21.01.2015 Views

Department of Aircraft Design - ITA

Department of Aircraft Design - ITA

Department of Aircraft Design - ITA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Technological Institute <strong>of</strong> Aeronautics<br />

<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

São José dos Campos - São Paulo - Brazil<br />

2014-V1m


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Content<br />

• Staff and facilities<br />

• Aerodynamics<br />

• Aeroacoustics<br />

• Airplane design framework<br />

• Integrated optimization (airplane+ airline network)<br />

• ANN application for aerodynamic coefficient<br />

• High-altitude Solar-powered UAV<br />

• New galley system concept


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Staff and Facilities


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Staff


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Staff<br />

Industrial Experience – <strong>Aircraft</strong> <strong>Design</strong><br />

Coke-shaped<br />

rear fuselage<br />

Wing-fuselage fairing<br />

Wing planform


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Staff<br />

Pr<strong>of</strong>essional experience with winglet design<br />

E-170/175<br />

EMB-145 SA<br />

ERJ 145XR<br />

Legacy 600/650


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Staff<br />

Industrial Experience – <strong>Aircraft</strong> <strong>Design</strong>


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Staff<br />

Industrial Experience – Flight Simulator


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Facilities<br />

Virtual <strong>Aircraft</strong><br />

• Multi-disciplinary <strong>Design</strong> and Optimization<br />

• Computational Fluid Dynamics


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Facilities<br />

Flight and Systems Simulation<br />

60 MHZ<br />

Simulation<br />

S<strong>of</strong>tware<br />

(X-Plane)<br />

Projection<br />

S<strong>of</strong>tware<br />

S<strong>of</strong>tware IG<br />

Simulation<br />

S<strong>of</strong>tware<br />

IOS


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Facilities<br />

Flight and Systems Simulation<br />

1<br />

2<br />

3<br />

Spherical screen<br />

3<br />

Projection<br />

s<strong>of</strong>tware


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Facilities<br />

Flight and Systems Simulation<br />

Beechcraft King Air


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Facilities<br />

Flight and Systems Simulation – Helicopter Flight Simulator<br />

Thanks to Sikorsky Innovations support


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Undergraduate Course – Airplanes designed by the students<br />

Class 2013 BWB 220-pax airliner<br />

Class 2012 220-pax airliner Eagle<br />

Class 2013 joined-wings 220-pax airliner<br />

Class 2011 220-pax airliner Copacabana


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Aerodynamics


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Fuselage design<br />

M ∞ = 0.60 α = 0 o


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Fuselage design<br />

Mach number contours<br />

M ∞ = 0.85<br />

M ∞ = 0.85


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Fuselage design<br />

Forward Fuselage Optimization for a 70-seater Airliner


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

System Integration<br />

High-Performance Computing<br />

Fuselage Aerodynamic Analysis<br />

Mach contours for the three ice-detector configurations calculated with CFD++ (M∞ = 0.76, α = 1.5 o )


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

System Integration<br />

Aerodynamic and Impingement Analysis<br />

Freestream Mach number = 0.76<br />

Ice droplet colliding with probe<br />

Local Mach number ≈ 2


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Winglet <strong>Design</strong><br />

Aerodynamics analysis


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Flow control<br />

Flow control Investigation<br />

Research on flow control by<br />

experimental investigation <strong>of</strong><br />

aerodynamic pr<strong>of</strong>ile with waveshaped<br />

leading and trailing edge<br />

at low Reynolds number


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Aeroacoustics


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Aeroacoustics<br />

Sound pressure levels above 80 dB<br />

M<br />

<br />

0.775 1.21<br />

0<br />

Ill-designed wing-fuselage fairing<br />

Simulations performed with the Fluent code<br />

Ice probe


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

System Integration<br />

Static Pressure Contours<br />

M<br />

<br />

0.45 1.5<br />

0<br />

Simulations performed with the Fluent code


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

System Integration<br />

M<br />

<br />

0.13 3 o


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

System Integration<br />

Broadband noise<br />

Nose landing gear


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

System Integration<br />

Broadband noise<br />

Main landing gear


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Aeroacoustics<br />

Ramps and fairings to reduce LDG noise<br />

Powerflow


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Aeroacoustics<br />

Fairing over wheel axis<br />

Noise reduction : 0.7 dB


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Aeroacoustics<br />

Ramp<br />

Noise reduction : 1 dB


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Airplane Noise Modeling for Airplane Optimization<br />

• Noise estimation methods used for design optimization are:<br />

– Airframe noise: ESDU Data Sheets;<br />

– Engine: NASA interim reports;<br />

– Atmospheric attenuation: FAA<br />

• Methods were used in NASA’s ANOPP (<strong>Aircraft</strong> NOise Prediction Program),<br />

developed in the late 1970s from both experimental and theoretical data;<br />

• All the methods provide means to calculate SPLs for each <strong>of</strong> the 24<br />

standard frequencies (50 Hz to 10 kHz);<br />

• Airframe and Engine components’ SPLs are combined into Airplane SPLs;<br />

• Airplane SPLs are converted into EPNdBs;<br />

• Methods were coded and combined into a noise calculation unit called<br />

PANPA (Parametric Airliner Noise Prediction Architecture).


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Engine noise model:


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Airframe noise model:


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Overall Noise Estimation Validation<br />

Fly-over Sideline Approach<br />

Airplane Certified Estimated Error Certified Calculado Error Certified Estimated Error<br />

EPNdB EPNdB EPNdB EPNdB EPNdB EPNdB EPNdB EPNdB EPNdB<br />

B757-200 89.7 84.7 -5.0 94.2 93.7 -0.5 98.1 96.3 -1.8<br />

A320-200 83.9 82.3 -1.6 91.4 91.8 0.4 94.3 96.6 2.3<br />

DC-9-50 97.8 99.8 2.0 102.2 109.2 7.0 101.9 91.4 -10.5<br />

B767-300ER 89.9 85.4 -4.5 97.6 93.3 -4.3 97.7 89.9 -7.8<br />

A330-300 94.3 88.5 -5.8 98.3 96.1 -2.2 98.0 90.1 -7.9


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane Machine


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

• May involve optimization <strong>of</strong> a given<br />

airline network<br />

• Flight quality considered as<br />

constraint<br />

Optimization<br />

algorithms<br />

DOE<br />

Airplane<br />

Machine<br />

Additional<br />

disciplines<br />

(ex.<br />

Aeroelasti<br />

city)<br />

Optimal<br />

airplanes<br />

• Contains already some optimizations inside in order to calculate<br />

airplane characteristics<br />

• Able to handle from subsonic to supersonic airplanes<br />

• May make use <strong>of</strong> metamodels for aerodynamic coefficients calculation<br />

or any other discipline<br />

• Must output noise signature and emission pr<strong>of</strong>ile


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

• MATLAB® framework<br />

Airplane Machine<br />

• Transport aircraft only<br />

• Performance calculation<br />

• Configuration parameters (seating abreast; wing location, engine location, number <strong>of</strong> aisles, etc…)<br />

• Engine and airplane can be designed simultaneously<br />

• Noise signature and emission pr<strong>of</strong>ile<br />

• Wing airfoils design integration into current framework<br />

• Consideration <strong>of</strong> wingtip devices<br />

• Enable assessment <strong>of</strong> new technology<br />

• Tail surfaces designed by static and dynamic stability criteria (no tail volume coefficient employed)<br />

• Aeroelasticity <strong>of</strong> flexible wings (under development)


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Airplane Modeler - Fuselage<br />

- Variety <strong>of</strong> cross section (double deck, cargo compartment able to accommodate<br />

any sort <strong>of</strong> containers)<br />

- Windshield with single or double curvature<br />

- Assement <strong>of</strong> outside view area for the pilot<br />

- Variety <strong>of</strong> tail cone shapes


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Pace Cabin 7


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Pace Cabin 7


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Wing structural layout


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Structural Sizing (Megson’s Method)<br />

Airplane Actual Mass [kg] Calculated Mass [kg] Error [%]<br />

F28 3230 3120 3.53<br />

737-200 5000 5500 -9.09<br />

DC-9-30 5261 5050 4.18<br />

A319-100 8732 9360 -6.71<br />

A320-200 8766 9530 -8.02<br />

727-200 8956 9300 -3.70<br />

A321-200 10000 10500 -4.76<br />

Load calculation with BLWF


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Airplane Modeler


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

BLWF Validation - Regional twinjet wing station<br />

Mach number = 0.775, Reynolds = 3.1·10 6 , AoA = 1.21 o


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

<strong>Aircraft</strong> Stabilizer <strong>Design</strong> – MATLAB Tool<br />

Features<br />

• Roskam’s methodology for stability derivatives calculation<br />

• Static stability employed for design<br />

• VMCA and Dutch roll post analysis<br />

• Conventional or “T”-tail configurations<br />

• Extremely fast calculation


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

<strong>Aircraft</strong> Stabilizer <strong>Design</strong> – MATLAB Tool<br />

VMCA


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

<strong>Aircraft</strong> Stabilizer <strong>Design</strong> – MATLAB Tool


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

<strong>Aircraft</strong> Stabilizer <strong>Design</strong> – MATLAB Tool<br />

Airplane<br />

HT area (m 2 ) VT area (m 2 )<br />

Calculated Actual Deviation (%) Calculated Actual<br />

Deviation (%)<br />

Boeing 757-200<br />

(RB211-535E4)<br />

52.06 50.35 +3.40 35.61 34.27 +3.91<br />

Fokker 100<br />

(R&R Tay 620)<br />

21.60 21.72 -0.55 12.28 12.30 -0.16<br />

Boeing 747-100<br />

(JT9D-7A)<br />

129.28 136.60 -5.35 77.99 77.10 +1.15<br />

Canadair CRJ-100ER<br />

(GE CF34-A)<br />

9.67 9.44 +2.44 9.73 9.18 +5.99<br />

Boeing 737-100<br />

(JT8D-7)<br />

19.46 20.81 -6.50 29.77 28.99 +2.70


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Engine module Validation<br />

Thrust @<br />

TO (lbf)<br />

SFC TO<br />

airflow<br />

TO<br />

(lb/s)<br />

Thrust<br />

@<br />

Cruise<br />

(lbf)<br />

Engine CPR Actual Data<br />

Manufacturer Bypass Engine Module<br />

Diameter (m) Error (%)<br />

SFC @<br />

Cruise<br />

Weight<br />

(lbf)<br />

CF6-45A 21 46500 - 1393 11250 0,63 8768<br />

GE 4,64 46221 - 1371 11223 0,60 9412<br />

2,2 -0.6% - -1.6% -0.2% -5.1% 7.3%<br />

PW2237 17 36600 - 1210 6500 0,58 7185<br />

Pratt Whitney 5,8 35180 - 1145 7400 0,59 6488<br />

2,01 -3.9% - -5.4% 13.8% 0.8% -9.7%<br />

CFM56-5A1 17 25000 0,33 852 5000 0,60 4995<br />

GE 6 25535 0,33 856 5351 0,60 4605<br />

1,73 2.1% 1.1% 0.5% 7.0% 0,3% -7.8%<br />

Tay 620 8 13850 - 410 - 0.69 3135<br />

Rolls Royce 3,04 14035 - 355 4575 0.65 2673<br />

1,118 1.3% - -13.4% - -5.7% -14.7%<br />

BR710A1-10 15 14750 0,39 435 - - 3520<br />

BMW / RR 4,2 14792 0,40 428 - - 2688<br />

1,23 0.3% 3.2% -1.6% - - -23.6%


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Engine module Validation<br />

Thrust @<br />

TO (lbf)<br />

SFC TO<br />

airflow<br />

TO<br />

(lb/s)<br />

Thrust<br />

@<br />

Cruise<br />

(lbf)<br />

Engine CPR Actual Data<br />

Manufacturer Bypass Engine Module<br />

Diameter (m) Error (%)<br />

SFC @<br />

Cruise<br />

Weight<br />

(lbf)<br />

CF6-45A 21 46500 - 1393 11250 0,63 8768<br />

GE 4,64 46221 - 1371 11223 0,60 9412<br />

2,2 -0.6% - -1.6% -0.2% -5.1% 7.3%<br />

PW2237 17 36600 - 1210 6500 0,58 7185<br />

Pratt Whitney 5,8 35180 - 1145 7400 0,59 6488<br />

2,01 -3.9% - -5.4% 13.8% 0.8% -9.7%<br />

CFM56-5A1 17 25000 0,33 852 5000 0,60 4995<br />

GE 6 25535 0,33 856 5351 0,60 4605<br />

1,73 2.1% 1.1% 0.5% 7.0% 0,3% -7.8%<br />

Tay 620 8 13850 - 410 - 0.69 3135<br />

Rolls Royce 3,04 14035 - 355 4575 0.65 2673<br />

1,118 1.3% - -13.4% - -5.7% -14.7%<br />

BR710A1-10 15 14750 0,39 435 - - 3520<br />

BMW / RR 4,2 14792 0,40 428 - - 2688<br />

1,23 0.3% 3.2% -1.6% - - -23.6%


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Airplane Machine


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

APU<br />

Fuel System Architecture<br />

CHECK/RELIEF VALVE<br />

PRESSURE SWITCH<br />

SHUTOFF VALVE<br />

ELECTRICAL PUMP<br />

EJECTOR PUMP<br />

REFUELING ADAPTER<br />

BOOST PRESSURE<br />

REFUELING LINE<br />

EJECTOR PUMP OUTPUT


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Integration <strong>of</strong> PaceLab Suite


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Airplane Machine Validation<br />

Boeing 757-200<br />

Fokker 100 Standard<br />

Boeing 737-300<br />

Bombardier CRJ-200LR


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Airplane<br />

Fokker 100 Standard with<br />

R&R Tay 620 engines<br />

Airplane Machine Validation<br />

MTOW<br />

(kg)<br />

OEW<br />

(kg)<br />

MTOW (AA)<br />

(kg)<br />

OEW (AA)<br />

(kg)<br />

43,090 24,593 43,097 24,957<br />

Bombardier CRJ-200LR 24,154 13,835 24,011 14,238<br />

Boeing 737-300 with<br />

CFM56-3B1 engines<br />

56,473 31,480 55,491 31,121<br />

Boeing 757-200 115,650 62,100 115,501 59,544<br />

Airplane<br />

Fokker 100 Standard with<br />

R&R Tay 620<br />

MTOW Error<br />

(%)<br />

OEW Error<br />

(%)<br />

0 1.5<br />

Bombardier CRJ-200LR 0.6 2.3<br />

Boeing 737-300 with<br />

CFM5-3B1 engines<br />

1.7 1.1<br />

Boeing 757-200 0.12 4.1


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airliner Optimization with Noise and<br />

Emissions Considerations


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Long-range transcontinental jet (LRJ):<br />

– Requirements:<br />

• 250 passengers, single-aisle, single class, six abreast;<br />

• Range: 6,482km (3,500nm);<br />

• Minimum cruise altitude: 11,278m (37,000ft);<br />

• Cruise Mach number: M0.80;<br />

• TOFL @ MTOW ≤ 2,500m;<br />

• LFL @ MLW ≤ 2,500m;<br />

• Maximum Payload: 24,000kg;<br />

• Maximum Usable Fuel: 34,000kg.


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

LRJA – DOC-optimized design:<br />

Parameter<br />

Value<br />

Wing area (m 2 ) 180.0<br />

Wing sweep<br />

29.71 o<br />

Wing aspect ratio 11.29<br />

Wing taper ratio 0.202<br />

Wing crank position 27.5<br />

Horizontal tail aspect ratio 6.000<br />

Flap deflection, take<strong>of</strong>f 6.4<br />

Engine by-pass ratio 6.49<br />

Engine fan diameter (m) 1.856<br />

Engine overall pressure ratio 35.0


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

LRJB – Noise-optimized design:<br />

Parameter<br />

Value<br />

Wing area (m 2 ) 180.0<br />

Wing sweep<br />

26.70 o<br />

Wing aspect ratio 11.18<br />

Wing taper ratio 0.283<br />

Wing crank position 20.5<br />

Horizontal tail aspect ratio 5.993<br />

Flap deflection, take<strong>of</strong>f 5.4<br />

Engine by-pass ratio 6.43<br />

Engine fan diameter (m) 2.000<br />

Engine overall pressure ratio 35.0


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

LRJC – NO X -optimized design:<br />

Parameter<br />

Final value<br />

Wing area (m 2 ) 182.7<br />

Wing sweep<br />

34.79 o<br />

Wing aspect ratio 9.21<br />

Wing taper ratio 0.244<br />

Wing crank position 27.3<br />

Horizontal tail aspect ratio 5.770<br />

Flap deflection, take<strong>of</strong>f 27.6<br />

Engine by-pass ratio 5.60<br />

Engine fan diameter (m) 1.780<br />

Engine overall pressure ratio 25.0


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

LRJ – all:<br />

Parameter Unit LRJA<br />

(DOC)<br />

LRJB<br />

(Noise)<br />

LRJC<br />

(Emission)<br />

MTOW kg 102,868 101,916 104,339<br />

Fuel for 3,500nm kg 26,085 25,850 26,507<br />

Rated take<strong>of</strong>f thrust kN 140.3 163.0 144.6<br />

DOC US$/km 9.73 10.17 10.69<br />

Fly-over noise EPNdB 81.0 75.0 82.5<br />

Sideline noise EPNdB 87.6 88.5 88.4<br />

Approach noise EPNdB 89.6 88.3 90.1<br />

LTO NOX emissions kg 1.528 1.497 0.818


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Cumulative Noise Reduction [EPNdB]<br />

Relative LTO NOx<br />

LRJ – two-objective optimization:<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

LRJ Two-objetive Optimization - Pareto front<br />

100 gen<br />

150 gen<br />

200 gen<br />

250 gen<br />

300 gen<br />

1.05<br />

1<br />

0.95<br />

LRJ Two-objetive Optimization - Pareto front<br />

100 gen<br />

150 gen<br />

200 gen<br />

250 gen<br />

300 gen<br />

-1.5<br />

0.9<br />

-2<br />

0.85<br />

-2.5<br />

-3<br />

-3.5<br />

-4<br />

-4.5<br />

-5<br />

-5.5<br />

-6<br />

-6.5<br />

-7<br />

0.96 0.98 1 1.02 1.04 1.06<br />

Relative DOC<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

0.45<br />

0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07<br />

Relative DOC


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

• LRJ – three-objective optimization:


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Mid-range Regional Jet (MRJ):<br />

Requirements:<br />

100 passengers, single-aisle, single class, four abreast;<br />

Range: 3,704km (2,000nm);<br />

Minimum cruise altitude: 11,887m (39,000ft);<br />

Cruise Mach number: M0.80;<br />

TOFL @ MTOW ≤ 1,800m;<br />

LFL @ MLW ≤ 1,800m;<br />

Maximum Payload: 13,500kg;<br />

Maximum usable fuel: 13,000kg.


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Mid-range Regional Jet (MRJ)<br />

Critical design constraints:<br />

Parameter Unit Min value Max value<br />

Wing area m² 80.0 100.0<br />

Wing sweep deg 18.0 35.0<br />

Wing aspect ratio - 6.0 12.0<br />

Wing taper ratio - 0.20 0.30<br />

Wing crank position % 20.0 40.0<br />

Horizontal tail aspect ratio - 3.0 6.0<br />

Flap deflection, take<strong>of</strong>f deg 5.0 30.0<br />

Engine by-pass ratio - 3.5 5.5<br />

Engine fan diameter m 1.200 1.500<br />

Engine overall pressure ratio - 20.0 30.0


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

MRJA – DOC-optimized design:<br />

Parameter<br />

Final value<br />

Wing area (m 2 ) 80.0<br />

Wing sweep<br />

28.53 o<br />

Wing aspect ratio 11.52<br />

Wing taper ratio 0.215<br />

Wing crank position 28.5<br />

Horizontal tail aspect ratio 5.998<br />

Flap deflection, take<strong>of</strong>f 7.4<br />

Engine by-pass ratio 5.50<br />

Engine fan diameter (m) 1.203<br />

Engine overall pressure ratio 29.6


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

MRJB – Noise-optimized design:<br />

Parameter<br />

Final value<br />

Wing area (m 2 ) 82.9<br />

Wing sweep<br />

21.34 o<br />

Wing aspect ratio 11.10<br />

Wing taper ratio 0.278<br />

Wing crank position 20.5<br />

Horizontal tail aspect ratio 3.186<br />

Flap deflection, take<strong>of</strong>f 5.0<br />

Engine by-pass ratio 5.50<br />

Engine fan diameter (m) 1.457<br />

Engine overall pressure ratio 28.95


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

MRJC – NO X -optimized design:<br />

Parameter<br />

Final value<br />

Wing area (m 2 ) 93.92<br />

Wing sweep<br />

31.31 o<br />

Wing aspect ratio 6.93<br />

Wing taper ratio 0.299<br />

Wing crank position 31.8<br />

Horizontal tail aspect ratio 5.076<br />

Flap deflection, take<strong>of</strong>f 22.1<br />

Engine by-pass ratio 5.47<br />

Engine fan diameter (m) 1.200<br />

Engine overall pressure ratio 20.0


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

MRJ – all:<br />

Parameter Unit LRJA<br />

(DOC)<br />

LRJB<br />

(Noise)<br />

LRJC<br />

(Emission)<br />

MTOW kg 38,195 38,377 42,288<br />

Fuel for 2,000nm kg 9,657 9,702 10,716<br />

Rated take<strong>of</strong>f thrust kN/eng 67.9 98.2 67.2<br />

DOC US$/km 4.89 5.30 5.60<br />

Fly-over noise EPNdB 72.0 68.2 76.6<br />

Sideline noise EPNdB 84.4 84.9 84.7<br />

Approach noise EPNdB 85.6 84.0 85.7<br />

LTO NOX emissions kg 0.495 0.697 0.286


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Cumulative Noise Reduction [EPNdB]<br />

Relative LTO NOx<br />

MRJ – two-objective optimization:<br />

1<br />

0.5<br />

0<br />

MRJ Two-objetive Optimization - Pareto front<br />

100 gen<br />

150 gen<br />

200 gen<br />

250 gen<br />

300 gen<br />

1.05<br />

1<br />

MRJ Two-objetive Optimization - Pareto front<br />

100 gen<br />

150 gen<br />

200 gen<br />

250 gen<br />

300 gen<br />

-0.5<br />

0.95<br />

-1<br />

0.9<br />

-1.5<br />

-2<br />

0.85<br />

-2.5<br />

0.8<br />

-3<br />

0.75<br />

-3.5<br />

0.7<br />

-4<br />

0.65<br />

-4.5<br />

0.6<br />

-5<br />

-5.5<br />

0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12<br />

Relative DOC<br />

0.55<br />

0.5<br />

0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16<br />

Relative DOC


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

• MRJ – three-objective<br />

Test cases and<br />

optimization:<br />

results


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Network-airplane Integrated <strong>Design</strong>


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Usual approach:<br />

Integrated <strong>Design</strong><br />

• Airplane design for a given typical mission<br />

or<br />

• Network optimization for existing airplanes


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Methodology<br />

• Based on Christine Taylor (MIT) PhD Thesis.<br />

• Three different design cases were carried out:<br />

– Case I: airline network only<br />

– Case I: airplane optimization only<br />

– Case III: integrated design (airline network + airplane)


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Transportation System Modeling<br />

Objective<br />

Operating cost minimization<br />

Airplane<br />

• Performance<br />

• Constraints<br />

• Direct Operating Cost (DOC)<br />

Airline network<br />

• Allocation <strong>of</strong> airplanes / cargo<br />

• Demand constraints<br />

• Noise regulations<br />

• Availble airport runway<br />

Operational constraints<br />

• Route operation<br />

• Cargo/passenger capacity


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Comparative study with rotorcraft vehicles<br />

IBM CPLEX<br />

The CPLEX solver from IBM ILOG is a high performance solver for Linear<br />

Programming (LP), Mixed Integer Programming (MIP) and Quadratic Programming<br />

(QP/QCP/MIQP/MIQCP) problems.


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Implementation <strong>of</strong> Case I<br />

• Only network optimization (Cargo airplane allocation)<br />

• Three existing airplanes are available<br />

Restrições:<br />

A ∙ x ≤ b<br />

A eq ∙ x = b eq<br />

lb ≤ x ≤ ub<br />

Perturba<br />

x<br />

Não<br />

Mínimo<br />

CPLEX<br />

Sim<br />

n ik<br />

A<br />

n ik<br />

B<br />

n ik<br />

C<br />

Calcula<br />

f(x)<br />

x ijk<br />

Dados<br />

r A<br />

w A<br />

v A<br />

Determina<br />

custo por rota<br />

DOC ik<br />

A


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Case II<br />

• Consider airplane optimization only<br />

• Hub-Spoke network<br />

Restrições:<br />

lb ≤ x ≤ ub<br />

Perturba<br />

x<br />

r<br />

w<br />

v<br />

Determina<br />

custo por rota<br />

DOC ik<br />

Calcula<br />

n ik<br />

RS = Simulated annealing<br />

AG = Genetic algorithm<br />

Não<br />

Mínimo<br />

Calcula<br />

f(x)<br />

RS ou AG<br />

Sim


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Case III - Integrated optimization (airline network and airplane)<br />

Restrições:<br />

lb ≤ x 1 ≤ ub<br />

Perturba<br />

x 1<br />

Não<br />

Mínimo<br />

RS ou AG<br />

Sim<br />

RS = Simulated annealing<br />

AG = Genetic algorithm<br />

r<br />

w<br />

v<br />

Determina<br />

custo por rota<br />

DOC ik<br />

Restrições:<br />

A ∙ x 2 ≤ b<br />

A eq ∙ x 2 = b eq<br />

lb ≤ x 2 ≤ ub<br />

Perturba<br />

x 2<br />

Não<br />

Mínimo<br />

n ik<br />

Calcula<br />

x ijk f(x 2 )<br />

CPLEX<br />

Sim


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Four networks (Examples):<br />

– First Seven USA cities (alphabetical order)<br />

– Seven USA cities considering cargo transportation rank<br />

– Seven Brazilian cities considering a rank in cargo transportation<br />

– Five Brazilian Southwest cities ranked in cargo transportation


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

• Example 1 – First seven cities in USA<br />

Distance (nm)<br />

Demand (lb)<br />

ABQ ATL BOS CLT ORD CVG CLE<br />

ABQ 0 1.222 1.933 1.426 1.160 1.209 1.393<br />

ATL 1.222 0 934 208 622 400 619<br />

BOS 1.933 934 0 731 882 755 563<br />

CLT 1.426 208 731 0 682 423 448<br />

ORD 1.160 622 882 682 0 260 309<br />

CVG 1.209 400 755 423 260 0 219<br />

CLE 1.393 619 563 448 309 219 0<br />

ABQ ATL BOS CLT ORD CVG CLE<br />

ABQ 0 2.356 2.051 673 4.572 214 747<br />

ATL 2.356 0 14.045 4.610 31.313 1.465 5.112<br />

BOS 2.051 14.045 0 4.014 27.261 1.276 4.451<br />

CLT 673 4.610 4.014 0 8.948 419 1.461<br />

ORD 4.572 31.313 27.261 8.948 0 2.844 9.923<br />

CVG 214 1.465 1.276 419 2.844 0 464<br />

CLE 747 5.112 4.451 1.461 2.844 464 0


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

• Example 2 – Seven major USA cities<br />

Distance (nm)<br />

Demand (lb)<br />

ATL BOS ORD DFW LAX JFK SFO<br />

ATL BOS ORD DFW LAX JFK SFO<br />

ATL 0 934 622 688 1.921 756 2.179<br />

BOS 934 0 882 1.538 2.629 183 2.729<br />

ORD 622 882 0 806 1.767 713 1.866<br />

DFW 688 1.538 806 0 1.257 1.360 1.518<br />

LAX 1.921 2.629 1.767 1.257 0 2.454 330<br />

JFK 756 183 713 1.360 2.454 0 2.560<br />

ATL 0 14.045 31.313 19.984 34.506 57.949 37.318<br />

BOS 14.045 0 27.261 17.398 30.041 50.451 32.489<br />

ORD 31.313 27.261 0 38.788 66.975 112.479 72.434<br />

DFW 19.984 17.398 38.788 0 42.743 71.784 46.227<br />

LAX 34.506 30.041 66.975 42.743 0 123.948 79.820<br />

JFK 57.949 50.451 112.479 71.784 123.948 0 134.050<br />

SFO 2.179 2.729 1.866 1.518 330 2.560 0<br />

SFO 37.318 32.489 72.434 46.227 79.820 134.050 0


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Example 3 – Seven major Brazilian cities<br />

Distance (nm)<br />

Demand (lb)<br />

SAO MAO REC SSA FOR BSB POA<br />

SAO 0 1.455 1.133 783 1.266 461 467<br />

MAO 1.455 0 1.530 1.418 1.289 1.051 1.694<br />

REC 1.133 1.530 0 350 339 893 1.598<br />

SSA 783 1.418 350 0 548 585 1.248<br />

FOR 1.266 1.289 339 548 0 913 1.728<br />

BSB 461 1.051 893 585 913 0 866<br />

POA 467 1.694 1.598 1.248 1.728 866 0<br />

SAO MAO REC SSA FOR BSB POA<br />

SAO 0 308.265 81.729 80.121 72.325 83.878 42.697<br />

MAO 308.265 0 7.598 13.010 18.557 34.056 663<br />

REC 81.729 7.598 0 12.024 32.524 13.452 4.043<br />

SSA 80.121 13.010 12.024 0 13.046 11.711 1.037<br />

FOR 72.325 18.557 32.524 13.046 0 12.126 1.599<br />

BSB 83.878 34.056 13.452 11.711 12.126 0 6.814<br />

POA 42.697 663 4.043 1.037 1.599 6.814 0


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Example 4 – 5 major Southeast Brazilian cities<br />

Distance (nm)<br />

Demand (lb)<br />

SAO CNF RIO VIX VCP<br />

SAO 0 267 182 394 45<br />

CNF 267 0 195 213 269<br />

RIO 182 195 0 225 215<br />

VIX 394 213 225 0 417<br />

VCP 45 269 215 417 0<br />

SAO CNF RIO VIX VCP<br />

SAO 0 25.702 40.875 11.691 1.431<br />

CNF 25.702 0 4.598 1.336 3.681<br />

RIO 40.875 4.598 0 8.989 4.247<br />

VIX 11.691 1.336 8.989 0 4.869<br />

VCP 1.431 3.681 4.247 4.869 0


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Results – Case I (network optimization)<br />

• Airplanes for Examples 1 and 2<br />

Parameter<br />

Airplane A Airplane B Airplane C<br />

Fairchild Expediter B757-200F MD11F<br />

Payload (lb) 5.000 72.210 202.100<br />

Range (nm) 1.063 3.000 3.950<br />

Speed (kt) 252 465 526<br />

• Airplanes for Examples 3 and 4<br />

Parameter<br />

Airplane A Airplane B Airplane C<br />

Cessna Caravan<br />

208A<br />

(Cargomaster)<br />

B727-200F<br />

DC10-30F<br />

Payload (lb) 3.000 58.000 152.964<br />

Range (nm) 1.115 2.140 3.100<br />

Speed (kt) 184 515 490


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Results – Case I<br />

Same network as those found by Taylor<br />

Airplane A Airplane B Airplane C<br />

Related airplane Fairchild Expediter B757-200F MD11F<br />

Example 1 Example 2<br />

C. Taylor $ 107.888,00 $ 517.030,00<br />

Present work $ 107.869,54 $ 516.967,72<br />

Difference -0,02% -0,01%<br />

Payload (lb) 5,000 72,210 202,100<br />

Range (nm) 1,063 3,000 3,950<br />

Speed (kts) 252 465 526<br />

Fixed cost<br />

(US$/day)<br />

Variable cost<br />

(US$/h)<br />

1,481 10,616 26,129<br />

758 3,116 7,194


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Example 1<br />

• Total cost: $ 143,046.84<br />

Results – Case I


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Example 2<br />

• Total cost: $ 854,686.76<br />

Results – Case I


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Example 3<br />

• Total cost: $ 439,676.69<br />

Results – Case I


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Example I<br />

• Total cost: $ 45,635.00<br />

Results – Case I


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Example 4<br />

• Total cost: $ 45,635.00<br />

Results – Case I


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Results – Case II<br />

Example 1<br />

Parâmetro AG RS<br />

Carga paga w (lbs) 28.374,18 28.287,00<br />

Alcance r (nm) 1.259,20 1.222,00<br />

Velocidade v (kts) 549,48 550,00<br />

Custo mínimo ($) 82.123,11 81.501,64<br />

1 − Caso2 Caso1 42,59% 43,02%


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Results – Caso II<br />

Example 2<br />

Parameter<br />

Genetic<br />

algorithm<br />

Simulated<br />

annealing<br />

Payload (lb) 201,341.55 201,171.50<br />

Range r (nm) 1,866 1,866<br />

Speed v (kts) 549 550<br />

Minimum cost ($) 767,945.4 766,558.4<br />

1 – Case II/Case I 10.15 % 10.31 %


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Results – Case II<br />

Example 3<br />

Parameter<br />

Genetic<br />

algorithm<br />

Simulated<br />

annealing<br />

Payload (lb) 76,565 76,462<br />

Range r (nm) 1,517.65 1,455.00<br />

Speed v (kts) 548.8 550<br />

Minimum cost ($) 412,294,3 408,068,7<br />

1 – Case II/Case I 6.23 % 7.19 %


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Results – Case II<br />

Example 4<br />

Parameter<br />

Genetic<br />

algorithm<br />

Simulated<br />

annealing<br />

Payload (lb) 35,500 35,317<br />

Range r (nm) 1,000 1,000<br />

Speed v (kts) 549.3 550<br />

Minimum cost ($) 32,079.39 31,925.12<br />

1 – Case II/Case I 29.70 % 30.04 %


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Results – Case III<br />

Exemplo 1<br />

Parâmetro AG RS<br />

Carga paga w (lbs) 18.308,10 9.713,50<br />

Alcance r (nm) 1.161,98 1.222,08<br />

Velocidade v (kts) 545,95 550,00<br />

Custo mínimo ($) 66.714,75 67.728,30<br />

1 − Caso3 Caso2 18,76% 16,90%<br />

1 − Caso3 Caso1 53,36% 52,65%


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Results – Caso III<br />

Example 2<br />

Parâmetro AG RS<br />

Carga paga w (lbs) 126.169,66 131.972,55<br />

Alcance r (nm) 2.011,72 1.921,00<br />

Velocidade v (kts) 527,52 550,00<br />

Custo mínimo ($) 698.333,29 676.808,26<br />

1 − Caso3 Caso2 9,06% 11,71%<br />

1 − Caso3 Caso1 18,29% 20,81%


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Example 3<br />

Results – Case III<br />

Parameter<br />

Genetic<br />

algorithm<br />

Simulated<br />

annealing<br />

Payload (lb) 56,975 65,808<br />

Range r (nm) 1,522 1,455<br />

Speed v (kts) 548 550<br />

Minimum cost ($) 387,308.86 373,780.11<br />

1 – Case III/Case II 6.06 % 8.40 %<br />

1- Case III/Case I 11.91 % 14.99 %


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Results – Case III<br />

Example 4<br />

Parameter<br />

Genetic<br />

Algorithm<br />

Simulated<br />

annealing<br />

Payload (lb) 14,769 14,228<br />

Range r (nm) 1,000 1,000<br />

Speed v (kts) 545 550<br />

Minimum cost ($) 29,290.71 28,354.80<br />

1 – Case III/Case II 8.69 % 11.18 %<br />

1 – Case III/Case I 35.82 % 37.87 %


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Efficiency metrics<br />

• Utilization <strong>of</strong> available cargo capacity:<br />

N<br />

N<br />

N<br />

N<br />

N<br />

i cap /carga =<br />

x ijk<br />

2 n ik w<br />

i=1<br />

j =1 k=1<br />

i=1<br />

k=1<br />

• Utilization <strong>of</strong> available range:<br />

N<br />

N<br />

N<br />

N<br />

i cap /prop =<br />

n ik D ik<br />

n ik r<br />

i=1<br />

k=1<br />

i=1<br />

k=1


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Network No. 1 Network No. 2<br />

i cap/carga<br />

i cap/prop<br />

i cap/carga<br />

i cap/prop<br />

Caso 1 47% 32%<br />

Caso 2 - AG 50% 55%<br />

Caso 2 - RS 50% 56%<br />

Caso 3 - AG 64% 53%<br />

Caso 3 - RS 73% 54%<br />

Caso 1 73% 30%<br />

Caso 2 - AG 52% 61%<br />

Caso 2 - RS 52% 61%<br />

Caso 3 - AG 65% 55%<br />

Caso 3 - RS 62% 57%<br />

Network No. 3 Network No. 4<br />

i cap/carga<br />

i cap/prop<br />

i cap/carga<br />

i cap/prop<br />

Caso 1 79% 40%<br />

Caso 2 - AG 74% 68%<br />

Caso 2 - RS 70% 73%<br />

Caso 3 - AG 79% 62%<br />

Caso 3 - RS 81% 68%<br />

Caso 1 57% 10%<br />

Caso 2 - AG 61% 21%<br />

Caso 2 - RS 61% 21%<br />

Caso 3 - AG 81% 23%<br />

Caso 3 - RS 84% 23%


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Integrated <strong>Design</strong> Remarks<br />

• Redução no custo total alcançado, com mínimo de 6%.<br />

• Limitações devido à simplificação dos modelos.<br />

• Limitações computacionais para modelos mais complexos.


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

<strong>Design</strong> Parameters<br />

• Wing washout angle: -3 o<br />

• Seat width: 0.46 m<br />

• Wing break station positioning: placed at 35% semispan<br />

• Aisle width: 0.48 m<br />

• HT sweepback angle = wing sweepback angle + 5 o<br />

• Landing flap deflection: 45 o<br />

• Take<strong>of</strong>f flap deflection: 8 o<br />

• VT aspect ratio: 1.6<br />

• VT quarter chord sweepback angle: 35 o<br />

• VT taper ratio: 0.50<br />

• Service ceiling: 41,000 ft<br />

• Wing dihedral angle: 2.5 o<br />

• MMO: 0.82<br />

• Turbine inlet temperature: 1450 K<br />

• Fuel for 100 nm alternate destination + 45 min holding<br />

• JetA1 gallon price: US$ 3.28


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

<strong>Design</strong> Variables<br />

• Wing aspect ratio<br />

• Wing taper ratio<br />

• Wing reference area<br />

• Wing quarter-chord sweepback angle<br />

• Maximum relative wing thickness at root<br />

• Maximum relative wing thickness at tip<br />

• Seating abreast<br />

• Number <strong>of</strong> corridors<br />

• Number <strong>of</strong> engines<br />

• Engine location<br />

• Tail configuration<br />

• Wing location<br />

• HT taper ratio<br />

• VT reference area<br />

• HT volume coefficient<br />

• Fan diameter<br />

• Engine by-pass ratio<br />

• Engine overall pressure ratio<br />

• Fan pressure ratio


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Integrated <strong>Design</strong> (Network + Airliner)<br />

Brazilian (very) Small Network<br />

1<br />

CNF<br />

1<br />

VIX<br />

1<br />

1<br />

1<br />

2<br />

GIG<br />

VCP<br />

1<br />

GRU<br />

Total: 8 airplanes<br />

Simulations carried-out with MATLAB ® and IBM ® CPLEX


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane integrated design<br />

Network + Airplane<br />

Optimal<br />

airplane<br />

Boeing 737-800<br />

CFM56-7B24<br />

MTOW<br />

(kg)<br />

Seating<br />

capacity<br />

(single<br />

class)<br />

Seating<br />

abreast<br />

Range with<br />

max.<br />

payload<br />

(nm)<br />

MMO<br />

Wing area<br />

(m 2 )<br />

AR W<br />

Wing<br />

sweepback<br />

angle<br />

(degrees)<br />

61,500 191 6 1,185 + 0.78 129.6 10.47 29.90<br />

70,534 α 184 6 700 * 0.82 124.6 9.45 25.0<br />

(without winglets)<br />

Optimal<br />

Airplane<br />

Boeing 737-800<br />

CFM56-7B24<br />

Fan<br />

diameter<br />

(m)<br />

BPR OPR FPR AR HT<br />

HT<br />

sweepback<br />

angle<br />

(degrees)<br />

1.7 6.3 30 1.73 4.37 29.9<br />

1.55 5.3 32.8 unknown 6.16 30.0<br />

Brazilian Small Network<br />

Central<br />

fuselage<br />

diameter<br />

(m)<br />

Circular<br />

3.85<br />

Elliptical<br />

3.76 wide<br />

4.01 tall<br />

(without winglets)<br />

α Boeing 737-800 basic version. Boeing also <strong>of</strong>fers a 79 t version presenting a 2200-nm range with maximum payload. The latter delivers a range<br />

<strong>of</strong> 1,100 nm with 72.9 t TOW.<br />

+ Long-range cruise at 41,000 ft.<br />

* 31-35-39,000 ft step LRC<br />

Simulations carried-out with MATLAB ® and IBM ® CPLEX


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

Cytoscape<br />

Cytoscape is an open source s<strong>of</strong>tware platform for visualizing complex<br />

networks and integrating these with any type <strong>of</strong> attribute data. A lot <strong>of</strong> Apps<br />

are available for various kinds <strong>of</strong> problem domains, including bioinformatics,<br />

social network analysis, and semantic web.


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Comparative study with rotorcraft vehicles<br />

Comparative Table<br />

Topic BA 609 S-76 S-92<br />

Pressurized yes no no<br />

Flight into known icing<br />

conditions<br />

yes no no<br />

speed good fair fair<br />

range fair insatisfactory fair<br />

Entry into service 2014 ++ 1982 2004<br />

Fuel consumption fair unsatisfactory unsatisfactory<br />

Service ceiling fair Too low Too low<br />

Maintenance Vey expensive expensive expensive<br />

Acquisition price Very expensive (US$ 29 mi) expensive Very expensive (US$ 26 mi)


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Comparative study with rotorcraft vehicles<br />

Vehicle data<br />

<strong>Aircraft</strong><br />

Variable cost<br />

(US$/h)<br />

Fixed Cost<br />

Max pax<br />

seating<br />

capacity<br />

Cruise speed<br />

(km/h)<br />

Max. Range<br />

(km)<br />

MTOW<br />

(kg)<br />

Rotor<br />

diameter<br />

(m)<br />

Pressurized<br />

BA609 2670 * 4005 * 9/12 509 1296 7620 2 x 7.92 yes<br />

S-92 2670 4005 * 19 280 999 12200 17.17 no<br />

S-76C+ 1675 2513 * 13 287 761 5307 13.41 no<br />

* Estimated by authors


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Comparative study with rotorcraft vehicles<br />

Network Optimization<br />

• Demand matrix<br />

• Distance matrix<br />

• No scheduling<br />

• <strong>Aircraft</strong> starts from City A, flies to City B, and come back to City A<br />

• Cargo or passenger is allowed to stay in a intermediate city before being<br />

transported to destination<br />

• Code written in MATLAB ®<br />

• IBM CPLEX ® was used as optimization engine (the application is called<br />

inside MATLAB ® )


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Comparative study with rotorcraft vehicles<br />

Variable cost components<br />

• Fuel<br />

• Fuel additives<br />

• Lubricants<br />

• Maintenance – Labor<br />

• Maintenance – Parts<br />

• Engine restoration cost<br />

• Major periodic maintenance<br />

• Propeller overhaul<br />

• APU maintenance overhaul<br />

• Landing and parking fees<br />

• Crew expenses<br />

• Small supplies and catering<br />

Source: http://www.conklindd.com/Page.aspxcid=1115


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Comparative study with rotorcraft vehicles<br />

1<br />

2<br />

390 km<br />

Network – Distances<br />

4<br />

190 km<br />

3<br />

55 km<br />

5<br />

6 7


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Comparative study with rotorcraft vehicles<br />

Results – Number <strong>of</strong> planes<br />

Case<br />

Distance<br />

matrix<br />

Demand<br />

Total Cost<br />

(US$)<br />

S-92 S-76 BA609<br />

A 1 1 55,942.85 2 10 0<br />

B 1 2 481,675.00 2 96 0<br />

C 2 2 1066528.00 20 73 0


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Artificial Neural Network to Model<br />

Aerodynamic Coefficients


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

ANN application for aerodynamics<br />

Relative LTO NOx<br />

<strong>Design</strong> <strong>of</strong> efficient aircraft is highly complex and<br />

requires a lot <strong>of</strong> computational power<br />

1.05<br />

1<br />

0.95<br />

LRJ Two-objetive Optimization - Pareto front<br />

100 gen<br />

150 gen<br />

200 gen<br />

250 gen<br />

300 gen<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

0.45<br />

0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07<br />

Relative DOC


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

ANN application for aerodynamics<br />

Computational cost <strong>of</strong> each AA module:<br />

Used Roskam<br />

Class II method<br />

for drag estimation.<br />

We wanted to<br />

increase fidelity<br />

for future analysis ...<br />

... without<br />

jeopardizing the<br />

computational cost!


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

ANN application for aerodynamics<br />

Procedure<br />

1. Generate the database.<br />

2. Implement the ANN training routines.<br />

3. Choose the best architecture.<br />

4. Evaluate the ANNs performance.<br />

5. Test the ANNs on an optimization problem.


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

ANN application for aerodynamics<br />

Database creation:<br />

– 40 design variables.<br />

– Latin hypercube sampling.<br />

– Used BLWF code to calculate targets.<br />

– 110,000 test cases.<br />

40 INPUTS<br />

Wing geometry<br />

Root, kink and tip airfoils<br />

Altitude, Mach and <br />

•Wing area<br />

•Aspect ratio<br />

•Taper ratio<br />

•Leading edge sweep<br />

•Kink position<br />

•Inner panel dihedral<br />

•Outer panel dihedral


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

ANN application for aerodynamics<br />

Database creation:<br />

– 40 design variables.<br />

– Latin hypercube sampling.<br />

– BLWF code was employed to calculate targets.<br />

– 110,000 test cases.<br />

40 INPUTS<br />

Wing geometry<br />

Root, kink and tip airfoils<br />

Altitude, Mach and <br />

•Airfoil incidence<br />

•Leading edge radius<br />

•Maximum t/c<br />

•Thickness line angle @ TE<br />

•Max. t/c position<br />

•Camber line angle @ LE<br />

•Camber line angle @ TE<br />

•Maximum y/c<br />

•y/c @ max. t/c position<br />

•Max. y/c position


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

ANN application for aerodynamics<br />

Evaluate the ANN performance<br />

• Drag divergence and wing sweep:<br />

– Altitude: 10,500m and AoA: 1 deg<br />

3-ANN drag prediction


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

ANN application for aerodynamics<br />

Test case with an optimization problem involving airfoils<br />

<strong>Design</strong> variables:<br />

• Airfoil incidence<br />

• Leading edge radius<br />

• Maximum t/c<br />

• Thickness line angle @ TE<br />

• Max. t/c position<br />

• Camber line angle @ LE<br />

• Camber line angle @ TE<br />

• Maximum y/c<br />

• y/c @ max. t/c position<br />

• Max. y/c position<br />

Objective function:<br />

• Minimize C D<br />

Constraints:<br />

• C L = 0.4<br />

• Database boundaries<br />

An adjoint first-order method was employed


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

ANN application for aerodynamics<br />

Test case with an optimization problem involving airfoils


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

ANN application for aerodynamics<br />

y/c<br />

y/c<br />

y/c<br />

Test case with an optimization problem involving airfoils<br />

0.1<br />

0.05<br />

Root airfoil<br />

GD Starting point<br />

GD Optimal<br />

0<br />

-0.05<br />

0.1<br />

0.05<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

x/c<br />

Kink airfoil<br />

GD Starting point<br />

GD Optimal<br />

0<br />

-0.05<br />

0.1<br />

0.05<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

x/c<br />

Tip airfoil<br />

GD Starting point<br />

GD Optimal<br />

0<br />

-0.05<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

x/c


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Framework <strong>Design</strong> for High-altitude<br />

Solar-powered UAV


Framework for Conceptual <strong>Design</strong> <strong>of</strong> Solar-powered UAV


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Solar-powered High-altitude UAV<br />

Wing airfoil polar curve<br />

Tailplanes airfoil polar curve<br />

Solar irradiation (Rsun)


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Solar-powered High-altitude UAV<br />

modeFrontier Workflow<br />

Available power


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Solar-powered High-altitude UAV<br />

Selected configurations


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

New Galley Concept for Long-haul Airliners


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

New Lower-deck galley system – Motivation<br />

• Improve airplane economics<br />

• Reduce pax cabin crew workload<br />

• Improved space utilization<br />

http://www.jatm.com.br/ojs/index.php/jatm/article/view/145


<strong>Aircraft</strong> <strong>Design</strong> <strong>Department</strong><br />

Airplane design<br />

New Lower-deck galley system<br />

A340-300 Boeing 767-200 Boeing 777-200<br />

Economy class typical 238 175 280<br />

Extra seats in the economy class 28 27 34<br />

Capacity variation +11.8 % +15.4 % +12.1 %<br />

A340-300 Boeing 767-200 Boeing 777-200<br />

DOC per seat mile variation -4.17 % -5.42 % -3.25 %<br />

Capacity variation +11.8 % +15.4 % +12.1 %


Thank You!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!