24.01.2015 Views

Synthesis and antitubercular screening of novel imidazoline ...

Synthesis and antitubercular screening of novel imidazoline ...

Synthesis and antitubercular screening of novel imidazoline ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Research article<br />

Int J Pharm Biomed Sci 2013, 4(1), 40-45<br />

ISSN No: 0976-5263<br />

Research Drops<br />

PharmaInterScience Publishers<br />

<strong>Synthesis</strong> <strong>and</strong> <strong>antitubercular</strong> <strong>screening</strong> <strong>of</strong> <strong>novel</strong> <strong>imidazoline</strong><br />

derivatives<br />

T.Shalina Begum 1 ,<br />

U.C.A.Jaleel 2 , P.M.Shafi 1 *<br />

1 Department <strong>of</strong> Chemistry, University <strong>of</strong><br />

Calicut, Kerala-673 635, India<br />

2 Cheminformatics, Malabar Christian<br />

College, Kozhikode, Wayanad Road,<br />

Calicut, Kerala-673 001, India<br />

Correspondence:<br />

P.M.Shafi<br />

Tel: +91 9497450932<br />

E-mail: shafimuham@rediffmail.com<br />

4-Arylidene-2-aryl-2-imidazolin-5-ones were synthesised in good yield by<br />

three component condensations <strong>of</strong> aryl imidic acid ester, glycine ester <strong>and</strong><br />

aromatic aldehydes in presence <strong>of</strong> a base. Aminoimidazolinone was also<br />

synthesised by t<strong>and</strong>em reaction between imidic acid ester <strong>and</strong> glycine ester in<br />

presence <strong>of</strong> a base. These molecules were screened for their tuberculosis activity<br />

<strong>and</strong> drug likeness computationally. All the twelve newly synthesised compounds<br />

revealed drug like properties <strong>and</strong> the aminopyrazinyl imidazolinone was found to<br />

be active against tuberculosis.<br />

Key words: Aminoimidazolinone, Antitubercular activity, 4-Arylidene-2-aryl-2-<br />

imidazolin-5-ones, Druggability, T<strong>and</strong>em reaction<br />

Received: 22 Feb 2013 / Revised: 05 Mar 2013 / Accepted: 09 Mar 2013 / Online publication: 16 Mar 2013<br />

1. INTRODUCTION<br />

Imidazoles constitute a series <strong>of</strong> compounds which<br />

possess various biological properties such as antimicrobial<br />

[1], anticancer [2], immunomodulatory [3], L-DOPA<br />

prodrugs in the treatment <strong>of</strong> parkinson’s disease [4],<br />

leishmanicidal [5] <strong>and</strong> potential COX-2 inhibitors [6].<br />

Several classes <strong>of</strong> drugs, notably metronidazole which is<br />

active against intestinal infections, the broad spectrum<br />

antifungal agent clotrimazole [7], antibacterial agent<br />

azomycine <strong>and</strong> anticancer drugs like misonidazole <strong>and</strong><br />

metrozole [8] have <strong>imidazoline</strong> ring system in them. In view<br />

<strong>of</strong> these reports <strong>and</strong> as a continuation <strong>of</strong> our earlier studies,<br />

some new <strong>imidazoline</strong> derivatives were synthesised <strong>and</strong> their<br />

druggability <strong>and</strong> <strong>antitubercular</strong> <strong>screening</strong> carried out.<br />

2,4-Disubstituted-2- imidazolin-5-ones with an exocyclic<br />

double bond in the fourth position are called unsaturated 2,4-<br />

disubstituted-2-imidazolin-5-ones. These compounds can be<br />

synthesised from azlactone [9], amidine-glyoxal [10], imidic<br />

acid ester-glycine ester [11], <strong>and</strong> amidine–haloacetic ester<br />

[12] method. In the present work 4-arylidene-2-aryl-2-<br />

imidazolin-5-ones were synthesised from glycine ester <strong>and</strong><br />

imidic acid ester, with hydroxyphenyl <strong>and</strong> pyrazinyl group at<br />

second position <strong>of</strong> the imidazolinone ring.<br />

Development <strong>and</strong> application <strong>of</strong> computational methods<br />

for drug discovery is <strong>of</strong> considerable interest. It permits the<br />

rapid <strong>and</strong> cost-effective elimination <strong>of</strong> poor c<strong>and</strong>idates prior<br />

to synthesis. Various methods are available for effective<br />

<strong>screening</strong> <strong>of</strong> organic molecules to prioritize for their<br />

druglikeness <strong>and</strong> medicinal activity on a particular disease<br />

target. Protocols like structure based <strong>and</strong> lig<strong>and</strong> based drug<br />

discovery are commonly used. In the present study we used<br />

lig<strong>and</strong> based drug discovery approach for the development <strong>of</strong><br />

models <strong>and</strong> subsequent <strong>screening</strong> <strong>of</strong> the molecules for their<br />

potential activity against selected Mycobacterium<br />

tuberculosis (Mtb) targets. Prediction <strong>of</strong> druggability <strong>of</strong> the<br />

newly synthesised molecules was done using Qikprop<br />

(Schrodinger).<br />

2. MATERIALS AND METHODS<br />

2.1. Apparatus<br />

Melting points <strong>of</strong> the synthesised compounds were<br />

determined on Toshniwal capillary melting point apparatus in<br />

open capillaries <strong>and</strong> are uncorrected. UV-Vis spectra were<br />

recorded in ethanol on a Shimadzu 1601 UV-Visible<br />

spectrometer. IR spectra were recorded as KBr pellets using<br />

Shimadzu 8101A FTIR equipment. The mass spectra were<br />

recorded on GC17AAFTW version 3 Shimadzu Japan<br />

spectrometer. The 1 H NMR spectra were recorded on a<br />

Brucker AM 360 spectrometer using TMS as internal<br />

st<strong>and</strong>ard, CHN analysis were carried out on a Vario-EI<br />

(Elementar) model. Purity <strong>of</strong> the compounds was checked by<br />

TLC on silica gel plates.<br />

©2013 PharmaInterScience Publishers. All rights reserved. www.pharmainterscience.com


T.Shalina Begum et al., Int J Pharm Biomed Sci 2013, 4(1), 40-45<br />

41<br />

O<br />

ClH . H 2 N OCH 3<br />

+<br />

O<br />

N<br />

NH<br />

ClH . H 2 N<br />

OC 2 H 5<br />

NaHCO 3<br />

-C 2 H 5 OH<br />

OH<br />

OH<br />

C 6 H 5 CHO<br />

-H 2 O<br />

O<br />

C 6 H 5<br />

N<br />

NH<br />

OH<br />

Fig.1. <strong>Synthesis</strong> <strong>of</strong> 4-arylidene-2-p-hydroxyphenyl-2-imidazolin-5-ones<br />

O<br />

NH<br />

O<br />

O<br />

N<br />

N<br />

NH 2<br />

NH 2<br />

OC 2 H 5<br />

-C 2 H 5 OH<br />

N<br />

NH<br />

N<br />

N<br />

O<br />

O<br />

+<br />

NH<br />

N<br />

base<br />

N<br />

NH<br />

N<br />

N<br />

N<br />

N<br />

N<br />

Fig.2. 4-(amino 2-pyrazinyl)methylene-2-(2-pyrazinyl)-2-imidazolin-5-one<br />

2.2. <strong>Synthesis</strong> <strong>of</strong> 4-arylidene-2-p-hydroxyphenyl-2-<br />

imidazolin-5-ones<br />

4-Arylidene-2-p-hydroxyphenyl-2-imidazolin-5-ones<br />

were synthesised from 4-hydroxybenzimidic acid methyl<br />

ester hydrochloride (0.03mol) obtained from p-<br />

hydroxybenzonitrile by Pinner method [13], refluxed with<br />

glycine ethyl ester hydrochloride (0.035 mol),<br />

sodiumbicarbonate <strong>and</strong> aromatic aldehyde (0.035mol) for an<br />

hour (Fig.1). The 4-arylidene-2-p-hydroxyphenyl-2-<br />

imidazolin-5-ones formed were filtered, washed with water,<br />

then with ethanol <strong>and</strong> dried.<br />

2.3. <strong>Synthesis</strong> <strong>of</strong> 4-arylidene-2-pyrazinyl-2-imidazolin-5-<br />

ones<br />

4-Arylidene-2-pyrazinyl-2-imidazolin-5-ones were<br />

synthesised by converting pyrazinecarbonitrile (0.02mol) into<br />

the corresponding imidic ester in presence <strong>of</strong> methanol <strong>and</strong><br />

sodium methoxide [14]. The imidic ester formed was then<br />

refluxed with glycine ethyl ester hydrochloride, (0.025mol)<br />

©2013 PharmaInterScience Publishers. All rights reserved. www.pharmainterscience.com


T.Shalina Begum et al., Int J Pharm Biomed Sci 2013, 4(1), 40-45<br />

42<br />

Fig.3. Virtual Screening for tuberculosis active molecules<br />

sodium bicarbonate <strong>and</strong> aromatic aldehyde (0.02mol) for half<br />

an hour. The product formed was filtered, washed with water<br />

<strong>and</strong> then with ethanol <strong>and</strong> dried.<br />

2.4. <strong>Synthesis</strong> <strong>of</strong> 4-(amino 2-pyrazinyl)methylene-2-(2-<br />

pyrazinyl)-2-imidazolin-5-one<br />

Imidic acid ester formed from pyrazinecarbonitrile<br />

(0.02mol) <strong>and</strong> glycine ethyl ester (0.01mol) were refluxed<br />

with sodiumbicarbonate in benzene for an hour <strong>and</strong> cooled.<br />

4-(amino 2-pyrazinyl)methylene-2-(2-pyrazinyl)-2-<br />

imidazolin-5-one formed (Fig.2) was filtered, washed with<br />

water <strong>and</strong> then with ethanol <strong>and</strong> dried.<br />

2.5. Druggability<br />

To develop orally available drugs, it is useful to optimise<br />

drug-like pharmacokinetic properties. It includes the study <strong>of</strong><br />

the mechanism <strong>of</strong> absorption <strong>and</strong> distribution <strong>of</strong> an<br />

administered drug, the rate at which a drug action begins <strong>and</strong><br />

the duration <strong>of</strong> the effect, the chemical changes <strong>of</strong> the<br />

substance in the body <strong>and</strong> the effects <strong>and</strong> routes <strong>of</strong> excretion<br />

<strong>of</strong> the metabolites <strong>of</strong> the drug [15]<br />

(http://www.credoreference.com/entry/6686418). Various<br />

media <strong>and</strong> high throughput insilico ADMET (absorption,<br />

distribution, metabolism, excretion <strong>and</strong> toxicity) screens are<br />

now in use. Qikprop (Schrodinger version 9.2) allows to<br />

predict pharmaceutically relevant properties for organic<br />

molecules, starting from their 3D structures <strong>and</strong> employing<br />

calculated physically significant descriptor like ADMET<br />

properties.<br />

2.6. Virtual Screening for tuberculosis active molecules<br />

Data mining tools with cost effective algorithm will<br />

provide effective platform to differentiate the tuberculosis<br />

active molecules from nontuberculosis active molecules. We<br />

applied Weka (version 3.6) classifier for the discovery <strong>of</strong><br />

tuberculosis active molecules. The methodology is<br />

summarised in Fig.3.<br />

3. RESULTS AND DISCUSSION<br />

Imidic acid ester <strong>of</strong> p-hydroxybenzonitrile, glycine ester<br />

<strong>and</strong> aromatic aldehyde in equimolar ratio were refluxed in<br />

tolune in presence <strong>of</strong> sodiumbicarbonate as base, resulted in<br />

the formation <strong>of</strong> 4-arylidene-2-p-hydroxyphenyl-2-<br />

imidazolin-5-ones. Six aldehydes were thus condensed to get<br />

4-arylidene-2-p-hydroxyphenyl-2-imidazolin-5-ones in 41-<br />

76% yield.<br />

Imidic acid ester <strong>of</strong> pyrazine carbonitrile, glycine ester<br />

<strong>and</strong> aromatic aldehyde were refluxed in benzene in presence<br />

<strong>of</strong> sodium bicarbonate which resulted in the formation <strong>of</strong> 4-<br />

arylidene-2-pyrazinyl-2-imidazolin-5-ones. Five aldehydes<br />

were condensed to obtain 4-arylidene-2-pyrazinyl-2-<br />

imidazolin-5-ones in 20-59% yield. The synthesised<br />

compounds were purified by recrystallization from<br />

isopropanol.<br />

©2013 PharmaInterScience Publishers. All rights reserved. www.pharmainterscience.com


T.Shalina Begum et al., Int J Pharm Biomed Sci 2013, 4(1), 40-45<br />

43<br />

Table 1<br />

Physical characteristics data <strong>of</strong> the new imidazolinone derivatives<br />

S. No. Name M.P.<br />

°C<br />

1 4-Benzylidene-2-p-hydroxyphenyl-2-Imidazolin-5-one 254 76 1687 391 10.50 10.61<br />

2 4-(4-Chlorobenzylidene)-2-p-hydroxyphenyl-2-imidazolin-5-one 288 72 1680 394 9.27 9.38<br />

3 4-(4-Methylbenzylidene)-2-p-hydroxyphenyl-2-imidazolin-5-one 258 54 1682 396 10.01 10.07<br />

4 4-(4-Methoxybenzylidene)-2-p-hydroxyphenyl-2-imidazolin-5-one 272 45 1676 401 9.40 9.52<br />

5 4-(2-Hydroxybezylidene)-2-p-hydroxyphenyl-2-imidazolin-5-one 262 60 1699 410 10.10 10.00<br />

6 4-(2-Chlorobenzylidene)-2-p-hydroxyphenyl-2-imidazolin-5-one 224 41 1710 393 9.26 9.38<br />

7 4-Benzylidene-2-pyrazinyl-2-imidazolin-5-one 248 30 1684 388 22.38 22.40<br />

8 4-(4-Chlorobenzylidene)-2-pyrazinyl-2-imidazolin-5-one 272 35 1677 308 19.55 19.68<br />

9 4-(4-Methylbenzyllidene)-2-pyrazinyl-2-imidazolin-5-one 273 40 1698 314 21.00 21.21<br />

10 4-(4-Methoxybenzylidene)-2-pyrazinyl-2-imidazolin-5-one 261 59 1697 314 19.90 20.00<br />

11 4-(2-Chlorobenzylidene)-2-pyrazinyl-2-imidazolin-5-one 215 20 1741 392 19.54 19.68<br />

12 4-(Amino2-pyrazinyl)methylene-2-(2-pyrazinyl)-2-imidazolin-5-one 192 37 1673 422 36.41 36.70<br />

Yeild<br />

(%)<br />

ʋ co<br />

(cm -1 )<br />

λ max<br />

(nm)<br />

N%<br />

Found<br />

Calculated<br />

Table 2<br />

General druglike descriptors <strong>of</strong> imidazolinone derivatives<br />

S.No.<br />

Mol.weight<br />

(130/ 725)<br />

Dipole<br />

(1.0/ 12.5)<br />

Hydrophilic<br />

SASA(7.0/ 330)<br />

Hydrophobic<br />

SASA(0.0/ 750)<br />

Log p oct/water<br />

(-2.0/ 6.5)<br />

Log BB<br />

( -3.0 to1.2)<br />

Caco-2 ( 500 greater)<br />

Molecules similarity (>80%)<br />

1 264.283 5.053 148.982 12.387 2.177 -1.088 382 Valdecoxib, Sulfaphenazole,<br />

Oxazepam,<br />

Mebendazole, Phenytoin.<br />

2 298.728 5.481 153.573 12.436 2.637 -1.011 346 Flubendazole, Lorazepam,<br />

Valdecoxib, Sulfaphenazole,<br />

Mebendazole.<br />

3 278.310 4.162 144.009 100.627 2.477 -1.060 426 Afloqualone, Valdecoxib,<br />

Rosoxacin, Mebendazole,<br />

Sulfaphenazole.<br />

4 294.309 5.365 148.350 105.151 2.062 -1.175 388 Sulfaphenazole, Valdecoxib,<br />

Dantrolene,<br />

Oxyphenbutazone, Letrozole.<br />

5 280.282 5.341 193.426 9.512 1.508 -1.593 145 Sulfaphenazole, Dantrolene,<br />

Valdecoxib, Letrozole,<br />

Papaveroline.<br />

6 298.728 4.919 142.044 17.895 2.598 -0.886 445 Valdecoxib, Mebendazole,<br />

Sulfaphenazole,<br />

Flubendazole, Lorazepam.<br />

7 250.259 3.784 139.636 11.829 1.377 -0.917 469 Azathioprine, Valdecoxib,<br />

Piroxicam, Afloqualone,<br />

Tenoxicam.<br />

8 284.704 3.886 129.768 12.349 1.892 -0.638 582 Afloqualone,<br />

Valdecoxib, Nifenazone,<br />

piroxicam, Alosetron.<br />

9 264.286 4.003 134.917 100.517 1.681 -0.893 520 Valdecoxib, Afloqualone,<br />

Piroxicam,<br />

R<strong>of</strong>ecoxib, Metopon.<br />

10 280.285 5.027 129.797 105.066 1.529 -0.876 582 Piroxicam, Tenoxicam,<br />

Lornoxicam, Valdecoxib,<br />

Letrozole.<br />

11 284.704 3.643 132.763 17.832 1.731 -0.667 545 Valdecoxib, Afloqualone,<br />

Piroxicam, Nifenazone,<br />

Tenoxicam.<br />

12 267.249 2.307 222.592 0.000 -0.292 -1.766 76 Sulfacytine,<br />

Didanosine, Azathioprine,<br />

Isoxicam, Sulthiame.<br />

Imidic acid ester <strong>of</strong> pyrazine carbonitrile <strong>and</strong> glycine ester<br />

were taken in the molar ratio 2:1 <strong>and</strong> refluxed in benzene in<br />

presence <strong>of</strong> sodium bicarbonate base, resulted in the<br />

formation <strong>of</strong> 4-(amino 2-pyrazinyl)methylene-2-(2-<br />

pyrazinyl)-2-imidazolin-5-one by t<strong>and</strong>em reaction. The<br />

synthesised compound was recrystallized from ethanol. The<br />

elemental analysis <strong>and</strong> spectral data obtained supported the<br />

proposed structure. The physical characteristics <strong>of</strong> the new<br />

compounds were determined <strong>and</strong> are tabulated (Table 1). All<br />

the compounds given are reported for the first time.<br />

All the compounds synthesised gave satisfactory spectral<br />

data for their proposed structures. Some typical cases are as<br />

follows.<br />

i. 4-Benzylidene-2-p-hydroxyphenyl-2-imidazolin-5-one:<br />

IR:1684cm -1 (C=O), 3186cm -1 (b, N-H str), 3391cm -1 (O-<br />

H), 1637cm -1 (C=N). Mass spectrum m/z 265(M + +1)<br />

©2013 PharmaInterScience Publishers. All rights reserved. www.pharmainterscience.com


T.Shalina Begum et al., Int J Pharm Biomed Sci 2013, 4(1), 40-45<br />

corresponds to its molecular mass 264. 1 H NMR: δ 6.89–<br />

8.29 (9H, aromatic protons <strong>and</strong> methyne proton), δ11.94<br />

(1H, NH <strong>of</strong> imidazolinone ring), δ10.94 (1H, O-H).<br />

ii. 4-Benzylidene-2-pyrazinyl-2-imidazolin-5-one: IR:<br />

1687cm -1 (C=O), 3181cm -1 (b, N-H str) <strong>and</strong> 1635cm -1<br />

(C=N). In mass spectrum m/z=250 corresponds to its<br />

molecular mass.<br />

1 H NMR: δ7.1–9.5 (8H, aromatic<br />

protons <strong>and</strong> methyne proton) <strong>and</strong> δ12.1 (1H, NH <strong>of</strong><br />

imidazolinone ring).<br />

iii. 4-(Amino2-pyrazinyl)methylene-2-(2-pyrazinyl)-2-<br />

imidazolin-5-one: IR : 1673cm -1 (C=O), 3195 to 3290cm -1<br />

(3 medium intensity peaks, NH 2 <strong>and</strong> NH <strong>of</strong> imidazolinone<br />

ring ). Mass spectrum m/z 268 (M + +1) corresponds to its<br />

molecular mass 267. 1 H NMR: δ8.4–9.2 (6H, aromatic<br />

protons), δ10.2 <strong>and</strong> δ9.2 (2H <strong>of</strong> NH 2 chemically non<br />

equivalent) <strong>and</strong> δ12.12 (1H, NH <strong>of</strong> imidazolinone ring).<br />

3.1. Druggability<br />

The new imidazolinone molecules synthesised were<br />

modelled, energy minimised <strong>and</strong> uploaded for the descriptor<br />

<strong>and</strong> toxicity prediction using Qikprop (Schrodinger version<br />

9.2). All the imidazolinones analysed showed more drug like<br />

properties. The summarised results <strong>of</strong> each molecule are<br />

presented in Table 2 (molecules are numbered in the order <strong>of</strong><br />

Table 1). The drug molecules similar to the imidazolinones<br />

were also tabulated.<br />

3.2. Anti Mtb activity<br />

The imidazolinones were screened for their <strong>antitubercular</strong><br />

activity by using Weka classifier. It was found that 4-(amino<br />

2-pyrazinyl)methylene-2-(2-pyrazinyl)-2-imidazolin-5-one<br />

(Fig.4) is active towards tuberculosis.<br />

analysed for their antituberculosis activity by virtual<br />

<strong>screening</strong>. Thier analytical results are given below.<br />

Filename: J48.model<br />

Scheme: weka.classifiers.meta.CostSensitiveClassifier -costmatrix<br />

"[0.0 2.0; 1.0 0.0]" -S 1 -W weka.classifiers.trees.J48 -<br />

- -C 0.25 -M 2<br />

Relation: AID434987_train<br />

Attributes:132<br />

Predictions on test set<br />

Inst#Actual Predicted Error Probability Distribution<br />

1 1:Active 2:Inactive + 0 *1<br />

2 2:Inactive 2:Inactive 0 *1<br />

3 2:Inactive 2:Inactive 0 *1<br />

4 2:Inactive 1:Active + *0.857 0.143<br />

5 1:Active 2:Inactive 0 *1<br />

6 2:Inactive 2:Inactive 0 *1<br />

7 2:Inactive 2:Inactive 0 *1<br />

8 2:Inactive 2:Inactive 0 *1<br />

9 2:Inactive 2:Inactive 0 *1<br />

10 1:Active 2:Inactive + 0 *1<br />

11 2:Inactive 2:Inactive 0 *1<br />

12 2:Inactive 2:Inactive 0 *1<br />

13 2:Inactive 2:Inactive 0 *1<br />

14 1:Active 2:Inactive + 0 *1<br />

15 2:Inactive 2:Inactive 0 *1<br />

16 2:Inactive 2:Inactive 0 *1<br />

17 2:Inactive 2:Inactive 0 *1<br />

4. CONCLUSIONS<br />

Tuberculosis<br />

active<br />

The new <strong>imidazoline</strong> derivatives synthesised were<br />

obtained in good yield, their proposed structure were<br />

confirmed by spectral analysis. All the <strong>novel</strong> molecules<br />

synthesised showed drug-like properties. Most <strong>of</strong> the<br />

molecules are similar to non-steroidal antiinflammatory<br />

drugs, anticonvulsant <strong>and</strong> analgesic. Insilico <strong>screening</strong> <strong>of</strong> the<br />

synthesised compounds showed that, 4-(amino 2-<br />

pyrazinyl)methylene -2-(2-pyrazinyl)-2-imidazolin-5-one<br />

(Fig.4) possess <strong>antitubercular</strong> activity. Interestingly, the<br />

structure <strong>of</strong> 4-(amino 2-pyrazinyl)methylene -2-(2-<br />

pyrazinyl)-2-imidazolin-5-one closely resembles with<br />

didanosine, a well known anti-HIV drug.<br />

44<br />

REFERENCES<br />

Fig.4.Structure <strong>of</strong> 4-(amino 2-pyrazinyl)methylene -2-(2-pyrazinyl)-2-<br />

imidazolin-5-one<br />

Virtual <strong>screening</strong> - Model information<br />

Eleven 4-Arylidene-2-aryl-2-imidazolin-5-ones <strong>and</strong> six 4-<br />

(amino,arylmethylene)-2-aryl-2-imidazolin-5-ones were<br />

[1] Desai NC, Bhavsar AM, Baldaniya BB. <strong>Synthesis</strong> <strong>and</strong> antimicrobial<br />

activity <strong>of</strong> 5-imidazolinone derivatives. Indian J Pharm Sci 2009, 71, 90.<br />

[2] Solankee A, Kapadia K, Patel, Thakor I. <strong>Synthesis</strong> <strong>and</strong> antimicrobial<br />

Activity <strong>of</strong> 1-Phenyl/Substituted Phenyl/Benzyl/ Naphthyl-2-Phenyl-4-<br />

(3´ -Phenoxy Benzylidene)-Imidazoline-5-ones. Asian J Chem 2002, 14,<br />

699.<br />

[3] Mesaik MA, Khan KM, Rahat S, Zia-Ullah, Choudhary MI, Murad S et<br />

al. Immunomodulatory Properties <strong>of</strong> Synthetic Imidazolone Derivatives.<br />

Lett Drug Des Discov 2005, 2, 490.<br />

[4] Giorgioni G, Claud F, Ruggier S, Ricciutelli M, Palmier G, Di-Stefano<br />

A et al. Design, synthesis, <strong>and</strong> preliminary pharmacological evaluation<br />

<strong>of</strong> new imidazolinones as L-DOPA prodrugs. Bio Org Med Chem 2010,<br />

18, 1834.<br />

©2013 PharmaInterScience Publishers. All rights reserved. www.pharmainterscience.com


T.Shalina Begum et al., Int J Pharm Biomed Sci 2013, 4(1), 40-45<br />

[5] Khan KM, Mughal UR, Ambreen N, Samreen, Perveen.S, Choudhary,<br />

M.I. <strong>Synthesis</strong> <strong>and</strong> leishmanicidal activity <strong>of</strong> 2,3,4-substituted-5-<br />

imidazolones. J Enzyme Inhib Med Chem 2010, 25, 29.<br />

[6] Hassanein HH, Khalifa MM, El-Samaloty ON, Abd El-Rahim,M, Taha<br />

RA, Ismail MF. <strong>Synthesis</strong> <strong>and</strong> biological evaluation <strong>of</strong> <strong>novel</strong><br />

imidazolone derivatives as potential COX-2 inhibitors. Arch Pharmacol<br />

Res 2008, 31, 562.<br />

[7] Breccia A, Cavalleri B, Adams GE. Nitroimidazoles: Chemistry,<br />

Pharmacology <strong>and</strong> Clinical Applications 1982, Vol.42, New York.<br />

[8] Katrizky A, Rees CW. Comprehensive Heterocyclic Chemistry 1984,<br />

Vol.5, London.<br />

[9] Erlenmayer E. Ber Dtsch Chem Ges 1900, 33, 2036.<br />

[10] Ekeley JB, Ronzio AR. The action <strong>of</strong> aromatic aldehydes upon the<br />

addition products obtained from aromatic amidines <strong>and</strong> glyoxal. J Am<br />

Chem Soc 1935, 57, 1353.<br />

[11] Kidwai AA, Devasia GM. A new method for the synthesis <strong>of</strong> amino<br />

acids <strong>and</strong> their derivatives through 2,4-Disubstituted 2-Imidazolin-5-<br />

ones. J Org Chem 1962, 27, 4527.<br />

[12] Devasia GM. A new method for the synthesis <strong>of</strong> unsaturated 2,4-<br />

disubstituted 2-imidazolin-5-ones. Tetrahedron Lett 1976, 571.<br />

[13] Pinner A. Ber Dtsch Chem Ges 1883, 16, 1643.<br />

[14] Fred CS, Grace AP. Base-Catalyzed Reaction <strong>of</strong> Nitriles with Alcohols.<br />

A Convenient Route to Imidates <strong>and</strong> Amidine Salts. J Org Chem 1961,<br />

26, 412.<br />

[15] Pharmacokinetics. In: Mosby's Dictionary <strong>of</strong> Medicine, Nursing, &<br />

Health Pr<strong>of</strong>essions. Philadelphia Sciences. Retrieved December 11,<br />

2008. PA: Elsevier Health 2006.<br />

45<br />

©2013 PharmaInterScience Publishers. All rights reserved. www.pharmainterscience.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!