21.01.2015 Views

RADIATIVE CORRECTIONS IN ELASTIC AND DEEP-INELASTIC ...

RADIATIVE CORRECTIONS IN ELASTIC AND DEEP-INELASTIC ...

RADIATIVE CORRECTIONS IN ELASTIC AND DEEP-INELASTIC ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>RADIATIVE</strong> <strong>CORRECTIONS</strong> <strong>IN</strong> <strong>ELASTIC</strong> <strong>AND</strong> <strong>DEEP</strong>-<strong>IN</strong><strong>ELASTIC</strong><br />

ELECTRON-PROTON SCATTER<strong>IN</strong>G<br />

A.V. Afanas’ev a) , I.V. Akushevich a,b) , N.P Merenkov<br />

National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine<br />

a)<br />

Nord Carolina Central University, Durham and TJNAF, Newport News, USA<br />

b)<br />

On leave of absence from National Centre of Particle and High Energy Physics,<br />

Minsk, Belarus<br />

The electron structure function method is applied to calculate model-independent radiative corrections to an<br />

asymmetry of electron-proton scattering. The representations for both spin-independent and spin-dependent parts of<br />

the cross section are derived. Master formulae take into account the leading correction in all orders and the main<br />

contribution of of the second order next-to-leading ones and have accuracy at the level of one per mille.<br />

PACS: 12.20.-m, 13.40.-f, 13.60-Hb, 13.88.+e<br />

1. MASTER FORMULA<br />

Precise polarization measurements in both inclusive<br />

and elastic scattering are crucial for understanding the<br />

structure and fundamental properties of a nucleon.<br />

One important component of the precise data analysis<br />

is radiative effects which always accompany the processes<br />

of electron scattering. The first calculation of radiative<br />

corrections (RC) to polarized deep-inelastic scattering<br />

(DIS) was done in [1,2] where the first order correction<br />

has been found.<br />

In present work we apply method of the electron<br />

structure function for calculation of RC. Within this approach<br />

DIS in one photon exchange approximation can<br />

be considered as the Drell-Yan process [3]. The corresponding<br />

cross section with accounting of RC can be<br />

written as an contraction of two electron structure functions<br />

and the hard part of the cross section [4,5]. Traditionally<br />

these RC include main effects caused by loop<br />

corrections as well soft and hard collinear photons and<br />

e + e<br />

− - pairs. But it was shown in [5] how one can improve<br />

this method by inclusion also effects due to radiation<br />

of one non-collinear photon. The corresponding<br />

procedure concludes in modification of the hard part of<br />

cross section that leads to exit beyond the leading approximation.<br />

A straightforward calculation based on the quasi-real<br />

electron method [6] can be used to write cross section of<br />

DIS process<br />

−<br />

−<br />

e ( k1 ) + P( p1<br />

) → e ( k2) + X ( p x<br />

)<br />

(1)<br />

in the following form<br />

1 1<br />

dσ<br />

( k1, k2 ) dz<br />

dσ<br />

(<br />

2<br />

h<br />

k% 1,<br />

k%<br />

2<br />

)<br />

= dz<br />

2 1<br />

D( z1, L) D( z2, L) ,<br />

2<br />

dQ dy<br />

т т<br />

z<br />

dQ% dy%<br />

2<br />

z1m<br />

z2m<br />

2<br />

L = ln Q , (2)<br />

2<br />

m<br />

where m is the electron mass and<br />

2 2 2 p1 ( k1 − k2<br />

)<br />

Q = − ( k1 − k2<br />

) , y = , V = 2 p1k1<br />

.<br />

V<br />

The reduced variables which define the hard cross section<br />

in the integrand are<br />

k<br />

k%<br />

= z k , k% 2 1 2<br />

= , Q = Q<br />

1 1 1 2<br />

z2<br />

z2<br />

%<br />

z<br />

,<br />

1 − y<br />

y%<br />

= 1 − .<br />

z z<br />

The electron structure function D( z, L) includes contributions<br />

due to photon emission and pair production<br />

+ − + −<br />

γ e e e e<br />

D = D + DN<br />

+ DS<br />

.<br />

For the photon contribution into the structure function<br />

one can use iterative form<br />

1 2<br />

е<br />

Ґ<br />

k<br />

1 жα<br />

L ц<br />

Д k<br />

1<br />

k = 1 k ! 2π<br />

(3)<br />

γ<br />

D = δ (1 − z) + з ч P ( z) ,<br />

и ш<br />

k<br />

P ( z) =Д L Д P ( z) P ( z) Д ,<br />

1 1 1<br />

k<br />

z dt<br />

P ( z) P ( z) P ( t)<br />

P ж ц<br />

=Д т з ч<br />

и t ш t<br />

1 1 1 1<br />

z<br />

1<br />

2<br />

1 + z<br />

3<br />

P1<br />

( z) (1 z ) (1 z) 2ln<br />

1 z θ<br />

δ ж ц<br />

= − − ∆ + − з ∆ + ч<br />

− и 2 ш , ∆ → 0 .<br />

The nonsinglet part of the structure function due to<br />

real and virtual pair production can be included in the iterative<br />

form of D ( z. L)<br />

by replacing α L / 2π on the<br />

γ<br />

right side of Eq. (3) with the effective electromagnetic<br />

α L α<br />

eff 3 α L<br />

coupling → = − ln ж 1<br />

ц<br />

2π 2π 2<br />

з −<br />

3π<br />

ч that is (within the<br />

и ш<br />

leading accuracy) the integral of the running electromagnetic<br />

constant.<br />

The lower limits of integration with respect to z 1 and<br />

z 2 in the master equation (2) can be obtained from the<br />

condition of existence of inelastic hadronic events which<br />

reads in terms of dimentionless variables as<br />

z1z2 + y − − xyz1 Ј z2<br />

z th<br />

1 ,<br />

2<br />

2 2<br />

Q<br />

M<br />

th<br />

− M<br />

x = , zth<br />

= ,<br />

2 p1 ( k1 − k2<br />

)<br />

V<br />

which leads to<br />

1 − y + xyz1<br />

1 + zth<br />

− y<br />

z2m<br />

= , z1m<br />

= . (4)<br />

z1<br />

− zth<br />

1 − xy<br />

The matrix element squared of the considered process<br />

in one photon exchange approximation is proportional<br />

to contraction of leptonic and hadronic tensors.<br />

The representation (2) reflects the properties of leptonic<br />

one. Therefore, it has universal nature and can be applied<br />

to processes with different final hadronic states. In<br />

particular, we can use the electron structure function ap-<br />

40<br />

PROBLEMS OF ATOMIC SCIENCE <strong>AND</strong> TECHNOLOGY. 2001, № 6, p. 40-44.


proach to compute RC to the elastic and deep-inelastic<br />

electron-proton scattering cross sections.<br />

On the other hand, the straightforward calculation in<br />

the first order with respect to α [1,2,6] and the recent<br />

calculation of the leptonic current tensor in the second<br />

order [7-10] for longitudinally polarized initial electron<br />

demonstrate that in the leading approximation spin-independent<br />

and spin-dependent parts of this tensor are the<br />

same for so-called nonsinglet channel contribution. The<br />

latter corresponds to photon radiation and e + e - -pairs production<br />

through single-photon mechanism. The difference<br />

appears in the second order due to possibility of<br />

pair production by double-photon mechanism [10].<br />

Therefore, the representation (2), being slightly modified,<br />

can be used for calculation of RC to cross sections<br />

of different processes with longitudinally polarized electron<br />

beam.<br />

In our recent work [11] we applied this method to<br />

compute RC to the ratio of the recoil proton polarizations<br />

measured in CEBAF Jefferson Lab [12], where the<br />

proton electric form factor G e was measured. In the<br />

present work we use the electron structure function<br />

method for calculation of model-independent part of RC<br />

to asymmetry in scattering of longitudinally polarized<br />

electrons on polarized protons at the level of per mile<br />

accuracy for elastic and deep-inelastic hadronic events.<br />

The cross section of the scattering of the longitudinally<br />

polarized electron by the proton with given longitudinal<br />

(l) or transverse (t) polarization for both elastic<br />

and deep-inelastic events can be written as a sum of its<br />

spin-independent and spin-dependent parts<br />

l,<br />

t<br />

dσ ( k1 , k2 , S) dσ ( k1, k2 ) dσ<br />

( k1, k2<br />

, S)<br />

= + η<br />

2 2 2<br />

, (5)<br />

dQ dy dQ dy dQ dy<br />

where S is 4-vector of the target proton polarization and<br />

η is the product of the electron and proton polarization<br />

degrees. Herein after we assume η = 1.<br />

The master equation (2) describes the RC to spin-independent<br />

part of the cross section on the right side of<br />

Eq. (5) and the corresponding equation for the spin-dependent<br />

part reads<br />

l,<br />

t<br />

dσ<br />

( k1, k2, S)<br />

2 =<br />

dQ dy<br />

1 1<br />

( p)<br />

1 2 1 2<br />

z1m<br />

z2m<br />

т dz т dz D ( z , L) D( z , L)<br />

ґ (6)<br />

l,<br />

t<br />

dσ hard<br />

( k% 1, k%<br />

2<br />

, S) 2 ,<br />

( p) e e e e ( p<br />

dQ% D D γ<br />

+ − + −<br />

= + D ) ,<br />

dy%<br />

N<br />

+ DS<br />

and [10]<br />

2 2<br />

+ −<br />

e e ( p)<br />

α L й 2(1 − z)<br />

щ<br />

DS<br />

= (1 z)ln z θ (1 z 2 m / ε )<br />

2<br />

4π<br />

к<br />

+ + − −<br />

л 2<br />

ъ<br />

.<br />

ы<br />

The representation (6) is valid if radiation of<br />

collinear particles does not lead to change polarization<br />

4-vectors. In general case it is not so [13] but in this paper<br />

we will use just such polarizations which satisfy this<br />

conditions (see next Section)<br />

The asymmetry in elastic scattering and DIS processes<br />

is defined as the ratio<br />

l,<br />

t<br />

l, t dσ<br />

( k1, k2<br />

, S) A =<br />

,<br />

dσ<br />

( k , k )<br />

1 2<br />

therefore, RC to asymmetry requires the knowledge of<br />

RC to both spin-independent and spin-dependent parts.<br />

2. THE LEAD<strong>IN</strong>G APPROXIMATION<br />

Within the leading accuracy (taking into account<br />

terms of the order (αL) n ) the electron structure functions<br />

can be computed in all orders of the perturbation theory.<br />

In this approximation we have to take the Born cross<br />

section as hard part in integrands of master Eqs. (2), (6).<br />

We express the Born cross section in terms of leptonic<br />

and hadronic tensors as follows<br />

2 2<br />

dσ<br />

4 π α ( Q ) B<br />

2 4 L<br />

µ ν H<br />

µ ν<br />

= ,<br />

(7)<br />

dQ dy VQ<br />

where α(Q 2 ) is the runing electromagnetic constant that<br />

takes into account for the effects of vacuum polarization<br />

and<br />

F M Sq<br />

H = − F g% + p% p%<br />

− iε<br />

q [( g + g ) S − g ],<br />

p q p q p q<br />

2<br />

µ ν 1 µ ν 1µ 1ν µ ν λ ρ λ<br />

1 2 2<br />

1 1 1<br />

Q<br />

L g k k k k i q p<br />

2<br />

2<br />

B<br />

µ ν<br />

= − %<br />

µ ν<br />

+<br />

1µ 2ν +<br />

1ν 2 µ<br />

+ ε<br />

µ ν λ ρ λ 1 ρ<br />

,<br />

qµ qν<br />

p1q<br />

g% µ ν<br />

= gµ ν<br />

− , p% 2 1µ = p1<br />

µ<br />

− .<br />

2<br />

(8)<br />

q<br />

q<br />

In Eqs. (8) we assume the proton and electron polarization<br />

degrees equal to unity. The proton structure functions<br />

F 1, F 2 and g 1, g 2 depends on variables x′=-q 2 /2p 1q,<br />

q 2 =(p x-p) 2 . In Born approximation, x′ =x but they differ<br />

in general case, when radiation of photons and electronpositron<br />

pairs are allowed.<br />

It is convenient to express the 4-vector of proton polarization<br />

in terms of 4-momenta of particles in process<br />

up + Vk − [2 uτ<br />

+ V (1 − y)]<br />

k<br />

t<br />

Sµ<br />

=<br />

2 2 2<br />

− uV (1 − y)<br />

− u M<br />

1µ 2 µ 1µ<br />

2 2<br />

2M k<br />

l 1µ − Vp1 µ<br />

2 M<br />

Sµ = , u = − Q , τ = .<br />

MV<br />

V<br />

,<br />

(9)<br />

As normalization is chosen, the elastic limit can be<br />

reached by a simple substitution in hadronic tensor<br />

G + λ G<br />

F x G F x<br />

2 1 + λ<br />

2 2<br />

1 2<br />

1 (1 ) ,<br />

2 (1 )<br />

e m<br />

→ δ − ў<br />

m<br />

→ δ − ў ,<br />

1 й ( G )<br />

1 (1 )<br />

m<br />

Ge Gm<br />

g x GmG λ −<br />

щ<br />

→ δ − ў<br />

e<br />

2 к<br />

+<br />

1 + λ ъ<br />

л ы ,<br />

2<br />

1 λ ( G )<br />

g1<br />

→ − δ (1 − xў<br />

)<br />

m<br />

− Ge Gm<br />

, q<br />

λ = −<br />

2<br />

2<br />

1 + λ<br />

4M<br />

,<br />

where G m and G e are magnetic and electric proton formfactors<br />

which depend on q 2 .<br />

A simple calculation gives the spin-independent and<br />

spin-dependent parts of the cross section in the form<br />

B<br />

2 2<br />

dσ<br />

4 π α ( Q ) 2<br />

=<br />

2 4 [(1 − y − xyτ<br />

) F2 + xy F1<br />

] , (10)<br />

dQ dy Q y<br />

41


B<br />

2 2<br />

dσ l 8 π α ( Q ) йж<br />

2 − y ц 2τ<br />

щ<br />

=<br />

2 2 к з τ − ч g<br />

1<br />

+ g<br />

2 ъ<br />

dQ dy V y ли<br />

2xy<br />

ш y<br />

, (11)<br />

ы<br />

dσ<br />

Q M<br />

dQ dy V y Q<br />

(12)<br />

B<br />

2 2 2<br />

t 8 π α ( ) ж 2<br />

= − (1 − y − xyτ<br />

) g<br />

2 2 2<br />

1<br />

+ g2<br />

ц<br />

з<br />

y<br />

ч ,<br />

и ш<br />

Thus, within the leading accuracy, the radiatively corrected<br />

cross section of the process (1) is defined by<br />

Eq. (2) for its spin-independent piece with (10) as a hard<br />

cross section into integrand and by Eq. (6) with (11) or<br />

(12) as the hard part for its spin-dependent piece.<br />

It is useful to extract the leading first order correction<br />

to the Born approximation as defined by master<br />

Eqs. (2), (6). For this purpose we can use the structure<br />

function D γ with L → L − 1 and<br />

2( ∆ ε )<br />

∆ → ∆<br />

1<br />

= τ + z+ , z+<br />

= y(1 − x),<br />

V (1 − xy)<br />

for D(z 1,L) and<br />

2( ∆ ε )<br />

2( ∆ ε )<br />

∆ → ∆<br />

2<br />

= τ + z+<br />

,


Pˆ<br />

f ( r, xў) = f ( r , x ), Pˆ<br />

f ( r, xў) = f ( r , x ),<br />

t 1 t s 2 s<br />

xyr<br />

xyr<br />

xt<br />

= , x = .<br />

xyr z xyr z<br />

1 2<br />

s<br />

1<br />

+<br />

2<br />

+<br />

Note that quantity r 1(r 2) coinsides with z 1(1/z 2) for radiation<br />

of a single collinear photon. The hard cross section<br />

(14) has neither collinear nor infrared singularities. The<br />

different terms on the right-hand side of Eq. (14) have<br />

singularities at r=r 1, r=r 2 and γ=1. Singularities at first<br />

two points are collinear and at third one is unphysical<br />

that arise at integration. Collinear singulariries vanish<br />

due to action of operators P<br />

ˆt<br />

and P ˆs on the terms containing<br />

N. The unphysical singulariry cancels because in<br />

the limiting case r → 1 we have<br />

r2 − r r1<br />

− r<br />

= 1, = − 1, Tt<br />

+ Ts<br />

= 0.<br />

| r − r | | r − r |<br />

2 1<br />

The corresponding result for spin-dependent hard<br />

cross section can be written by very similar form<br />

l,<br />

t<br />

B<br />

z+<br />

dσ dσ<br />

hard<br />

l, t ж α ц α l, t м 1 − r1<br />

ˆ l,<br />

t<br />

= 1 U dz P<br />

2 2 з + δ ч + 2<br />

4<br />

н<br />

t<br />

Nt<br />

dQ dy dQ dy π Q<br />

т<br />

и ш о 1 − xy<br />

1 −<br />

−<br />

1 −<br />

r2<br />

P ˆ l,<br />

t<br />

s N<br />

s<br />

z +<br />

+<br />

+<br />

r<br />

т<br />

r−<br />

dr<br />

l,<br />

t<br />

2W<br />

+<br />

2<br />

y + 4xyτ<br />

dr й 1 − P ж 2( r − r)<br />

ц<br />

Ρ + + ч −<br />

л и ш<br />

+<br />

s<br />

2 l, t 2 l,<br />

t<br />

т<br />

з (1 r ) N<br />

s<br />

Ts<br />

1 − r<br />

к<br />

| r − r2 | (1 − z )<br />

r<br />

r− +<br />

2<br />

1 − Pˆ<br />

t<br />

ж (1 + r ) N<br />

з<br />

| r − r1<br />

| и 1 − xy<br />

where<br />

2 l,<br />

t<br />

t<br />

+<br />

zth<br />

2 2<br />

l,<br />

t<br />

1<br />

− r Tt<br />

3<br />

2 r( r )<br />

x αў<br />

ы<br />

) щ}<br />

1 2<br />

1 2<br />

( rQ )<br />

, (15)<br />

r<br />

2<br />

l t M<br />

− 1 l<br />

U = 1, U = (1 − y − xyτ<br />

) , W = 4 yτ<br />

W,<br />

2<br />

Q<br />

t 2<br />

W = 2 y (1 + 2 xτ<br />

) W, W = (1 + r) xg1 + x g2<br />

,<br />

l<br />

N = 2[2 r − z − xy( r + 2 τ )] g − 8 xўτ<br />

g ,<br />

t<br />

l<br />

N = 2[2 − z − xyr(1 + 2 τ ) g − 8 xўτ<br />

g ,<br />

s<br />

t<br />

N = 2[1 − y − z + r − xy( r + 2 τ )]( xyg + 2 xўg<br />

),<br />

t<br />

1 2<br />

t й<br />

1 − z щ<br />

Ns<br />

= 2<br />

к<br />

1 − y − xy(1 + 2 τ ) + ( xyrg1 + 2 xўg<br />

2<br />

),<br />

л<br />

r ъ<br />

ы<br />

Tt l = 2rg1 − 4x ′ τ g2, Ts l = 2( z − 1)( g1 − 2x ′ τ g2<br />

),<br />

t<br />

T = 2xyrg + 2 xў(1 − y + r − 2 xyτ<br />

) g ,<br />

t<br />

1 2<br />

t<br />

й<br />

ж 1<br />

ц щ<br />

Ts<br />

= 2( z − 1) к xyg1 + xўз<br />

1 − y + − 2 xyτ<br />

ч g2<br />

.<br />

r<br />

ъ<br />

л<br />

и<br />

ш ы<br />

The polarized hard cross section (15) as well is free<br />

from any singularities. Note that radiation of photon at<br />

large angles by the initial and final electrons increases<br />

the region of variation for quantity r in (14) and (15),<br />

because for collinear radiation r 1 < r < r 2 and now we<br />

have r - < r 1 and r + > r 2. It may be important if the hadron<br />

structure functions are large in these additional regions.<br />

ў<br />

The function δ ( 1 − x ′ ) is used to perform the integration<br />

with respect to inelasticity z .<br />

The final result for unpolarized case has the following<br />

form (we do not introduce special notation for the<br />

elastic cross-section)<br />

B<br />

dσ hard dσ ж α ц α м 1 − r1 ˆ<br />

1 − r2<br />

= 1 P ˆ<br />

2 2 з + δ ч + 2<br />

2 н t N − Ps<br />

N<br />

dQ dy dQ dy и π ш V о 1 − xy 1 − z+<br />

+<br />

r<br />

r+<br />

ˆ<br />

2<br />

2 W dr й 1 − Pt<br />

(1 + r ) N<br />

+ т dr<br />

+ Ρ ( ( r1<br />

2<br />

т к<br />

+<br />

4 1 r | r r1<br />

| 1 xy<br />

r y + xyτ<br />

− − −<br />

−<br />

r−<br />

л<br />

2 2 2<br />

1 − Pˆ<br />

s<br />

ж (1 + r ) N ц щьп<br />

α ( rQ )<br />

− r) Tt<br />

) − з + ( r2<br />

− r) Ts<br />

ч ъ э ,<br />

| r − r2<br />

| и 1 − z+<br />

шыюп<br />

r<br />

where<br />

2 2<br />

2 2(1 − y − xyτ<br />

)( Ge<br />

+ λ Gm<br />

)<br />

N = Gm<br />

+<br />

2 2<br />

,<br />

x y r(1 + λ )<br />

T<br />

t<br />

=<br />

2 2<br />

2[ r(1 − y) − 1]( Ge<br />

+ λ Gm<br />

)<br />

2 2<br />

,<br />

x y r(1 + λ )<br />

(16)<br />

2 2 2 2<br />

2[ r + y − 1]( Ge + λ Gm ) 2 2 τ ( Ge + λ Gm<br />

)<br />

Ts<br />

= , W = G<br />

.<br />

2 2<br />

m<br />

−<br />

x y r(1 + λ )<br />

xyλ<br />

(1 + λ )<br />

The Born cross section on the right-hand side of<br />

Eq. (16) is defined as<br />

B<br />

2 2<br />

dσ<br />

2 π α ( Q )<br />

= ґ<br />

2 2<br />

dQ dy V<br />

2 2 2<br />

й<br />

2 2[1 − y(1 + τ )]( Ge<br />

+ λ Gm<br />

щ ж Q ц<br />

кGm<br />

+ δ y .<br />

2<br />

ъ з − ч<br />

л<br />

y (1 + λ )<br />

ы и V ш<br />

When writing this last equation we take into account that<br />

δ(1-x)=yδ(1-Q 2 /V).<br />

The spin-dependent hard cross section for elastic<br />

hadronic events can be written in the very similar to (16)<br />

form<br />

l,<br />

t<br />

B<br />

dσ dσ<br />

hard<br />

l, t ж α ц α l, t 1 − r1<br />

ˆ l,<br />

t<br />

= 1 U { P<br />

2 2 з + δ ч +<br />

t<br />

Nt<br />

+<br />

dQ dy dQ dy и 2 π ш V 1 − xy<br />

1 −<br />

1 − Pˆ<br />

t<br />

+ + Ρ [ − ґ<br />

1 − z 1 − r | r − r |<br />

ж<br />

з<br />

и<br />

+<br />

r<br />

l,<br />

t<br />

r+<br />

r2<br />

ˆ l,<br />

t W dr<br />

Ps<br />

N<br />

s т dr<br />

2<br />

т<br />

+<br />

r y + 4xyτ<br />

−<br />

r−<br />

+ r N ц<br />

− ˆ<br />

s<br />

+ − + P ґ<br />

1 − xy ш | r − r | (1 − z +<br />

)<br />

(1<br />

2 l,<br />

t<br />

)<br />

t<br />

l,<br />

t<br />

2 r( r1<br />

r)<br />

Tt<br />

ч<br />

1<br />

2<br />

2 2<br />

ж 2 l, t 2( r2<br />

− r) l,<br />

t ц α ( rQ )<br />

з (1 + r ) N<br />

s<br />

+ Ts<br />

ч]}<br />

,<br />

2 2 2<br />

и<br />

r2<br />

ш (4 M + Q r)<br />

r<br />

l<br />

t 2<br />

W = 4 yτ<br />

W , W = 2 y (1 + 2 xτ<br />

) W,<br />

й 4τ<br />

щ<br />

W = r x + r − G + к r + + r G G<br />

y<br />

ъ<br />

л<br />

ы<br />

2<br />

[ (1 ) 1]<br />

m<br />

(1 )<br />

m e<br />

,<br />

й<br />

ж 2 ц щ<br />

T r к r G з ч G G ъ<br />

л<br />

и xy ш ы<br />

l<br />

2<br />

t<br />

= ( + 2 τ )<br />

m<br />

+ 2τ<br />

− 1<br />

m e<br />

,<br />

1<br />

4. HARD CROSS SECTION<br />

FOR <strong>ELASTIC</strong> HADRONIC EVENTS<br />

To describe the hard cross section for elastic hadronic<br />

events we use the replacement given after formulae<br />

(9) in expressions (14) and (15). For Born cross sections,<br />

which enter in these equations, see Eqs. (10-12).<br />

43


l<br />

2 ж 2 ц<br />

t<br />

Ts = − r(1 + 2 τ ) Gm − 2 τ з − r ч GmGe , Tt<br />

= r{ − [ r(1 − xy)<br />

+<br />

и xy ш<br />

1<br />

− y − xy G + − y − xy + r + G G T = r − r<br />

2<br />

t<br />

1 2 τ )]<br />

m<br />

(1 2 τ 4 τ )<br />

m e}, s<br />

[<br />

xy y G xyr r y G G<br />

2<br />

(1 + 2 τ ) + 1 − ]<br />

m<br />

− [2 τ (2 − ) + 1 + (1 − )]<br />

m e,<br />

й 1 − xy щ<br />

N r r xy G к r G G<br />

xy<br />

ъ<br />

л<br />

ы<br />

l<br />

2<br />

t<br />

= (2 τ + )(2 − )<br />

m<br />

+ 8 τ − τ<br />

m e,<br />

l<br />

N = r(2τ<br />

+ 1)(2 − xyr)<br />

G<br />

s<br />

2<br />

m<br />

2<br />

[2 r(1 + 2 τ ) GmGe − r(2 − xyr) Gm<br />

].<br />

й 1<br />

щ<br />

+ 8 τ к r(1 + τ ) GmGe<br />

,<br />

xy<br />

ъ<br />

л<br />

ы<br />

t<br />

N = [1 − y + r − xy( r + 2 τ )][2( r + 2 τ ) G G −<br />

t m e<br />

2 t 1<br />

r(2 − xy) Gm<br />

, Nt<br />

= [1 − y + − xy(1 + 2 τ )] ґ<br />

r<br />

Note that argument of electromagnetic formfactors in<br />

2<br />

Eqs. (15) and (16) is − Q r .<br />

The Born cross sections on the right-hand side of<br />

Eq. (16) have the following form<br />

B<br />

2 2<br />

dσ<br />

l 4 π α ( Q ) й ж 1 ц<br />

= 4 1 (1 2 )<br />

2 2 2 к τ + τ − Gm<br />

Ge<br />

− + τ<br />

dQ dy V(4 M + Q )<br />

з<br />

y<br />

ч<br />

л и ш<br />

2<br />

ж y ц 2 щ ж Q ц<br />

−ґ з 1 G 2<br />

ч m ъ δ −з y<br />

V<br />

ч<br />

и ш ы и ш<br />

for longitudinally polarized of the target proton and<br />

B<br />

2 2 2<br />

dσ<br />

t 8 π α ( Q ) M<br />

= [1 − y(1 + τ )] ґ<br />

2 2 2 2<br />

dQ dy V (4 M + Q ) Q<br />

2<br />

йж<br />

y ц 2<br />

щ ж Q ц<br />

к з 1 − ч Gm − (1 + 2 τ ) GmGe<br />

δ з y − ч ,<br />

2<br />

ъ<br />

л и ш<br />

ы и V ш<br />

for transverse one. The argument of form factors in the<br />

last two formulae is –Q 2 .<br />

In this paper we consider model-independent QED<br />

radiative correction to the polarized DIS and elastic<br />

electron-proton scattering. Our calculations are based on<br />

the electron structure function method which allows to<br />

write both the spin-independent and spin-dependent<br />

parts of the cross section with accounting RC to the leptonic<br />

part of interaction in the form of well-known<br />

Drell-Yan representation. The corresponding RC includes<br />

explicitly the first order correction as well as the<br />

leading-log contribution in all orders of perturbation<br />

theory and the main part of the second order next to<br />

leading-log one. Moreover, any model-dependent RC to<br />

the hadronic part of interaction can be included in our<br />

analytical result by insertion it as an additive part of the<br />

hard cross section in integrand in master equations.<br />

To derive RC, we take into account radiation of photons<br />

and e + e - -pairs in collinear kinematics which produces<br />

a large logarithm L in the radiation probability (in<br />

D-functions) and radiation of one non-collinear photon<br />

that enlarges the limits of variation of the hadron structure<br />

function arguments. It may be important that these<br />

functions are sharp enough. In this case the loss in radiation<br />

probability (the loss of L) can be compensated by<br />

the increase in the value of the hard cross section.<br />

On the basis of our analytical result we constructed<br />

Fortran code ESFRAD (http://www.jlab.org/~aku/RC) and<br />

perform some numerical estimations [15] for kinematical<br />

conditions of current and future experiments. We<br />

found two regions where the higher order radiative corrections<br />

can be important. These are the traditional region<br />

of high y and the region around the pion threshold.<br />

REFERENCES<br />

1. T.V. Kukhto and N.M. Shumeiko. Radiative effects<br />

in deep inelastic scattering of polarized leptons<br />

by polarized nucleons // Nucl. Phys. 1983 v. B 219,<br />

p. 412-436.<br />

2. D.Y. Bardin and N.M. Shumeiko. On an exact<br />

calculation of the lowest-order electromagnetic correction<br />

to the point particle elastic scattering // Nucl.<br />

Phys. 1977 v. B 127, p. 242-258.<br />

3. S.D. Drell and T. Yan. Massive lepton-pair<br />

production in hadron-hadron collisions at high energies<br />

// Phys. Rev. Lett. 1970 v. 25, p. 316-319.<br />

4. E.A. Kuraev, V.S. Fadin. About radiative corrections<br />

to the cross section of one photon annihilation of<br />

+<br />

high energy e e −<br />

-pair // Yad. Fiz. 1985 v. 41, p.<br />

733-742.<br />

5. E.A. Kuraev, N.P. Merenkov, V.S. Fadin.<br />

Calculation of radiative corrections to electron-nucleus<br />

scattering by the structure function method //<br />

Yad.Fiz. 1988 v. 47, p. 1593-1601.<br />

6. V.N. Baier, V.S. Fadin, V.A. Khoze. Quasireal<br />

electron methopd in high energy quantum electrodynamics<br />

// Nucl. Phys. 1973, v. B 65, p. 381-396.<br />

7. I. Akushevich, A.B. Arbuzov, E.A. Kuraev.<br />

Compton tensor with heavy photon in the case of longitudinally<br />

polarized fermion // Phys. Lett. 1998, v. B<br />

432, p. 222-229.<br />

8. G.I. Gakh, M.I. Konchatnij, N.P. Merenkov.<br />

Compton tensor with heavy photon for longitudinally<br />

polarized electron with next-to-leading accuracy<br />

// Pis’ma Zh. Eksp. Teor. Fiz. 2000 v. 71,<br />

p. 328-332.<br />

9. M.I. Konchatnij, N.P. Merenkov. Current tensor<br />

with heavy photon for double hard photon<br />

emission by longitudinally polarized electron //<br />

Pis’ma Zh. Eksp. Teor. Fiz. 1999 v. 69, p. 845-890.<br />

10. M.I. Konchatnij, N.P. Merenkov,<br />

O.N. Shekhov-tsova. Current tensor with heahy<br />

photon for hard pair production by longitudinally<br />

polarized electrons // Zh. Eksp. Teor. Fiz. 2000<br />

v. 118, p. 5-19.<br />

11. A.V. Afanas’ev, I. Akushevich, N.P. Merenkov.<br />

Radiative correction to the transferred polarization in<br />

elastic electron-proton scattering // Phys. Rev. D. 2002,<br />

v. 65, 013006.<br />

12. M.K. Jones, K.A. Aniol, F.T. Baker et al.<br />

GE<br />

/ G<br />

p M p Ratio by Polarization Transfer in<br />

r r<br />

ep → ep // Phys. Rev. Lett. 2000, v. 84, p. 1398-<br />

1402.<br />

13. A.V. Afanas’ev, I. Akushevich, G.I. Gakh,<br />

N.P. Merenkov. Radiative Corrections to Polarized<br />

Inelastic Scattering in the Coincidence Setup //<br />

Zh. Eksp. Teor. Fiz. 2001, v. 120, p. 515-528.<br />

14. E.A. Kuraev, N.P. Merenkov, V,S. Fadin.<br />

Compton-effect tensor with heavy photon // Yad.<br />

Fiz. v. 45, p. 782-789.<br />

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2000, №2.<br />

Серия: Ядерно-физические исследования (36), с. 3-6.<br />

44


45<br />

15. A.V. Afanas’ev, I. Akushevich,<br />

N.P. Merenkov. QED correction to asymmetry for<br />

polarized ep -scattering from the method of the<br />

electron structure functions // hep-ph/0111331<br />

(submitted to Phys. Rev. D).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!