only<br />

constituted 9% <strong>of</strong> <strong>the</strong> food consumed;<br />

Ruppia <strong>in</strong>creased to 16%, while <strong>the</strong><br />

Ulvaceae <strong>in</strong>creased to 36%. Most <strong>of</strong> <strong>the</strong><br />

birds diverted <strong>the</strong>ir migration route and<br />

went <strong>in</strong>land to feed on w<strong>in</strong>ter wheat and<br />

rye. Some brant from New Jersey to North<br />

Carol<strong>in</strong>a are even now raid<strong>in</strong>g home lawns<br />

for Kentucky bluegrass (Reiger 1982). On<br />

<strong>the</strong> <strong>Pacific</strong> coast <strong>the</strong>re were m<strong>in</strong>or<br />

decl<strong>in</strong>es <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> 1938. <strong>The</strong> black<br />

brant <strong>the</strong>re also used Ulvaceae as an<br />

alternative diet (M<strong>of</strong>fit and attam 1941).<br />

Black brant populations seem to be<br />

dramatically decl<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>Pacific</strong><br />

<strong>Northwest</strong>, correlated with <strong>the</strong> dra<strong>in</strong><strong>in</strong>g <strong>of</strong><br />

coastal marshes, conversion <strong>of</strong> bays to<br />

boat mar<strong>in</strong>as, and a general <strong>in</strong>crease <strong>in</strong><br />

water use by people (~eiger 1982).<br />

Proctor et al. (1980b) stated that <strong>the</strong><br />

major concentration areas <strong>of</strong> black brant<br />

<strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong> are Grays Harbor,<br />

Willapa Bay, <strong>the</strong> Columbia River, Coos Bay,<br />

and Humboldt Bay. <strong>The</strong> important hunted<br />

waterfowl <strong>in</strong>clude American wigeon,<br />

mallard, p<strong>in</strong>tail, canvasback, Canada<br />

geese, and <strong>the</strong> black brant. In 1976 a<br />

total <strong>of</strong> 101,420 ducks and 3,770 geese<br />

were harvested from five counties <strong>in</strong><br />

southwestern Wash<strong>in</strong>gton. In 1972 a total<br />

<strong>of</strong> 121,570 ducks and 2,450 geese were<br />

taken from seven coastal counties <strong>in</strong><br />

Oregon (proctor et al. 1980b).<br />

<strong>The</strong> Wash<strong>in</strong>gton State Department <strong>of</strong> Game<br />

(pers. comm., 1982) related that <strong>the</strong>re are<br />

two pr<strong>in</strong>cipal w<strong>in</strong>ter<strong>in</strong>g areas for black<br />

brant <strong>in</strong> Wash<strong>in</strong>gton: Padilla Bay and<br />

Willapa Bay. A few brant feed on <strong>eelgrass</strong><br />

throughout Puget Sound; however, <strong>the</strong>re are<br />

also two segments <strong>of</strong> <strong>the</strong> brant population:<br />

those that w<strong>in</strong>ter <strong>in</strong> Wash<strong>in</strong>gton and those<br />

that w<strong>in</strong>ter <strong>in</strong> Baja California but return<br />

to Wash<strong>in</strong>gton <strong>in</strong> April to feed <strong>in</strong> <strong>eelgrass</strong><br />

dur<strong>in</strong>g daytime low tides. Brant arrive <strong>in</strong><br />

Wash<strong>in</strong>gton <strong>in</strong> mid-November and <strong>the</strong> w<strong>in</strong>ter<br />

population peaks <strong>in</strong> January. An <strong>in</strong>crease<br />

is noted <strong>in</strong> April before <strong>the</strong> entire<br />

population leaves <strong>in</strong> May.<br />

Lane (1980) reprted that 60,000 to 70,000<br />

black brant stop by to feed on <strong>eelgrass</strong> <strong>in</strong><br />

Padilla Bay <strong>in</strong> <strong>the</strong> spr<strong>in</strong>g migration. A<br />

report made for Padilla Bay (NOAA 1980)<br />

listed 239 species <strong>of</strong> birds and also<br />

stated that an average <strong>of</strong> 5,000 brant<br />

w<strong>in</strong>ter on <strong>the</strong> bay (5,000-8,000 on Padilla<br />

Bay and Samish Bay, w<strong>in</strong>ter 1981-82;


Wash<strong>in</strong>gton State Game Dept., pers. comm.,<br />

1982), with spr<strong>in</strong>g counts averag<strong>in</strong>g 47,392<br />

birds (up to 58% oE <strong>the</strong> <strong>Pacific</strong> Flyway<br />

passes through Padilla ~ay). An average<br />

<strong>of</strong> 50,rilBB ducks w<strong>in</strong>ter on Padilla and<br />

nearby Samish Bays (over 6,LMB are div<strong>in</strong>g<br />

ducks: canvasbacks, scaup, go ldeneyes,<br />

buffleheads, and scoters on ~adilla Bay<br />

alone; several <strong>of</strong> <strong>the</strong>se species feed on<br />

<strong>eelgrass</strong> or animals with<strong>in</strong> <strong>the</strong> system).<br />

In nor<strong>the</strong>rn Puget Somld, Sitnenstad et al.<br />

(1979) recorded that <strong>the</strong> pr<strong>in</strong>cipal<br />

w<strong>in</strong>ter<strong>in</strong>g sites for black brant were<br />

Padilla Bay, Samish Ray, Discovery Bay,<br />

and Sequiln Bay. In April up to 18,00U<br />

brant were recorded <strong>in</strong> Siunish Bay, 55,Om<br />

<strong>in</strong> Padilla Bay, and 6,000 <strong>in</strong> Discovery<br />

Bay<br />

At Grays Harbor an estimated 5(21,00U ducks<br />

and 6,000 brant use <strong>the</strong> estuary dur<strong>in</strong>g<br />

w<strong>in</strong>ter (Proctor et al. 1990b). Grays<br />

Harbor also supports more than 150,01dU<br />

shorebirds dur<strong>in</strong>g peak migrations and is<br />

an important l<strong>in</strong>k <strong>in</strong> <strong>the</strong>ir migration (ACOE<br />

1977b). In Willapa Bay, 50,000 black<br />

brant overw<strong>in</strong>ter (proctor et al. 1980b).<br />

Only 1,500-2,2l30 brant overw<strong>in</strong>tered <strong>in</strong><br />

1981-82 (Wash<strong>in</strong>gton State Game Dept.,<br />

pers. comm., 1982). At peak periods<br />

Willapa Bay harbors 200,O(a0 or more<br />

waterfowl. It is known rmw that Willapa<br />

Bay and Humboldt Bay are important<br />

w<strong>in</strong>ter<strong>in</strong>g areas for <strong>the</strong> canvasback duck<br />

(850 w<strong>in</strong>ter <strong>in</strong> Willapa Bay with peak<br />

populations at 1,4II0 to 1,600; Proctor et<br />

dl. 1980a,b). W<strong>in</strong>ter<strong>in</strong>g populations <strong>of</strong><br />

ducks <strong>in</strong> Humboldt Bay are 124,000 with an<br />

additional 35,000 black brant.<br />

In <strong>the</strong> Yaqu<strong>in</strong>a estuary, black brant arrive<br />

<strong>in</strong> late October-ear 1 y November, <strong>in</strong>crease<br />

<strong>in</strong> numbers to 350-525 birds <strong>in</strong> mid-<br />

January, and fur<strong>the</strong>r <strong>in</strong>crease to 780-914<br />

birds <strong>in</strong> late March (R.D. Bayer, pers.<br />

ccmn., 1983).<br />

Tfius, <strong>the</strong>re is a large list <strong>of</strong> birds that<br />

directly eat or are dependent on <strong>eelgrass</strong><br />

and its food webs ee able 14). <strong>The</strong><br />

nutrient and energy flows that <strong>the</strong>se birds<br />

control and drive are emrimus <strong>in</strong> scope.<br />

4.8 TROPHIC RELATIONSHIPS AND GENERAL<br />

mum<br />

As with all <strong>the</strong> world's ecosystems, <strong>the</strong><br />

<strong>eelgrass</strong> system supports both graz<strong>in</strong>g and<br />

detrital food webs. Ow<strong>in</strong>g to <strong>the</strong> high<br />

prductivity <strong>of</strong> eelgrdss and its slough<strong>in</strong>g<br />

<strong>of</strong> leaf material from <strong>the</strong> shoots, a third<br />

pathway <strong>of</strong> energy flow is evident, that <strong>of</strong><br />

leaf and detrital exprt.<br />

Recent work <strong>in</strong> <strong>the</strong> tropics has documented<br />

<strong>the</strong> <strong>in</strong>creas<strong>in</strong>g importance <strong>of</strong> <strong>the</strong> direct:<br />

use <strong>of</strong> leaves and epiphytes (graz<strong>in</strong>g,<br />

herbivory), but <strong>in</strong> seayrasses generally<br />

and <strong>eelgrass</strong> <strong>in</strong> particular, <strong>the</strong> detrital<br />

food webs with<strong>in</strong> <strong>the</strong> <strong>eelgrass</strong> <strong>meadows</strong> are<br />

still <strong>the</strong> primary pathway <strong>of</strong> trophic<br />

energy transfer (Kikuchi 1980).<br />

Very few organisms use <strong>the</strong> fresh <strong>eelgrass</strong><br />

plants <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong> as food.<br />

Table 14 lists <strong>the</strong> waterfowl which are<br />

overwhelm<strong>in</strong>gly <strong>the</strong> dom<strong>in</strong>ant grazers on<br />

<strong>eelgrass</strong> <strong>in</strong> <strong>the</strong> region. McRoy and<br />

Helfferich (1980) listed only <strong>the</strong> green<br />

urch<strong>in</strong>, Stronglyvcentrotus drobachiensis,<br />

which consma2 fresh <strong>eelgrass</strong>.<br />

It would be useful to have abundant data<br />

on <strong>the</strong> amount <strong>of</strong> energy or production<br />

which is channeled through direct<br />

herbivory, <strong>the</strong> detritaL E d webs, and <strong>the</strong><br />

export route. Unfortunately, only <strong>the</strong> old<br />

study done by Petersen (1918) <strong>in</strong> Denmark<br />

and <strong>the</strong> relatively recent one conducted by<br />

Thayer et al. (1975b) have documented <strong>the</strong><br />

energy flows quantitatively. Thayer et<br />

al. (1975b) concluded that <strong>the</strong> <strong>eelgrass</strong><br />

system exports to adjacent systems, on <strong>the</strong><br />

basis <strong>of</strong> a net <strong>in</strong>crase <strong>of</strong> sedirnent carbon,<br />

but no direct work was done. <strong>The</strong>y also<br />

calculated that <strong>the</strong> macr<strong>of</strong>auna <strong>in</strong> <strong>the</strong><br />

<strong>eelgrass</strong> bed <strong>in</strong> North Carol<strong>in</strong>a consumed<br />

energy equivalent to 55% <strong>of</strong> <strong>the</strong> net<br />

prduction <strong>of</strong> <strong>eelgrass</strong>, phytoplankton, and<br />

benthic algae <strong>in</strong> <strong>the</strong> bed. 'hey calculated<br />

a gross-growth ecological efficiency <strong>of</strong><br />

12% for <strong>the</strong> macr<strong>of</strong>auna <strong>in</strong> <strong>the</strong> bed and 24%<br />

for <strong>the</strong> fish community, suggest<strong>in</strong>g a<br />

fairly efficient system with a surplus <strong>of</strong><br />

energy to support <strong>the</strong> food webs. <strong>The</strong> high<br />

efficiency for <strong>the</strong> fish, <strong>in</strong> large measure<br />

a result <strong>of</strong> high proportions <strong>of</strong> juveniles<br />

<strong>in</strong> <strong>the</strong> community, suggests that <strong>the</strong><br />

<strong>eelgrass</strong> system provides resident fish<br />

with superior shelter, food, and<br />

protection. <strong>The</strong>se fish probably spend a<br />

relatively small proportion <strong>of</strong> <strong>the</strong>ir<br />

energy cop<strong>in</strong>g with environmental extremes,<br />

search<strong>in</strong>g for food, and escap<strong>in</strong>g from<br />

predators, and can use a relatively large<br />

part <strong>of</strong> <strong>the</strong>ir consumed energy for growth


Table 14.<br />

waterfowl that use <strong>eelgrass</strong> <strong>meadows</strong> <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>.<br />

Species Location W<strong>in</strong>ter wlation Spr<strong>in</strong>g population Food<br />

Black brant<br />

padilla 5,000<br />

samish Bay --<br />

Discovery Bay -<br />

Grays Harbor 6,000<br />

Willap Bay 50, Wa0<br />

Yaqu<strong>in</strong>a Estuary 350-525<br />

Humboldt Bay 35,000<br />

Eelgrass vegetation<br />

,I<br />

Ducks<br />

Padilla arid Samish 50,000 (6,000 are<br />

Bays div<strong>in</strong>g ducks )<br />

Grays Harbor 50,800<br />

Willapa Bay<br />

Canvasback duck 850<br />

Humkoldt Bay 124,000<br />

Shorebirds Grays arbor --<br />

Miscellaneous<br />

Canada geese<br />

Elnperor geese<br />

American wigeon<br />

Scoters (3 species)<br />

Coots<br />

Canvasback<br />

R<strong>in</strong>g-neck<br />

Bufflehead<br />

Ruddy<br />

P<strong>in</strong>tail<br />

Mallards<br />

Green-w<strong>in</strong>g teal<br />

scaups (2 species)<br />

Eelgrass vegetation or<br />

animal life on or<br />

mng <strong>the</strong> plants<br />

8<br />

Eelgrass vegetation<br />

Eelgrass vegetation or<br />

animal life on or<br />

am~q <strong>the</strong> plants<br />

Animal Life on or<br />

mng <strong>the</strong> plants<br />

Eelgrass vegetation<br />

Eelgrass vegatntion;<br />

herr<strong>in</strong>g eggs<br />

Eelgrass vegetation<br />

Eelgrass vegetation<br />

Eelgrass seeds;<br />

epi f dUM<br />

Eelgrass seeds;<br />

epi fauna<br />

Eelgrass seeds;<br />

epi fauna<br />

Eelgrass vegetation;<br />

fauna<br />

shelters 200,0!30<br />

or more waterfowl at peak periods.<br />

and production. Figure 11 shows <strong>the</strong><br />

proportional relations <strong>of</strong> <strong>the</strong> various<br />

trophic compnents <strong>in</strong> this North Carol<strong>in</strong>a<br />

<strong>eelgrass</strong> system (Thayer et al. 1975b).<br />

Table 15 lists <strong>the</strong> various compartments <strong>in</strong><br />

this system and <strong>the</strong> energy relations<br />

<strong>in</strong>volved.<br />

F<strong>in</strong>ally, an abundant literature has<br />

documented <strong>the</strong> role <strong>of</strong> <strong>eelgrass</strong> as a<br />

nursery for young fish and many o<strong>the</strong>r<br />

animals (~hayer et al. 1975b; Adarns,<br />

197Ga,b; Thayer and Phillips 1977; Thayer<br />

et al. 1979; ; Kikuchi 1980; McKoy and<br />

Helfferich 1980; Orth and Heck 1980). <strong>The</strong><br />

meadow actually is a giant fwd factory,<br />

feed<strong>in</strong>g a small number <strong>of</strong> herbivores, with<br />

most <strong>of</strong> <strong>the</strong> primary prduction decay<strong>in</strong>g to<br />

enter <strong>the</strong> detrital food webs. Ow<strong>in</strong>g to<br />

<strong>the</strong> density <strong>of</strong> foliage and sediment<br />

stabilization, <strong>the</strong> habitat also becomes a<br />

refuge for many o<strong>the</strong>r animals. Thus, <strong>the</strong><br />

meadow attracts permanent, seasonal, and


Table 15. Energy <strong>in</strong> various ccmpartments <strong>of</strong> an <strong>eelgrass</strong> bed <strong>in</strong> Mrth Carol<strong>in</strong>a (after<br />

Thayer et al. 1975b).<br />

compartment Energy value <strong>in</strong> Ehergy <strong>in</strong>put to Energy lost f m<br />

ccmpartment ca~partment<br />

(kcal/d/yr) (kcal/d/yr)<br />

1. Primary prducer<br />

Eelgrass 135<br />

Benthic algae 18<br />

Phytoplankton 1<br />

2. Detritus production 21,160<br />

3. Bacteria, micr<strong>of</strong>auna, 47<br />

Mei<strong>of</strong>auna<br />

4. Nekton 6<br />

6. Infauna 30.7<br />

transient residents, some on a seasonal<br />

basis, and some on a diurnal basis.<br />

A relatively new technique has been<br />

employed to del<strong>in</strong>eate <strong>the</strong> flows <strong>of</strong> carbon<br />

from plants to nimals <strong>in</strong> seagrass food<br />

webs. <strong>the</strong> del 'C or 13c/12c ratio. <strong>The</strong><br />

technique assumes that <strong>in</strong>dividual plant<br />

species or groups possess stable ratios,<br />

that <strong>the</strong>se ratios are reta<strong>in</strong>ed <strong>in</strong> carbon<br />

flows, and that <strong>the</strong> isotope ratios <strong>of</strong><br />

animals are a function <strong>of</strong> <strong>the</strong>ir diet.<br />

While <strong>the</strong> procedure will not identify <strong>the</strong><br />

specific food-web importance <strong>of</strong> a seagrass<br />

species, it is useful <strong>in</strong> analyz<strong>in</strong>g <strong>the</strong><br />

food-web importance <strong>of</strong> seagrasses as a<br />

group (Fry et al. 1982).<br />

Much research is needed on <strong>eelgrass</strong> foodweb<br />

relationships <strong>in</strong> <strong>the</strong> <strong>Pacific</strong><br />

<strong>Northwest</strong>. <strong>The</strong> best work done to data on<br />

a descriptive basis is that <strong>of</strong> Simenstad<br />

et al. (1979; Figure 20) and a diagram<br />

prepared for an Army Corps <strong>of</strong> Eng<strong>in</strong>eers<br />

report (ACOE 197713; Figure 21). <strong>The</strong>re is<br />

a need for quantification <strong>of</strong> work <strong>of</strong> this<br />

sort, as well as quantify<strong>in</strong>g <strong>the</strong> energy<br />

flows through <strong>the</strong> various trophic<br />

compartments and <strong>the</strong> amount <strong>of</strong> leaf<br />

material and detritus exported from <strong>the</strong><br />

<strong>eelgrass</strong> system <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>.<br />

Figure 22 diagrams <strong>the</strong> pr<strong>in</strong>cipal energy<br />

pathways <strong>in</strong> a typical <strong>eelgrass</strong> meadow <strong>in</strong><br />

<strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>.


(6L.61: "Ie 33 PeWuWS<br />

xa73P) e3nd ap upnr 30 qTezqs aqq pue punos qa6nd uJaqqzou uy sqeqrqey Texoqq-tTqns<br />

Morreys 'sse16~aa/pnu~ paqsaqo~d 30 sKqsyxaqaereq3 qan poo3 aqysodurog 002 am6-t~


Export <strong>of</strong> whole<br />

by waterfowl<br />

Figure 22. Pr<strong>in</strong>cipal energy pathways <strong>in</strong> an <strong>eelgrass</strong> meadow (adapted from Zieman 1982).


CHAPTER 5<br />

INTERACTION WITH ADJACENT SYSTEMS<br />

<strong>The</strong>re is very Little known about <strong>the</strong><br />

quantitative aspects <strong>of</strong><strong>the</strong> transport <strong>of</strong><br />

liv<strong>in</strong>g and/or dead eelyrass material, IX)M<br />

(dissolved organic matter), and detritus.<br />

For that reason, <strong>the</strong> discussion <strong>in</strong> this<br />

chapter is general.<br />

Anyone who has walked beaches where<br />

seagrasses occur <strong>of</strong>fshore has observed<br />

detached leaves and perhaps whole plants<br />

washed ashore, occasionally <strong>in</strong> large<br />

w<strong>in</strong>drows. In October 1975, I observed<br />

great piles <strong>of</strong> eelyrass leaves up to 1 rn<br />

(3 ft) deep on <strong>the</strong> beaches and cover<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>tertidal zone as far as <strong>the</strong> eye<br />

could see <strong>in</strong> Izembek Lagaon, Alaska. <strong>The</strong><br />

presence <strong>of</strong> a deep compacted layer <strong>of</strong><br />

<strong>eelgrass</strong> peat on <strong>the</strong> beach attested to<br />

this occurr<strong>in</strong>g annually. In May 1976, <strong>the</strong><br />

Leaf matter over <strong>the</strong> <strong>in</strong>tertidal zone had<br />

decayed completely, leav<strong>in</strong>g a 15-cm (6-<br />

<strong>in</strong>ches) layer <strong>of</strong> s<strong>of</strong>t jelly-like ooze.<br />

Barsdate et al. (1974) stated that <strong>the</strong><br />

bre&down prcducts <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> Izembek<br />

Lagoon supported<strong>the</strong> entire fisheries <strong>of</strong><br />

<strong>the</strong> sou<strong>the</strong>rn Ber<strong>in</strong>g Sea, imply<strong>in</strong>g a net<br />

transport <strong>of</strong> <strong>eelgrass</strong> decomposition<br />

products <strong>in</strong>to <strong>the</strong> adjo<strong>in</strong><strong>in</strong>g pelagic<br />

system.<br />

It is unlikely that much <strong>eelgrass</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong> becomes dislodged<br />

through herbivore activity. Waterfowl eat<br />

<strong>the</strong> leaves <strong>the</strong>y detach. In isolated<br />

locations sand dollars (Dendraster sp.)<br />

wedge <strong>in</strong>to <strong>in</strong>tertidal and shallow subtidal<br />

<strong>meadows</strong> and uproot considerable plant<br />

material (Figure 23). Exclusion cages<br />

have shown that <strong>eelgrass</strong> may recover from<br />

this perturbation. It is possible that<br />

Figure 23.<br />

Sand dollars ee end raster sp.) digg<strong>in</strong>g up <strong>eelgrass</strong> <strong>in</strong> Puget Sound.


storms erode and dislodge some <strong>eelgrass</strong>,<br />

but most is very persistent (~igure 2).<br />

Gallagher et al. (In prep.), however,<br />

found that ~eriodic storms do dislodge a<br />

large amount <strong>of</strong> eelyrass <strong>in</strong> w<strong>in</strong>ter and<br />

summer and deposit <strong>the</strong> material <strong>in</strong><br />

adjacent marshes <strong>in</strong> Netarts Bay, Oregon.<br />

<strong>The</strong> <strong>eelgrass</strong> litter constituted between<br />

14% and 35% <strong>of</strong> <strong>the</strong> dead material <strong>in</strong> <strong>the</strong><br />

marshes. <strong>The</strong>ir conclusion is that <strong>in</strong><br />

estuaries where seagrass beds ad jo<strong>in</strong><br />

marshes, <strong>the</strong> trapp<strong>in</strong>g <strong>of</strong> <strong>eelgrass</strong> litter<br />

<strong>in</strong> <strong>the</strong> marsh provides a mechanism for<br />

reta<strong>in</strong><strong>in</strong>g and recycl<strong>in</strong>g nutrients with<strong>in</strong><br />

<strong>the</strong> wetlands and prevent<strong>in</strong>g <strong>the</strong>ir loss to<br />

<strong>the</strong> oceanic system. <strong>The</strong>se nutrients )nay<br />

be passed back and forth between <strong>the</strong><br />

<strong>eelgrass</strong> and marsh systems. Also, <strong>in</strong><br />

Netarts Bay, Kentula (1983) calculated a<br />

total annual leaf loss which varied from<br />

25 to 111 g dry wt/m2. While <strong>the</strong> belowground<br />

biomass was reta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong><br />

meadow, she observed that some <strong>of</strong> <strong>the</strong><br />

;Iboveground biomass was carried shoreward<br />

and trapped by <strong>the</strong> salt marsh and some was<br />

transported out <strong>of</strong> <strong>the</strong> estuary. <strong>The</strong><br />

presence <strong>of</strong> <strong>eelgrass</strong> material <strong>in</strong> cores<br />

taken <strong>in</strong> Oregon salt marsh sediments<br />

implied <strong>the</strong> net transport <strong>of</strong> <strong>eelgrass</strong><br />

(Jefferson 1975).<br />

Probably normal Leaf defoliation and<br />

replacement is <strong>the</strong> source <strong>of</strong> most <strong>of</strong> <strong>the</strong><br />

detached leaf material observed <strong>in</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong>. Short (1975) estimated<br />

that <strong>eelgrass</strong> experienceda70% seasonal<br />

defoliation rate. Proctor et al. (1980b)<br />

used. this number and based on stand<strong>in</strong>gcrop<br />

estynates from Phillips (1974; 580 g<br />

dry wt/m , 260 tons/acre) and o<strong>the</strong>rs, to<br />

calculate that <strong>eelgrass</strong> <strong>meadows</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong> produce annually about<br />

30,000 kg (66,0(110 tons, dry matter) <strong>of</strong><br />

<strong>eelgrass</strong> leaf material, <strong>of</strong> which 20,909 kg<br />

(46,000 tons) dry weight is defoliated<br />

annually to become detritus: 8,400 ha<br />

(21,000 acres) <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> Wash<strong>in</strong>gton;<br />

2,000 ha (5,BBB acres) <strong>in</strong> Oregon; and<br />

1,600 ha (4,000 acres) <strong>in</strong> nor<strong>the</strong>rn<br />

California.<br />

<strong>The</strong> only record <strong>of</strong> <strong>eelgrass</strong> blades <strong>in</strong> <strong>the</strong><br />

deep sea was made by Pearcy and Ambler<br />

(1974) who found <strong>the</strong> material as<br />

accidental contents <strong>in</strong> <strong>the</strong> abyssal<br />

rattail, Coqphaenoides armatus. -<br />

In <strong>the</strong> Carribbean, tropical seagrasses are<br />

exported and found at great depths<br />

(reviewed by Zieman 1982). At St. Croix,<br />

U.S. Virg<strong>in</strong> islands, 60%-1B0% <strong>of</strong> <strong>the</strong><br />

Syr<strong>in</strong>gcdium f ilifonne daily production was<br />

detached and exported, whereas only 1% <strong>of</strong><br />

<strong>the</strong> Thalassia production was exported by<br />

bedload transport (Zieman et al. 1979).<br />

Leaves and rhizome pieces <strong>of</strong> ~halassia<br />

were collected <strong>in</strong> 3,160 m (10,368 ft) <strong>of</strong><br />

water <strong>of</strong>f North Carol<strong>in</strong>a (Menzies et dl.<br />

1967); at 3,580 m (11,484 ft) deep <strong>of</strong>f <strong>the</strong><br />

Virg<strong>in</strong> Islands (Raper and Brundage 1972);<br />

and from 1,326-8,339 rn (4,376-27,489 ft)<br />

deep <strong>in</strong> <strong>the</strong> Puerto Rican and Cayman<br />

trenches (Wolff 1988). Wolff reported<br />

consumption <strong>of</strong> <strong>the</strong> leaf and rhizome<br />

material by numerous <strong>in</strong>vertebrates.<br />

F<strong>in</strong>ally, <strong>the</strong> important mechanis~n that<br />

leads to detritus production and ei<strong>the</strong>r<br />

entrapment or export from <strong>the</strong> seagrass<br />

system is <strong>the</strong> decomposition and<br />

<strong>in</strong><strong>in</strong>eralization <strong>of</strong> <strong>the</strong> Leaf material that<br />

becomes detached frorn <strong>the</strong> plants. Only<br />

two field studles have been conducted on<br />

seagrass leaf decay rates (litter bay<br />

analyses): one on Thalassia (~iemdn 1968)<br />

,md om on <strong>eelgrass</strong> (Burkholder and D<strong>of</strong>wny<br />

1968). Two studies were conducted <strong>in</strong> <strong>the</strong><br />

laboratory (~arrison and Mann 1975a;<br />

Wshalk and Wetzel 1978). Zieman (L%8)<br />

observedthat Thalasei* leaves <strong>in</strong> litter<br />

bags anchored <strong>in</strong> areas subject to<br />

alternat<strong>in</strong>g perids <strong>of</strong> dry<strong>in</strong>g and wett<strong>in</strong>g<br />

lost weight three times as fast as those<br />

<strong>in</strong>cubated <strong>in</strong> tanks where <strong>the</strong>y were<br />

constantly wet. Predried ~ hal ass ia leaves<br />

nlaced <strong>in</strong> tanks lost weiqht five tirnes<br />

;aster than leaves not predried. Dry<strong>in</strong>g<br />

is considered to destroy <strong>the</strong> cellular<br />

<strong>in</strong>tegrity more rapidly and allow a more<br />

rapid microbial attack. Zieman also found<br />

a 50% weight loss <strong>of</strong> leaves after 5 wk <strong>of</strong><br />

<strong>in</strong>cubation <strong>in</strong> tanks <strong>of</strong> circulat<strong>in</strong>q<br />

10% loss was<br />

~n ~ ~ Carol<strong>in</strong>a, ~ t mayer h et al. (1979) seawater. Only an additio~l<br />

reported that up to 25% <strong>of</strong> <strong>the</strong> production Observd <strong>the</strong> next wk*<br />

<strong>in</strong>- open water-beds is exported to <strong>the</strong><br />

adjacent estuary, while <strong>in</strong> embayment-type In New York Burkholder and Doheny<br />

beds over 90% <strong>of</strong> <strong>the</strong> production decays <strong>in</strong> (1968) placed fresh eelyrass leaves <strong>in</strong><br />

<strong>the</strong> bed or is washed up onto adjacent litter bags <strong>in</strong> two locations. At one site<br />

beaches and marshes. only 23% <strong>of</strong> <strong>the</strong> material rema<strong>in</strong>ed after 56


days; at <strong>the</strong> o<strong>the</strong>r site, only 10% rema<strong>in</strong>ed<br />

after 51 days (based on dry weight).<br />

In <strong>the</strong> laboratory Harrison and Mann<br />

(1975a) found that dead <strong>eelgrass</strong> leaves<br />

lost 35% <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al dry weight <strong>in</strong> 100<br />

days at 20O C. Whole leaves lost 0.5% <strong>of</strong><br />

<strong>the</strong> organic content per day; particles<br />

smaller than 1 mn lost l%/day. S<strong>in</strong>ce most<br />

leaves <strong>of</strong> Thalassia and Zostera rema<strong>in</strong><br />

attached to <strong>the</strong> plant dur<strong>in</strong>g senescence<br />

and death (McRoy 1966; Zieman 1968;<br />

Harrison and Mann 1975a), <strong>the</strong> data<br />

<strong>in</strong>dicate that <strong>the</strong> loss <strong>of</strong> organic matter<br />

from attached leaves is slow dur<strong>in</strong>g <strong>the</strong><br />

rema<strong>in</strong>der <strong>of</strong> process<strong>in</strong>g. Godshalk and<br />

Wetzel (1978) described three phases <strong>in</strong><br />

<strong>eelgrass</strong> leaf decomposition based on<br />

changes <strong>in</strong> decay rates <strong>in</strong> time: (1)<br />

<strong>in</strong>creas<strong>in</strong>g weight loss from leach<strong>in</strong>g and<br />

production <strong>of</strong> DOM; i.e., <strong>in</strong>itial leach<strong>in</strong>g<br />

and maximum weight loss/unit time (may<br />

last from a few m<strong>in</strong>utes to several days);<br />

(2) decay rates decreased; dur<strong>in</strong>g phase 2,<br />

<strong>the</strong> microbial flora on <strong>the</strong> decompos<strong>in</strong>g<br />

leaves enriched <strong>the</strong> material with ATP and<br />

nitrogen (may occur <strong>in</strong> a few days to a few<br />

months); (3) rate <strong>of</strong> breakdown <strong>of</strong> residual<br />

refractory material closely approaches<br />

zero, but can be accelerated by changes <strong>in</strong><br />

physical conditions or nutrient<br />

replenishment to stimulate microbial<br />

growth (may last from several months to<br />

several years).<br />

Thus, <strong>the</strong> mechanisms that give rise to<br />

detached plants and to leaf decay and<br />

detritus are apparent. What are lack<strong>in</strong>g<br />

are <strong>the</strong> studies that def<strong>in</strong>e seasonality<br />

and ab-ance <strong>of</strong> <strong>the</strong> fractions <strong>of</strong> <strong>eelgrass</strong><br />

material (DOM, particulate matter, whole<br />

leaves) which are reta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong><br />

system and are exported to adjacent<br />

systems, and <strong>the</strong>ir contributions to <strong>the</strong>se<br />

adjacent systems.


CHAPTER 6<br />

HUMAN IMPACTS-MANAGEMENT CONSIDERATIONS<br />

With <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g residential,<br />

recreational, and commercial development<br />

<strong>of</strong> <strong>the</strong> shorel<strong>in</strong>es <strong>of</strong> <strong>the</strong> nation and <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong>, it is <strong>in</strong>evitable that<br />

pressure on <strong>the</strong> shallow water resources <strong>of</strong><br />

<strong>the</strong> area have also <strong>in</strong>creased. In<br />

comparison to <strong>the</strong> high-density development<br />

<strong>in</strong> sou<strong>the</strong>rn California, <strong>the</strong> Gulf <strong>of</strong><br />

Mexico, and <strong>in</strong> <strong>the</strong> nor<strong>the</strong>astern United<br />

States, that <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong><br />

could be termed m<strong>in</strong>imal. Yet demands and<br />

impacts have been made, and <strong>the</strong>y are<br />

<strong>in</strong>creas<strong>in</strong>g. Logg<strong>in</strong>g has been an important<br />

feature <strong>of</strong> <strong>the</strong> economy s<strong>in</strong>ce <strong>the</strong> early<br />

19GB1s. In certa<strong>in</strong> areas <strong>of</strong> heavy<br />

ra<strong>in</strong>fall and where clearcutt<strong>in</strong>g <strong>of</strong> upland<br />

timber has occurred, siltation has also<br />

occurred. Stout (1976) noted <strong>the</strong> effects<br />

<strong>of</strong> siltation <strong>in</strong> Netarts Bay, Oregon,<br />

co<strong>in</strong>cident with historic logg<strong>in</strong>g and<br />

burn<strong>in</strong>g <strong>of</strong> timber <strong>in</strong> <strong>the</strong> watershed, but<br />

stated this has <strong>in</strong>tensified s<strong>in</strong>ce <strong>the</strong><br />

1940's when clearcutt<strong>in</strong>g and roadbuild<strong>in</strong>g<br />

were <strong>in</strong>itiated. Proctor et al. (1980b)<br />

have documented <strong>the</strong> extensive ma<strong>in</strong>tenance<br />

dredg<strong>in</strong>g needed to ma<strong>in</strong>ta<strong>in</strong> shipp<strong>in</strong>g<br />

channels <strong>in</strong> several areas and <strong>the</strong><br />

suspended silts aris<strong>in</strong>g from wood chips<br />

and sawdust <strong>in</strong> Yaqu<strong>in</strong>a Bay.<br />

<strong>The</strong> extensive land cultivation needed £or<br />

agriculture can lead to siltation <strong>in</strong><br />

estuar<strong>in</strong>e areas, with an <strong>in</strong>crease <strong>in</strong> water<br />

turbidity that leads to decreased <strong>eelgrass</strong><br />

growth (Thayer et al. 1975a). <strong>The</strong> role <strong>of</strong><br />

solar radiation pass<strong>in</strong>g through <strong>the</strong> water<br />

column, which controls <strong>the</strong> productivity,<br />

density, depth limit, and even presence <strong>of</strong><br />

<strong>eelgrass</strong> <strong>in</strong> an area, and thus <strong>the</strong> presence<br />

and richness <strong>of</strong> <strong>the</strong> ecosystem itself were<br />

discussed earlier <strong>in</strong> this report.<br />

<strong>The</strong> <strong>in</strong>creas<strong>in</strong>g human use <strong>of</strong> nor<strong>the</strong>rn Puget<br />

Sound is hav<strong>in</strong>g a drastic impact on <strong>the</strong><br />

black brantpresence <strong>in</strong> Padilla Bay and<br />

o<strong>the</strong>r local bays (~eiger 1982). state and<br />

Federal agencies cont<strong>in</strong>ue to receive an<br />

<strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> applications <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>rn sound area, particularly for<br />

mar<strong>in</strong>a development. One observes an<br />

<strong>in</strong>creas<strong>in</strong>g shorel<strong>in</strong>e development <strong>of</strong> homes<br />

and even condom<strong>in</strong>iums <strong>in</strong> some areas.<br />

Cont<strong>in</strong>ued ma<strong>in</strong>tenance <strong>of</strong> shipp<strong>in</strong>g lanes<br />

and logg<strong>in</strong>g is presumed necessary for <strong>the</strong><br />

economic life <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>.<br />

It is hoped that this report will aid <strong>in</strong><br />

<strong>the</strong> formulation <strong>of</strong> policy that will<br />

accommodate those activities while<br />

preserv<strong>in</strong>g and protect<strong>in</strong>g <strong>the</strong> water and<br />

habitat qualities <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong><br />

resources.<br />

Consider<strong>in</strong>g <strong>the</strong> coastal sediment<br />

stabilization function, <strong>the</strong> nutrient<br />

exports which enhance oceanic procluckion,<br />

and <strong>the</strong> value <strong>of</strong> <strong>eelgrass</strong> to recreational<br />

and commercial fisheries, it is<br />

worthwhile--even imperative--to consider<br />

preserv<strong>in</strong>g <strong>the</strong> resource.<br />

6.1 DREDGING AND FIUW<br />

Of all <strong>the</strong> possible impacts, dredg<strong>in</strong>g<br />

poses <strong>the</strong> greatest threat to <strong>the</strong> seagrass<br />

ecosystem (Thayer et al. 1975a; Zieman<br />

1975; Phillips 1978). Not only are <strong>the</strong><br />

plants removed, but <strong>the</strong> entire physical,<br />

biological, and chemical structure <strong>of</strong> <strong>the</strong><br />

ecosystem is changed. <strong>The</strong> extent <strong>of</strong> <strong>the</strong><br />

area affected by <strong>the</strong> dredg<strong>in</strong>g depends on<br />

<strong>the</strong> tidal range, current strength, and<br />

sediment texture <strong>in</strong> <strong>the</strong> area.<br />

Sediments raised by dredg<strong>in</strong>g can bury<br />

plants away from <strong>the</strong> site. More<br />

importantly, sediments drastically reduce


plant density as a result <strong>of</strong> <strong>the</strong>ir effect<br />

on water clarity. <strong>The</strong> reduction <strong>in</strong><br />

seagrass density could result <strong>in</strong> an<br />

<strong>in</strong>creased silt load, due to a reduction <strong>in</strong><br />

sediment trapp<strong>in</strong>g, and <strong>in</strong>creased erosion<br />

<strong>of</strong> bottom sediments. Where turbid water<br />

prevails, <strong>eelgrass</strong> populations are limited<br />

to less than 1-3 m (3-10 ft) deep<br />

(Burkholder and Doheny 1968; Thayer et al.<br />

1975a). Eelgrass has been observed down<br />

to 3EI m (98 ft) where <strong>the</strong> water is clear<br />

(Cottarn and Munro 1954). Dredg<strong>in</strong>g<br />

reverses <strong>the</strong> normal redox potential (h%)<br />

<strong>of</strong> <strong>the</strong> sediments <strong>of</strong> a seagrass system,<br />

which reverses <strong>the</strong> entire nutrient-£ low<br />

mechanics <strong>of</strong> <strong>the</strong> ecosystem.<br />

Hydraulic clam dredges have been used <strong>in</strong><br />

Puget Sound. <strong>The</strong> dredge blasts sediment<br />

to a depth <strong>of</strong> 45 cm (18 <strong>in</strong>ches) and a<br />

width <strong>of</strong> 1 m (3 ft). S<strong>in</strong>ce <strong>eelgrass</strong><br />

rhizome mats are located at a maximum<br />

depth <strong>of</strong> 15 cm (6 <strong>in</strong>ches), this activity<br />

removes <strong>the</strong> entire ecosystem. <strong>The</strong> State<br />

<strong>of</strong> Wash<strong>in</strong>gton requires leav<strong>in</strong>g strips <strong>of</strong><br />

<strong>eelgrass</strong> between <strong>the</strong> dredged strips. In<br />

one location, however, I dbservd that all<br />

<strong>the</strong> <strong>eelgrass</strong> had been removed. Several<br />

years ago, <strong>the</strong> use <strong>of</strong> <strong>the</strong>se dredges was<br />

banned <strong>in</strong> Florida and <strong>in</strong> <strong>the</strong> Chesapeake<br />

Ray after it was determ<strong>in</strong>ed that <strong>the</strong>y<br />

directly removed <strong>the</strong> seagrasses or led to<br />

<strong>the</strong>ir removal by erosion.<br />

In North Carol<strong>in</strong>a, bay scallop larvae<br />

attach directly to <strong>eelgrass</strong> blades (Thayer<br />

and Stuart 1974). Commercial f isherlnen<br />

use hand rakes and bar dredges to ga<strong>the</strong>r<br />

<strong>the</strong> scallops. <strong>The</strong> bar dredges denude <strong>the</strong><br />

bottom <strong>of</strong> <strong>eelgrass</strong> over large areas,<br />

stirr<strong>in</strong>g up sediments and promot<strong>in</strong>g<br />

sedilnent oxidation so that recolonization<br />

<strong>of</strong> <strong>eelgrass</strong> and thus that <strong>of</strong> <strong>the</strong> bay<br />

scallops was impeded. In <strong>the</strong> Niantic<br />

River, Connecticut, <strong>the</strong> <strong>eelgrass</strong> is too<br />

dense for <strong>the</strong> settlement <strong>of</strong> bay scallops.<br />

When <strong>the</strong> <strong>eelgrass</strong> disappeared <strong>in</strong> <strong>the</strong><br />

193EI8s, allow<strong>in</strong>g better wave circulation,<br />

<strong>the</strong> bay scallop flourished, attach<strong>in</strong>g to<br />

small algae (Marshall 1947). e<br />

logg<strong>in</strong>g, rnalntendnce drecxylng, and<br />

agricultural lr~lpacts on water quallty <strong>in</strong><br />

this sect~on), while blo<strong>in</strong>ass ciecllned by<br />

96hfter tttree ciredglngs. <strong>The</strong> mean<br />

percentage reduction <strong>of</strong> stloot density<br />

rtlnged frotn 33mn beds ~ i t no h dredg<strong>in</strong>g<br />

to 719 on beas that were dredged tnree<br />

times. 'i'hr greatest reductiori occurred<br />

after <strong>the</strong> first dredglriy operiitlori. In<br />

some cases, <strong>the</strong> <strong>eelgrass</strong> td~lea to rccwver<br />

follow<strong>in</strong>g dredg<strong>in</strong>g.<br />

Proctor et al, (19dab) documenteu <strong>the</strong><br />

various studies done In estuaries <strong>of</strong> <strong>the</strong><br />

Pdcific <strong>Northwest</strong> where dredg<strong>in</strong>g has<br />

occurred. In Oregon, a nutriber <strong>of</strong><br />

landfills have resulted <strong>in</strong> tile loss <strong>of</strong><br />

<strong>eelgrass</strong> habit& ei<strong>the</strong>r by ciirect dredy<strong>in</strong>y<br />

or by seuiment deposition. Parlpheral<br />

erosion around <strong>the</strong> larrifill and dik<strong>in</strong>g to<br />

protect <strong>the</strong> la~lfill Itdvi. also reultd <strong>in</strong><br />

loss <strong>of</strong> eelcjrass <strong>in</strong> sorne areas. 'i'hey<br />

stated that kiillapa Uay required<br />

raa<strong>in</strong>tenance dredg<strong>in</strong>g <strong>of</strong> 23rr,dkJU m 3<br />

(33d,dlc)cd yd3) per year up to 1977, wlien<br />

<strong>the</strong> Ariily Corps <strong>of</strong> Eng<strong>in</strong>eers decided to<br />

discont<strong>in</strong>ue it. Yaqu<strong>in</strong>a estuary, Orqon,<br />

conta<strong>in</strong>ed abut 5% <strong>of</strong> its sediments <strong>in</strong> <strong>the</strong><br />

form <strong>of</strong> wood chips, sawdust, and plant<br />

material. 'l'hese ntateridls are significant<br />

fractions <strong>in</strong> estuaries where wood<br />

process<strong>in</strong>g <strong>in</strong>dustries dre located. Coos<br />

Bay, <strong>in</strong> sou<strong>the</strong>rn Oregon, is heavily<br />

impdcted by <strong>in</strong>dustrialization, logy <strong>in</strong>g,<br />

and shipp<strong>in</strong>g. klumboldt Bay is heavily<br />

sedii~ieritect. <strong>The</strong> high tide area decreas<br />

from lUt3 km2 (3.3 mi2) to 67 km2 (2b mi<br />

Y<br />

<strong>in</strong> <strong>the</strong> last 12kJ years. This decrease is<br />

related to hunan activity <strong>in</strong> <strong>the</strong> area, <strong>in</strong><br />

particular, agriculture and logg<strong>in</strong>g.<br />

Eclgrdss seems relatively resistant to<br />

substances that can polson o<strong>the</strong>r forms <strong>of</strong><br />

narlne life (~lc~oy and elf ferich 198ld).<br />

It appears to concentrate metals without<br />

damage (t3arsdate and Nebert 1971;<br />

Br<strong>in</strong>khuis et al. 19dd), but Zlclnan (1975)<br />

postulated that this nakes <strong>the</strong> metals<br />

dvailable for movemmt up <strong>the</strong> food cha<strong>in</strong>.<br />

Waddell 11964) documented <strong>the</strong> impacts <strong>of</strong><br />

6. OIL FND ORI;ANIC CHEMICALS<br />

harvest<strong>in</strong>g oysters from selgrass beds <strong>in</strong><br />

Humboldt Bay by I-~ydraulic dredges and a Several studies made on <strong>eelgrass</strong> follow<strong>in</strong>g<br />

modifled draglrrle-typ dredge. uarvest<strong>in</strong>y oil spills llave shown only temporary<br />

procedures had severe llnpcts on <strong>eelgrass</strong>. damage to blades I£ <strong>the</strong> oil contacts <strong>the</strong><br />

Under corrditions <strong>of</strong> no dredy<strong>in</strong>y, <strong>eelgrass</strong> blades <strong>in</strong> alr (~alby 1968). If <strong>the</strong> leaf<br />

biomass decl<strong>in</strong>ed 38% {cf. discussion on rema<strong>in</strong>s covered with water, <strong>the</strong>re is no


apparent darnazje. IUllzomes and roots do<br />

not appear to be uai.ldj~4 <strong>in</strong> any case. <strong>The</strong><br />

best docu~nei~ted case study is that <strong>of</strong> den<br />

Hartoq drld Jdc~bs (19od) a£ ter <strong>the</strong> tanker<br />

~lnocd Cadiz was stranded on thz i3rlttany<br />

coast, krdr~ce, uls~hdrqlng L~u,wC)W tuns<br />

(13u1363,G30 kg) ok crude uil and 4,dW<br />

tons l~,o36,3oJ kg) <strong>of</strong> bunker fuel. <strong>The</strong><br />

<strong>eelgrass</strong> re,naitled alr~~ost unaffected.<br />

,*ilmal yroups were selectively df fectzd:<br />

gastropods dere not ~ftected, and<br />

eclllnocierms r ecovererl. i'lle ~uphlpods,<br />

~sopods, and plychaetcs were seriously<br />

dan~acjed and had not recovered durlng <strong>the</strong><br />

year followirq <strong>the</strong> spill.<br />

<strong>The</strong> most sensitive areas conta<strong>in</strong><strong>in</strong>g<br />

<strong>eelgrass</strong> nlay be <strong>in</strong> stleltered locations<br />

elat are poorly flusllecl (Beak Consultalts<br />

1975). <strong>The</strong>se areas will tend to reta<strong>in</strong><br />

oil for Long periods. If spi 11s occur <strong>in</strong><br />

late sulntner or w<strong>in</strong>ter when leaf slough<strong>in</strong>g<br />

is at a peak, mats <strong>of</strong> iirlft blades will<br />

tend to cdpture and reta<strong>in</strong> oil for later<br />

rernobllizdtiori <strong>in</strong> <strong>the</strong> <strong>in</strong>tertidal zone.<br />

'l'he authors also warn that oil<strong>in</strong>g <strong>of</strong><br />

blades may make <strong>the</strong>m unpalatable to<br />

mtural grazers such as waterfowl. It is<br />

also psslble that a spill 111 spr<strong>in</strong>g could<br />

<strong>in</strong>terrupt <strong>the</strong> production and/or viability<br />

<strong>of</strong> young flowers and pollen. Kesearcli<br />

should be done on <strong>the</strong> effects <strong>of</strong> oil on<br />

<strong>the</strong> bacterial urcomposition <strong>of</strong> dead<br />

eelyrass blades <strong>in</strong>to detrltus before it<br />

enters <strong>the</strong> food web. It is kmwn that <strong>the</strong><br />

<strong>eelgrass</strong> habitat car1 reta<strong>in</strong> and release<br />

oil slowly over long prlods, result<strong>in</strong>g it1<br />

dlronic contam<strong>in</strong>ation.<br />

Ueak Consultants (1975) documented <strong>the</strong><br />

possible impacts <strong>of</strong> an oil spill <strong>in</strong><br />

nor<strong>the</strong>rn Puget Sound for a number <strong>of</strong><br />

&imals that use <strong>the</strong> <strong>eelgrass</strong> system. For<br />

<strong>the</strong> waterfowl arld stloreblrds, <strong>the</strong> loss <strong>of</strong><br />

food or consumption <strong>of</strong> ta<strong>in</strong>teci fwd, are<br />

<strong>the</strong> greatest impacts. For <strong>the</strong> fishes <strong>the</strong><br />

greatest impacts are to <strong>the</strong> bottom<br />

dwellers; i.e., narcotization followed by<br />

suffocation or <strong>in</strong>creased predation by <strong>the</strong><br />

less sensitive crabs. Flatfishes may<br />

develop tumors on <strong>the</strong>ir ventral surfaces<br />

<strong>in</strong> contact with polluted sediments. For<br />

<strong>the</strong> shorel<strong>in</strong>e and open-water fishes, <strong>the</strong><br />

movement away from <strong>the</strong> <strong>eelgrass</strong> meadow<br />

<strong>in</strong>creases <strong>the</strong> chance <strong>of</strong> predation and <strong>the</strong><br />

loss <strong>of</strong> food. Crabs appear to be highly<br />

resistant to oil, but <strong>the</strong> smaller<br />

crustaceans are more severely and qulckly<br />

affected. Mollusks appear to be entirely<br />

unaffected by oil ~o~ta~n<strong>in</strong>ation <strong>of</strong> low<br />

aromatic content, but highly aromatic<br />

crudes and ref<strong>in</strong>ed products can cause<br />

paralysis and death. qhe same was found<br />

for anne 1 ids .<br />

On a rank<strong>in</strong>g for physical impact, <strong>the</strong><br />

<strong>eelgrass</strong> bed was second only to <strong>the</strong> salt<br />

marsh: for toxicity impact <strong>the</strong> <strong>eelgrass</strong><br />

bed was midway between <strong>the</strong> mixed-coarse<br />

habitat and open water habitat (~eak<br />

Consultants 1975).<br />

Oil spill& on <strong>the</strong> surfgrass, Phyllos~dix<br />

scouleri, <strong>in</strong> <strong>the</strong> pacific <strong>Northwest</strong> had<br />

similar effects. Little damage was. done<br />

to <strong>the</strong> plants (leaves turned brown, but<br />

were replaced; no damage to rhizomes and<br />

roots), but some yroups <strong>of</strong> animals<br />

received long-term damage (Foster et al.<br />

1971; Clark et al. 1978).<br />

Documentation <strong>of</strong> oiL spills on <strong>the</strong><br />

tropical seagrass Thalassia is more<br />

extensive (cf. Zieman 1982 for a thorough<br />

review). <strong>The</strong> results are approximately<br />

<strong>the</strong> same; <strong>the</strong> plants are little affected<br />

by <strong>the</strong> oil, but associated fauna can be<br />

severely damaged. <strong>The</strong> moat severe effect<br />

was noted when oil was spilled on<br />

Thalassia near Guanica, Puerto Rico. In<br />

less than 1 wk, 3,0@0 m3 <strong>of</strong> sand washed<br />

out, ow<strong>in</strong>g to <strong>the</strong> mix<strong>in</strong>g <strong>of</strong> <strong>the</strong> oil with<br />

<strong>the</strong> sediments, mak<strong>in</strong>g <strong>the</strong>m buoyant and<br />

easier to wash out. Mass mortalities <strong>of</strong><br />

animals occurred follow<strong>in</strong>g <strong>the</strong> spill.<br />

Zieman (1982) thoroughly reviewed <strong>the</strong><br />

research done on <strong>the</strong> toxicity levels <strong>of</strong><br />

crude oil and <strong>the</strong> ref<strong>in</strong>ed fractions. Ml<br />

work shows that ref<strong>in</strong>ed bunker C and No. 2<br />

fuel oil were more toxic to all animal<br />

forms than crude oils. Changes <strong>in</strong><br />

temperature and sal<strong>in</strong>ity enhanced <strong>the</strong><br />

toxic effects. <strong>The</strong> greatest danger to<br />

aquatic organisms appears to be <strong>the</strong><br />

aromatic hydrocarbons as Opposed to <strong>the</strong><br />

paraff<strong>in</strong>s or alkanes. <strong>The</strong> bicyclic and<br />

polycyclic aromatics, especially<br />

napthalene, are <strong>the</strong> major source <strong>of</strong> <strong>the</strong><br />

observed mortalities. <strong>The</strong> best <strong>in</strong>dicator<br />

<strong>of</strong> an oil's toxicity ia probably its<br />

aromatic hydrocarbon content.<br />

In recent years humans have dumped<br />

<strong>in</strong>creas<strong>in</strong>g amounts <strong>of</strong> heavy metals and<br />

syn<strong>the</strong>tic products, <strong>in</strong>clud<strong>in</strong>g chlor<strong>in</strong>ated


hydrocarbons and o<strong>the</strong>r herbicides, <strong>in</strong>to<br />

our shallow coastal zone. Additions <strong>of</strong><br />

toxic materials are known to affect animal<br />

communities (Thayer et al. 1975a), but<br />

little has been done to document <strong>the</strong>ir<br />

direct effect on <strong>eelgrass</strong>. More research<br />

is needed, only on <strong>the</strong> bioaccwnulation<br />

<strong>of</strong> metals and toxic chemicals by <strong>the</strong><br />

plants but also <strong>the</strong>ir accumulation and<br />

possible transfer thruugh <strong>the</strong> graz<strong>in</strong>g and<br />

detritus food cha<strong>in</strong>s and nutrient cycles.<br />

In an attempt to decimate <strong>eelgrass</strong> <strong>in</strong> Nova<br />

Scotia to enhance oyster growth, Thomas<br />

(1968) found that <strong>the</strong> herbicide,<br />

butoxyethanol ester <strong>of</strong> 2, 4-Dl was most<br />

effective <strong>in</strong> kill<strong>in</strong>g <strong>the</strong> plants. This was<br />

applied to <strong>the</strong> plants <strong>in</strong> <strong>the</strong> field.<br />

Correll and Wu (1982) found that <strong>the</strong><br />

herbicide atraz<strong>in</strong>e, commonly used <strong>in</strong> corn<br />

production, stimulated photosyn<strong>the</strong>sis at<br />

75 ug/liter <strong>in</strong> <strong>eelgrass</strong>, but <strong>in</strong>hibited it<br />

at 650 ug/liter. This herbicide was<br />

tested follow<strong>in</strong>g a gradual decl<strong>in</strong>e <strong>in</strong><br />

populations <strong>of</strong> many species <strong>of</strong> submerged<br />

vascular plants <strong>in</strong> <strong>the</strong> upper and<br />

midreaches <strong>of</strong> Chesapeake Bay. <strong>The</strong>y noted<br />

that <strong>the</strong> temporal and spatial use pattern<br />

<strong>of</strong> atraz<strong>in</strong>e arourul <strong>the</strong> bay correlated well<br />

with <strong>the</strong> observed decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> estuar<strong>in</strong>e<br />

plant populations. It is clear that<br />

herbicides can be extreme1 y damag<strong>in</strong>g.<br />

Run<strong>of</strong>f fro<strong>in</strong> waterways that dra<strong>in</strong><br />

agricultural areas can severely damage<br />

<strong>eelgrass</strong> systems by sdirnent transport and<br />

by herbicide contents. <strong>The</strong>se waters<br />

should be monitored for <strong>the</strong>se chemicals.<br />

6.4 RQAT USE<br />

Impacts to <strong>eelgrass</strong> <strong>meadows</strong> <strong>in</strong> <strong>the</strong> <strong>Pacific</strong><br />

<strong>Northwest</strong> do not normally result from<br />

physical disturbance <strong>in</strong>volv<strong>in</strong>g cuts made<br />

by boat propellors. In south Florida,<br />

Zieman (1982) stated that <strong>the</strong>se cuts are<br />

<strong>the</strong> most common form <strong>of</strong> disturbance to<br />

seagrass beds.<br />

<strong>The</strong> numbers <strong>of</strong> black brant are decl<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>, ow<strong>in</strong>g to an<br />

<strong>in</strong>crease <strong>in</strong> human use and development <strong>of</strong><br />

<strong>the</strong> coastal area (Reiger 1982). Between<br />

<strong>the</strong> 1940's and 1981 brant stopp<strong>in</strong>g <strong>in</strong><br />

Wash<strong>in</strong>gton decl<strong>in</strong>ed by 74%; <strong>in</strong> Oregon, by<br />

90%; and <strong>in</strong> California, numbers decl<strong>in</strong>ed<br />

by almost 99%. Reiyer attributed this to<br />

<strong>the</strong> dra<strong>in</strong><strong>in</strong>g <strong>of</strong> coastal marshes, <strong>the</strong><br />

conversion <strong>of</strong> bays to mar<strong>in</strong>as, and <strong>the</strong><br />

impact <strong>of</strong> an <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> weekend<br />

bters, who have driven w<strong>in</strong>ter<strong>in</strong>g brant<br />

to Mexico where populations have grown<br />

from 80,000 <strong>in</strong> <strong>the</strong> early 1950's to as many<br />

as 130,000 tcday.<br />

Even if <strong>the</strong>se numbers are only<br />

approximately correct or merely <strong>in</strong>dicate<br />

trends, an aggressive program is needed to<br />

create protected zones around <strong>the</strong> large<br />

<strong>eelgrass</strong> beds which harbor <strong>the</strong> brant.<br />

6.5 TEMPERATWE AND SALINITY<br />

Temperature is probably <strong>the</strong> most critical<br />

<strong>of</strong> <strong>the</strong> suite <strong>of</strong> environmental factors<br />

that affect mar<strong>in</strong>e life. ~t is a<br />

controll<strong>in</strong>g factor. In <strong>the</strong> case <strong>of</strong><br />

seagrasses, it affects growth,<br />

development, and phenol- ical cycles.<br />

McMillan (1978) and Phillips et al.<br />

(1983a) regorted that <strong>eelgrass</strong> populations<br />

have upper and lower <strong>the</strong>rmal tolerance<br />

levels and that temperature regimes at<br />

local sites along broad latitud<strong>in</strong>al<br />

gradients on both coastl<strong>in</strong>es <strong>of</strong> North<br />

America control <strong>the</strong> occurrence and tim<strong>in</strong>g<br />

<strong>of</strong> flower and seed production.<br />

McMillan (1978) subjected three different<br />

<strong>eelgrass</strong> populations from Puget Sound,<br />

each with different leaf widths, to three<br />

different temperature treatments. After 4<br />

mo, each population ma<strong>in</strong>ta<strong>in</strong>ed its<br />

orig<strong>in</strong>al leaf width, <strong>in</strong>dicat<strong>in</strong>g that local<br />

populations ma<strong>in</strong>ta<strong>in</strong>ed dist<strong>in</strong>ct genetic<br />

l i m i t s <strong>of</strong> ecoplasticity to <strong>the</strong>ir<br />

environments, <strong>The</strong>se tolerance levels vary<br />

with <strong>the</strong> local area. Biebl and McRoy<br />

(1971) not only found a difference <strong>in</strong> <strong>the</strong><br />

<strong>the</strong>rmal tolerances <strong>of</strong> <strong>in</strong>tertidal pool and<br />

subtidal <strong>eelgrass</strong> <strong>in</strong> I zembek Lagoon,<br />

Alaska, but also found that both forms<br />

could withstand a range <strong>of</strong> water<br />

temperatures from -6O C to 27O C, while<br />

plants from Puget Sound and California<br />

were killed at -6O C. McMillan and<br />

Phillips (1979) found that <strong>eelgrass</strong> <strong>in</strong><br />

Alaska had more heat resistance than<br />

plants from Puget Sound or California,<br />

ow<strong>in</strong>g to <strong>the</strong> selective <strong>in</strong>fluence <strong>of</strong> a<br />

greater environmental variability <strong>in</strong><br />

Alaska.<br />

In <strong>the</strong> Ber<strong>in</strong>g Sea and along <strong>the</strong> Atlantic<br />

coast <strong>of</strong> North m-erica, <strong>the</strong>re is a fairly


great annual range <strong>of</strong> water temperature<br />

(-6' C to 27' C <strong>in</strong> Izembek riagoon; Nova<br />

Scotia: -2O C to 2 4 O C; Rhode Island:<br />

-2' C to 27' C; North Carol<strong>in</strong>a: 0' C to<br />

27O C) m hilli ips unpubl. data). <strong>The</strong>re is<br />

evidence that <strong>eelgrass</strong> at <strong>the</strong> nor<strong>the</strong>rn and<br />

sou<strong>the</strong>rn limits <strong>of</strong> distribution on <strong>the</strong><br />

<strong>Pacific</strong> coast and on <strong>the</strong> Atlantic coast<br />

may have much greater <strong>the</strong>rmal tolerances<br />

than that <strong>in</strong> <strong>the</strong> midportion <strong>of</strong> <strong>the</strong> <strong>Pacific</strong><br />

coast range (Phillips et al. 1983b). In<br />

Puget Sound, <strong>the</strong> normal annual range <strong>of</strong><br />

water temperature is 6O C to 13O C.<br />

Occasionally, dur<strong>in</strong>g low tides on sunny<br />

days <strong>in</strong> summer, <strong>the</strong>re may be brief periods<br />

<strong>of</strong> elevated water temperatures over<br />

<strong>eelgrass</strong> (up to 18O C), but this is rare.<br />

In 1974, Phillips warned that heated water<br />

released <strong>in</strong>to <strong>eelgrass</strong> habitats could<br />

disrupt <strong>the</strong> reprductive cycle, presumably<br />

<strong>in</strong>terfer<strong>in</strong>g with <strong>the</strong> normal temperaturedependent<br />

periodicity <strong>of</strong> flower<strong>in</strong>g and<br />

germ<strong>in</strong>ation. Consider<strong>in</strong>g <strong>the</strong> present<br />

contributions <strong>of</strong> McMillan (1978) and<br />

McMillan and Phillips (1979), we now know<br />

that <strong>the</strong> developmental cycle <strong>of</strong> <strong>eelgrass</strong>,<br />

as well as its presence <strong>in</strong> an area, is<br />

temperature related. Populations <strong>of</strong> <strong>the</strong><br />

plant have specific <strong>the</strong>rmal adaptive<br />

limits. <strong>The</strong> <strong>Pacific</strong> <strong>Northwest</strong> does not<br />

have a significant problem with <strong>the</strong>rmal<br />

water release from power plants or<br />

<strong>in</strong>dustry. We know from work done <strong>in</strong><br />

Biscayne Bay on Thalassia (reviewed by<br />

Zieman 1982) that plants were killed when<br />

<strong>the</strong> water temperature was elevated C<br />

above ambient and were harmed by an<br />

elevation <strong>of</strong> 3O C. If <strong>the</strong> <strong>Northwest</strong><br />

should encounter such <strong>the</strong>rmal releases, we<br />

must consider <strong>the</strong> impacts on <strong>eelgrass</strong>.<br />

McRoy and Helfferich (1980) noted <strong>the</strong><br />

susceptibility <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> <strong>the</strong> North<br />

Atlantic to a- very slight <strong>in</strong>crease <strong>in</strong><br />

water temperature <strong>in</strong> 1931. Dur<strong>in</strong>g that<br />

period over 90% <strong>of</strong> all <strong>eelgrass</strong> died.<br />

Recent evidence shows that <strong>the</strong>se stra<strong>in</strong>s<br />

have a greater <strong>the</strong>rmal tolerance range<br />

than do <strong>Pacific</strong> coast stocks.<br />

Consider<strong>in</strong>g its worldwide distribution,<br />

<strong>eelgrass</strong> grows <strong>in</strong> a wide range <strong>of</strong><br />

sal<strong>in</strong>ity. It is euryhal<strong>in</strong>e. Biebl and<br />

McRoy (1971) reported that <strong>eelgrass</strong> <strong>in</strong><br />

Izembek Lagoon, Alaska, ma<strong>in</strong>ta<strong>in</strong>ed an<br />

osmotic resistence to sal<strong>in</strong>ity changes<br />

from freshwater to 93 ppt. At 124 ppt<br />

leaves were killed. Positive net<br />

production was maximum at 31 ppt, as was<br />

photosyn<strong>the</strong>tic rate, but was found <strong>in</strong> a<br />

range from freshwater to 56 ppt<br />

(photosyn<strong>the</strong>tic rate was zero <strong>in</strong><br />

freshwater and at 62 ppt). Respiration<br />

was depressed <strong>in</strong> freshwater but only<br />

slightly affected from 31 ppt to 93 ppt.<br />

Ostenfeld (1908) considered that a<br />

sal<strong>in</strong>ity range for <strong>eelgrass</strong> <strong>in</strong> Denmark<br />

from 10 ppt to 30 ppt was optimum for<br />

growth. In Japan, Arasaki (1950) reported<br />

that <strong>eelgrass</strong> growth was best from 23.5<br />

ppt to 31 ppt but poor at 18.0 ppt and<br />

stop@ below 9.1 ppt, although plants did<br />

not die. Tut<strong>in</strong> (1938) observed <strong>eelgrass</strong><br />

<strong>in</strong> a bay <strong>in</strong> England <strong>in</strong> 42 ppt with no<br />

damage. He grew plants for a considerable<br />

period <strong>in</strong> <strong>the</strong> laboratory <strong>in</strong> sal<strong>in</strong>ities<br />

rang<strong>in</strong>g from 10 ppt to 40 ppt without<br />

harm. It is known that <strong>eelgrass</strong> can<br />

acclimate to a chang<strong>in</strong>g sal<strong>in</strong>ity regime.<br />

Often extensive <strong>meadows</strong> grow <strong>of</strong>f <strong>the</strong><br />

mouths <strong>of</strong> streams where <strong>the</strong> sal<strong>in</strong>ity drops<br />

to freshwater level at low tide. <strong>The</strong><br />

plants appear to flourish. Low sal<strong>in</strong>ities<br />

appear to enhance seed germ<strong>in</strong>ation <strong>in</strong><br />

spr<strong>in</strong>g (Tut<strong>in</strong> 1938; Arasaki 1950; Phillips<br />

1972).<br />

6.6 MANAGENENI! NEEDS<br />

Wilson (1981) noted that <strong>in</strong> order to<br />

manage our coastal estuaries properly, we<br />

need a better understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>ecology</strong><br />

<strong>of</strong> <strong>eelgrass</strong>, which requires knowledge <strong>of</strong><br />

<strong>the</strong> causes <strong>of</strong> its distributional patterns.<br />

<strong>The</strong>se patterns are affected <strong>in</strong> <strong>the</strong> short<br />

term by <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g demands by modern<br />

man on <strong>the</strong> coastal and estuar<strong>in</strong>e<br />

environments. Sedimentation, dredg<strong>in</strong>g,<br />

storms, currents, sewage, power-plant<br />

effluents, and factors such as<br />

adaptational tolerances <strong>of</strong> <strong>the</strong> plants as<br />

regulated by <strong>the</strong>ir genetic patterns, all<br />

affect <strong>the</strong>se distributional patterns.<br />

Cont<strong>in</strong>ued monitor<strong>in</strong>g <strong>of</strong> our estuar<strong>in</strong>e<br />

areas is necessary if we desire to rema<strong>in</strong><br />

aware <strong>of</strong> biological and environmental<br />

changes. This awareness is needed for<br />

<strong>in</strong>tellisent manaqement <strong>of</strong> this resource.<br />

S arti-na alternif lora (saltmarsh<br />

9---T<br />

cordsrass was <strong>in</strong>troduced <strong>in</strong>to Willapa Bay<br />

dur&g <strong>the</strong> 1940's or early 1950's: <strong>The</strong><br />

species has rapidly spread <strong>in</strong>to upper<br />

<strong>in</strong>tertidal and mudflat communities and is<br />

displac<strong>in</strong>g <strong>the</strong> more productive native


marsh swecies and <strong>the</strong> small Zostera<br />

japonica'; a favorite food plant <strong>of</strong> black<br />

brant and o<strong>the</strong>r waterfowl. Cordcrrass was<br />

also <strong>in</strong>troduced <strong>in</strong>to South ~adilla Bay,<br />

where it also seems to be spread<strong>in</strong>g from<br />

rhizanes. <strong>The</strong> result <strong>of</strong> cont<strong>in</strong>ued growth<br />

<strong>of</strong> Spart<strong>in</strong>a <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong> would<br />

result <strong>in</strong> lower<strong>in</strong>g waterfowl carry<strong>in</strong>g<br />

capacity. In its native habitat <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>astern Gulf <strong>of</strong> Mexico and northward<br />

from Florida to Massachusetts, <strong>the</strong> species<br />

does not compete with seayrasses for its<br />

niche. In its native habitat all<br />

seagrasses are subtidal.<br />

Monitor<strong>in</strong>g <strong>of</strong> vegetation such as cordgrass<br />

expansion, changes <strong>in</strong> stand<strong>in</strong>g stocks <strong>of</strong><br />

<strong>eelgrass</strong>, impacts and disturbances <strong>of</strong><br />

<strong>eelgrass</strong>, and cont<strong>in</strong>ued escalation <strong>of</strong><br />

human activity over <strong>the</strong> dense stands <strong>of</strong><br />

<strong>eelgrass</strong> is needed to establish improved<br />

means <strong>of</strong> assess<strong>in</strong>g changes and legislat<strong>in</strong>g<br />

materials were caus<strong>in</strong>g water quality<br />

problems (<strong>the</strong> radionuclides entered<br />

Willapa Bay from <strong>the</strong> Wford Atomic Works<br />

where <strong>the</strong>y traveled along <strong>the</strong> Columbia<br />

River to <strong>the</strong> pacific Ocean and <strong>in</strong>to<br />

Wills by, 390 miles away; ~32, ~ n ~<br />

ad C F were predom<strong>in</strong>ant and were fowd<br />

<strong>in</strong> <strong>the</strong> oysters and razor clams); (6)<br />

sedimentation arose upstream from topsoil<br />

<strong>of</strong>f farmland, from logg<strong>in</strong>g, and from road<br />

and highway construction.<br />

It is imperative that studies be cont<strong>in</strong>ued<br />

<strong>in</strong> sanctuaries totally devoid <strong>of</strong> impacts<br />

M yield basel<strong>in</strong>e data that can be used as<br />

control <strong>in</strong>formation on <strong>the</strong> <strong>in</strong>herent<br />

genetic, morphological, and physiological<br />

capabilities <strong>of</strong> <strong>the</strong> plants and <strong>the</strong>ir<br />

system.<br />

Undesirable Effects <strong>of</strong> Eelgrass<br />

palicy act necessary <strong>in</strong> sensitive areas. <strong>The</strong>re are, at present, no known<br />

<strong>The</strong> use <strong>of</strong> <strong>the</strong> best agricultural, lcqg<strong>in</strong>g, undesirable effects <strong>of</strong> <strong>eelgrass</strong> In <strong>the</strong><br />

and roadbuild<strong>in</strong>g practices are imperative I*~cI. t LC C~Orthwst r~qlu,~.<br />

if future impacts ate to be m<strong>in</strong>imized.<br />

Cmflictitlg uses <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong> habitat,<br />

such as oyster culture, boat<strong>in</strong>g over Cuniu;.rclal am ~ereittlonal Fisheries<br />

<strong>meadows</strong>, and real-estate development,<br />

which requires dredg<strong>in</strong>g and later sewage iiel f ferrctl 33x3 t.\cIIUy (1~73) cd1culat.w tt IC<br />

deposition, necd suitable management. dollar values <strong>of</strong> varlouv comtx>nents <strong>of</strong> dn<br />

eelyrasb system. For ~ross CIICKJY vcllues,<br />

In Willapa Bay, one <strong>of</strong> <strong>the</strong> three largest usmg <strong>the</strong> tectrnlque ot Gossellnk et dl.<br />

stands <strong>of</strong> eelgraes <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> ( 1 lr) ~ arid <strong>the</strong> prwuctlvlty vd i cres <strong>of</strong><br />

<strong>Northwest</strong>, six activities have impacted eelyrdss <strong>of</strong> McRoy ar~d llclYllldn (13117),<br />

<strong>eelgrass</strong> (Fieh a@ Wildlife Service 1970): <strong>the</strong>y calculdterl that V.r ha (1 dc~e) <strong>of</strong><br />

(1) destruction <strong>of</strong> tidelands and<br />

marshlands by fill<strong>in</strong>g and dik<strong>in</strong>g have<br />

reclaimed 2,520 ha (6,300 acres) for<br />

<strong>in</strong>dustry and highways, and ano<strong>the</strong>r 120 ha<br />

(31d0 acres) for agriculture, while <strong>the</strong><br />

<strong>Pacific</strong> Soil and Water Conservation<br />

District encouraged <strong>the</strong> reclaim<strong>in</strong>g <strong>of</strong><br />

ano<strong>the</strong>r 2,6416 ha (6,600 acres) for<br />

pasture, hay, and silage production; (2)<br />

dra<strong>in</strong><strong>in</strong>g <strong>of</strong> fresh-water marshes and<br />

construction <strong>of</strong> lagoon hous<strong>in</strong>g (<strong>the</strong>re were<br />

eelgrdss was worttt +4,2~57/ yr (Gossel ln'c et<br />

dl. used <strong>the</strong> real estate uvalr~dtlon<br />

technrque <strong>of</strong> <strong>in</strong>come cdpi ta 1 lzat ion: L =<br />

P, W~~CCJ<br />

V 1s tlte value <strong>of</strong> d parcel <strong>of</strong><br />

land, 1t AS <strong>the</strong> annual return from lt, at~d<br />

r 1s <strong>the</strong> starrddrd rdte <strong>of</strong> liltex-est,<br />

rtssurnlng 5 6 ). 'i'hc nutrltlorr generatmi by<br />

ari eelyrass Tncauuw In Puget bound for<br />

oyster culture us19 data f ron~ I<strong>in</strong>ar et al.<br />

(1951) wds worth jlj, IbU per u.4 trd (1<br />

acre)/yr. Eor fisheries, <strong>the</strong> cdtejory was<br />

fears for oyster culture and fisheries due dlviJb4 lrito ~usnmerc~dl, sprt, 41w sport<br />

to deteriorat<strong>in</strong>g water quality): (3) charters. kJor cwrnmrrcral flsirerle; W.4 h;l<br />

dredg<strong>in</strong>gact'vities: <strong>in</strong>1%9alone1 about (1 acre) <strong>of</strong> eelyrass hds a value <strong>of</strong><br />

630.OV10 yd' <strong>of</strong> dredged spoil were $35/yr. tbr sport flshrrles t~ie value wds<br />

depsitd on diked and r&lairn& tidelands sZ&/ yr, wt~lle tor sport charters <strong>the</strong><br />

and marshlands; (4) construction <strong>of</strong> value ~ d ~ s byr.<br />

l k'or wdter fowl,<br />

bulkhead, pier, and shorel<strong>in</strong>e facilities; c€nlsldcriiy tne value ut' tne rne~lt as f d<br />

(5) contam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> aquatic life or ad tile morley spent huntity, ttle vrilw <strong>of</strong><br />

tho environment: domestic waters, 0.4 tla (1 acre) was Sl~/yr. l'nls ylvus a<br />

agricultural run<strong>of</strong>f, debris from log<br />

storage areas, wood chips, and radioactive<br />

value <strong>of</strong> $12,J25/U.4 tla (acre)/yr for an<br />

celgrsss nieiluow (cf. tielfferlch and McWy


1978, for all assumptions, formulations,<br />

and consideratlotls used <strong>in</strong> <strong>the</strong><br />

calculations) .<br />

If <strong>the</strong>se calculations are even only<br />

approxiruately correct, <strong>the</strong> economic value<br />

<strong>of</strong> seagrasses 1s enorlnous <strong>in</strong> <strong>the</strong> <strong>Pacific</strong><br />

Horthwest. Proctor et al. (198db)<br />

calculatcxi that ttlere are 8,4dd ha (21,WW<br />

acres) <strong>of</strong> eelyrass ln Wash<strong>in</strong>gton (this<br />

probably does not <strong>in</strong>clude Puget Sound),<br />

L,OW ha (5,c)W3 acres) In Oregon, and<br />

1,odW ha (4,LWU acres) In nor<strong>the</strong>rn<br />

California. On a prslstent annual basis<br />

this represents a sizeable econcmic<br />

resource, even without consider<strong>in</strong>g<br />

coastdl-sediment stabilization value,<br />

wlilch is ~ncalculable.<br />

Specifically <strong>in</strong> <strong>the</strong> <strong>Northwest</strong> <strong>the</strong>re are<br />

some data that relate to economlc values<br />

<strong>of</strong> food anlmals associated with <strong>eelgrass</strong>.<br />

hebb and Iiourston (1979) fou:lu thdt <strong>in</strong><br />

sou<strong>the</strong>rn Brltlsh Colur~ibla alorie, <strong>the</strong> value<br />

<strong>of</strong> <strong>the</strong> <strong>Pacific</strong> herrlrig fishery for 1976-77<br />

was $29.9 million (81,000 tons, $29 million<br />

for roe; 7,000 tons, $0.9 million tor<br />

food fish). Helfferich and WFOy (1978)<br />

reported that <strong>the</strong> total 1976 catch <strong>of</strong><br />

<strong>Pacific</strong> herr<strong>in</strong>g (20.2 million tons) was<br />

worth $10.7 million. It must be remembered<br />

that herr<strong>in</strong>g lay eggs on algae,<br />

pil<strong>in</strong>gs, and several types <strong>of</strong> hard substrates<br />

as well.<br />

Dr. Robert Trulnble, bJash<strong>in</strong>yton State<br />

Department <strong>of</strong> Fisheries, related <strong>the</strong><br />

values <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> nerr<strong>in</strong>g <strong>in</strong><br />

\.Jash<strong>in</strong>yton State for 1979-8k9 (Table lb).<br />

<strong>The</strong> co~i~b<strong>in</strong>ed value for 1979 was<br />

$4,46d,122. In 19t3W <strong>the</strong> comb<strong>in</strong>ed value<br />

was Y1,774,b70. 111 lYitl <strong>the</strong> sport bait<br />

price was $2).33-$~.4~/lb; canmercial bit<br />

was $d.lU/lb. This price was lower due to<br />

low crab stocks for which <strong>the</strong> comn~ercial<br />

bait was sold. <strong>The</strong> last liarvest <strong>of</strong> roe<br />

herr<strong>in</strong>g was iri 19819, ow<strong>in</strong>g to iow<br />

ppulatlons <strong>in</strong> Washlryton State.<br />

In Iiashlngton Stdte <strong>the</strong>re are no records<br />

kept on trie fcucl fishery <strong>of</strong> tleLrlng, s<strong>in</strong>ce<br />

<strong>the</strong> food use 1s locallzed. Eelgrass is<br />

<strong>the</strong> .adlor substrate for egg deposltlorl,<br />

but <strong>the</strong> herr<strong>in</strong>g also use algae. <strong>The</strong><br />

largest s<strong>in</strong>yle ppuldtlon <strong>of</strong> herrlry is <strong>in</strong><br />

<strong>the</strong> Strait <strong>of</strong> Gmryla. Large populations<br />

are also founu at Port Orchdru, Port<br />

Maaison, Quartermaster Harbor, sou<strong>the</strong>rn<br />

Hood Canal, Discovery Bay, Port Gamble,<br />

and lesser populations <strong>in</strong> <strong>the</strong> San Juan<br />

Islands, <strong>in</strong> Wastl<strong>in</strong>yton State (Dr. Robert<br />

'rumble, pers. colnm. 1982). err<strong>in</strong>g lay<br />

eggs on <strong>eelgrass</strong> <strong>in</strong> February-March <strong>in</strong><br />

Wash<strong>in</strong>gton State and <strong>in</strong> mid-April to mid-<br />

Flay <strong>in</strong> <strong>the</strong> Strait <strong>of</strong> Georgla.<br />

Dr. Lynn Goodw<strong>in</strong>, 'CJashlngton State<br />

Deprtment <strong>of</strong> Flsherles, applied <strong>the</strong> data<br />

on values <strong>of</strong> shellfish <strong>in</strong> Wash<strong>in</strong>gton State<br />

(Table 161 (pers. cam. 1982). Eelgrass<br />

provides <strong>the</strong> cover for <strong>the</strong> juvenile spot<br />

shrlnip to mature. Thls resource is<br />

primarily taken <strong>in</strong> Hood Canal. Dr. Ken<br />

Chew, University <strong>of</strong> Wash<strong>in</strong>gton (pcrs.<br />

cw<strong>in</strong>m.) provided <strong>the</strong> current (1932) values<br />

ot several <strong>of</strong> <strong>the</strong> shellfish spies (Table<br />

16).<br />

Dr. Baumgartner, Wash<strong>in</strong>gton stace<br />

Department <strong>of</strong> ~isheries, related <strong>the</strong><br />

harvest and price values for Dungeness<br />

crabs caught <strong>in</strong> Puget Sound and <strong>the</strong><br />

coastal harvest. <strong>The</strong> number <strong>of</strong> crabs<br />

actually taken <strong>in</strong> <strong>eelgrass</strong> cannot be<br />

ascerta<strong>in</strong>ed, s<strong>in</strong>ce <strong>the</strong> crabs range from<br />

depths <strong>of</strong> 6 m (28 ft) to 72 m (240 ft).<br />

It is known that <strong>the</strong> crabs use <strong>eelgrass</strong> at<br />

certa<strong>in</strong> times <strong>in</strong> <strong>the</strong>ir life cycle: <strong>in</strong> <strong>the</strong><br />

juvenile stage, dur<strong>in</strong>g spr<strong>in</strong>g molt<strong>in</strong>g, and<br />

at certa<strong>in</strong> times <strong>of</strong> molt<strong>in</strong>g throughout <strong>the</strong><br />

year. But <strong>the</strong> exact extent <strong>the</strong>y depend on<br />

<strong>eelgrass</strong> or <strong>the</strong> exact role <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong><br />

<strong>the</strong>ir existence are yet to be discovered<br />

(pers. ccmm. 19821.<br />

<strong>The</strong> Wash<strong>in</strong>gton State Department <strong>of</strong> Game<br />

estimated <strong>the</strong> economic value to <strong>the</strong> State<br />

<strong>of</strong> Wash<strong>in</strong>gton for black brant. In <strong>the</strong><br />

1981-82 season, each bird taken by hunt<strong>in</strong>g<br />

was worth $50 to $60/bird and<br />

$lOO/man/day. In <strong>the</strong> 1981-82 season <strong>the</strong>re<br />

were 1,500 brant taken dur<strong>in</strong>g <strong>the</strong> hunt<strong>in</strong>g<br />

season.<br />

F<strong>in</strong>ally, Stokes (1978) estimated <strong>the</strong> value<br />

<strong>of</strong> <strong>the</strong> various animal species which result<br />

<strong>in</strong> <strong>in</strong>direct or direct <strong>in</strong>come to <strong>the</strong> State<br />

<strong>of</strong> Wash<strong>in</strong>gton. It appears that <strong>in</strong>come<br />

generated by <strong>the</strong> estuar<strong>in</strong>e habitats and<br />

wetlands <strong>of</strong> <strong>the</strong> State comes to millions <strong>of</strong><br />

dollars. Only those species listed by <strong>the</strong><br />

Wash<strong>in</strong>gton State Department <strong>of</strong> Fisheries<br />

are given <strong>in</strong> Table 16. <strong>The</strong> prices are<br />

based on 1975 values. Stokes (1978)<br />

listed <strong>the</strong> commercial, recreational, and<br />

67


Table 16. Harvests and value <strong>of</strong> ~CnXIErcially important animals frm <strong>eelgrass</strong>, Wash<strong>in</strong>gton<br />

State (Personnel, Wash<strong>in</strong>gton State Department <strong>of</strong> Fisheries; Stokes 1978 ).<br />

Spec ies Year Amount <strong>of</strong> harvest<br />

kg (lbs)<br />

Value <strong>in</strong> $<br />

(U.S.)<br />

<strong>Pacific</strong> herr<strong>in</strong>g<br />

me<br />

Sport bait<br />

Cmnerc ial bait<br />

Fae<br />

Sport bait<br />

Umnerc ial bait<br />

Spot prawn<br />

( Pandalus platyceros<br />

Oannerc ial harvest<br />

$2.69/1b; Stokes<br />

(1978; 1975 prices)<br />

Sport harvest<br />

Hard shell clams<br />

Carmerc ial harvest<br />

(wet wt)<br />

Butter clams<br />

$O.lO/lb; Stokes<br />

(1978; 1975 prices)<br />

Horse clans $0.17/lb; (1978; 1975 prices)<br />

--<br />

--<br />

$0.25 to 0.30 each; $0.17/lb;<br />

Stokes (1978; 1975 prices)<br />

--<br />

Native little<br />

necks<br />

$1.10 to 1.20/lb; $0. 21/lb;<br />

Stokes (1978; 1975 prices)<br />

--<br />

Manila<br />

cont<strong>in</strong>ued


Table 16.<br />

( CDncluded)<br />

Spec ies year Amount <strong>of</strong> Harvest Value <strong>in</strong> $<br />

kq (lbs)<br />

(U.S.)<br />

Mussels<br />

Sport harvest<br />

All hardshell<br />

clams (wet wt)<br />

Oysters<br />

Sport harvest<br />

(meats)<br />

$1.26/lb; Stokes<br />

(1978; 1975 prices)<br />

Oungeness crabs<br />

C m r ical harvest<br />

( Puge t Sound )<br />

Cormerical harvest<br />

( Cbastal)<br />

Sport harvest<br />

Fed rock crabs<br />

$0.703/lb (ex vessel)<br />

$0.638/1b (ex vessel)<br />

$0.836/1b (ex vessel)<br />

$0.769/1b (ex vessel,<br />

Wstprt)<br />

$0.664/1b (ex vessel,<br />

Wstprt)<br />

$0.918/lb (ex vessel,<br />

Wstprt)<br />

$5.30/lb; Stokes<br />

(1978; 1975 prices)<br />

--<br />

$2.65/1b: Stokes<br />

(1978; 1975 prices)<br />

replacement costs <strong>of</strong> most <strong>of</strong> <strong>the</strong> animals value as well. This aspect appears not to<br />

that result <strong>in</strong> <strong>in</strong>come from <strong>the</strong> mar<strong>in</strong>e be well understood by <strong>the</strong> general public,<br />

environment, <strong>in</strong>any <strong>of</strong> which spend a part <strong>of</strong> who cont<strong>in</strong>ue to place great demands upon<br />

<strong>the</strong>ir life cycle <strong>in</strong> <strong>eelgrass</strong> <strong>meadows</strong> <strong>in</strong> <strong>the</strong> various agencies to diversify its use.<br />

<strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>. <strong>The</strong> amount <strong>of</strong><br />

<strong>in</strong>come generated from <strong>the</strong> harvests <strong>of</strong><br />

<strong>the</strong>se animals is stagger<strong>in</strong>g.<br />

Transplant<strong>in</strong>g Programs<br />

Thus, as <strong>the</strong> harvest data for commercial It is possible that transplantation <strong>of</strong><br />

and sport fisheries and game cont<strong>in</strong>ue to seagrasses will adequately mitigate direct<br />

be collected and evaluated, it appears and/or direct <strong>in</strong>advertent disturbances<br />

that <strong>the</strong> seagrass system has not only to <strong>the</strong> system. Recent work done by<br />

scientific value, but an enormous economic Fonseca et al. (1982b), us<strong>in</strong>g <strong>eelgrass</strong> on


a variety <strong>of</strong> substrates <strong>in</strong>clud<strong>in</strong>g dredged<br />

spoils <strong>in</strong> North Carol<strong>in</strong>a, appears cost<br />

effective and may very well be successful<br />

<strong>in</strong> selected <strong>Pacific</strong> <strong>Northwest</strong> estuaries.<br />

<strong>The</strong> only work done <strong>in</strong> Puget Sound thus far<br />

(Phillips 1972; Backman 1983) <strong>in</strong>volved<br />

only small experimental plots. m e and<br />

Hoeppel (1976) prepared an appraisal and<br />

recommendation for an <strong>eelgrass</strong><br />

transplantation and restoration program <strong>in</strong><br />

south San Diego Bay, California. In <strong>the</strong><br />

absence <strong>of</strong> any available large-scale<br />

projects <strong>in</strong> which to assess transplant<br />

success and costs, <strong>the</strong>y recommend that<br />

s<strong>in</strong>ce transplantation has been shown to be<br />

feasible, a pilot study should be made on<br />

<strong>the</strong> 8-acre Delta Beach site us<strong>in</strong>g a<br />

variety <strong>of</strong> techniques. Go forth and<br />

Peel<strong>in</strong>g (1979) conduct& <strong>the</strong> pilot project<br />

at <strong>the</strong> site. <strong>The</strong>y established an <strong>in</strong>itial<br />

sublittoral plot <strong>of</strong> 46 m2 to test <strong>the</strong><br />

relative success <strong>of</strong> three plug sizes with<br />

<strong>the</strong> plants placed <strong>in</strong> biodegradable fiber<br />

pots. A second transplant was conducted<br />

to establish 1.62 ha (4 acres) <strong>of</strong> <strong>eelgrass</strong><br />

<strong>in</strong> <strong>the</strong> <strong>in</strong>tertidal and sublittoral zones,<br />

Survival <strong>of</strong> <strong>the</strong> potted plants was<br />

relatively high. After 30 mo <strong>the</strong>re was<br />

35%-46% survival <strong>of</strong> <strong>the</strong> plugs <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>itial transplant. In <strong>the</strong> second<br />

transplant only 10% <strong>of</strong> <strong>the</strong> plugs survived<br />

<strong>in</strong> <strong>the</strong> subtidal after one grow<strong>in</strong>g season,<br />

while <strong>in</strong> <strong>the</strong> <strong>in</strong>tertidal, plug survival<br />

ranged between 50%-75%.<br />

No one has had any success us<strong>in</strong>g <strong>eelgrass</strong><br />

seeds <strong>in</strong> transplants e hilli ips 1972;<br />

Churchill et al. 1978). <strong>The</strong> seeds have a<br />

very low rate <strong>of</strong> germ<strong>in</strong>ation at ambient<br />

seawater sal<strong>in</strong>ities, at least <strong>in</strong> <strong>the</strong><br />

middle portions <strong>of</strong> its distribution,<br />

<strong>in</strong>clud<strong>in</strong>g locations on both coastl<strong>in</strong>es<br />

where human-related impacts are <strong>the</strong><br />

greatest; and field mortalities <strong>of</strong><br />

seedl<strong>in</strong>gs are extremely high (Phillips<br />

1972). Fonseca et al. (1982b) found very<br />

high survival and spread <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong><br />

North Carol<strong>in</strong>a on f<strong>in</strong>e sediments <strong>of</strong> dredge<br />

spoils. However, I would exercise caution<br />

<strong>in</strong> extrapolat<strong>in</strong>g <strong>the</strong>ir success <strong>in</strong> North<br />

Carol<strong>in</strong>a to areas throughout <strong>the</strong> range <strong>of</strong><br />

<strong>eelgrass</strong> on both coastl<strong>in</strong>es <strong>in</strong> North<br />

America. In order to state that <strong>eelgrass</strong><br />

can be successfully transplanted <strong>in</strong> a<br />

large mitigation project <strong>in</strong> <strong>the</strong> <strong>Pacific</strong><br />

<strong>Northwest</strong> (>0.4 ha; 1.0 acre), at least<br />

one large-scale pilot project is needed.<br />

Phillips and Backman completed a large<br />

experimental transplant<strong>in</strong>g project <strong>in</strong><br />

Puget Sound, reported by Backman (1983).<br />

Although almost 200 small plots <strong>of</strong><br />

<strong>eelgrass</strong> were monitored quarterly for<br />

over 2 yr for survival, growth, and<br />

phenology, <strong>the</strong>ir results cannot be used<br />

to determ<strong>in</strong>e possible success <strong>of</strong> a<br />

mitigation project.


REFERENCES<br />

Rdarns, S.M. 197va. <strong>The</strong> ecoloyy <strong>of</strong><br />

<strong>eelgrass</strong>, Zostera marlna (L), fis!l<br />

cornmunlties. I. Structural analysis.<br />

J. Exp. Mar. 13101. Ecol. 22: 269-<br />

291.<br />

Aaarns, &I. 19'7bu. k'eed<strong>in</strong>g <strong>ecology</strong> <strong>of</strong><br />

<strong>eelgrass</strong> f istl communities. 'I'rans.<br />

,%I. k'lsti. :,oL'. 1~5: 514-513.<br />

Allee, \i.C. 1923. Studies <strong>in</strong> mdr<strong>in</strong>e<br />

<strong>ecology</strong>. I. he dlstrlbutiori <strong>of</strong><br />

cmmrton llttoral Invertebrates <strong>of</strong> <strong>the</strong><br />

vfoods iiole rejlon. Ijlol. Bull. 44:<br />

lu7-191.<br />

Arasaki, M. 1953. btudles on <strong>the</strong> ecmloyy<br />

<strong>of</strong> Zostera mar<strong>in</strong>a and Lostera -.<br />

Bull. Jpn. Soc. hci. Fish. 16: ~IJ-<br />

7b.<br />

iulrry Corps <strong>of</strong> Erlcjlneers (ACOC). 197b.<br />

:vlai~itenarice cfrdy lng dfid <strong>the</strong> ervlronn~er~t<br />

<strong>of</strong> tirdys tIarbor, rdashirlgton.<br />

Appndlx: Inverteurates. U.S. rkrlny<br />

Corps <strong>of</strong> Eng<strong>in</strong>eers Ulstrlct, bedttle,<br />

'rkishrtigton.<br />

;EI~Y Corps <strong>of</strong> Eng<strong>in</strong>eers (ACUE). 1977a.<br />

>la<strong>in</strong>terlance circ-dg iriq and tlls envirur<strong>in</strong>lent<br />

<strong>of</strong> Grays tiarbor, wash<strong>in</strong>gton.<br />

Sulnlndry iieprt. Seattle, V&sh.<br />

Antry Corps <strong>of</strong> Elicj<strong>in</strong>eers (~iCriEj. 1977b.<br />

Grays Harbor, Cheiis River and<br />

liocluian River, \.rash<strong>in</strong>cj ton. Cnannel<br />

improverne~its for navigation.<br />

Environmental Impact Statement for<br />

<strong>the</strong> feasibility study. Office <strong>of</strong> <strong>the</strong><br />

Chief <strong>of</strong> Erq<strong>in</strong>eers, Uept. <strong>of</strong> <strong>the</strong><br />

Army, &ish<strong>in</strong>cjton, D.C.<br />

ecutypiis <strong>in</strong> Pujet Sourd, 'dash<strong>in</strong>gton.<br />

Ph.U. Dlss. Univ. <strong>of</strong> Wash<strong>in</strong>gton,<br />

Seattle.<br />

Backman, T. H., and L). C. Bdrilotti, 1976.<br />

Irradiarlce rfduction:e£facts on<br />

starid<strong>in</strong>y crops <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong><br />

Zostera mar<strong>in</strong>a <strong>in</strong> a coastal lagoon.<br />

Mr. D~ol. (~erl) 34:33-43.<br />

Banse, K., and h.U. Hobson. 1974.<br />

Benthic polycilaetes <strong>of</strong> British<br />

Colulnbia and idashlngton. Bull. Fish.<br />

Kes. Kurd Can. 185. 111 pp.<br />

Harsdate, R.J., and I\!. Nebert. 1971.<br />

Copper and lead <strong>in</strong> <strong>the</strong> sou<strong>the</strong>ast<br />

krirlg Sea and adjacent areas. Prw.<br />

Aldska Sci. Conf. 22. 113 pp.<br />

Barsdate, K.3. and E4. Nebert, 1374.<br />

Lagoon contributions to stdiments arid<br />

water <strong>of</strong> <strong>the</strong> Ber<strong>in</strong>g Sea. Pages 553-<br />

b.76 U.d. Iiood and E.J. kelly, eds.<br />

Oceanography <strong>of</strong> <strong>the</strong> ~er<strong>in</strong>g Sea.<br />

Inst. r'lar. Sci., Univ. <strong>of</strong> Alaska,<br />

Occas. Publ. 2.<br />

Dayer, 1c.U. 137Ya. lntertldal zvnatlon<br />

<strong>of</strong> Zostera mar<strong>in</strong>a <strong>in</strong> <strong>the</strong> Yayuir~a<br />

estuary, Oregon. Syesis 12: 137-<br />

154.<br />

Bayer, 1i.D. 1'379b. Intertidal shallow<br />

water tishzs selected macro<strong>in</strong>vertebrates<br />

ln tne Yaquirla estuary,<br />

Oregon. Ur~publ. (on file at Oregon<br />

State Univ. biar. Sci. Center,<br />

Newport, OR 9735).<br />

Dayer, 12.U. 193W. Birds feed<strong>in</strong>g on<br />

herr<strong>in</strong>g eggs at <strong>the</strong> Yaqu<strong>in</strong>a estuary,<br />

Oregon. Concior 82: 193-193.<br />

Backmdn, T.W. 19~33. Phenotypic Bayer, K.D. 1 9 ~hal.low water<br />

expressions <strong>of</strong> Zostera mar<strong>in</strong>a L. <strong>in</strong>tertidal icthy<strong>of</strong>aur~a <strong>of</strong> tlie Yaqu<strong>in</strong>a


estucuy, Oregon. Nortlwest Sci. 55: Boysen-Jensen, P. 1914. Studies<br />

1U2-193.<br />

concern<strong>in</strong>g <strong>the</strong> organic matter <strong>of</strong> <strong>the</strong><br />

sea bottom. Rep. Danske Biol. Stat.<br />

beak Consultants. 1975. Biology oil 22: 1-39.<br />

<strong>in</strong>lpact literature review. F<strong>in</strong>al<br />

Report. 1975. Baselitle Study Briggs, P.T., and J.S. O'Connor. 1971.<br />

Prcgram, North Puget Sound. Mpt. <strong>of</strong> Comparison <strong>of</strong> shore-zone fishes over<br />

Ecology, Olympia, Wastl<strong>in</strong>gto~i.<br />

naturally vegetated and sand-filled<br />

bottoms <strong>in</strong> Great South Bay. N.Y.<br />

Behrens, D.W. 1980. <strong>Pacific</strong> coast nudi-<br />

Fish Game J. 18: 1541.<br />

branches. A guide to <strong>the</strong> @isthobranchs<br />

<strong>of</strong> <strong>the</strong> nor<strong>the</strong>astern <strong>Pacific</strong>.<br />

Br<strong>in</strong>khuis, B.H., W.F. Penelo, and A.C.<br />

*a Challengers. bs Osos, Calif.<br />

Churchill. 1980. Cadmium and<br />

112 pp.<br />

manganese flux <strong>in</strong> eelyrass Zostera<br />

mar<strong>in</strong>a. 11. Metal uptake by leaf<br />

benedlct, C.K., atld J.H.<br />

and root-rhizome tissues. Mar. Biol.<br />

Scott. lJ7b.<br />

58: 187-196.<br />

Photosyntnctlc cdrbon met~ttnlisrn <strong>of</strong> a<br />

ftlarlrle grass. Plant I'hy5i.01. 57: Broekhuysen, 1935. <strong>The</strong> extremes <strong>in</strong><br />

U7G-&W.<br />

percentages <strong>of</strong> dissolved oxygen to<br />

which <strong>the</strong> fauna <strong>of</strong> a Zostera field <strong>in</strong><br />

Lirebl, H., and C.P. Mciioy. 1971. <strong>the</strong> title zone at Nieuwediep can be<br />

Plasm.itlc r esrstance and rate <strong>of</strong> exposed. Arch. Neerl. Zool. 1: 339-<br />

rrispiratiot~ arid photosyt~tliesis <strong>of</strong> 346.<br />

--- 'tostera --- niar<strong>in</strong>a '-it c11.f ferent<br />

sc~llnltierr .~ntd tiiirperc!tures. Nijr. Brown, C.L. 1962. On <strong>the</strong> <strong>ecology</strong> ot<br />

biol. J: 4U-bu. aufwuchs <strong>of</strong> .- Zostera . - mar<strong>in</strong>a ~n<br />

Charleston Pond, Wcde Island, M. S.<br />

<strong>The</strong>sis. Univ. <strong>of</strong> Rhode Island,<br />

Ult taker, II.F., anti K.L. Ivcruon. 1~70.<br />

K<strong>in</strong>gston. 52 pp.<br />

l'tlalsssis testud<strong>in</strong>um prixluctivlty: a<br />

f icltl coii1rwrlson <strong>of</strong> rncasuretilent Brown. S.F. 1982. A structural<br />

rnt!thocfs. Flar. Biol. 37: 39-rlcr. comparison <strong>of</strong> fish assemblages f ro~n<br />

<strong>eelgrass</strong> and sand habitats at Alki<br />

l W v l I. 1914. Yuai dtld cwnultroiis <strong>of</strong> Po<strong>in</strong>t, Wash<strong>in</strong>gton. M.S. <strong>The</strong>sis.<br />

nourrst iment rlii~oriq <strong>the</strong> wnullunlt ies 01 Univ. <strong>of</strong> Wash<strong>in</strong>gton, Seattle.<br />

-<br />

itlvextebratc ianln1i3 1s founu on or rn<br />

tt~v seii bttor:~ <strong>in</strong> Ilatilsl~ w'lters. Burkholder, P.R., and T.E. Doheny. 1968.<br />

Hep. krtske iriol. :iceit. 22: 4b-33. <strong>The</strong> biolqy <strong>of</strong> <strong>eelgrass</strong>. Contrib. 3,<br />

Npt. Conserv. Waterways, Hempstead,<br />

Long Island. ~ontrib; 1227, ~amont<br />

llleyvdtl, 11. 1910. on ttte foou <strong>of</strong> fish <strong>in</strong><br />

Geological Observatory, Palisades,<br />

tht Ddnisti w,;ltcrs wxttl<strong>in</strong> tile Sk~w.<br />

N.Y. 120 pp.<br />

Kcp. U;lr~ske Iiiol. :itat. 24: 17-72.<br />

Burrell, D.C., and J.R. Schubel. 1977.<br />

Ulois, J.O. , J. Francaz, M. Gaudichon, and Seagrass ecosystem oceanography.<br />

L. hk3t-i~. 1961. Obs;urrvations sur Pages 195-232 <strong>in</strong> C.P. McRoy and C.<br />

1c.s herbiers a' zosteres de la reyion Helfferich, e d c Seagrass ecosysde<br />

R-~scott. Can. ~iol. Mar. I: tems: a scientific perspective. M.<br />

223-262. Dekker, New York.<br />

15uorte, C.G., ~ I I C ILL. ~ 110epp~1. 197b. Candussio, R. 1960. Cornposizione<br />

t'ea~rbill ty <strong>of</strong> tr;r~leplant~~tlorl, Chi~nicadella Zostera mar<strong>in</strong>a. Inst.<br />

reveyetation, drid rcstordtlon <strong>of</strong> Chim. Agrario Sperimentale di gorizia<br />

eelyrass lri Sa~i U~uyo B J ~ , Ser. 2A dei nuovi annali, Pubbl. 20:<br />

Califorl~ia. U.S. Army Englneer 5-10.<br />

liaterways Experrrner~t Stdtion, Elrsc.<br />

Ydp, k-76-2. Vlcksburg, bliss. 41 Capone, D.G., and B.F. Taylor. 1980.<br />

W* Microbial nitrogen cycl<strong>in</strong>g <strong>in</strong> a


seagrass community. Pages 153-162 <strong>in</strong><br />

V.S. Kennedy, ed. Estuar<strong>in</strong>e<br />

perspective. Academic Press, New<br />

York.<br />

Capone, D.G., P.A. Penhale, R.S. Oremland,<br />

and B. F. Taylor. 1979. Relationship<br />

between productivity and N2(C2~2)<br />

fixation <strong>in</strong> a Thalassia testudlnum<br />

community. Limnol. Oceanogr. 24:<br />

117-125.<br />

Caspers, H. 1957. Black Sea and Sea <strong>of</strong><br />

Azov. Pages 801-889 <strong>in</strong> J.W.<br />

Hedgpeth, ed. Treatise onmar<strong>in</strong>e<br />

<strong>ecology</strong> and paleo<strong>ecology</strong>. Vol. 1.<br />

Geol. Soc. Am. Mem. 67.<br />

Chapman, V.J. 1960. Salt marshes and<br />

salt deserts <strong>of</strong> <strong>the</strong> world. London.<br />

392 pp.<br />

Churchill, A.C., A.E. Cok, and M.I. ~<strong>in</strong>er.<br />

1978. Stabilization <strong>of</strong> subtidal<br />

sediments by <strong>the</strong> transportation <strong>of</strong><br />

<strong>the</strong> seagrass Zostera mar<strong>in</strong>a L. New<br />

York Sea Grant, NYSSGP-RS-78-15. 48<br />

PP*<br />

Clark, R.C., B.G. Patten, and E.E. DeNike.<br />

1978. Observations <strong>of</strong> a cold-water<br />

<strong>in</strong>tertidal community after 5 years <strong>of</strong><br />

a low-level persistent oil spill from<br />

<strong>the</strong> General M.C. Meigs. J. Fish.<br />

Res. Board Can. 35: 754-765.<br />

Conover, J.T. 1958. Seasonal growth <strong>of</strong><br />

benthic mar<strong>in</strong>e plants as related to<br />

environmental factors <strong>in</strong> an estuary.<br />

Publ. Inst. Mar. Sci. Univ. Tex. 5:<br />

97-147.<br />

Conover, J.T. 1%8. Importance <strong>of</strong> natural<br />

diffusion gradients and transport <strong>of</strong><br />

substances related to benthic mar<strong>in</strong>e<br />

plant metabolism. Bot. Mar. 11: 1-<br />

9.<br />

Correll, D.L., and T.L. Wu. 1982.<br />

Atraz<strong>in</strong>e toxicity to submersed<br />

vascular plants <strong>in</strong> simulated<br />

estuar<strong>in</strong>e microcosms. Aquat. Bot.<br />

14: 151-158.<br />

Cottam, C., and D.A. Munro. 1954.<br />

Eelgrass status and environmental<br />

relations. J. Wildl. Manage. 18:<br />

449-460.<br />

Cottam, C., J.C. Lynch, and A.L. Nelson.<br />

1944. Food habits and management <strong>of</strong><br />

American sea brant. J. Wildl.<br />

Manage. 8: 36-55.<br />

Coward<strong>in</strong>, L.M., V. Carter, F.C. Golet, and<br />

E.T. m. 1979. Classification <strong>of</strong><br />

wetlands and deepwater habitats <strong>of</strong><br />

<strong>the</strong> United States. U.S. Fish and<br />

Wildl. Serv. Biol. Serv. Program.<br />

FW~/0J3S-79/31.<br />

DalSy, D.H. 1968. Some factors<br />

controll<strong>in</strong>g plant growth <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>tertidal environment, Pages 21-3 7<br />

- <strong>in</strong> J.D. Carthy and D.R. Arthur, eds.<br />

<strong>The</strong> biological effects <strong>of</strong> oil<br />

pollution on Littoral communities.<br />

Field studies 2 (Suppl).<br />

Darnell, R.M. 1964. Organic detritus <strong>in</strong><br />

relation to secondary production <strong>in</strong><br />

aquatic communities. Int. Ver.<br />

Liml. 15: 462-470.<br />

Davis, D.M. 1913. General<br />

characteristics <strong>of</strong> <strong>the</strong> algal<br />

vegetation <strong>of</strong> Buzzards Bay and<br />

V<strong>in</strong>eyard Sound <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong><br />

Woods Hole. Bull. Bur. Fish. 31:<br />

443-544.<br />

Davis, M.W. 1981. Production dymanics <strong>of</strong><br />

sediment-associated algae <strong>in</strong> two<br />

Oregon estuaries. Ph.D. Diss.<br />

Oregon State Univ., Corvallis.<br />

den Hartog, C. 1970. <strong>The</strong> sea-grasses <strong>of</strong><br />

<strong>the</strong> world. North-Holland Publish<strong>in</strong>g<br />

Co., Amsterdam. 275 pp.<br />

den Hartog, C. 1973. <strong>The</strong> dynamic aspect<br />

<strong>in</strong> <strong>the</strong> <strong>ecology</strong> <strong>of</strong> sea grass<br />

communities. Thalassia Jugosl. 7 :<br />

101-112.<br />

den Hartog, C. 1980. Foreword. Pages<br />

ix-xiii <strong>in</strong> R.C. Phillips and C.P.<br />

McRoy, eds. Handbook <strong>of</strong> seagrass<br />

biology: an ecosystem perspective.<br />

Garland STPM Press, New York.<br />

den Hartog, C., and R.P.W.M. Jacobs.<br />

1980. Effects <strong>of</strong> <strong>the</strong> "Amoco Cadiz"<br />

oil spill on an <strong>eelgrass</strong> community at<br />

Rosc<strong>of</strong> f (France) with special<br />

reference to <strong>the</strong> mobile benthic


fauna- Melyo. Wiss. ~eeresunters. Delaware. DEL-SG-3-75, June 10-1 1,<br />

33: 102-l.91, 1974.<br />

Detlnison, W.C. 1979. Light adaptations Felger, H., and M.B. Moser. 1973.<br />

<strong>of</strong> plants: a lnodel based on <strong>the</strong> Eelgrass (Zostera -- marlna - I,.) Ln <strong>the</strong><br />

seagrass Zoratera ~r-<strong>in</strong>d L. M.S. Gulf <strong>of</strong> Calrfornla: discvwery <strong>of</strong> ~ts<br />

<strong>The</strong>sis. Unlv. <strong>of</strong> Alaska, Fa~rkwIks.<br />

nutritional value by <strong>the</strong> Serr<br />

Indians. Science 181 : 355-356.<br />

Dennison, W.B., and R.S. ALbrte. 1982.<br />

I'hom~ptlleti~ rcspo~~scs <strong>of</strong> Zostera Felger, R., arid M.U. Moser. 19 ib. Serl<br />

-- mar<strong>in</strong>a -- L. (<strong>eelgrass</strong>) to & & lndian food plants: desert<br />

manipulat rons <strong>of</strong> Light <strong>in</strong>terlsity. subsistence wlthout ay r culture.<br />

&;colcqia 55: 137-144. Ecol. E b d l Nutr. 5: 13-27.<br />

llillon, C.K. 1971. A cornparatrve study<br />

<strong>of</strong> <strong>the</strong> primary productivity <strong>of</strong><br />

estuar irle phytoplankton and<br />

macrobenthic plants. Ph.D. Diss.<br />

Utliv. <strong>of</strong> North Carol<strong>in</strong>a, Chapel tiill.<br />

112 pp.<br />

Ilri fmtyr, .I. E. , G.W. 'lYlaFr, Y.A. C'rosr,<br />

,xr\d J.C. X~anrln. 1980. CycI~rrj t)f<br />

Mn , kt, C'u, ilrxi Zn by t~t:l(l!-,tsn<br />

xostt~r ;i nl,rrjtw I., kn. ,I. I*>t. 67 :<br />

7"<br />

- ----<br />

10tt9-lOY6.<br />

Dris-rcoS t. A.1,. 197U. Stloham ish estuary<br />

wetllarde study. U.S. &my corps <strong>of</strong><br />

Kttgirleurs, Sumtnclry Report;. Shdpirs<br />

awl hm., VoL. I. (XHltriJct. tML;Wla7-<br />

77-C-(d%CaJ.<br />

t i<br />

I . 1975. Mar irie @lwrul~tlc;r fiiu~lrl<br />

<strong>of</strong> W4rrjh<strong>in</strong>:~ton. Wnehltlgto~) Statc<br />

Ilcpt. <strong>of</strong> Gntnr;, Wasit. mpt. Eoolcxjy,<br />

UlljCaL 'i'mv I;IIV rrc)r~~r~~rltBi Stud tas,<br />

liup. 2. 5% pp.<br />

Elnaruu~l, A.S. 1065. Black brnnt, sea<br />

gm~3tj r ~ tf<br />

h EkiclLfic. ~ Unlversrty uf<br />

W$ishityb.x~ Prens, Seattie. 142 pp.<br />

F~srarlay, W.E., ~t11c.i A.C. Cliurchill. 1979.<br />

Ill&~\ke <strong>of</strong> c~~tirnlum by <strong>the</strong> tslgrlit;s<br />

w I Mtl~. i3~0l.. '~i: 293-<br />

;ZGM.<br />

k'srtnerr, W .M. 1980. Seer-sl.uj cjdscrc>pa.ls.<br />

W.M. F'<strong>in</strong>ner Illterprisea, I nc. 'I'crnyw,<br />

biz. 177 w.<br />

E'elger, K., atlif C.P. McRoy. 1975.<br />

Setigraases 33 twterrt~a L fowl plants.<br />

Pages 62-73 <strong>in</strong> G.F. Sotcrers, ecf.<br />

seed-bejtitlcj itific<br />

perspectrvt. M. Ijekker, New<br />

York .<br />

Pellchel, H., and R.J. Rledl. 1970. 'rhe<br />

sulfrde system <strong>in</strong> a riew b~otru<br />

colntriurlr ty utzderneath <strong>the</strong> ox~.lf zed<br />

layer <strong>of</strong> mar<strong>in</strong>e sand &&toms. MJ~.<br />

1 7 255-2Gd.<br />

E'erguson, R.L., G.W. Tkiayer, arid 'It.H.<br />

Rice. 19UU. Mar<strong>in</strong>e prlnt


on current flow. Estuar<strong>in</strong>e Coastal<br />

Shelf Sci. 15: 351-364.<br />

conceptual model <strong>of</strong> decomposition.<br />

+at. Bot. 5: 329-354.<br />

Fonseca, M.S., W.J. Kenworthy, G.W.<br />

Thayer, and D.Y. Heller. 1982b.<br />

Transplant<strong>in</strong>q <strong>of</strong> <strong>the</strong> seagrasses<br />

~oster; mar<strong>in</strong>a- and Halodule &rightii<br />

for <strong>the</strong> stabilization <strong>of</strong> subtidal<br />

dredged material. Annu. Rep., Natl.<br />

Mar. Fish. Serv., S.E. Fisheries<br />

Center, Beaufort, N.C. Lab., to U.S.<br />

Army Corps <strong>of</strong> Eng<strong>in</strong>eers, Coastal<br />

Eng<strong>in</strong>eer<strong>in</strong>g Research Center. 61 pp.<br />

G<strong>of</strong>orth, H.W., and T.J. Peel<strong>in</strong>g. 1979.<br />

Intertidal and subtidal <strong>eelgrass</strong><br />

(Zostera mar<strong>in</strong>a L.) transplant<br />

studies <strong>in</strong> San Diego Bay, California.<br />

Pages 327-357 <strong>in</strong> Proc. 6th Annu.<br />

Conf. Wetlands Restoration and<br />

Creation. Hillsborough Community<br />

College, Tanpa, Fla.<br />

Gossel<strong>in</strong>k, J.G., E.P. Odum, and R.M. Pope.<br />

1974. 'I'he value <strong>of</strong> <strong>the</strong> tidal marsh.<br />

Center for Wetland Research,<br />

Foster, M., M. Neushul, and R. Z<strong>in</strong>gmark. Louisiana State Univ., Baton Rouge.<br />

1971. <strong>The</strong> Santa Barbara oil spill LSU-56-74-03.<br />

Part 2: Initial effects- <strong>of</strong><br />

<strong>in</strong>tertidal and kelpbed organisms. Gotshall, Dew. 1977. Stomach Contents <strong>of</strong><br />

Environ. Pollut. 2: 115-134. nor<strong>the</strong>rn California dungeness crabs,<br />

Cancer magister. Calif. Fish Game<br />

62: 43-51.<br />

Fry, B., and P.L. Parker. 1979. Animal<br />

diets <strong>in</strong> Texas seagrass <strong>meadows</strong>: 13c Grontved, J. 1958. ~nvestigations on <strong>the</strong><br />

evidence for <strong>the</strong> importance <strong>of</strong> phytoplankton and <strong>the</strong> primary<br />

benthic plants. Estuar<strong>in</strong>e Coastal production <strong>in</strong> an oyster culture <strong>in</strong><br />

Mar. Sci. 8: 499-5(119. L<strong>in</strong>sf jord. Mee. Fra. Dan. Fish. Og.<br />

Havundersog El ser 2: 1-17.<br />

Fry, B., R. Lutes, M. Northam, and P.L.<br />

Parker. 1982. A 13C/12c comparison<br />

<strong>of</strong> food webs <strong>in</strong> Caribbean seagrass<br />

<strong>meadows</strong> and coral reefs. Aquat. Bot.<br />

14: 389-398.<br />

Guberlet, M.L. 1962. Animals <strong>of</strong> <strong>the</strong><br />

seashore. 3rd Ed. B<strong>in</strong>sfort and Mort,<br />

Portland, Oreg .<br />

Haegele, C.W., and M.J. Hamey. 1982.<br />

Gallagher, J.L., H.V. Kibby, and K.W. Shorel<strong>in</strong>e vegetation on herr<strong>in</strong>g<br />

Skirv<strong>in</strong>. In prep. Interaction <strong>of</strong> spawn<strong>in</strong>g grounds <strong>in</strong> Chatham Sound,<br />

seagrass wtih an Oregon salt marsh.<br />

British Columbia. Canadian<br />

Manuscript. Rep. Fisheries and<br />

Gardner, F. 1978. North Puget Sound Aquatic Sciences 1660. 27 pp.<br />

basel<strong>in</strong>e program, 1974-1977.<br />

Wash<strong>in</strong>gton State Dept. Ecology, Harborne, J.B. 1977. Introduction to<br />

Olympia. 81pp.<br />

ecological biochemistry. Academic<br />

Gargas, E. 1972. Measurements <strong>of</strong><br />

Press, Lodon. 243 pp.<br />

microalgal primary production<br />

(phytoplankton and microbenthos) <strong>in</strong> Hard<strong>in</strong>gl LSW*f and J.H. Butler. 1979.<br />

<strong>the</strong> Smalandsharet (Denmark). Ophel ia<br />

<strong>The</strong> stand<strong>in</strong>g stock and production <strong>of</strong><br />

10: 75-89. <strong>eelgrass</strong>, Zastera mar<strong>in</strong>a, <strong>in</strong> Humbldt<br />

Bay, California. Calif. Fish Game<br />

G<strong>in</strong>sburg, R.M., and H.S. Lowenstam. 1958. 65: 151-158.<br />

<strong>The</strong> <strong>in</strong>fluence <strong>of</strong> mar<strong>in</strong>e bottom<br />

communities on <strong>the</strong> depositional Harl<strong>in</strong>, M.M. 1973. Transfer <strong>of</strong> products<br />

environment <strong>of</strong> sediments. ,J. Geol. between epiphytic mar<strong>in</strong>e algae and<br />

66: 310-318. bst plants. J. Phycol. 9: 243-248.<br />

Godshalk, G.L.1 and R.G. Wetzel. 1978. ~ ~ ~ M.M. l i 197 ~ 5. , ~ ~ i p h ~ t ~ - h<br />

Lmmmposition <strong>of</strong> aquatic angiosperms, relations <strong>in</strong> seagrass communities.<br />

111. Zostera mar<strong>in</strong>a L. and a Aquat. Bot. 1: 125-131.


Harl<strong>in</strong>, M.M. 1980. Seagrass epiphytes.<br />

Chapter 8 <strong>in</strong> R.C. Phillips and C.P.<br />

MCROY, eds.' Handbook <strong>of</strong> seagrass<br />

biology: an ecosystem perspective.<br />

Garland SrPM Press, New York.<br />

Harl<strong>in</strong>, M.M., and B. Thorne-Miller. 1981.<br />

Nutrient enrichment <strong>of</strong> seagrass Ws<br />

<strong>in</strong> a Rhcde Island coastal lagoon.<br />

WX. Bi01. 65: 221-229.<br />

Harrison, P.G. 1976. Zostera japonica<br />

Aschers. and Graebn. <strong>in</strong> British<br />

Columbia, Canada. Syesis 9: 359-<br />

360.<br />

Harrison, P.G. 1977. Decomposition <strong>of</strong><br />

~nacrophyte detritus <strong>in</strong> seawater:<br />

effects <strong>of</strong> graz<strong>in</strong>g by amphipods.<br />

Oikos 28: 165-169.<br />

Harrison, P.G. 1979. Reproductive<br />

strategies <strong>in</strong> <strong>in</strong>tertidal populations<br />

<strong>of</strong> two co-occurr<strong>in</strong>g seagrasses<br />

(Zostera spp.), Can. J. mt. 57:<br />

2635-2638.<br />

Harrison, P.G. 1982a. Seasonal and yearto-year<br />

variations <strong>in</strong> mixed<br />

<strong>in</strong>tertidal populations <strong>of</strong> Zostera<br />

japnica Aschers. and Graebn, and<br />

Ruppia maritima L. Aquat. Bot. 14:<br />

357-371.<br />

Harrison, P.G. 1982b. Comparative growth<br />

<strong>of</strong> .~ostera japonica ~schers. and<br />

Graebn. and 5 mar<strong>in</strong>a L. under<br />

simulated <strong>in</strong>tertidal and subtidal<br />

condition. mat. bot. 14: 373-379.<br />

Hdrrison, P.G. 1982~. Spatial and<br />

temporal patterns <strong>in</strong> abwe <strong>of</strong> two<br />

<strong>in</strong>tertidal seagrasses, Zostera<br />

americana den Hartg and Zoatera<br />

mar<strong>in</strong>a L. ~auat. BOt. l2: 385-320.<br />

Harrison, P.G. 1982d. Control <strong>of</strong><br />

lnicrobial growth <strong>of</strong> an amphipod<br />

graz<strong>in</strong>g by water soluble compounds<br />

from leaves <strong>of</strong> Zmtera mar<strong>in</strong>a. Mar.<br />

Biol. 67: 225-230.<br />

Harrison, P.G. and R.E. Bigley. 1982.<br />

<strong>The</strong> recent <strong>in</strong>troduction <strong>of</strong> <strong>the</strong><br />

seagrass Zostera japonica Asahers.<br />

and Graebn. to <strong>the</strong> <strong>Pacific</strong> coast <strong>of</strong><br />

North America. Can. J. Fish. Aquat.<br />

Sci. 39: 1642-lW+<br />

Harrison, P.G., and A.T. Chan. 1980.<br />

Inhibition <strong>of</strong> <strong>the</strong> growth <strong>of</strong><br />

microalgae and bacteria by extracts<br />

<strong>of</strong> <strong>eelgrass</strong> (zostera mar<strong>in</strong>a) leaves.<br />

Mar. Biol. 61: 21-26.<br />

Harrison, P.G., and K.H. Mann. 1975a.<br />

Detritus formation from <strong>eelgrass</strong><br />

(Zostera mar<strong>in</strong>a L.) : <strong>the</strong> relative<br />

effects <strong>of</strong> fragmentation, leach<strong>in</strong>g<br />

and decay. Limnol. Oceanog. 20:<br />

924-934.<br />

Harrison, P.G. and K.H. Mann. 1975b.<br />

Chemical changes dur<strong>in</strong>g <strong>the</strong> seasonal<br />

cycle <strong>of</strong> growth and decay <strong>in</strong> <strong>eelgrass</strong><br />

(zostera mar<strong>in</strong>a) on <strong>the</strong> Atlantic<br />

coast <strong>of</strong> Canada. J. Fish. Res. Board<br />

Can. 32: 615-621.<br />

Hartman, O., and D.J. Reish. 1950. <strong>The</strong><br />

mar<strong>in</strong>e annelids <strong>of</strong> Oregon. Oregon<br />

State College Press, Corvallis. 64<br />

PP .<br />

Hartman, R.T., and D.L. Brown. 1967.<br />

Changes <strong>in</strong> <strong>in</strong>ternal atmosphere <strong>of</strong><br />

submersed vascular hydrophytes <strong>in</strong><br />

relation to photosyn<strong>the</strong>sis. Ecology<br />

48: 252-258.<br />

Helfferich, C., and C.P. McRoy. 1978.<br />

Economic evaluation <strong>of</strong> seagrass<br />

ecosystems. Pages 257-287 - <strong>in</strong> C.P.<br />

McRoy and S. Williams, eds.<br />

Seagrasses <strong>of</strong> <strong>the</strong> United States: an<br />

ecological review <strong>in</strong> relation to<br />

human activities. Rep. to <strong>the</strong> Fish<br />

and Wildlife Service, Inst. Mar.<br />

Sci., Univ. <strong>of</strong> Alaska, Fairbanks.<br />

Hobson, K.D., and K. Banse. 1981.<br />

Sedentariate and archiannel id<br />

polychaetes <strong>of</strong> British Columbia and<br />

Wash<strong>in</strong>gton. Can. Bull, Fish. Aquat.<br />

Sci. 209: 144 pp. Ottawa.<br />

Iizumi, H., A. Hattori, and C.P. McRoy.<br />

198(11. Nitrate and nitrite <strong>in</strong><br />

<strong>in</strong>terstitial waters <strong>of</strong> <strong>eelgrass</strong> beds<br />

<strong>in</strong> relation to <strong>the</strong> rhizosphere. J.<br />

Exp. Mar. Biol. Ecol. 47: 291-201.<br />

Imai, T., M. Hatanaka, R. Sato, and S.<br />

Sakai. 1951. Ecology <strong>of</strong> Mangoku Ura<br />

Inlet with special reference to <strong>the</strong><br />

seed-oyster production. 58th Rep.


Inst. Agric. Res., Tohoku Univ.:<br />

137-151.<br />

Jacobs, R.P.W.M. 1979. Distribution and<br />

aspects <strong>of</strong> <strong>the</strong> production and biomass<br />

<strong>of</strong> <strong>eelgrass</strong>, ~ostera mar<strong>in</strong>a L., at<br />

Rosc<strong>of</strong>f, France. Aquat. Bot. 7:<br />

151-172.<br />

Jacobs, R.P.W.M. 1982. Reproductive<br />

strategies <strong>of</strong> two seagrass species<br />

(~ostera mar<strong>in</strong>a and Z. noltii) along<br />

west European coasts. Pages 150-155<br />

- <strong>in</strong> J.J. Symoens, S.S. Hooper, and P.<br />

Compere, eds. Studies on aquatic<br />

vascular plants. Royal Botanical<br />

Society ~elgicsn, Brussels.<br />

Jacobs, R.P.W.M., and W.H.T. Huislnan.<br />

1982. Macrobenthos <strong>of</strong> some Zostera<br />

beds <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> Rosc<strong>of</strong>f<br />

(~rance) with special reference to<br />

relations with community structure<br />

and environmental factors. Proc.<br />

Kon. Ned. Akad. Wet., Ser. C, 85:<br />

335-356.<br />

Jacobs, R.P.W.M., and T.M.P.A. Noten.<br />

3980. <strong>The</strong> annual pattern <strong>of</strong> <strong>the</strong><br />

diatoms <strong>in</strong> <strong>the</strong> epiphyton <strong>of</strong> <strong>eelgrass</strong><br />

(Zostera mar<strong>in</strong>a L.) at Rosc<strong>of</strong>f,<br />

hrance. Aquat. Bot. 8: 355-370.<br />

Jefferson, C.A. 1975. Plant communities<br />

and succession <strong>in</strong> Oregon mstal salt<br />

marshes. P~.D. Diss. Oregon State<br />

Univ. , Corvallis.<br />

Johnson, D.S., andH.H. York. 1915. <strong>The</strong><br />

relations <strong>of</strong> plants to tide levels.<br />

A study <strong>of</strong> factors affect<strong>in</strong>g <strong>the</strong><br />

distribution <strong>of</strong> mar<strong>in</strong>e plants.<br />

Carnegie Inst. <strong>of</strong> Wash<strong>in</strong>gton, D.C.<br />

162 pp.<br />

Keddy, C.J. and D.G. Patriqu<strong>in</strong>. 1978. An<br />

annual form <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> Nova<br />

Scotia. Wat. Ec~t. 5: 163-1716.<br />

Keller, M. 1963. <strong>The</strong> growth and<br />

distribution <strong>of</strong> <strong>eelgrass</strong> (~ostera<br />

mar<strong>in</strong>a L.) <strong>in</strong> Humboldt Bay,<br />

California. M.S. <strong>The</strong>sis. Humboldt<br />

State College, Arcata, Calif. 55 pp.<br />

Keller, M., and S.W. Harris. 1966. <strong>The</strong><br />

growth <strong>of</strong> <strong>eelgrass</strong> <strong>in</strong> relation to<br />

tidal depth. J. Wildl. Manage. 30:<br />

280-285.<br />

Kentula, M.E. 1983. Prduction dynamics<br />

<strong>of</strong> a Zostera mar<strong>in</strong>a L. bed <strong>in</strong> Netarts<br />

Bay, Oreaon. Ph.D. Diss. Oreqon<br />

State univ'. , Qmallis. 158 pp. -<br />

Kenworthy, W.J. 1981. <strong>The</strong> <strong>in</strong>terrelationship<br />

between seagrasses Zostera<br />

mar<strong>in</strong>a and Hdloclule wrightii am3 <strong>the</strong><br />

physical and chemical - properties<br />

-<br />

<strong>of</strong><br />

sediments <strong>in</strong> a coastal pla<strong>in</strong> estuary<br />

near Beaufort, N.C. M.S. <strong>The</strong>sis.<br />

Univ. <strong>of</strong> Virg<strong>in</strong>ia, Charlottesville.<br />

113 pp.<br />

Kenworthy, W.J., J.C. Zieman, and G.W.<br />

Thayer. 1982. Evidence for <strong>the</strong><br />

<strong>in</strong>fluence <strong>of</strong> seagrasses on <strong>the</strong><br />

benthic nitrogen cycle <strong>in</strong> a constzil<br />

plaln estudry near Beaufort, North<br />

Carol<strong>in</strong>a (u.s.A.) oecologia 54: 152-<br />

158.<br />

Kikuchi, '. 196G. At1 cwlcyical study on<br />

anirndl co~n<strong>in</strong>ur~ltles <strong>of</strong> <strong>the</strong> X0ster.t<br />

- <strong>in</strong>ar<strong>in</strong>a belt In Tanioka Iby, Amakusa,<br />

Kyushu. Putl. Hlnakusa biar. Uiol.<br />

Lab. Kyushu Univ. 1: 1-1W6.<br />

kikuchl, 'I'. 1968. I.'aun;ll list ot <strong>the</strong><br />

'Lostera ~uar<strong>in</strong>n belt irt To<strong>in</strong>ioka Uay,<br />

hmakusa, Kyushu. Publ. Anihkusa Mdr.<br />

~iol. ub, Kyushu Univ. 1: 1GJ-192.<br />

Kikuctu, T. 1374. Japanese contrlbutlo~s<br />

on corlsu<strong>in</strong>er ecoloyy In cely rdss<br />

(Zostura marrna L.) be~s, wit!^<br />

special - referer~ce to trophlc<br />

relationships and resources 111<br />

<strong>in</strong>shore f ishcries. T,'rquaculture 4:<br />

145-160-<br />

Kikuchi, T. 198:g. k'clunal relationst~ips<br />

In temperdte seagrdss beds. Pages<br />

153-172 K.C. Philllps and C.P.<br />

~cRoy, eds. !idnduook <strong>of</strong> seayrass<br />

blology: an ecosystem perspective.<br />

Garlahi Sl'Pll Press, hc;w York.<br />

nikuchl, T., and J.M. lleres. 1977. Consumer<br />

<strong>ecology</strong> <strong>of</strong> seagrass beds.<br />

Pdges 147-143 In C.P. Nciioy dnu L.<br />

tlelf tericii, 4s. Seagrass ucosysterns<br />

- a scler~tif ic perspectlve. bl.<br />

Dekkur, riew York.


liita, 'r., dnd E. Ijdrclcla. 1962. Studles<br />

on <strong>the</strong> epiphytic co<strong>in</strong>munities. I.<br />

Abundance and ~~istributlon <strong>of</strong><br />

mlcrodlgae and sxall anlmals on <strong>the</strong><br />

Zostera blades. Publ. Set0 Mar.<br />

t i b 1: 245-257.<br />

lily, M.J. 196.3. Detritus-decu~npsltiori<br />

reldtlonsliips. Pages 225-245 <strong>in</strong> R.C.<br />

Phillips and 2.P. ElcKoy, eds.<br />

Iiari~ihk <strong>of</strong> sedyrass biology: dn<br />

ecusysten~ gxrspect rve. Garldnd STPI4<br />

Press, N w YorK.<br />

I:ortwricjtlt, F.H. 19~7. T!le duck, geese<br />

and swans <strong>of</strong> Liortll h<strong>in</strong>erica.<br />

Stackple Co. arnl Wi ldll fe llarlagr~neot<br />

Inst., Wash<strong>in</strong>gton, D.C.<br />

Iio~l~Ef, %Id. 1 7 . Sedshure life <strong>of</strong><br />

17uget Sounri, tile Strait <strong>of</strong> Georyla,<br />

dnd <strong>the</strong> jar1 ,Juan hrchipelacjo.<br />

Unlversrty <strong>of</strong> Washlrigton Press,<br />

Seattle. 2UL ~3).<br />

Kozl<strong>of</strong>f, E.N. 1974. keys to <strong>the</strong> <strong>in</strong>aritle<br />

<strong>in</strong>vertebrates <strong>of</strong> Pucjet Sourmi, <strong>the</strong> San<br />

Juan Arcilipelayo, and ddlacent<br />

regions. Uruversity <strong>of</strong> Wash<strong>in</strong>gton<br />

Press, Seattle.<br />

Kuuler, P1.L. 19G9. Plant successior~ on<br />

<strong>the</strong> sand dunes <strong>of</strong> <strong>the</strong> Oregon coast.<br />

ECOlw 53: ~'15-7~4.<br />

Ti<strong>in</strong>e, H. 19~1~1. Tranquil Pddilla Bay<br />

escapoll idustry. <strong>The</strong> Seattle Times.<br />

22 January: Al4.<br />

Ledoyer, E.1. 1962. Etude de la Faune<br />

Vayile des herblcrs superficiels de<br />

zosteracees et de quelques biotopes<br />

d'algues Llttorales. litc. 'l'rav. St.<br />

Ivlar. End. Bull. 25 : 117-225.<br />

Ledoyer, M. 13~4,. La fau~lc vagile des<br />

herbiers de Zostera raar<strong>in</strong>a et le<br />

quelque biotopes d'a- <strong>in</strong>fra<br />

llttorales clans la zone <strong>in</strong>tertidale<br />

en n~anche et co<strong>in</strong>parison avec de<br />

n~illieux klediterrancens identlques.<br />

Kec. Trav. Stn. Mdr. Endou<strong>in</strong>e 39:<br />

227-24@.<br />

Ledoyer, M. 1964b. Les rtligrations<br />

nyc<strong>the</strong>rn~erales de la fauna vaqile - au<br />

se<strong>in</strong> des herbiers de Zostera mar<strong>in</strong>a<br />

de 1 a zone <strong>in</strong>tertidale en Planctle et<br />

comparison avec les rnicjratlon en<br />

Iledlterranec. Hec. 'I'rav. Stn. Xdr.<br />

Emounie 34: 241-247.<br />

Lewls, J.B., ard C.E. liolllngwortll. 1962.<br />

Leaf epifauna uf tne seagrass<br />

Thalassla testucll11Um. iliir. Ulol. 71:<br />

41-49.<br />

Liburdl, J., and H. 'I'rultt. 1973. A<br />

gulde to our unclerwater world.<br />

Superior Publ. Co., Seattle, Wash.<br />

MacArthur, H.il., and d.D. Wilson. 1~67.<br />

<strong>The</strong> tlieory <strong>of</strong> island biogeogrdphy.<br />

Pr<strong>in</strong>ceton Unlversrty Press,<br />

Pr<strong>in</strong>ceton, N.J. 203 pp. l<br />

i<br />

:\la<strong>in</strong>, S.P., and C.D. McIntlre. 1474. <strong>The</strong><br />

distribution <strong>of</strong> epiphytic diatcit~s <strong>in</strong><br />

Yaqu<strong>in</strong>a estuary, Oregon (U.S.A.) Uot.<br />

Mr. 17: &a-99.<br />

I ,<br />

1 . 1972. Mdcrophyte production<br />

and detritus food cha<strong>in</strong>s <strong>in</strong> coastal<br />

wdters. Plem. 1st. I tal. Ldrobrol.<br />

Dott, r I ~ ~ CMarch. O 29 ( s uppl.) :<br />

353-383.<br />

~"lrsh, G.H. 1973. <strong>The</strong> Lostera epifaunal<br />

conlmunlty - <strong>in</strong> <strong>the</strong> York River,<br />

Virg<strong>in</strong>ia. Cnesapeake Sci. 14: U7-<br />

97 .<br />

I.larsIlal1, N. 1947. Abundance <strong>of</strong> bay<br />

scallops <strong>in</strong> <strong>the</strong> absence <strong>of</strong> <strong>eelgrass</strong>.<br />

Ecology 2d: 321-322.<br />

Marshall, N. 197~. Food transfers<br />

through <strong>the</strong> lower trophic levels <strong>of</strong><br />

<strong>the</strong> benthic envirorunent. Pages 52-66<br />

- <strong>in</strong> J.H. Steele, ed. Plar<strong>in</strong>e food<br />

cfla<strong>in</strong>~. Oliver and Byd, Ed<strong>in</strong>burgh.<br />

Mnrsl;~all, 4 . and 1


In flvt. seayrasses, l'halassia McRoy, C.P., and C. Helfferich. 19816.<br />

testucilnlurn, Halouule wrly'rltll, Applied aspects <strong>of</strong> seagrasses. Pages<br />

syrlngodlu~ flliforme, Haloptllla 297-343 Phillips and C.P. McRoy,<br />

encjelrna~<strong>in</strong>ll, and Zostera marlria. eds. Handbook <strong>of</strong> seagrass biology:<br />

,\quat. mt. 4: 169-lW. an ecosystem perspective. Garland<br />

STPM Press, New York.<br />

McMillan, C. 1979. Dif ferentiation <strong>in</strong><br />

response to chill<strong>in</strong>g temperatures<br />

among populations <strong>of</strong> three mar<strong>in</strong>e<br />

spermatophytes, Thdassia gstud<strong>in</strong>um,<br />

E<strong>in</strong>godium filiforme, and Halodule<br />

wriqhtii. Am. J. Bot. 66: 810-819.<br />

McMillan, C., and R.C. Phillips. 1979.<br />

Differentiation <strong>in</strong> habitat response<br />

among populations <strong>of</strong> New World<br />

seagrasses. Aquat. Eat. 7: 185-196.<br />

McMiLLan, C. P.L. Parker, and B. Fry.<br />

1980. 13C/12C ratios <strong>in</strong> seagrasses.<br />

Aquat. Bot. 9: 237-249.<br />

McMillan, C., 0. Zapata, and L. Escobar.<br />

19816. Sulphated phenolic compounds<br />

<strong>in</strong> seagrasses. Aquat. Bot. 8: 267-<br />

278.<br />

McRoy, C.P., and C. McMillan. 1977. Production<br />

<strong>ecology</strong> and physiology <strong>of</strong><br />

seagrasses. Chapter 3 & C.P. McRoy<br />

and C. Helfferich, eds. Seagrass<br />

ecosystems: a scientific perspective.<br />

M. Dekker, New York.<br />

McRoy, C.P., and S.L. Williams. 1977.<br />

Sublethal effects <strong>of</strong> hydrocarbons on<br />

seagrass photosynt'hesis. F<strong>in</strong>al Rep.<br />

to NOAA Outer Cont<strong>in</strong>ental Shelf<br />

Environmental Assessment program.<br />

Contract 03-5-022-56. 35 pp.<br />

McRoy, C.P., and S. Williams. 1978.<br />

Seagrasses <strong>of</strong> <strong>the</strong> United States: an<br />

ecological review <strong>in</strong> relation to<br />

human activities. Rep. to U.S. Fish<br />

and Wildlife Service. Inst. <strong>of</strong> Mar.<br />

Sci., Univ. <strong>of</strong> Alaska, Fairbanks.<br />

MCROY, CP. 1966. <strong>The</strong> stand<strong>in</strong>g stock and MCROy, C.P.. R.J. Barsdate. and M. Nebert.<br />

<strong>ecology</strong> <strong>of</strong> <strong>eelgrass</strong>, Zostera mar<strong>in</strong>a, 1972. Phosphorus cycl<strong>in</strong>g <strong>in</strong> an<br />

Izembek Lagoon, Alaska. M.S. <strong>The</strong>sis. <strong>eelgrass</strong> (~ostera mar<strong>in</strong>a L.)<br />

Univ. <strong>of</strong> Wash<strong>in</strong>gton, Seattle. 138 ecosystem. Limnol. Oceanog, 17: 58-<br />

PP.<br />

67.<br />

McRoy, C.P. 1970a. On <strong>the</strong> biology <strong>of</strong><br />

<strong>eelgrass</strong> <strong>in</strong> Alaska. Ph.D. Diss.<br />

Univ. <strong>of</strong> Alaska, Fairbanks. 156 pp.<br />

McRoy, C.P. 1970b. Stand<strong>in</strong>g stocks and<br />

o<strong>the</strong>r features <strong>of</strong> <strong>eelgrass</strong> (Zostera<br />

mar<strong>in</strong>a) populations on <strong>the</strong> coast <strong>of</strong><br />

Alaska. J. Fish. Res. Board Can. 27:<br />

1811-1821.<br />

McRoy, C.P. 1974. Seagras productivity:<br />

carbon uptake experiments <strong>in</strong><br />

<strong>eelgrass</strong>, Zosterg mariga.<br />

Aquaculture 4: 131-137.<br />

McRoy, C.P., and R.J. Barsdate. 19716.<br />

Phosphate absorption <strong>in</strong> <strong>eelgrass</strong>.<br />

LimnOl. Oceanog. 15: 6-13.<br />

McRoy, C.P., J.J. Goer<strong>in</strong>g, and B. Chaney.<br />

1973. Nitrogen fixation associated<br />

with seagrasses. Limnol. Oceanog.<br />

18: 998-1002.<br />

Menzies, R.A., J.S. Zaneveld, and R.M.<br />

Pratt. 1967. Transported turtle<br />

grass as a source <strong>of</strong> organic<br />

enrichment <strong>of</strong> abyssal sediments <strong>of</strong>f<br />

North Carol<strong>in</strong>a. Deep-sea Res. 14:<br />

Lll-L12.<br />

Miller, B.S., C.A. Simenstad, and L.L.<br />

MouLton. 1975. Puget Sound basel<strong>in</strong>e<br />

program: nearshore fish survey.<br />

Fish. Res. Inst., College <strong>of</strong><br />

Fisheries, Univ. <strong>of</strong> Wash<strong>in</strong>gton,<br />

Seattle. Rep. to Wash<strong>in</strong>gton State<br />

Dept . <strong>of</strong> Ecology, Lacey, Wash.<br />

McRoy, C.P., and J.J. Goer<strong>in</strong>g. 1974.<br />

Nutrient transfer between <strong>the</strong> ~<strong>of</strong>fitt, J., and C. Cottam. 1941.<br />

seagrass Zostera mar<strong>in</strong>a and its Eelgrass depletion on <strong>the</strong> <strong>Pacific</strong><br />

epiphytes. Nature 248 : 173-1 74. coast and its effect upon black


ant. U.S. Fish Wildl. Serv. Wildl. Chesapeake Bay - fishes. Estuar<strong>in</strong>e<br />

Leafl. 204. 26 pp. Res. 3: 278-288.<br />

Moody, R 1978. Habitat, populations and<br />

leaf characteristics <strong>of</strong> seaqrass<br />

(Zostera mar<strong>in</strong>a L.) on Roberts ~ank,<br />

British Columbia. M.S. <strong>The</strong>sis. Univ.<br />

<strong>of</strong> British Columbia, Vancouver, B.C.<br />

Canada. 104 pp.<br />

Mukai, H., I.K. Aioi, H. Iizumi, M. Ohtsu,<br />

and A. Hattori. 1979. Growth and<br />

organic production <strong>of</strong> <strong>eelgrass</strong><br />

(~ostera mar<strong>in</strong>a L.) <strong>in</strong> temperate<br />

waters <strong>of</strong> <strong>the</strong> <strong>Pacific</strong> coast <strong>of</strong> Japan.<br />

I. Growth analysis <strong>in</strong> spr<strong>in</strong>g -<br />

scrmner. Aquat. Bot. 7: 47-56.<br />

Nagle, J.S. 1968. Distribution <strong>of</strong> <strong>the</strong><br />

epibiota <strong>of</strong> macroepibenthic plants.<br />

Contrib. Mar. Sci. 13: 105-144.<br />

Newell, R 1965. <strong>The</strong> role <strong>of</strong> detritus <strong>in</strong><br />

<strong>the</strong> nutrition <strong>of</strong> two mar<strong>in</strong>e deposit<br />

feeders, <strong>the</strong> prosobranch Hydrobia<br />

ulvae and <strong>the</strong> bivalve Macoma<br />

balthica. Proc. Zool. Soc. Lond.<br />

144: 2545.<br />

~oAA/~tate <strong>of</strong> Wash<strong>in</strong>gton, Dept. <strong>of</strong><br />

Ecology. 1980. F<strong>in</strong>al environmental<br />

impact statement. Padilla Bay<br />

Estuar<strong>in</strong>e Sanctuary. Skagit County,<br />

Wash<strong>in</strong>gton, Office <strong>of</strong> Coastal Zone<br />

Management, Wash<strong>in</strong>gton, D. C. and<br />

Dept. <strong>of</strong> Ecology, Olympia, Wash.<br />

Orth, R.J. 1973. Benthic <strong>in</strong>fauna <strong>of</strong><br />

<strong>eelgrass</strong>, Zostera mar<strong>in</strong>a beds.<br />

Chesapeake Sci. 14: 258-269.<br />

Ort,h, R.J. 1977a. <strong>The</strong> importance <strong>of</strong><br />

sediment stability <strong>in</strong> seagrass<br />

communities. Pages 122-138 <strong>in</strong> B.C.<br />

Cbull, ed. Ecology <strong>of</strong> mar<strong>in</strong>e benthos.<br />

University <strong>of</strong> South Carol<strong>in</strong>a Press,<br />

Colcsnbia .<br />

Orth, R.J. 1977b. Effect <strong>of</strong> nutrient<br />

enrichment on growth <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong>,<br />

Zostera mar<strong>in</strong>a, <strong>in</strong> <strong>the</strong> Chesapeake<br />

Bay, Virg<strong>in</strong>ia (u.S.A.). Mar. Biol.<br />

44: 187-194.<br />

Orth, R.J., and K.A. Moore. 1983. Seed<br />

germ<strong>in</strong>ation and seedl<strong>in</strong>q srowth <strong>of</strong><br />

~ostera mar<strong>in</strong>a L. (eelgr>;s) <strong>in</strong> <strong>the</strong><br />

Chesapeake Bay. Aquat. Bot. 15:<br />

117-131.<br />

Ostenfeld, CH. 1908. On <strong>the</strong> <strong>ecology</strong> and<br />

distribution <strong>of</strong> grasswrack (~ostera<br />

mar<strong>in</strong>a) <strong>in</strong> Danish waters. Rep.<br />

Danske Biol. Stn. 16: 1-62.<br />

Osterhout, W.J.V. 1917. Tolerance <strong>of</strong><br />

fresh water by mar<strong>in</strong>e plants and<br />

its relation to adaptation. Bot.<br />

Gaz. 63: 146-149.<br />

O.S.U. 1977. Environmental impacts <strong>of</strong><br />

dredg<strong>in</strong>g <strong>in</strong> estuaries. Schools <strong>of</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g and Oceanography, Oregon<br />

State Univ., Corvallis. 675 pp.<br />

Outram, D.N. 1958. <strong>The</strong> magnitude <strong>of</strong><br />

herr<strong>in</strong>g spawn losses due to bird<br />

predation on <strong>the</strong> west coast <strong>of</strong><br />

Vancouver Island. Prog. Rep. <strong>of</strong> <strong>the</strong><br />

<strong>Pacific</strong> Coast station, Fish Res.<br />

Board Can. 111: 9-13.<br />

Outram, D.N., and R.D. Humphreys. 1974.<br />

<strong>The</strong> <strong>Pacific</strong> herr<strong>in</strong>g <strong>in</strong> British<br />

Columbia waters. Fish. Mar. Serv.,<br />

Pac. Biol. Stn., Nanaimo, B.C. Circ.<br />

100. 26 pp.<br />

Park, M.S. 1969. Studies on <strong>the</strong> chemical<br />

composition <strong>of</strong> Zostera mar<strong>in</strong>a.<br />

Korean J. Bot. 12: 1-6.<br />

Patriqu<strong>in</strong>, D.G. 1973. Estimation <strong>of</strong><br />

growth rate, production, and age <strong>of</strong><br />

<strong>the</strong> mar<strong>in</strong>e angiosperm Thalassia<br />

testud<strong>in</strong>um Konig. Caribb. J. sci. 13:<br />

111-121.<br />

Patriqu<strong>in</strong>, D.G., and R. Knowles. 1972.<br />

Nitrogen fixation <strong>in</strong> <strong>the</strong> rhizosphere<br />

<strong>of</strong> mar<strong>in</strong>e angiosperms. Mar. Biol.<br />

16: 49-58.<br />

Pearcy, W.G., and J.W. Ambler. 1974.<br />

Food habits <strong>of</strong> deepsea macrourid<br />

fishes <strong>of</strong>f <strong>the</strong> Oregon coast. Deep-<br />

Orth, R.J., and K.L. Heck. 1980.<br />

Sea Res. 21: 745-759.<br />

<strong>of</strong> <strong>eelgrass</strong> Penhale, P.A. 19-77. ~acro~phyte-epiphyte<br />

(~ostera mar<strong>in</strong>a) <strong>meadows</strong> <strong>in</strong> <strong>the</strong> Lower biomass and productivity <strong>in</strong> an


<strong>eelgrass</strong> (~ostera mar<strong>in</strong>a L. ) Phillips, R.C. 1978. Seagrasses and <strong>the</strong><br />

munity. J. FXp. Mar. Biol. -01. 26: coastal mar<strong>in</strong>e environment. Oceanus<br />

211-224. 21: 30-40.<br />

Penhale, P.A., and W.O. Smith. 1977.<br />

Excretion <strong>of</strong> dissolve3 organic carbon<br />

by <strong>eelgrass</strong> (~ostera mar<strong>in</strong>a) and its<br />

epiphytes. Limnol. Oceanog. 22:<br />

4004u7.<br />

Penhale, P.A., and G.W. Thayer. 1980.<br />

Uptake and transfer <strong>of</strong> carbon and<br />

phosphorus by <strong>eelgrass</strong> (Zostera<br />

mar<strong>in</strong>a) and its epiphytes. J. Exp.<br />

Mar. Biol. ~col. 42: 113-123.<br />

Petersen, C.G.J. 1891. Fiskenes<br />

Biologiske Forhold i Holbaek fjord.<br />

Rep. Danske Biol. Stn. 1: 1-63.<br />

Petersen, C.G.J. 1913. Om Baendeltangens<br />

(Zostera mar<strong>in</strong>a) Aarsproduktion i de<br />

danska Farvande. M<strong>in</strong>deskr. Steenstr.<br />

Fds. Kbn. 9: 1-20.<br />

Petersen, C.G.J. 1918. <strong>The</strong> sea bottom<br />

and its production <strong>of</strong> fish food.<br />

Rep. mske Biol . Stn. 25 : 1-82.<br />

Petersen, C.G. J., and P. Boysen-Jensen.<br />

1911. Valuation <strong>of</strong> <strong>the</strong> sea, I.<br />

Animal life <strong>of</strong> <strong>the</strong> sea bottom, its<br />

food and quantity. Rep. Danske Biol.<br />

stn. 20: 1-81.<br />

Phifer, L.D. 1929. Littoral diatoms <strong>of</strong><br />

Argyle Lagoon. Univ. Wash<strong>in</strong>gton<br />

met Sound Biol. Stn. Publ. 7:<br />

137-149.<br />

Phillips, R.C. 1972. Ecological life<br />

history <strong>of</strong> Zostera mar<strong>in</strong>a L.<br />

(<strong>eelgrass</strong>) <strong>in</strong> Puget Sound,<br />

Wash<strong>in</strong>gton. Ph.D. Diss. Univ. <strong>of</strong><br />

Wash<strong>in</strong>gton, Seattle. 154 pp.<br />

Phillips, R.C. 1974. Temperate grass<br />

flats. Pages 244-299 H.T. Odum,<br />

B.J. Copeland, and E.A. McMahan, eds.<br />

Coastal ecological systems <strong>of</strong> <strong>the</strong><br />

United States. <strong>The</strong> Conservation<br />

Foundation, Wash<strong>in</strong>gton, D. C.<br />

Phillips, R.C. 1976. Prelim<strong>in</strong>ary<br />

observations on transplant<strong>in</strong>g and a<br />

phenological <strong>in</strong>dex <strong>of</strong> seagrasses.<br />

Aquat. Bot. 2: 93-181.<br />

Phillips, RC. 1979. Ecological notes on<br />

Phyllospadix (Potamogetonaceae) <strong>in</strong><br />

<strong>the</strong> nor<strong>the</strong>ast <strong>Pacific</strong>. Aquat. Bot.<br />

6: 159-170.<br />

Phillips, RC. 1980. Plant<strong>in</strong>g guidel<strong>in</strong>es<br />

for seagrasses. U.S. Army Corps <strong>of</strong><br />

Eng<strong>in</strong>eers, Coastal Eng<strong>in</strong>eer<strong>in</strong>g<br />

Research Center, K<strong>in</strong>gman Bldg., Fort<br />

Belvoir, Va. Tech. Aid 80-2. 28 pp.<br />

Phillips, R.C. 1981. Report on Fidalgo<br />

Bay mar<strong>in</strong>a project. Pages 88-93<br />

F<strong>in</strong>al environmental impact statement<br />

for Anacrotes/~idalgo Bay Mar<strong>in</strong>a.<br />

(Dennis Braddock and Assoc.,<br />

Bell<strong>in</strong>gham, Wash.)<br />

Phillips, R.C., and B. Fleenor. 1970.<br />

Investigation<strong>of</strong><strong>the</strong> benthic mar<strong>in</strong>e<br />

flora <strong>of</strong> Hood Canal, Wash<strong>in</strong>gton.<br />

Pac. Sci. 24: 275-281.<br />

Phillips, R.C., and W.S. Grant. 1965.<br />

Littoral mar<strong>in</strong>e algae <strong>of</strong> Agate Beach-<br />

Crescent Beach, Wash<strong>in</strong>gton. Adv.<br />

Front. Plant Sci. 13: 103-112.<br />

Phillips, R.C., and R.R. Lewis. 1983.<br />

In£ luence <strong>of</strong> env irormental gradients<br />

on variations <strong>in</strong> leaf widths and<br />

transplant success <strong>in</strong> North herican<br />

seagrasses. Mar. Bchnol. Soc. J.<br />

12: 59-68.<br />

Plillips, R.C., C. McMillan, and K.W.<br />

Bridges. 1981. Phenology and<br />

reproductive physiology <strong>of</strong> Thalassia<br />

testud<strong>in</strong>um from <strong>the</strong> westen tropical<br />

Atlantic. Aquat. Bot. 11: 263-277.<br />

Phillips, R.C., C. McMillan, and K.W.<br />

Bridges. 1983a. Phenology <strong>of</strong><br />

<strong>eelgrass</strong>, Zostera mar<strong>in</strong>a L., along<br />

latitud<strong>in</strong>al gradients <strong>in</strong> North<br />

America. Aquat. BoL 15: 145-156.<br />

Phillips, R.C., W.S. Grant, and C.P.<br />

McRoy. 1983b. Reproductive<br />

strategies <strong>of</strong> <strong>eelgrass</strong> (~ostera<br />

rrrari~ L.). Aquat. Bot. 16: 1-20.<br />

Pregnall, M. 1983. Production <strong>ecology</strong> <strong>of</strong><br />

green macroalgal mats <strong>in</strong> <strong>the</strong> Coos


myl Oregon, estuary.<br />

Univ. <strong>of</strong> Oregon, Eugene.<br />

P~.D. Diss.<br />

Proctor, C.M., et al. 1900a. An<br />

ecolgical characterization <strong>of</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong> coastal region.<br />

Vol. 4. U.S. Fish Wildl. Serv.<br />

Biol. Serv. Program FWs/o~s-79/14.<br />

Proctor, C.M., et al. 1980b. An<br />

ecological characterization <strong>of</strong> <strong>the</strong><br />

<strong>Pacific</strong> <strong>Northwest</strong> coastal region.<br />

Vol. 2. U.S. Fish Wildl. Serv. Biol.<br />

Serv . Program ~~~/0BS-79/14.<br />

Pryne, E. 1979. State seek<strong>in</strong>g to<br />

preserve 14,WJill acres <strong>of</strong> tidelands.<br />

<strong>The</strong> Seattle Times, 22 May: B6.<br />

&ismussen, E. 1977. <strong>The</strong> wast<strong>in</strong>g disease<br />

<strong>of</strong> <strong>the</strong> <strong>eelgrass</strong> (Zostera mar<strong>in</strong>a) ard<br />

its effects on environmental factors<br />

and fauna. Chap. 1 - <strong>in</strong> C.P. McRoy and<br />

C. Helf ferich, eds. Seagrass ecosystems:<br />

an ecosystem perspective. M.<br />

Dekker, New York.<br />

Reiger, G. 1982. Return <strong>of</strong> <strong>the</strong> sea<br />

goose. Field and Stream 87 : 66-67,<br />

141-144.<br />

Rice, E.C. 1974. Allelopathy. Academic<br />

Press, New York. 353 pp.<br />

Ricketts, E.F., and J. Calv<strong>in</strong>. 1968.<br />

Between <strong>Pacific</strong> tides. Revised by<br />

J.W. Hedgpeth. Stanford Univ. Press,<br />

stan ford,- Calif .<br />

Roper, C.F.E., and W.L. Brundage. 1972.<br />

Cirrate octopds with associated deep<br />

sea organisms: new biological data<br />

based on deep benthic photographs<br />

(Cephalopods). Smithson. Contrib.<br />

Zool. 121: 1-46.<br />

Sand-Jensen, K. 1975. Biomass, net<br />

prduction and growth dynamics <strong>in</strong> an<br />

<strong>eelgrass</strong> (zostera mar<strong>in</strong>a L.)<br />

papulation <strong>in</strong> Vellerup Viq, Denmark.<br />

Sand-Jensen, K. 1977. Effect <strong>of</strong> epiphytes<br />

on <strong>eelgrass</strong> photosyn<strong>the</strong>sis. Aquat.<br />

Bot. 3: 55-63.<br />

Sauvageau, C. 1889. Contribution a<br />

l'etude du systeme mecanique dans la<br />

rac<strong>in</strong>e des plantes aquatiques les<br />

Zostera, Cymdocea et Posidonia. J.<br />

Bot., Paris 3: 169-181.<br />

Sauvageau, C. 1890. Observations sur la<br />

structure des feuilles des plantes<br />

aquatiques. J. Bot., Paris 4: 41-<br />

50, 60-76, 117-126, 129-135, 173-178,<br />

181-192, 221-229, 237-245.<br />

Sauvageau, C. 1891. Sur la tige des<br />

Zostera. J. Bot., Paris 5: 33-45,<br />

56-68.<br />

Setchell, W.A. 1920. Geographical<br />

distribution <strong>of</strong> <strong>the</strong> mar<strong>in</strong>e<br />

spermatophytes. Bull. Torrey Bot.<br />

Club 47: 563-579.<br />

Setchell, W.A. 1929. Morphological and<br />

phenolqical notes on Zostera mar<strong>in</strong>a<br />

L. Univ. Calif. Publ. Bot. 14: 389-<br />

452.<br />

Short, F.T. 1975. Eelgrass prduction <strong>in</strong><br />

Charlestown Pond: an ecological<br />

analysis and numerical simulation<br />

mdel. M.S. <strong>The</strong>sis. Univ. <strong>of</strong> Rhde<br />

Island, K<strong>in</strong>gston. 180 m.<br />

Short, F.T. 1901. Nitrogen resource<br />

analysis and modell<strong>in</strong>g <strong>of</strong> an <strong>eelgrass</strong><br />

(Zostera mar<strong>in</strong>a L.) meadow <strong>in</strong> Izembek<br />

Lagoon, Alaska. Ph.D. Diss. Univ. <strong>of</strong><br />

Alaska, Fairbanks.<br />

Sieburth, J. M. and C.D. Thomas. 1973.<br />

Foul<strong>in</strong>g on <strong>eelgrass</strong> (Zostera mar<strong>in</strong>a<br />

L.). J. Phycol. 9: 46-50.<br />

Simenstad, C.A., and W.J. Kenney. 1978.<br />

Trophic relationships <strong>of</strong><br />

outmigrat<strong>in</strong>g chum salmon <strong>in</strong> Hood<br />

Canal, 1977. Univ. Wash<strong>in</strong>gton,<br />

Fish. Res. Inst. F<strong>in</strong>al Rep. FRI-UW-<br />

7810. 75 pp.<br />

Simenstad, C.A., B.S. ~iller, C.F.<br />

Nyblade, K. Thornburgh, and L.J.<br />

Bledsoe. 1979. Food web<br />

relationships <strong>of</strong> rmr<strong>the</strong>rn Puget sound<br />

and <strong>the</strong> Strait <strong>of</strong> Juan de Fuca.<br />

U.S.E.P.A., Wash<strong>in</strong>gton, D.C. EPA-<br />

60@/7-79-259. 335 pp.<br />

Simenstad, C.A., W.J. K<strong>in</strong>ney, and B.S.<br />

Miller. 1980a. Epibenthic zooplankton<br />

assemblages at selected sites


along <strong>the</strong> Strait <strong>of</strong> Juan de Fuca.<br />

NOAA/MESA ~ndlysis Program. Boulder,<br />

Colorado. Univ. Wash<strong>in</strong>gton Fish.<br />

Res. Inst. 73 pp.<br />

Simenstad, C.A., W.J. K<strong>in</strong>ney, S.S. Parker,<br />

E.O. Salo, J.H. cordell, and H.<br />

Buechner. 1980b. Prey community<br />

structure and trophic <strong>ecology</strong> <strong>of</strong><br />

outmigrat<strong>in</strong>g juvenile chum and p<strong>in</strong>k<br />

salmon <strong>in</strong> Hood Canal, Wash<strong>in</strong>gton.<br />

Univ. <strong>of</strong> Wash<strong>in</strong>gton, Coll. <strong>of</strong> Fish.<br />

Res. Inst. FKI-UW-8026.<br />

Smith, G.W., S.S. Hayasaka, and G.W.<br />

laver. 1979. Root surface area<br />

measurements <strong>of</strong> zostera mar<strong>in</strong>a and<br />

Halodule wrightii. Bot. Mar. 22:<br />

347-358.<br />

Smith, G.W., S.S. Hayasaka, and G.W.<br />

Thayer. 1981a. ~mmonification <strong>of</strong><br />

am<strong>in</strong>o acids by rkizosphere micro flora<br />

<strong>of</strong> Zostera -mar<strong>in</strong>a- and Halodule<br />

wrightii. Estuaries 4 (Abstr.).<br />

Smith, G.W., G.W. Thayer, and S.S.<br />

Hayasaka. 1981 b. Seasonal values <strong>of</strong><br />

ammi f ication and nitrogen fixation<br />

associated with North Carol<strong>in</strong>a<br />

seagrasses. Estuaries 4: 2716.<br />

(Abstr.)<br />

Smith, J.L. 1976. impact <strong>of</strong> dredg<strong>in</strong>g on<br />

<strong>the</strong> vegetation <strong>in</strong> Grays Harbor.<br />

Appendix I. Ma<strong>in</strong>tenance dredg <strong>in</strong>g and<br />

<strong>the</strong> environment <strong>of</strong> Grays Harbor,<br />

Wash<strong>in</strong>gton. U.S. Army mrps <strong>of</strong><br />

Eng<strong>in</strong>eers District , Seattle, Wash.<br />

Smith, W.D., and P.A. Penhale. 1980. <strong>The</strong><br />

heterotrophic uptake <strong>of</strong> dissolved<br />

organic carbon by <strong>eelgrass</strong> (zostera<br />

mar<strong>in</strong>a L.) and its epiphytes. J.<br />

Exp. Mar. Biol. Ecol. 48: 233-242.<br />

Stahlheber, C.J. 1982. Determ<strong>in</strong>ation <strong>of</strong><br />

lipids and soluble carbohydrates <strong>in</strong><br />

Zostera mar<strong>in</strong>a <strong>of</strong> Puget Sound.<br />

Student Rep., Seattle <strong>Pacific</strong> Univ.<br />

Seattle, Wash. 22 pp,<br />

Stauffer, R.C. 1937. Changes <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>vertebrate community <strong>of</strong> a lagoon<br />

after disappearance <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong>.<br />

Ecology 18: 427-431.<br />

Stokes, R.L. 1978. Economic evaluation<br />

<strong>of</strong> Wash<strong>in</strong>gton mar<strong>in</strong>e resources.<br />

Western Proc. 58th Annu. Conf. West.<br />

Assoc. Fish and Wildlife Agencies.<br />

San Diego: 427-443.<br />

Stout, H., ed. 1976. <strong>The</strong> natural<br />

resources and hunan ut il izat ion <strong>of</strong><br />

Ne tarts Bay, Oregon. NSF Student<br />

Orig<strong>in</strong>ated Studies l%xqram. Oregon<br />

State Univ. , Corvallis. 247 pp.<br />

Suda, J. 1974. Prelim<strong>in</strong>ary <strong>in</strong>vestigations<br />

<strong>of</strong> Zostera community metabolism<br />

and its implication <strong>in</strong> Great South<br />

Bay production. M.S. <strong>The</strong>sis. State<br />

Univ. <strong>of</strong> New York, Stony Brook. 88<br />

PP.<br />

Sw<strong>in</strong>chatt, J.P. 1965. Significance <strong>of</strong><br />

constituent composition, texture, and<br />

skeletal breakdown <strong>in</strong> some recent<br />

carbonate sediments. J. Sediment.<br />

Petrol. 35: 71-90.<br />

Techet, K. 1906. Uber die mar<strong>in</strong>e<br />

vegetation des Trieste Golfes.<br />

Abhardl. K.K. 2001. Bot. Res. Wien 4:<br />

17.<br />

Tenore, K.R. 1977. Growth <strong>of</strong> <strong>the</strong><br />

polychaete, Capitella capitata,<br />

cultured on different levels <strong>of</strong><br />

detritus derived from various<br />

sources. Limnol. Oceanogr. 22: 936-<br />

941.<br />

Terres, J.K. 1980. <strong>The</strong> Audubon Society<br />

encyclopedia <strong>of</strong> North American birds.<br />

A1 £red Knopf , New York.<br />

Thayer, G.W., and R.C. Phillips, 1977.<br />

Importance <strong>of</strong> <strong>eelgrass</strong> beds <strong>in</strong> Puget<br />

Sound. Mar. Fish. Rev. 39: 18-22.<br />

Thayer, G.W., and H.H. Stuart. 1974. <strong>The</strong><br />

bay scallop makes its bed <strong>of</strong><br />

seagrass. Mar. Fish. Rev. 36: 27-<br />

39.<br />

Thayer, G.W., D.A. Wolfe, and R.B.<br />

Williams. 1975a. <strong>The</strong> impact <strong>of</strong> man<br />

on seagrass systems. Am. Sci. 63:<br />

288-296.<br />

Thayer, G.W., S.M. Adams, and M.W.<br />

LaCroix. 1975b. Structural and<br />

functional aspects <strong>of</strong> a recently<br />

established mstera -- mar<strong>in</strong>a community.<br />

Pages 518-540 <strong>in</strong> L.E. Cron<strong>in</strong>, ed.


Estuar<strong>in</strong>e research.<br />

New York.<br />

Academic Press,<br />

Thayer, G.W., O.W. Engel, and M.W.<br />

LaCroix. 1977. Seasonal distribution<br />

and changes <strong>in</strong> <strong>the</strong> nutritional<br />

quality <strong>of</strong> liv<strong>in</strong>g, dead, and detrital<br />

fractions <strong>of</strong> Zostera mar<strong>in</strong>a L. J.<br />

Exp. Mar. Biol. Ecol. 3PI: 109-127.<br />

Thayer, G.W., P.L. Parker, M.W. LaCroix,<br />

and B. Fry. 1978. <strong>The</strong> stable carbon<br />

isotope ratio <strong>of</strong> some components <strong>of</strong><br />

an <strong>eelgrass</strong>, Zostera mar<strong>in</strong>a, bed.<br />

Oecologia 35: 1-12.<br />

Thayer, G.W., H.H. Stuart, W.J. Kenworthy,<br />

J.F. Ustach, and RB. Hall. 1979.<br />

Habitat values <strong>of</strong> salt marshes,<br />

mangroves, and seagrasses for aquatic<br />

organisms. Pages 235-247 <strong>in</strong> P.E.<br />

Greeson, J.R. Clark, and ~.~.Clark,<br />

eds. Wetland functions and values:<br />

<strong>the</strong> state <strong>of</strong> our understand<strong>in</strong>g.<br />

Proc. Natl. Symp. on Wetlands. Am.<br />

Wate~ Res. Assoc., M<strong>in</strong>neapolis, M<strong>in</strong>n.<br />

Toml<strong>in</strong>son, P.B. 1974. Vegetative<br />

morphology and meristem dependence -<br />

<strong>the</strong> foundation <strong>of</strong> productivity <strong>in</strong><br />

seagrasses. Aquaculture 4: 187-130.<br />

Toml<strong>in</strong>son, P.B. 1980. Leaf morphology<br />

and anatomy <strong>in</strong> seagrasses. Pages 7-<br />

28 - <strong>in</strong> R.C. Phillips and C.P. McRoy,<br />

eds. Handbook <strong>of</strong> seagrass biology:<br />

an ecosystem perspective. Garland<br />

STPM Press, New York.<br />

Tut<strong>in</strong>, T.G. 1938. <strong>The</strong> aut<strong>ecology</strong> <strong>of</strong><br />

Zostera mar<strong>in</strong>a <strong>in</strong> relation to its<br />

wast<strong>in</strong>g disease. New Phytol. 37:<br />

50-71.<br />

van den Ebde , G . , and P. Haage. 1963.<br />

Der Epiphytenbewuchs von Zostera<br />

mar<strong>in</strong>a en der bretonischenkuste.<br />

Bot. Mar. 5: 105-110.<br />

Waddell, J.E. 1964. <strong>The</strong> effect <strong>of</strong> oyster<br />

culture on <strong>eelgrass</strong> (Zostera mar<strong>in</strong>a<br />

L.) growth. M.S. <strong>The</strong>sis. Humboldt<br />

State Univ. , Arcata, Calif . 48 pp.<br />

Than, R.M. 1981. Primary productivity<br />

and carbon <strong>in</strong>put to Grays Harbor<br />

estuary, Wash<strong>in</strong>gton. Environmental<br />

Resources Section, Seattle District,<br />

U.S. Army Corps <strong>of</strong> Eng<strong>in</strong>eers,<br />

Seattle, Wash. 71 pp.<br />

Than, R., K. Chew, D. Crisostomo, B.<br />

Dwnbauld, A. Escotet, C. Falmange, J.<br />

Hampel, C. Lau, J. Orensanz, and D.<br />

Waumann de P<strong>in</strong>et. 1979. Habitats,<br />

abundance, and diversity <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>tertidal benthic biota <strong>of</strong> Skiff<br />

m<strong>in</strong>t, B<strong>in</strong>bridge Island, Wash<strong>in</strong>gton.<br />

Rep. to Municipality <strong>of</strong> Metropolitan<br />

Seattle (METRO). Coll. <strong>of</strong> Fisheries,<br />

Univ. <strong>of</strong> Wash<strong>in</strong>gton, Seattle.<br />

Thomas, M.LH. 1%8. Control <strong>of</strong> <strong>eelgrass</strong><br />

us<strong>in</strong>g 2,4-D <strong>in</strong> oyster-grow<strong>in</strong>g areas.<br />

Fish. Res. Board Can., Mar. Ecology<br />

Lab., Bedford Inst., Dartmouth, Nova<br />

Scotia. Gen. Ser. Circ. 1: 13-16.<br />

Wahl, T.R., and D.R. Paulson. 1971. A<br />

guide to bird feed<strong>in</strong>g <strong>in</strong> Wash<strong>in</strong>gton.<br />

Univ. <strong>of</strong> Wash., Seattle.<br />

Webb, L.A., and A.S. Hourston. 1979.<br />

Review <strong>of</strong> 1976-1977 British Columbia<br />

herr<strong>in</strong>g fishery and spawn abundance.<br />

Fish. Mar. Serv., Industry Rep. 110,<br />

Dept. <strong>of</strong> Fish. and Oceans, Vancouver,<br />

B.C. 46 pp.<br />

Westlake, D.F. 1963. Comparisons <strong>of</strong><br />

plant productivity. Biol. Rev. 38:<br />

385425.<br />

Wetzel, R.G., and P.A. Penhale. 1979.<br />

Transport <strong>of</strong> carbon and excretion <strong>of</strong><br />

dissolved organic carbon by leaves<br />

and rcots/rhizomes <strong>in</strong> seagrasses and<br />

<strong>the</strong>ir epiphytes. Aquat. Bot. 6:<br />

149-158.<br />

Wetzel, R.G., P.H. Rich, M.C. Miller, and<br />

H.C. Allen. 1972. Metabolism <strong>of</strong><br />

dissolved and particulate detrital<br />

carbon <strong>in</strong> a temperate hard water<br />

lake. Mem. Inst. Idrobiol. Dott.<br />

Marco Marchi 29 (suppl.): 185-243.<br />

Toml<strong>in</strong>son, P.B. 1972. On <strong>the</strong> morphology<br />

and anatomy <strong>of</strong> turtle grass,<br />

Thalassia testud<strong>in</strong>um (~ydrocharitaceae).<br />

IV. Leaf anatomy and<br />

development. Bull. Mar. FA.-Gulf. Whit<strong>in</strong>g, M.C. 1983. Distributional<br />

Caribb. 22: 75-93. patterns and taxonomic structure <strong>of</strong>


diatom assemblages <strong>in</strong> Netarts Bay,<br />

Oregon. Ph.D. Diss. Oregon State<br />

Univ., Corvallis. 138 pp.<br />

Wiedemann, A.M., J. Dennis La Rea, and<br />

F.H. Smith. 1974. Plants <strong>of</strong> <strong>the</strong><br />

Oregon coastal dunes. Oregon State<br />

University Book Stores, Inc.,<br />

Corvallis .<br />

Williams, S.L., and C.P. McRoy. 1982.<br />

Seagrass productivity: <strong>the</strong> effect <strong>of</strong><br />

light on carbon <strong>in</strong>take. Aquat. Bot.<br />

12: 321-344.<br />

Wilson, D.P. 1949. <strong>The</strong> decl<strong>in</strong>e <strong>of</strong><br />

Zostera marim L. at Salcombe and its<br />

effects on <strong>the</strong> shore. J. Mar. Biol.<br />

Assoc, U.K. 28: 395-412.<br />

Wilson, U.W. 1981. Monitor<strong>in</strong>g <strong>eelgrass</strong><br />

Zostera mar<strong>in</strong>a at Willapa Bay,<br />

Wash<strong>in</strong>gton. Prog. Rep., U.S. Fish and<br />

Wildlife Refuge, Willapa and<br />

Wash<strong>in</strong>gton Islands, National Wildlife<br />

Refuges. Ridgef ield, Wash. 3 pp.<br />

Wi<strong>the</strong>rby, H.F., F.C.R. Jourda<strong>in</strong>, N.F.<br />

Ticehurst, and B.W. Tucker. 1943.<br />

<strong>The</strong> handbook <strong>of</strong> British birds. Pages<br />

210-215 <strong>in</strong> H.F. and G. wi<strong>the</strong>rby, eds.<br />

Vol. 3, Endon.<br />

Wolfe, D.A., G.W. Thayer, and S.M. Adams.<br />

1976. Manganese, iron, copper, and<br />

z<strong>in</strong>c <strong>in</strong> an <strong>eelgrass</strong> (~ostera mar<strong>in</strong>a)<br />

community. Pages 256-270 <strong>in</strong> C.E.<br />

Cush<strong>in</strong>g , ed. Radio<strong>ecology</strong> and-energy<br />

resources. Proc. 4th Natl. Symp.<br />

Radio<strong>ecology</strong>. Dowden, Hutch<strong>in</strong>son and<br />

Wss, Stmudsberg, Pa.<br />

Wolff, T. 198& Animals associated with<br />

seagrass <strong>in</strong> <strong>the</strong> deep sea. Pages 199-<br />

224 R.C. Phillips and C.P. McRoy,<br />

eds. Handbook <strong>of</strong> seagrass biology:<br />

an ecosystem perspective. Garland<br />

STPM Press, New York.<br />

Wood, E.J.F., W.E. Odum, and J.C. Zieman.<br />

1969. Influence <strong>of</strong> seagrasses on <strong>the</strong><br />

productivity <strong>of</strong> coastal lagoons.<br />

Lagunas Costeras, un Simpsio. M a .<br />

Symp. Intern. Costeras. UNAM-IINESCO,<br />

Yosh<strong>in</strong>aka, M.S., and N.J. Ellifrit. 1974.<br />

Hood Canal-priorities for tomorrow:<br />

an <strong>in</strong>itial report on fish and<br />

wildlife, developmental aspects and<br />

plann<strong>in</strong>g considerations for Hood<br />

Canal, Wash<strong>in</strong>gton U.S. Fish and<br />

Wildlife Service, Portland, Oregon.<br />

97 pp.<br />

Zapata, O., and C. McMillan. 1979.<br />

Phenolic acids <strong>in</strong> seagrasses. &pat.<br />

Bat. 7: 307-317.<br />

Zieman, J.C. 1968. A study <strong>of</strong> <strong>the</strong> growth<br />

and decommsition <strong>of</strong> <strong>the</strong> seagrass<br />

~halassia-testud<strong>in</strong>um. M.S. ~h&sis.<br />

Univ. <strong>of</strong> Miami, Miami, Florida. 50<br />

Zieman, J.C. 1974. Methods £or <strong>the</strong> study<br />

<strong>of</strong> <strong>the</strong> growth and production <strong>of</strong><br />

turtlegrass, Thalassia testud<strong>in</strong>urn<br />

Kionig. Aquaculture 4: 139-143.<br />

Zieman, J.C. 1975. Tropical seagrass<br />

ecosystems and pollution. Chap 4 &<br />

E.J.F. Wood and R.E. Johannes, eds.<br />

Tropical mar<strong>in</strong>e pollution. Elsevier<br />

Oceanography Series 12. Elsevier<br />

Publ. Co., New York.<br />

Zieman, J.C. 1982. <strong>The</strong> <strong>ecology</strong> <strong>of</strong> <strong>the</strong><br />

seagrasses <strong>of</strong> south Florida : a<br />

cmunity pr<strong>of</strong>ile. U.S. Fish Wildl.<br />

Serv. Biol. Sen. Program. FWS/OBS-<br />

82/85. 158 pp.<br />

Zieman, J.C. and R.G. Wetzel. 19816.<br />

Productivity <strong>in</strong> seagrasses: methods<br />

and rates. Pages 87-115 &I R.C.<br />

Phillips and C.P. McRoy eds.<br />

Handbook <strong>of</strong> seagrass biology: an<br />

ecosystem perspective. Garland STPM<br />

Press, New York.<br />

Zieman, J.C., G.W. Thayer, M.B. Robblee,<br />

and R.T. Zieman. 1979. Production<br />

and export <strong>of</strong> seagrasses from a<br />

tropical bay. Pages 21-34 R.J.<br />

Liv<strong>in</strong>g ston, ed. Ecological processes<br />

<strong>in</strong> coastal and mar<strong>in</strong>e systems.<br />

Mar<strong>in</strong>e sciences 10. Plenum Press,<br />

New York.<br />

:U.5.<br />

GOVERNMENT PRINTING OFPICE: 1985-f71-149


---<br />

SO272 -101<br />

REPORT WCUMENTATION ' 1. REmRT *<br />

L<br />

- -<br />

PAGE<br />

---- FWS/OBS-84/24<br />

-- 7------<br />

4. nt~. a~ %*r~rt* L R*oon oat.<br />

<strong>The</strong> Ecology <strong>of</strong> Eelgrass Meadows <strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>: A September 1984 - - -<br />

Community Pr<strong>of</strong>ile<br />

-- - --- -- - -<br />

9. Author's Affiliation: . Pm~.ctlTask/Work Untt NO<br />

School <strong>of</strong> Natural and Ma<strong>the</strong>matical Sciences - - -<br />

Seattle <strong>Pacific</strong> University<br />

Seattle, WA 98119<br />

II Contraci(C) or CrantG) NO<br />

-.- -^ -- I<br />

12. Sganwrfns Or~antxatlon NIm. and Addr8.s 13. Tyrn d Rsport h Per~od Covered<br />

National Coastal Ecosystems Team<br />

Fish and Wildlife Service<br />

U.S. Department <strong>of</strong> <strong>the</strong> Interior<br />

Wa_s__h2jtpn2- DC- 20240 - --- -- --- - - - - -- - -<br />

15. SuWwwenlav Holes<br />

-- ---<br />

-- - -<br />

This docutlient syn<strong>the</strong>sizes <strong>the</strong> extdnt l i terdture pert<strong>in</strong>ent to <strong>the</strong> <strong>ecology</strong> <strong>of</strong> eelgrdss beds<br />

<strong>of</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>: that part <strong>of</strong> <strong>the</strong> coast extend<strong>in</strong>g from Cape Flattery, WA, to<br />

Cage Mrndoc<strong>in</strong>o, CA. This report describes <strong>the</strong> physiographic sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> eelqrass communi<br />

ty, <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> yrass beds, aut<strong>ecology</strong> <strong>of</strong> <strong>the</strong> <strong>eelgrass</strong> <strong>in</strong> ternis <strong>of</strong> srowth<br />

and reproductive strdtegics and physiological requirerilents and functions. <strong>The</strong> ecological<br />

and Functional attributes ot <strong>the</strong> celgrass system or comrnunity are also described. This<br />

appt dach encompasses both detailed site descriptions and a broader overview <strong>of</strong> <strong>the</strong><br />

eclyrass conir~lunity and its ecologic.al role with<strong>in</strong> <strong>the</strong> estuar<strong>in</strong>e cor~iplex. <strong>The</strong> f<strong>in</strong>al<br />

section discusses nidndqernent considerat ions and takes <strong>in</strong>to account local issues and<br />

impact scenarios.<br />

ewrtptors<br />

<strong>eelgrass</strong>, Posterd rldr<strong>in</strong>d<br />

-*-<br />

b. tdontlf,en/fhwn En0.d T~rrnl<br />

productivity, nutrient cycl<strong>in</strong>g, succession, epiphytes<br />

( Unlimited<br />

L<br />

I<br />

i Unclassified<br />

85<br />

t -<br />

3 -.<br />

20. Srcurtrr Class (Thlr Precl 1 22. Prlct<br />

I<br />

' Unclassified<br />

[See ANSI-239 la) OPTIONAL FORM 272 (4-771<br />

I

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!