21.01.2015 Views

Introduction to Microfluidics - KATE.pptx - McGill University

Introduction to Microfluidics - KATE.pptx - McGill University

Introduction to Microfluidics - KATE.pptx - McGill University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Micro & Nanobioengineering Lab<br />

Biomedical Engineering Department<br />

<strong>McGill</strong> <strong>University</strong><br />

<strong>Introduction</strong> <strong>to</strong> <strong>Microfluidics</strong>:<br />

Basics and Applications<br />

Kate Turner<br />

Hands-on Workshop in Micro and Nanobiotechnology<br />

4 th March 2013<br />

katherine.turner2@mail.mcgill.ca<br />

| <strong>McGill</strong>, Nov 2005<br />

© 2002 IBM Corporation<br />

wikisites.mcgill.ca/djgroup


Optional slide number:<br />

Outline<br />

§ What is microfluidics<br />

§ Why microfluidics<br />

§ Basics of fluid mechanics<br />

§ Special phenomena associated with the micro-scale<br />

§ Laminar flow<br />

§ Diffusion and mixing<br />

§ Capillary phenomena<br />

§ Surface energy<br />

§ <strong>Microfluidics</strong> and lab-on-a-chip devices<br />

2


Optional slide number:<br />

Outline<br />

§ What is microfluidics<br />

§ Why microfluidics<br />

§ Basics of fluid mechanics<br />

§ Special phenomena associated with the micro-scale<br />

§ Laminar flow<br />

§ Diffusion and mixing<br />

§ Capillary phenomena<br />

§ Surface energy<br />

§ <strong>Microfluidics</strong> and lab-on-a-chip devices<br />

3


Optional slide number:<br />

<strong>Microfluidics</strong><br />

§ Fluidics: handling of liquids<br />

and/or gases<br />

§ Micro: has at least one of the<br />

following features:<br />

§ Small volumes<br />

§ Small size<br />

§ Low energy consumption<br />

§ Use of special phenomena<br />

(we’ll talk more about this later)<br />

.<br />

A microfluidic channel is about the<br />

same width as a human hair, 70 µm<br />

4


Optional slide number:<br />

Outline<br />

§ What is microfluidics<br />

§ Why microfluidics<br />

§ Basics of fluid mechanics<br />

§ Special phenomena associated with the micro-scale<br />

§ Laminar flow<br />

§ Diffusion and mixing<br />

§ Capillary phenomena<br />

§ Surface energy<br />

§ <strong>Microfluidics</strong> and lab-on-a-chip devices<br />

5


Optional slide number:<br />

Advantages of <strong>Microfluidics</strong><br />

§ Low sample and reagent consumption; fluid volumes (µl; nl; pl; fl)<br />

§ Small physical and economic footprint<br />

§ Parallelization and high throughput experimentation<br />

§ Unique physical phenomena: use of effects in the micro-domain:<br />

§ Laminar flow<br />

§ Capillary forces<br />

§ Diffusion<br />

.<br />

P.J. Lee et al. (2007).<br />

Biotech. Bioeng. 97: 1340-6.<br />

6


Optional slide number:<br />

Advantages of <strong>Microfluidics</strong><br />

§ Low sample and reagent consumption; fluid volumes (µl; nl; pl; fl)<br />

§ Small physical and economic footprint<br />

7<br />

Right: Quake lab group, Stanford, http://thebigone.stanford.edu/<br />

Left: Juncker lab group, <strong>McGill</strong>, http://wikisites.mcgill.ca/djgroup/


Optional slide number:<br />

Advantages of <strong>Microfluidics</strong>: Lab on a Chip<br />

§ Parallelization and high throughput experimentation<br />

8


Optional slide number:<br />

Outline<br />

§ What is microfluidics<br />

§ Why microfluidics<br />

§ Basics of fluid mechanics<br />

§ Special phenomena associated with the micro-scale<br />

§ Laminar flow<br />

§ Diffusion and mixing<br />

§ Capillary phenomena<br />

§ Surface energy<br />

§ <strong>Microfluidics</strong> and lab-on-a-chip devices<br />

9


Optional slide number:<br />

Fluid Mechanics<br />

§ Law: Conservation of mass<br />

§ Law: Conservation of<br />

momentum<br />

§ Assumption: Incompressibility<br />

§ Assumption: No-slip boundary<br />

condition, i.e. velocity of the<br />

fluid flow at a surface is zero<br />

10


Optional slide number:<br />

No-slip Boundary Condition<br />

11


Optional slide number:<br />

Basic Properties<br />

§ Types of fluids:<br />

§ New<strong>to</strong>nian fluids<br />

§ Non-New<strong>to</strong>nian fluids<br />

§ Types of fluid flow:<br />

§ Laminar<br />

§ Turbulent<br />

12


Optional slide number:<br />

New<strong>to</strong>nian Fluids<br />

§ Linear relationship between stress and strain, i.e. viscosity is<br />

independent of stress and velocity<br />

v + dv<br />

v<br />

Shearing stress, τ<br />

Rate of shearing strain, dv/dy<br />

13


Optional slide number:<br />

Viscosity<br />

§ Viscosity is a measure of internal friction (resistance) <strong>to</strong> flow<br />

Substance Viscosity (mPa·s)<br />

Air 0.017<br />

Ace<strong>to</strong>ne 0.3<br />

Water 0.9<br />

Mercury 1.5<br />

Olive oil 80<br />

Honey 2,000 – 10,000<br />

14


Optional slide number:<br />

Non-New<strong>to</strong>nian Fluids<br />

§ Non-linear relationship between shear stress and shear strain<br />

§ Examples: paint, blood, ketchup, cornstarch solution<br />

Non-New<strong>to</strong>nian<br />

shear thickening<br />

New<strong>to</strong>nian<br />

Shearing stress, τ<br />

Non-New<strong>to</strong>nian<br />

shear thinning<br />

Rate of shearing strain, dv/dy<br />

15


Optional slide number:<br />

Laminar and Turbulent Flow<br />

§ Laminar flow:<br />

§ Fluid particles move along smooth paths in layers<br />

§ Most of energy losses are due <strong>to</strong> viscous effects<br />

§ Viscous forces are the key players and inertial forces are negligible<br />

§ Turbulent flow:<br />

§ An unsteady flow where fluid particles move along irregular paths<br />

§ Inertial forces are the key players and viscous forces are negligible<br />

§ Reynolds number:<br />

§ Measure of flow turbulence<br />

§ Re < 2000 for laminar<br />

§ Due <strong>to</strong> small dimensions<br />

Re < 1 in microfluidic<br />

systems<br />

where<br />

16


Optional slide number:<br />

Laminar and Turbulent Flow<br />

17


Optional slide number:<br />

Couette Flow (Laminar)<br />

§ Couette flow:<br />

§ One of the plates moves parallel <strong>to</strong> the other<br />

§ Steady flow between plates<br />

§ No-slip condition applies<br />

18


Optional slide number:<br />

Poiseuille Flow (Laminar)<br />

§ Poiseuille flow:<br />

§ Pressure-driven flow<br />

§ No-slip condition applies<br />

19


Optional slide number:<br />

Outline<br />

§ What is microfluidics<br />

§ Why microfluidics<br />

§ Basics of fluid mechanics<br />

§ Special phenomena associated with the micro-scale<br />

§ Laminar flow<br />

§ Diffusion and mixing<br />

§ Capillary phenomena<br />

§ Surface energy<br />

§ <strong>Microfluidics</strong> and lab-on-a-chip devices<br />

20


Optional slide number:<br />

Outline<br />

§ What is microfluidics<br />

§ Why microfluidics<br />

§ Basics of fluid mechanics<br />

§ Special phenomena associated with the micro-scale<br />

§ Laminar flow<br />

§ Diffusion and mixing<br />

§ Capillary phenomena<br />

§ Surface energy<br />

§ <strong>Microfluidics</strong> and lab-on-a-chip devices<br />

21


Optional slide number:<br />

Laminar Flow<br />

Right: P. Yager et al. (2006). Nature 442:<br />

412-18.<br />

Left: P.J.A. Kenis et al. (1999). Science<br />

285: 83-5.<br />

22


Optional slide number:<br />

Diffusion<br />

Diffusion is the transport of particles from a region of higher<br />

concentration <strong>to</strong> one of lower concentration by random motion.<br />

X: diffusion length<br />

D: diffusion constant<br />

t: time<br />

For an antibody, D ≈ 40 µm 2 s -1<br />

For urea, D ≈ 1400 µm 2 s -1<br />

For X = 100 µm, the time becomes:<br />

Antibody: 125 s; Urea: 3.6 s<br />

23


Optional slide number:<br />

Diffusion and Mixing<br />

Direction<br />

of Flow<br />

24<br />

<strong>University</strong> of Hertfordshire, STRI, http://www.herts.ac.uk/research/stri.html


Optional slide number:<br />

Generating Biochemical Gradients<br />

N.L. Jeon et al. (2000). Langmuir 16: 8311–16.<br />

25


Optional slide number:<br />

Generating Biochemical Gradients<br />

26<br />

N. L. Jeon et al., Langmuir, 2000, 16, 8311–16.


Optional slide number:<br />

Outline<br />

§ What is microfluidics<br />

§ Why microfluidics<br />

§ Basics of fluid mechanics<br />

§ Special phenomena associated with the micro-scale<br />

§ Laminar flow<br />

§ Diffusion and mixing<br />

§ Capillary phenomena<br />

§ Surface energy<br />

§ <strong>Microfluidics</strong> and lab-on-a-chip devices<br />

27


Optional slide number:<br />

Capillary Phenomenon and Liquid Transport<br />

28


Optional slide number:<br />

Capillary Phenomenon and Liquid Transport<br />

29


Optional slide number:<br />

Capillary Phenomenon<br />

Pressure of the liquid column:<br />

ΔP = ρgh<br />

θ<br />

r<br />

Capillary pressure: ΔP<br />

= −<br />

γ : Surface tension<br />

Height of liquid column:<br />

θ<br />

: Contact angle<br />

h<br />

=<br />

2γ<br />

r<br />

2γ cosθ<br />

ρgr<br />

h<br />

30


Optional slide number:<br />

Surface Tension<br />

§ Surface tension is a property of cohesion (the attraction of molecules<br />

<strong>to</strong> like molecules) Floating razor blades<br />

§ When an interface is created, the distribution of cohesive forces is<br />

asymmetric<br />

§ Molecules at the surface may be pulled<br />

on more strongly by bulk molecules<br />

31


Optional slide number:<br />

Wettability<br />

§ Adhesion vs. cohesion<br />

§ Contact angles are a way <strong>to</strong> measure liquid-surface interactions<br />

Hydrophobic<br />

Hydrophilic<br />

32


Optional slide number:<br />

Capillary Systems<br />

33


Optional slide number:<br />

Capillary Systems<br />

34


Optional slide number:<br />

Outline<br />

§ What is microfluidics<br />

§ Why microfluidics<br />

§ Basics of fluid mechanics<br />

§ Special phenomena associated with the micro-scale<br />

§ Laminar flow<br />

§ Diffusion and mixing<br />

§ Capillary phenomena<br />

§ Surface energy<br />

§ <strong>Microfluidics</strong> and lab-on-a-chip devices<br />

35


Optional slide number:<br />

Microfluidic and Lab-on-a-Chip Devices<br />

Microfluidic<br />

Devices<br />

Closed chips<br />

Open<br />

Chips<br />

Continuous flow<br />

Droplet-based<br />

Microfluidic<br />

probes (MFP)<br />

Micro-arrays<br />

External pressure<br />

Digital microfluidics<br />

Ink-jet printing<br />

Capillary effect<br />

Electrokinetic mechanisms<br />

Electrowetting-ondielectirc<br />

Surface acoustic<br />

waves<br />

Op<strong>to</strong>electrowetting<br />

Pin-printing<br />

technology<br />

Microcontact<br />

printing<br />

36


Optional slide number:<br />

Immunoassay<br />

§ A biochemical test that measures the concentration of a<br />

substance in a biological liquid<br />

§ Enzyme-Linked ImmunoSorbent Assay (ELISA)<br />

§ Sandwich assays<br />

Immobilized capture<br />

antibody<br />

Captured antigen<br />

from the sample<br />

Fluorescently labelled<br />

detection antibody<br />

37


Optional slide number:<br />

Micromosaic Immunoassay<br />

Immobilization<br />

Immobilization<br />

Capture 1<br />

Capture 2<br />

Recognition<br />

Sample Loading<br />

Reading Signal<br />

Detection<br />

Fluorescently-labelled<br />

Detection Antibodies<br />

M. Pla-Roca, D. Juncker. (2011). Biological Microarrays, Humana Press, USA.<br />

38


Optional slide number:<br />

Micromosaic Immunoassay<br />

Immobilization<br />

Immobilization<br />

Capture 1<br />

Capture 2<br />

Recognition<br />

Sample Loading<br />

Reading Signal<br />

Detection<br />

Fluorescently-labelled<br />

Detection Antibodies<br />

M. Pla-Roca, D. Juncker. (2011). Biological Microarrays, Humana Press, USA.<br />

39


Optional slide number:<br />

Micromosaic Immunoassay<br />

Immobilization<br />

Immobilization<br />

Capture 1<br />

Capture 2<br />

Recognition<br />

Sample Loading<br />

Reading Signal<br />

Detection<br />

Fluorescently-labelled<br />

Detection Antibodies<br />

M. Pla-Roca, D. Juncker. (2011). Biological Microarrays, Humana Press, USA.<br />

40


Optional slide number:<br />

Droplet-Based <strong>Microfluidics</strong><br />

A.S. Utada et al. (2005). Science 22: 537-41.<br />

41


Optional slide number:<br />

Isolation/Detection of Rare Cells<br />

S. Nagrath et al. (2007). Nature 450: 1235-39.<br />

42


Optional slide number:<br />

Recapitulating Organ Function on a Chip<br />

D. Huh et al. (2010). Science 25: 1662-68.<br />

43


Optional slide number:<br />

Microfluidic Probe for Perfusion of Brain Slices<br />

a<br />

b<br />

c<br />

d<br />

A. Queval et al. (2010). Lab Chip 10: 326-34.<br />

Technology developed in our labora<strong>to</strong>ry<br />

44


Optional slide number:<br />

Thank You!<br />

QUESTIONS<br />

45


Optional slide number:<br />

<strong>Microfluidics</strong> advantages<br />

§ Parallelization and high throughout experimentation<br />

46<br />

Source: The National Institute of Standards and Technology (NIST)


Optional slide number:<br />

Incompressible vs compressible:<br />

Gas particles are very spread out, so<br />

can be compressed<br />

Liquid particles are not spread out, so<br />

hard <strong>to</strong> be compressed<br />

Source: The Nucleus Learning website<br />

47


Optional slide number:<br />

Surface energy of various liquids<br />

48


Optional slide number:<br />

Surface energy of various solids<br />

49


Optional slide number:<br />

Au<strong>to</strong>nomous control with hydrogels<br />

D. J. Beebe, Nature 404, 588-590 (2000).<br />

50


Optional slide number:<br />

Surface energy <br />

water <br />

hydrophilic <br />

• Hydrophilic Surfaces: <br />

“Water-­‐loving surface” <br />

Water tries <strong>to</strong> maximize <br />

contact with surface. <br />

water<br />

hydrophobic <br />

• Hydrophobic Surfaces: <br />

“Water-­‐fearing surface” <br />

Water tries <strong>to</strong> minimize <br />

contact with surface. <br />

CONTACT ANGLE <br />

water <br />

superhydrophobic <br />

• Superhydrophobic Surfaces: <br />

Hydrophobic surface having <br />

nano-­‐scale roughness. <br />

0° 5° 35° 40° <br />

100° 115° <br />

160° <br />

51<br />

Plasma <br />

Cleaned <br />

Glass <br />

Polyethylene <br />

Glass Glycol <br />

SAM <br />

Polystyrene <br />

PTFE <br />

(Teflon<br />

) <br />

Superhydrophobic <br />

IsotacWc <br />

Polypropylene

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!