24.01.2015 Views

Derivatives - Pauls Online Math Notes

Derivatives - Pauls Online Math Notes

Derivatives - Pauls Online Math Notes

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Calculus Cheat Sheet<br />

<strong>Derivatives</strong><br />

Definition and Notation<br />

If y = f ( x)<br />

then the derivative is defined to be f ( x)<br />

If y = f ( x)<br />

then all of the following are<br />

equivalent notations for the derivative.<br />

df dy d<br />

f¢ ( x) = y¢<br />

= = = f ( x)<br />

= Df x<br />

dx dx dx<br />

If y = f ( x)<br />

then,<br />

1. m f¢<br />

( a)<br />

( ) ( )<br />

= is the slope of the tangent<br />

line to y = f ( x)<br />

at x = aand the<br />

equation of the tangent line at x = a is<br />

y = f a + f¢<br />

a x- a .<br />

given by ( ) ( )( )<br />

If f ( x ) and ( )<br />

¢ ¢<br />

1. ( cf ) = cf ( x)<br />

( + ) - ( )<br />

¢ = .<br />

h<br />

h ® 0<br />

f<br />

lim<br />

x h f x<br />

If y = f ( x)<br />

all of the following are equivalent<br />

notations for derivative evaluated at x = a.<br />

df dy<br />

f¢ ( a) = y¢<br />

= = = Df ( a)<br />

x=<br />

a<br />

dx dx<br />

x= a x=<br />

a<br />

Interpretation of the Derivative<br />

f¢ a is the instantaneous rate of<br />

2. ( )<br />

change of f ( x ) at x = a.<br />

3. If f ( x ) is the position of an object at<br />

time x then f¢ ( a)<br />

is the velocity of<br />

the object at x = a.<br />

Basic Properties and Formulas<br />

g x are differentiable functions (the derivative exists), c and n are any real numbers,<br />

¢ ¢ ¢<br />

2. ( f ± g) = f ( x) ± g ( x)<br />

3. ( )<br />

fg ¢ = f¢ g+ fg¢<br />

– Product Rule<br />

æ f ö<br />

¢<br />

f¢ g-<br />

fg¢<br />

4. ç =<br />

2<br />

g<br />

÷<br />

– Quotient Rule<br />

è ø g<br />

d<br />

( x ) = 1<br />

dx<br />

d<br />

( sinx)<br />

= cos x<br />

dx<br />

d<br />

( cosx)<br />

=- sin x<br />

dx<br />

d<br />

2<br />

( tanx)<br />

= sec x<br />

dx<br />

d<br />

( secx)<br />

= secxtan<br />

x<br />

dx<br />

d<br />

dx<br />

d x<br />

n nx<br />

n-<br />

= – Power Rule<br />

dx<br />

d<br />

( f ( g x )) = f¢ g( x)<br />

g¢<br />

x<br />

dx<br />

This is the Chain Rule<br />

5. ( c ) = 0<br />

Common <strong>Derivatives</strong><br />

d<br />

( cscx)<br />

=- cscxcot<br />

x<br />

dx<br />

d<br />

2<br />

( cotx)<br />

=- csc x<br />

dx<br />

d -1<br />

1<br />

( sin x)<br />

=<br />

dx<br />

2<br />

1-<br />

x<br />

d -1<br />

1<br />

( cos x)<br />

=-<br />

dx<br />

2<br />

1-x<br />

d -1<br />

1<br />

( tan x)<br />

2<br />

dx 1 x<br />

6. ( )<br />

1<br />

7. ( )<br />

( ) ( )<br />

d a a a<br />

x x<br />

( ) = ln( )<br />

dx<br />

d x x<br />

( e ) = e<br />

dx<br />

d 1<br />

( ( x)<br />

) x<br />

dx x<br />

d 1<br />

( x ) = x¹<br />

dx x<br />

d<br />

1<br />

= ( a ( x)<br />

)<br />

+<br />

ln = , > 0<br />

ln , 0<br />

log = , x > 0<br />

dx xlna<br />

Calculus Cheat Sheet<br />

Chain Rule Variants<br />

The chain rule applied to some specific functions.<br />

d<br />

n<br />

n-1<br />

d<br />

1. ( éf ( x)<br />

ù ) = né f ( x) ù f¢<br />

( x)<br />

dx<br />

ë û ë û<br />

5. ( coséf ( x)<br />

) f ( x) sin f ( x)<br />

dx<br />

ë ùû =- ¢ éë ùû<br />

d f ( x)<br />

f ( x)<br />

d<br />

2<br />

2. ( e ) = f¢<br />

( x)<br />

e<br />

6. ( tanéf ( x)<br />

) f ( x) sec f ( x)<br />

dx<br />

dx<br />

ë ùû = ¢ éë ùû<br />

d<br />

f¢<br />

( x)<br />

d<br />

3. ( ln éf<br />

( x)<br />

ù)<br />

=<br />

dx<br />

ë û<br />

7. sec[ f ( x) ] = f ¢ ( x) sec f ( x) tan f ( x)<br />

f ( x)<br />

dx<br />

d<br />

d 1<br />

f ( x)<br />

4. ( sinéf ( x)<br />

ù) = f¢<br />

( x) cos éf ( x)<br />

ù<br />

8. ( tan<br />

- éf<br />

( x)<br />

)<br />

¢<br />

2<br />

dx<br />

ë û ë û dx<br />

ë ùû<br />

=<br />

1+éëf ( x)<br />

ùû<br />

( ) [ ] [ ]<br />

Higher Order <strong>Derivatives</strong><br />

The Second Derivative is denoted as<br />

The n th Derivative is denoted as<br />

2<br />

n<br />

( 2<br />

( ) ) d f<br />

( n<br />

f¢¢ x = f ( x)<br />

= and is defined as<br />

) d f<br />

f<br />

2<br />

( x)<br />

= and is defined as<br />

n<br />

dx<br />

dx<br />

f¢¢ ( x) = ( f¢<br />

( x ))<br />

¢ , i.e. the derivative of the<br />

( n ) ( n- 1<br />

( )<br />

) ¢<br />

f x = ( f ( x)<br />

), i.e. the derivative of<br />

first derivative, f¢ ( x)<br />

.<br />

the (n-1) st n-1<br />

derivative, f x .<br />

( )<br />

( )<br />

Implicit Differentiation<br />

+ xy = sin y + 11x<br />

y = y x here, so products/quotients of x and y<br />

2x-9y<br />

3 2<br />

Find y¢ if e ( ) . Remember ( )<br />

will use the product/quotient rule and derivatives of y will use the chain rule. The “trick” is to<br />

differentiate as normal and every time you differentiate a y you tack on a y¢ (from the chain rule).<br />

After differentiating solve for y¢ .<br />

e<br />

( - y¢ ) +<br />

e<br />

x y + xyy¢ = ( y)<br />

y¢<br />

+<br />

( )<br />

-<br />

x- y<br />

e - ( ) ¢ = -<br />

x-<br />

y<br />

e -<br />

2x-9y<br />

2 2 3<br />

2 9 3 2 cos 11<br />

- y¢ + xy + xyy¢ = y y¢ + Þ y¢<br />

=<br />

2x-9y 2x-9y<br />

2 2 3<br />

2e<br />

9 3 2 cos 11<br />

( )<br />

2xy 9 cos y y 11 2 3xy<br />

3 2 9 2 9 2 2<br />

Critical Points<br />

x c<br />

= is a critical point of f ( )<br />

1. f¢ ( c) = 0 or 2. f ( c)<br />

Increasing/Decreasing – Concave Up/Concave Down<br />

¢ doesn’t exist.<br />

x provided either<br />

Increasing/Decreasing<br />

1. If f¢ ( x) > 0 for all x in an interval I then<br />

f ( x ) is increasing on the interval I.<br />

¢ < for all x in an interval I then<br />

2. If f ( x) 0<br />

f ( x ) is decreasing on the interval I.<br />

¢ = for all x in an interval I then<br />

3. If f ( x) 0<br />

f ( x ) is constant on the interval I.<br />

2x-9y<br />

2 2<br />

11-2e<br />

-3x y<br />

3 2x-9y<br />

2xy-9e<br />

-cos<br />

( y)<br />

Concave Up/Concave Down<br />

f¢¢ x > for all x in an interval I then<br />

1. If ( ) 0<br />

f ( x ) is concave up on the interval I.<br />

¢¢ < for all x in an interval I then<br />

2. If f ( x) 0<br />

f ( x ) is concave down on the interval I.<br />

Inflection Points<br />

x c<br />

= is a inflection point of f ( )<br />

concavity changes at x = c.<br />

x if the<br />

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.<br />

© 2005 Paul Dawkins<br />

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.<br />

© 2005 Paul Dawkins


Absolute Extrema<br />

1. x c<br />

= is an absolute maximum of f ( x )<br />

if f ( c) ³ f ( x)<br />

for all x in the domain.<br />

= is an absolute minimum of f ( x )<br />

2. x c<br />

if f ( c) £ f ( x)<br />

for all x in the domain.<br />

Fermat’s Theorem<br />

f x has a relative (or local) extrema at<br />

If ( )<br />

x = c, then x c<br />

= is a critical point of ( )<br />

Calculus Cheat Sheet<br />

f x .<br />

Extreme Value Theorem<br />

f x is continuous on the closed interval<br />

If ( )<br />

[ ab , ] then there exist numbers c and d so that,<br />

£ £ , 2. f ( c ) is the abs. max. in<br />

1. a cd , b<br />

[ ab , ] , 3. ( )<br />

f d is the abs. min. in [ , ]<br />

ab .<br />

Finding Absolute Extrema<br />

To find the absolute extrema of the continuous<br />

ab , use the<br />

function f ( x ) on the interval [ ]<br />

following process.<br />

1. Find all critical points of f ( x ) in [ ab , ] .<br />

2. Evaluate f ( x ) at all points found in Step 1.<br />

3. Evaluate f ( a ) and f ( b ) .<br />

4. Identify the abs. max. (largest function<br />

value) and the abs. min.(smallest function<br />

value) from the evaluations in Steps 2 & 3.<br />

Extrema<br />

Relative (local) Extrema<br />

1. x = c is a relative (or local) maximum of<br />

f c ³ f x for all x near c.<br />

f ( x ) if ( ) ( )<br />

2. x = c is a relative (or local) minimum of<br />

f c £ f x for all x near c.<br />

f ( x ) if ( ) ( )<br />

1 st Derivative Test<br />

If x c<br />

= is a critical point of ( )<br />

1. a rel. max. of f ( x ) if f ( x) 0<br />

f x then x = c is<br />

¢ > to the left<br />

of x = c and f¢ ( x) < 0 to the right of x = c.<br />

2. a rel. min. of f ( x ) if f ( x) 0<br />

¢ < to the left<br />

of x = cand f¢ ( x) > 0to the right of x = c.<br />

¢ is<br />

3. not a relative extrema of f ( x ) if f ( x)<br />

the same sign on both sides of x = c.<br />

2 nd Derivative Test<br />

If x c<br />

Mean Value Theorem<br />

,<br />

= is a critical point of f ( x ) such that<br />

f¢ ( c) = 0 then x = c<br />

1. is a relative maximum of f ( x ) if f¢¢ ( c) < 0 .<br />

2. is a relative minimum of f ( x ) if f¢¢ ( c) > 0 .<br />

3. may be a relative maximum, relative<br />

minimum, or neither if f¢¢ ( c) = 0 .<br />

Finding Relative Extrema and/or<br />

Classify Critical Points<br />

1. Find all critical points of f ( x ) .<br />

2. Use the 1 st derivative test or the 2 nd<br />

derivative test on each critical point.<br />

If f ( x ) is continuous on the closed interval [ ab ] and differentiable on the open interval ( ab , )<br />

f ( b) - f ( a)<br />

then there is a number a< c < b such that f¢ ( c)<br />

=<br />

.<br />

b-<br />

a<br />

Newton’s Method<br />

If x<br />

n<br />

is the n th guess for the root/solution of f ( x ) = 0 then (n+1) st guess is<br />

provided f¢ ( x n ) exists.<br />

x<br />

x<br />

f<br />

= - n+ 1 n<br />

¢<br />

f<br />

( xn<br />

)<br />

( x )<br />

n<br />

Calculus Cheat Sheet<br />

Related Rates<br />

Sketch picture and identify known/unknown quantities. Write down equation relating quantities<br />

and differentiate with respect to t using implicit differentiation (i.e. add on a derivative every time<br />

you differentiate a function of t). Plug in known quantities and solve for the unknown quantity.<br />

Ex. A 15 foot ladder is resting against a wall.<br />

The bottom is initially 10 ft away and is being<br />

pushed towards the wall at 1 ft/sec. How fast<br />

4<br />

is the top moving after 12 sec<br />

x¢ is negative because x is decreasing. Using<br />

Pythagorean Theorem and differentiating,<br />

2 2 2<br />

x + y = 15 Þ 2xx¢ + 2yy¢<br />

= 0<br />

1<br />

After 12 sec we have ( )<br />

x = 10- 12 = 7and<br />

so y =<br />

2 2<br />

15 - 7 = 176 . Plug in and solve<br />

for y¢ .<br />

1<br />

7<br />

7( -<br />

4 ) + 176 y¢ = 0 Þ y¢<br />

= ft/sec<br />

4 176<br />

4<br />

Ex. Two people are 50 ft apart when one<br />

starts walking north. The angleθ changes at<br />

0.01 rad/min. At what rate is the distance<br />

between them changing when θ = 0.5 rad<br />

We have θ¢ = 0.01 rad/min. and want to find<br />

x¢ . We can use various trig fcns but easiest is,<br />

x<br />

x¢<br />

secθ = Þ secθ tanθθ¢<br />

=<br />

50 50<br />

We knowθ = 0.05 so plug in θ¢ and solve.<br />

x¢<br />

sec( 0.5) tan( 0.5)( 0.01)<br />

=<br />

50<br />

x¢ = 0.3112 ft/sec<br />

Remember to have calculator in radians!<br />

Optimization<br />

Sketch picture if needed, write down equation to be optimized and constraint. Solve constraint for<br />

one of the two variables and plug into first equation. Find critical points of equation in range of<br />

variables and verify that they are min/max as needed.<br />

Ex. We’re enclosing a rectangular field with<br />

2<br />

Ex. Determine point(s) on y = x + 1 that are<br />

500 ft of fence material and one side of the closest to (0,2).<br />

field is a building. Determine dimensions that<br />

will maximize the enclosed area.<br />

Maximize A= xy subject to constraint of<br />

x+ 2y<br />

= 500 . Solve constraint for x and plug<br />

into area.<br />

A= y( 500-2y)<br />

x = 500-2y<br />

Þ<br />

=<br />

2<br />

500y<br />

- 2y<br />

Differentiate and find critical point(s).<br />

A¢ = 500-4y Þ y = 125<br />

By 2 nd deriv. test this is a rel. max. and so is<br />

the answer we’re after. Finally, find x.<br />

x = 500- 2125 = 250<br />

( )<br />

The dimensions are then 250 x 125.<br />

2 2<br />

2<br />

Minimize f d ( x 0) ( y 2)<br />

= = - + - and the<br />

2<br />

constraint is y = x + 1. Solve constraint for<br />

2<br />

x and plug into the function.<br />

2 2<br />

x y f x y<br />

2<br />

( )<br />

( )<br />

= -1 Þ = + -2<br />

2 2<br />

= y- 1+ y- 2 = y - 3y+<br />

3<br />

Differentiate and find critical point(s).<br />

3<br />

f¢ = 2y-3<br />

Þ y =<br />

2<br />

By the 2 nd derivative test this is a rel. min. and<br />

so all we need to do is find x value(s).<br />

2 3 1 1<br />

x = - 1= Þ x =±<br />

2 2 2<br />

1 3<br />

The 2 points are then ( , 2 2 ) and ( - 1<br />

, 3<br />

2 2 )<br />

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.<br />

© 2005 Paul Dawkins<br />

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.<br />

© 2005 Paul Dawkins

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!