21.01.2015 Views

Soft Lithography

Soft Lithography

Soft Lithography

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Soft</strong> <strong>Lithography</strong>: An inexpensive and<br />

versatile way to make micro- and<br />

nanostructures in any lab.<br />

Ayo Olanrewaju<br />

PhD Student, DJGroup<br />

March 4, 2013


Outline<br />

§ Definition and rationale for soft lithography<br />

§ Elastomeric stamps: PDMS characteristics<br />

§ Replica molding using elastomeric stamps<br />

§ Microcontact printing of chemical, biological, and<br />

electrical materials.<br />

2


<strong>Soft</strong> <strong>Lithography</strong><br />

“A collection of techniques based on printing,<br />

molding, and embossing with an elastomeric<br />

stamp”<br />

Qin, Xia, and Whitesides, Nature Protocols, 5(3), 2010<br />

3


Motivation for <strong>Soft</strong> <strong>Lithography</strong><br />

Conventional photolithography:<br />

• Patterns accurate planar<br />

structures.<br />

• Many commercial applications<br />

(e.g. microelectronics).<br />

• Often inaccessible to nonspecialists<br />

• Inherently expensive<br />

• Limited range of materials<br />

4


<strong>Soft</strong> lithography:<br />

Motivation (contd.)<br />

• Accessible to non-specialists<br />

• Non-planar and 3-dimensional<br />

substrates<br />

• Patterning large areas (cm scale)<br />

• New applications and materials<br />

(e.g. biotechnology, flexible<br />

electronics)<br />

5


Outline<br />

§ Definition and rationale for soft lithography<br />

§ Elastomeric stamps: PDMS characteristics<br />

§ Replica molding using elastomeric stamps<br />

§ Microcontact printing of chemical, biological, and<br />

electrical materials.<br />

6


Elastomeric stamps: PDMS is the most common<br />

PDMS = Polydimethylsiloxane<br />

7


How to make a PDMS stamp<br />

1. Mix pre-polymer and curing agent and<br />

pour onto master<br />

2. Cure at 80˚C for 2.5 hours<br />

3. Peel stamp and trim<br />

Master – original structure used to make stamp.<br />

Stamp – patterned polymer used for soft lithography.<br />

8


PDMS is soft and enables conformal contact<br />

<strong>Soft</strong> and rubbery backbone of PDMS<br />

Conformal contact<br />

9


Modifying surface chemistry of PDMS<br />

hydrophobic<br />

Plasma Oxidation<br />

hydrophilic<br />

http://www.ims.ut.ee/~alar/microtech/Ch1_5/<br />

10


Properties of PDMS<br />

Liquid pre-polymer<br />

High thermal stability<br />

High chemical stability<br />

[ Easy molding<br />

[ Use at high temperature<br />

[ Use with acids and bases<br />

Transparent for UV/VIS [ To visualize experiments<br />

Solvents swell PDMS (exceptions: Methanol, Ethanol, Isopropanol…)<br />

Slow thermal curing (a few hours) is undesirable when translating<br />

from conceptual prototype to commercial product<br />

11


Other soft lithography materials: OSTE<br />

OSTE: Off-Stoichiometric Thiolene polymers<br />

Rapid UV curing (seconds)<br />

Tunable surface chemistry<br />

Adjustable mechanical properties<br />

Carlborg, C. F. et al, Lab Chip 11, 3136 (2011).<br />

12


Other materials: OSTE (contd.)<br />

Carlborg et al, Lab<br />

Chip 11, 3136<br />

(2011).<br />

13


Outline<br />

§ Definition and rationale for soft lithography<br />

§ Elastomeric stamps: PDMS characteristics<br />

§ Replica molding using elastomeric stamps<br />

§ Microcontact printing of chemical, biological, and<br />

electrical materials.<br />

14


Replica Molding<br />

Use PDMS stamp to make<br />

copies of original structure<br />

1 stamp can make > 50<br />

replicas<br />

Replicas can be made of<br />

different polymers<br />

Xia, Y. & Whitesides, G. M. Annu. Rev. Mater. Sci. 28, 153–184 (1998).<br />

15


Replica Molding (contd.)<br />

Good feature replication (conformal contact!)<br />

Curing only shrinks replicas by ~1%<br />

PU - Polyurethane<br />

Xia, Y. & Whitesides, G. M. Annu. Rev. Mater. Sci. 28, 153–184 (1998).<br />

16


Limits on aspect ratio in PDMS replicas<br />

Be mindful of aspect ratio limits of PDMS replicas to avoid defects in your devices<br />

Qin, D., Xia, Y. & Whitesides, G.M., 2010. Nat. Protocols, 5(3), pp.491-502.<br />

17


Replica molding of microfluidic devices<br />

Fabrication of peristaltic pumps by multilayer soft lithography<br />

Unger et al, Science 2000 DOI:10.1126/science.288.5463.113<br />

18


Multilayer soft lithography for fluidic logic operations<br />

Allows fast, programmable, and parallelized flow control in microfluidic systems<br />

Naga Sai Gopi K. Devaraju and Marc A. Unger, Lab Chip, 2012, DOI:10.1039/C2CLC1155F<br />

19


Multilayer <strong>Soft</strong> <strong>Lithography</strong>: Microfluidic Shift Register<br />

Naga Sai Gopi K. Devaraju and Marc A. Unger, Lab Chip, 2012, DOI:10.1039/C2CLC1155F<br />

20


Outline<br />

§ Definition and rationale for soft lithography<br />

§ Elastomeric stamps: PDMS characteristics<br />

§ Replica molding using elastomeric stamps<br />

§ Microcontact printing of chemical, biological, and<br />

electrical materials.<br />

21


Microcontact printing<br />

Using an elastomeric stamp to transfer an “inked<br />

material” onto a substrate<br />

Wilbur, J. L., Kumar, A., Kim, E. & Whitesides, G. M. Adv. Mater. (1994).<br />

22


Microcontact Printing: Self Assembled Monolayers<br />

Micropatterned<br />

PDMS stamp<br />

Inking<br />

Solution of alkanethiols<br />

in ethanol<br />

Print self-assembled<br />

monolayers as masks for<br />

micro-patterning metal<br />

substrates outside the<br />

cleanroom<br />

Drying,<br />

printing<br />

Removal of<br />

the stamp<br />

Inked stamp<br />

Metal substrate<br />

(Au, Ag, Cu, Pd...)<br />

SAM<br />

Selective<br />

etch<br />

SAM = Self-assembled monolayer<br />

Micropatterned<br />

substrate<br />

23


Self-Assembled Monolayers as Ink<br />

Self-assembled monolayers of alkanethiols on coinage metals (Au, Ag, Pt, Cu, …)<br />

Simple and spontaneous organization of alkanethiols<br />

24


Microcontact printing SAMs for wet etching metal substrates<br />

SAMs spread on substrate,<br />

restricting feature sizes to<br />

>100nm.<br />

SAM layer is thin (2-3 nm) so<br />

only serves as mask for<br />

isotropic wet etching<br />

Wilbur, J. L., Kumar, A., Kim, E. & Whitesides, G. M. Adv. Mater. (1994).<br />

25


Microcontact Printing of Proteins<br />

I<br />

Ink Stamp<br />

Protein<br />

solution<br />

II Blow dry<br />

III Contact<br />

IVSeparate<br />

Structured<br />

PDMS<br />

Stamp<br />

Inked<br />

stamp<br />

Hard<br />

substrate<br />

Patterned<br />

surface<br />

Transfer of proteins from<br />

low to high surface energy<br />

Proteins act as a “solid” ink<br />

– no spreading<br />

Greater than 99% protein<br />

transfer in less than 1<br />

second<br />

Bernard, A., et al., Langmuir 1998, 14, 2225-2229.<br />

26


Printing adhesive proteins for cell co-cultures<br />

50 µm<br />

Could be used to test drug effects on the brain in vitro (i.e. without animal models)<br />

S.G. Ricoult et al, J Neuroscience Methods, 208, 10-17 (2012)<br />

27


Nanocontact printing of protein gradients<br />

Developed a low cost, lift-off<br />

printing technique to pattern 100<br />

nm protein spots.<br />

Study cell migration - critical in<br />

biological processes e.g. nervous<br />

system wiring<br />

Ricoult et al., Small, 2013, 10.1002/smll.201202915<br />

28


Microcontact printing of cells<br />

Weibel D.B Langmuir, 2005, 21, 6436-6442.<br />

29


Flexible electronics<br />

Printing conductive nanomaterials onto flexible substrates using elastomeric stamps<br />

Viventi, J. et al., 2011 Nat Neurosci, 14(12), pp.1599-1605.<br />

30


Flexible electronics as neural implants<br />

Flexible mesh electrodes enable conformal contact and high quality measurements<br />

Viventi, J. et al., 2011 Nat Neurosci, 14(12), pp.1599-1605.<br />

31


Microcontact printing in this course<br />

32


Patterns for Microcontact Printing<br />

33


Conclusions<br />

§ <strong>Soft</strong> lithography is a rapid, inexpensive, and accessible<br />

fabrication technique.<br />

§ PDMS replicas can be used to make microfluidic devices.<br />

§ Microcontact printing allows patterning of chemical,<br />

biological, and electrical materials with a wide range of<br />

applications.<br />

34


Acknowledgements<br />

DJGroup<br />

35


References<br />

1.Wolfe, D. B., Qin, D. & Whitesides, G. M. Methods in Molecular Biology. 583, 81–107 (Humana<br />

Press: Totowa, NJ, 2009)<br />

2.Xia, Y. & Whitesides, G. M. <strong>Soft</strong> <strong>Lithography</strong>. Annu. Rev. Mater. Sci. 28, 153–184 (1998).<br />

3.International Technology Roadmap For Semiconductors. www.itrs.net/reports<br />

4.Weibel, D. B. et al. Bacterial Printing Press that Regenerates Its Ink: Contact-Printing Bacteria<br />

Using Hydrogel Stamps. Langmuir 21, 6436–6442 (2005).<br />

5.Bernard, A., Delamarche, E., Schmid, H. & Michel, B. Printing Patterns of Proteins - Langmuir<br />

(ACS Publications). Langmuir 14, 2225–2229 (1998).<br />

6.Xie, Y. & Jiang, X. Microcontact printing. Methods Mol. Biol. 671, 239–248 (2011).<br />

7.Santhanam, V. & Andres, R. P. Microcontact Printing of Uniform Nanoparticle Arrays. Nano Lett.<br />

4, 41–44 (2004).<br />

8.Qin, D., Xia, Y. & Whitesides, G. M. <strong>Soft</strong> lithography for micro- and nanoscale patterning. Nat<br />

Protoc 5, 491–502 (2010).<br />

9.Chai, J., Wang, D., Fan, X. & Buriak, J. M. Assembly of aligned linear metallic patterns on silicon.<br />

Nature Nanotech 2, 500–506 (2007).<br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!