13.11.2012 Views

Hot runner nozzle - Günther Heisskanaltechnik ...

Hot runner nozzle - Günther Heisskanaltechnik ...

Hot runner nozzle - Günther Heisskanaltechnik ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Index<br />

Materials<br />

3<br />

Reference values for maximum throughput in cm /s<br />

Reference values for gate diameter<br />

Processing temperatures for common plastics<br />

Processing of POM, TPE, PP and shear-sensitive materials<br />

Gate point<br />

Gate geometry, gate inspection<br />

Reworking the gate<br />

Gate diameters < 1,2 mm, reducing gate ø<br />

Vacuoles under the gate, gate ø for reinforced materials<br />

Potential error sources in the gate area<br />

Gating<br />

Injection into an intermediate gate<br />

Gating into an angled surface<br />

Gating into a high gloss facing surface<br />

Part with a film hinge<br />

<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong>s<br />

Nozzle length at room temperature, modified forechamber geometry, use of a titanium sleeve<br />

References values for screw sizes<br />

Designation/assignment of the cables<br />

BlueFlow® product description<br />

OktaFlow® assembly notes<br />

PektaFlow® product description<br />

Extended <strong>nozzle</strong> tips, side gating<br />

Reference notes on a disassembly of a multi-tip <strong>nozzle</strong><br />

Valve-gate technology<br />

Commissioning of valve-gate system, operating pressure levels for drive mechanisms<br />

NEST single valve-gate <strong>nozzle</strong> assembly<br />

Drive mechanisms<br />

Notes on valve-gate needle / maintenance of the sliding cam mechanism<br />

<strong>Hot</strong> <strong>runner</strong> systems / manifolds<br />

Manifolds<br />

Heater connections, straight / frame version<br />

Structural notices for air circulation and high-temperature applications<br />

Screw fastenings for _MT/_TT <strong>nozzle</strong>s<br />

Manifold power calculation, correlation of cables<br />

Construction of the hot-<strong>runner</strong> system<br />

Complete mold halves “hot halves”<br />

Service program<br />

CADHOC System-Designer<br />

Delta tool calculation program, application database<br />

Online-catalog, MoldCae/Moldflow analyse<br />

Seminars for users and designers<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

iT<br />

Page<br />

1.4. 2 + 3<br />

1.4. 4 + 5<br />

1.4. 6<br />

1.4. 7<br />

1.4. 10<br />

1.4. 10<br />

1.4. 11<br />

1.4. 11<br />

1.4. 12<br />

1.4. 20<br />

1.4. 20<br />

1.4. 21<br />

1.4. 21<br />

1.4. 30<br />

1.4. 31<br />

1.4. 32<br />

1.4. 33 + 34<br />

1.4. 35<br />

1.4. 35<br />

1.4. 36<br />

1.4. 37<br />

1.4. 40<br />

1.4. 41<br />

1.4. 42<br />

1.4. 43<br />

1.4. 50<br />

1.4. 51<br />

1.4. 52<br />

1.4. 53<br />

1.4. 54<br />

1.4. 55<br />

1.4. 56<br />

1.4. 60<br />

1.4. 61<br />

1.4. 62<br />

1.4. 63<br />

1.4. 1


Materials<br />

Reference values for maximum <strong>nozzle</strong> throughput per second<br />

Nozzle length: 50/ 100 mm<br />

120<br />

3<br />

Throughput in cm /s<br />

120<br />

3<br />

Throughput in cm /s<br />

3<br />

Throughput in cm /s<br />

Low viscosity material: e. g. PA, PS, PP<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

ø 4 mm<br />

Nozzle length 50 mm<br />

Nozzle length 100 mm<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

ø 5 mm<br />

Medium viscosity material: e. g. ABS, PPO<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

ø 4 mm<br />

Nozzle length 50 mm<br />

Nozzle length 100 mm<br />

ø 5 mm<br />

ø 6 mm<br />

ø 6 mm<br />

High viscosity material: e. g. Polycarbonate, Bayblend, Polysulfon<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

ø 4 mm<br />

Nozzle length 50 mm<br />

Nozzle length 100 mm<br />

ø 5 mm<br />

ø 6 mm<br />

iT<br />

The specified throughputs are reference<br />

values. Considerable deviations<br />

for specific materials cannot<br />

be excluded. We will be glad to<br />

assist you with the selection of<br />

channel Ø.<br />

Additional applications which have<br />

already been implemented can be<br />

found in the application database on<br />

our website<br />

www.guenther-hot<strong>runner</strong>.com<br />

menu item: “Application Database”.<br />

1.4. 2


The specified throughputs are<br />

reference values. Considerable<br />

deviations for specific materials<br />

cannot be excluded. We will be glad<br />

to assist you with the selection of<br />

channel Ø.<br />

Additional applications which have<br />

already been implemented can be<br />

found in the application database on<br />

our website<br />

www.guenther-hot<strong>runner</strong>.com<br />

menu item: “Application Database”.<br />

1.4. 3<br />

iT<br />

3<br />

Throughput in cm /s<br />

Low viscosity material: e. g. PA, PS, PP<br />

2500<br />

2250<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

0<br />

Materials<br />

Reference values for maximum <strong>nozzle</strong> throughput per second<br />

Nozzle lengths: 60/ 100 mm<br />

3<br />

Throughput in cm /s<br />

3<br />

Throughput in cm /s<br />

ø 8 mm ø 10 mm ø 12 mm<br />

Nozzle length 60 mm<br />

Nozzle length 100 mm<br />

Medium viscosity: e. g. ABS, PPO<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

ø 8 mm ø 10 mm ø 12 mm<br />

Nozzle length 60 mm<br />

Nozzle length 100 mm<br />

High viscosity material: e. g. Polycarbonate, Bayblend,<br />

Polysulphone<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

ø 8 mm ø 10 mm ø 12 mm<br />

Nozzle length 60 mm<br />

Nozzle length 100 mm<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


Materials<br />

Determining the gate diameter for standard materials depending on<br />

the part weight<br />

Gate diameter<br />

Ø D mm<br />

Ø D mm<br />

Material: PC + ABS<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

Article weight<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

Material: PMMA<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4 0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

Ø D mm<br />

Ø D mm<br />

Material: PE<br />

Please note:<br />

All specified reference values for the<br />

gate diameter apply only to hot<br />

<strong>runner</strong> <strong>nozzle</strong>s with vertical gating.<br />

Gate diameter for fibre reinfor-ced<br />

materials<br />

The gate diameters for glass fibre<br />

reinforced materials or materials<br />

containing additives (flame retar-<br />

dants, heat stabilisers) 0.2 to 0.3 mm<br />

larger.<br />

The same applies to multi-tip <strong>nozzle</strong>s.<br />

Please contact us for all other types<br />

of gating.<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

Material: POM, PA 6, ABS<br />

iT<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

1.4. 4


Ø D mm<br />

Ø D mm<br />

Ø D mm<br />

Ø D mm<br />

Ø D mm<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

1.4. 5<br />

iT<br />

Material: PBT<br />

0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

Material: PS<br />

0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

Material: PPO<br />

0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

Material: PSU, PC<br />

0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

Material: LCP<br />

0.1 0,5 1 3 5 8 10 100 1000<br />

Article weight g<br />

Ø D mm<br />

Ø D mm<br />

Ø D mm<br />

Ø D mm<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

Material: PA 6.6 (glas filled + 0.3 mm)<br />

Materials<br />

0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

Material: TPU, TPE<br />

0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

Material: SB, SAN<br />

0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

Material: PP<br />

0.1 1 3 5 8 10 100 1000<br />

Article weight g<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


Materials<br />

Material<br />

PP<br />

PE<br />

PS<br />

ABS<br />

SAN<br />

PA 6<br />

PA 6.6<br />

POM<br />

PC<br />

PMMA<br />

PBT<br />

ABS / PC<br />

LCP*<br />

PPS<br />

PEEK<br />

* depending on polymer-type<br />

Price / performance<br />

The performance pyramid<br />

High temperature resistant<br />

plastics<br />

(HDT > 150°C)<br />

Technical plastics<br />

(HDT = 100 - 150°C)<br />

Standardplastics<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

Recommended<br />

processing temperature (°C)<br />

220 - 280<br />

220 - 280<br />

220 - 280<br />

220 - 250<br />

220 - 250<br />

240 - 250<br />

270 - 290<br />

205 - 215<br />

280 - 310<br />

220 - 250<br />

245 - 270<br />

260 - 270<br />

300 - 345<br />

310 - 340<br />

360 - 400<br />

COC<br />

PAR<br />

PI<br />

PES PEI<br />

PC<br />

PPO<br />

PSU<br />

PEK<br />

FP<br />

LCP PAI<br />

PPS<br />

PA 46 PPA<br />

PET<br />

PBT<br />

POM<br />

LFT<br />

SAN ABS PMMA PP<br />

PS<br />

PVC<br />

SAN<br />

PE-LD<br />

Recommended<br />

WZ-temperatur (°C)<br />

PA6.6<br />

20 - 60<br />

20 - 60<br />

20 - 70<br />

40 - 80<br />

40 - 80<br />

40 - 60<br />

40 - 80<br />

60 - 120<br />

80 - 120<br />

40 - 90<br />

60 - 80<br />

70 - 100<br />

80 - 120<br />

140 - 145<br />

140 - 180<br />

PE-HD<br />

amorphous semy-crystalline<br />

iT<br />

Processing window for common<br />

plastics<br />

Further information on selecting<br />

<strong>nozzle</strong>s depending on the material<br />

can be found in <strong>nozzle</strong> chapter 2.<br />

High temperature resistant<br />

plastics<br />

High temperature resistant plastics<br />

with processing temperatures<br />

>300°C:<br />

• Liquid Crystal Polymer (LCP)<br />

• Polyphenylene sulphide (PPS)<br />

• Polyetherketone /<br />

Polyetheretherketone<br />

(PEK/ PEEK)<br />

• Polysulphone (PSU)<br />

• Polyether-Imide (PEI) etc.<br />

1.4. 6


1.4. 7<br />

iT<br />

40°<br />

55°<br />

Fig.Tip geometry for polypropylene<br />

2,5...3,5<br />

ØD1<br />

ØD2<br />

Fig. Gate design A and hot-<strong>runner</strong> <strong>nozzle</strong> with<br />

<strong>nozzle</strong> piece version C<br />

ØD2<br />

ØD1<br />

Fig. Gate design version C and hot-<strong>runner</strong> <strong>nozzle</strong> with<br />

<strong>nozzle</strong> piece version A<br />

Materials<br />

Polyacetal (POM) and Thermo Plastic Elastomers (TPE)<br />

Gate design A<br />

When processing polyacetal (POM) and thermoplastic<br />

elastomers (TPE) with a hot <strong>runner</strong> <strong>nozzle</strong> with <strong>nozzle</strong><br />

piece, version C and the gate design A, a good injection<br />

gate quality should be attained. <strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong>s with<br />

<strong>nozzle</strong> piece, version C can be used for injection onto an<br />

intermediate gate and also for direct gating. In direct<br />

gating a higher residual sprue must be expected than<br />

when a <strong>nozzle</strong> with tip is used. The gate design A must<br />

be used for <strong>nozzle</strong>s with tip and for open <strong>nozzle</strong>s. It must<br />

be taken into account here that the injection gate<br />

diameter in gate bushing "D1" must be smaller than the<br />

diameter in the <strong>nozzle</strong> piece "D2”<br />

(D1 < D2). When a <strong>nozzle</strong> piece, version C is used, the<br />

shear in the melt in the area of the injection gate is lower<br />

than when a <strong>nozzle</strong> with tip is used.<br />

Shear-sensitive materials<br />

Gate design C<br />

Single <strong>nozzle</strong>s are mostly used when processing shearsensitive<br />

materials through an intermediate gate. The<br />

gate design C is exclusively used for open <strong>nozzle</strong>s with a<br />

<strong>nozzle</strong> piece, version A.<br />

It must be taken into account here that the injection gate<br />

diameter in the "D1" gate bushing must be larger than the<br />

diameter of the <strong>nozzle</strong> piece "D2" (D1 > D2).<br />

Parts made of Polypropylene (PP)<br />

<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong>s with modified tip geometry should be<br />

used to process polypropylene. At a height of 2.5 to 3.5<br />

mm (depending on the <strong>nozzle</strong> type) the tip angle is<br />

reduced from 55° to 40°.<br />

This modified geometry must be ordered separately.<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


Gating<br />

Fig. Gate geometry<br />

H [mm]<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

d = 3 mm<br />

d<br />

80°<br />

ØD<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

6,3<br />

H<br />

sharp-edged<br />

d = 4 mm<br />

1,0 1,5 2,0 2,5 3,0<br />

Fig. Inspecting the gate<br />

Fig. Reworking the gate<br />

Wrong<br />

Ø D [mm]<br />

iT<br />

Gating<br />

The hot <strong>runner</strong> <strong>nozzle</strong>’s function is<br />

essentially influenced by gate size<br />

diameter “D”.<br />

An enlargement of gate size must<br />

be done at an 80° angle. The edge<br />

must be sharp to achieve clean<br />

separation.<br />

Note:<br />

The most frequented faults on<br />

commissioning a mould are due to<br />

the incorrect design of the gate<br />

geometry.<br />

Inspecting the gate<br />

The correct position of the 80° angle<br />

is inspected with a measuring ball.<br />

Reworking the gate<br />

It is wrong to rework the gate by<br />

boring it out. The flow gap will not be<br />

substatially enlarged but the tear-off<br />

height on the part will become larger.<br />

1.4. 10


Fig. Nozzle installed in a retracted position<br />

Within the framework of permissible processing<br />

parameters, the smallest possible gate diameter means:<br />

small gate diameter<br />

Fig. Reducing the gate diameter<br />

Fig. Vacuoles under the gate<br />

1.4. 11<br />

iT<br />

ØD<br />

L + L + 0.02<br />

tool temperature<br />

processing temperature<br />

This is the point at<br />

which the material<br />

solidifies at last.<br />

Gating<br />

Reworking the gate<br />

With gate diameters smaller than<br />

ØD = 1.2 mm, the <strong>nozzle</strong> must<br />

beinstalled further back.<br />

You will find a Delta Tool calculation<br />

program on our homepage at<br />

www.guenther-hot<strong>runner</strong>.com<br />

available for download free of charge.<br />

Reducing the gate diameter<br />

The gate diameter cannot be<br />

arbitrarily reduced. The smallest<br />

permissible diameter is dependent<br />

on the material used.<br />

Furthermore, the gate size is also influenced<br />

by the mold temperature<br />

and processing temperature.<br />

Vacuoles under the gate<br />

Direct gating with a hot <strong>runner</strong> system<br />

can produce vacuoles under the<br />

gate.<br />

Remedy:<br />

Longer holding pressure time to<br />

compensate for shrinkage.<br />

Gate diameter for fibre reinforced<br />

materials<br />

The gate diameters for glass fibre<br />

reinforced materials or materials<br />

containing additives (flame retardants,<br />

heat stabilisers) 0.2 to 0.3 mm<br />

larger. The same applies to multi-tip<br />

<strong>nozzle</strong>s.<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


Gating<br />

0.5<br />

At 250°C the hot <strong>runner</strong> <strong>nozzle</strong> extends 0.5 mm into<br />

the part if the <strong>nozzle</strong> is installed to the nominal<br />

length.<br />

Fig. <strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong> installed correctly<br />

Potential error sources<br />

Problem:<br />

- Higher vestige<br />

- No flow gap despite a larger gate<br />

Fig. Cylindrical part at the gate<br />

Problem: - No sufficient insulation gap<br />

- Higher temperature needed<br />

- Great temperature fluctuations<br />

- Stringing<br />

Fig. The forechamber contour not produced correctly<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

iT<br />

Problem:<br />

- The expanded <strong>nozzle</strong> closes the gate.<br />

Fig. Gate


Injection<br />

Fig. Injection into an intermediate gate<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

ØD L<br />

Ød 1 mm > ØD<br />

˜<br />

Fig. Gating into an angled surface<br />

catch pits<br />

advantageous<br />

advantageous<br />

disadvantageous<br />

iT<br />

Correct injection into an intermediate<br />

gate<br />

In order to obtain defined separation,<br />

the aperture in the face surface of the<br />

intermediate gate Ød should be<br />

larger than ØD. This is particularly<br />

true for reinforced thermoplastics<br />

(engineering plastics).<br />

If possible, employ a catch pit in the<br />

intermediate gate.<br />

Gating into an angled surface<br />

Direct gating into an angled surface<br />

never results in an optimal gate point<br />

with a small vestige. We therefore<br />

recommend gating into a surface at<br />

right angle to the <strong>nozzle</strong> axis.<br />

1.4. 20


Tempering<br />

1.4. 21<br />

iT<br />

Fig. Reserve gating into a high gloss facing surface<br />

Fig. Parts with a film hinge<br />

Insert<br />

Film hinge<br />

Tempering<br />

Gating<br />

Reserve gating into a high gloss<br />

facing surface<br />

Sufficient cooling is recommended<br />

for the gate area, next to the <strong>nozzle</strong><br />

and on the ejector side to dissipate<br />

the heat additionally induced by<br />

shear.<br />

The cooling circuit control must be<br />

separated from the other tempering<br />

circuits.<br />

Articles with a film hinge<br />

When gating a part with a film hinge,<br />

the gating point must be located<br />

away from the surface center<br />

opposite to the film hinge. The flow<br />

front may not come to a standstill<br />

during the filling process.<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong><br />

±0.02<br />

Z<br />

Fig. Nozzle length at room temperature<br />

Standard<br />

90°<br />

Increased angle<br />

120°<br />

Attention!<br />

Provide for adequate<br />

wall thickness.<br />

Fig. Modification of forechamber geometry<br />

120°<br />

Fig. Employment from a titanium sleeve<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

Insulation gap<br />

Insulation gap<br />

Titanium sleeve<br />

Insulation gap<br />

iT<br />

Nozzle length at room temperature<br />

Our <strong>nozzle</strong> length is made to the size<br />

that already provides for ist length<br />

change when heated to 250° C. The<br />

<strong>nozzle</strong> tip will then extend by 0.5 mm<br />

into the cavity contour. Dimension Z<br />

(as measured at room temperature)<br />

is equal to:<br />

Z = L + 0.5 - l (250°)<br />

l consequently depending on L<br />

itself.<br />

l is the temperature dependent<br />

longitudinal expansion of the<br />

hot <strong>runner</strong> <strong>nozzle</strong>.<br />

Modification of fore chamber<br />

geometry<br />

Fore chamber geometry can be<br />

modified for special applications or<br />

difficult-to-process materials (e. g.<br />

V0-adjusted materials).<br />

To avoid mistakes, we recommend<br />

that you consult with our<br />

application engineers.<br />

Enlarging the angle to 120°<br />

The standard angle of 90° in the forechamber<br />

can be widened to 120°.<br />

This will enlarge the insulation gap<br />

between the hot <strong>runner</strong> <strong>nozzle</strong> and<br />

the mold. The <strong>nozzle</strong> can be operated<br />

at a lower temperature so that<br />

thermally sensitive material will not<br />

be damaged.<br />

Using a titanium sleeve over the<br />

<strong>nozzle</strong> shaft in combination with<br />

an angle of 120 °.<br />

The insulation gap between the hot<br />

<strong>runner</strong> <strong>nozzle</strong> and the mold also<br />

becomes larger and the heat transfer<br />

to the cavity plate is reduced.<br />

1.4. 30


Thread<br />

designation<br />

Regular type<br />

screw threads<br />

M8<br />

M10<br />

1.4. 31<br />

iT<br />

Reference values for screw sizes<br />

The centering flange and screws of<br />

single <strong>nozzle</strong>s must absorb the<br />

emerging lift forces.<br />

Screws and centering flange are to<br />

be appropriately dimensioned and<br />

the pitch circle of the screws is to be<br />

kept as small as possible.<br />

Guide values for screw selection can<br />

taken from the table below. Tightening<br />

torque M A for producing the screw<br />

connection must afford sufficient<br />

pretensioning force F v so that the<br />

required initial tension is still present<br />

when under the influence of operating<br />

force (i. e. operating force of the hot<br />

<strong>runner</strong> <strong>nozzle</strong>).<br />

F should be a<br />

Pretensioning force v<br />

factor 2 to 4 greater than the anticipated<br />

operating force. Screws<br />

should be selected which are as<br />

long as possible.<br />

Tightening torque for hot <strong>runner</strong> <strong>nozzle</strong>s<br />

Pretension F v and tightening tor-que M A,<br />

for screws with head beaning surfaces per<br />

DIN EN ISO 4762 and 4014.<br />

Shaft screws ( µ ges. = 0.125)<br />

M12<br />

M16<br />

M20<br />

M24<br />

Maximum pretension F V in kN<br />

Property class<br />

F = force<br />

p = injection<br />

pressure<br />

A = area of the<br />

<strong>nozzle</strong>s shaft Ø<br />

Fine pitch<br />

thread<br />

M8x 1 26 31<br />

40<br />

M10x1,25 41 43<br />

77<br />

M12x1,5<br />

M16x1,5<br />

M20x1,5<br />

M24x2<br />

10.9 12.9<br />

24<br />

38<br />

56<br />

105<br />

165<br />

235<br />

59<br />

114<br />

188<br />

265<br />

28<br />

45<br />

65<br />

122<br />

190<br />

275<br />

69<br />

134<br />

220<br />

310<br />

Maximum tightening torque M in Nm<br />

A<br />

Property class<br />

37<br />

73<br />

125<br />

315<br />

615<br />

1050<br />

<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong><br />

Example:<br />

<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong>: 5SET50 ( ØS = 22 mm)<br />

Injection pressure: 2000 bar (200 N/ mm 2)<br />

Number of screws: 4<br />

Factor 2<br />

Lift force on the hot <strong>runner</strong> <strong>nozzle</strong>:<br />

p = F A<br />

A =<br />

F = p (N/ mm 2) • A ( mm 2)<br />

F = 200 N/ mm 2 • 380 mm2<br />

F = 76000 N<br />

F = 76000<br />

ges<br />

Pretension F v per screw:<br />

Fv =<br />

Fv =<br />

D 2 ( mm) • π<br />

4<br />

22 mm 2 • π<br />

A =<br />

4<br />

A = 380 mm 2<br />

N<br />

F ges ( N)<br />

Number of screws<br />

76000 N<br />

4<br />

F v = 38000 N per screw<br />

• factor<br />

• 2<br />

Chosen screws in consideration of factor 2.<br />

4 x M10 - 12.9 je 45 kN per scres<br />

10.9 12.9<br />

132<br />

340<br />

680<br />

1150<br />

43<br />

84<br />

148<br />

370<br />

700<br />

1250<br />

46<br />

90<br />

155<br />

390<br />

800<br />

1350<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong><br />

Standard<br />

Fixed connections<br />

Thermocouple ype L (FeCuNi)<br />

Standard<br />

Pluggable connections<br />

Thermocouple Type L (FeCuNi)<br />

* Volt Alternating Current<br />

Fig. Designation / correlation of cables<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

CMLK<br />

Thermoplug<br />

CMT, 230 VAC*<br />

Power receptacle<br />

PE = earthed lead yellow-green<br />

N = neutral lead orange<br />

L = line lead black<br />

Blue = Minus<br />

PE = earthed lead bare wire<br />

Red = Plus<br />

iT<br />

PE = earthed lead yellow-green<br />

N = neutral lead blue<br />

L = ine lead brown<br />

Red = Plus<br />

PE = earthed lead bare wire<br />

Blue = Minus<br />

1.4. 32


BlueFlow® Fixed<br />

connections<br />

BlueFlow®<br />

min. 10 mm<br />

Power and thermo<br />

connection up to 10 mm<br />

bent only once in this area.<br />

Minimum bending radius R8.<br />

® P<br />

BlueFlow luggable connections<br />

Fig. Designation / correlation of cables<br />

1.4. 33<br />

iT<br />

Thickfilm heaters for hot-<strong>runner</strong><br />

<strong>nozzle</strong>s<br />

BlueFlow<strong>Günther</strong>'s new BlueFlow ®<br />

technology incorporates several<br />

advantages as compared to<br />

conventional heating methods: the<br />

heating elements are not only<br />

considerably smaller in diameter,<br />

they also allow a substantially better<br />

temperature distribution and<br />

accordingly, a quicker thermal<br />

response.<br />

CMT 230 VAC*<br />

Power receptacle<br />

Fig. <strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong> heater<br />

CMLK Thermocouple<br />

22 mm<br />

Further outstanding features are<br />

their high electric strength and<br />

resistance to moisture. All in all,<br />

these four features are important<br />

steps taken towards a more spacesaving,<br />

precise and energy-efficient<br />

hot <strong>runner</strong> design and, therefore, a<br />

more effective injection molding<br />

process.<br />

PE=earthed lead yellow-green<br />

N = neutral lead blue<br />

L = line lead brown<br />

Blue = Minus<br />

PE = earthed lead yellow-green<br />

Red = Plus<br />

L=line lead brown<br />

N=neutral lead blue<br />

Blue = Minus<br />

PE=arthed lead yellow-green<br />

PE=earthed lead bare wire<br />

Red = Plus<br />

Brass body with pressed-in heater BlueFlow® <strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong><br />

<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong><br />

<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong> heater<br />

Heater are pressed into a brass<br />

body. The heater is fixed in place by<br />

the mechanical structure of the<br />

carrier body. The homogeneous<br />

brass body ensures optimal heat<br />

transfer from the heater to the<br />

material tube, showing a highly<br />

reproducible temperature pattern.<br />

Thermocouple Type L (FeCuNi)<br />

* Volt Alternating Current<br />

18 mm<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong><br />

High Quality. Blue. BlueFlow®<br />

The BlueFlow® hot <strong>runner</strong> <strong>nozzle</strong><br />

sets new standards for quality and<br />

design of parts made of thermally<br />

sensitive plastics. This re-sults in<br />

better or even completely new<br />

application possibilities, depending<br />

on the application area in different<br />

sectors of industry.<br />

The thick film heater makes it<br />

possible to adjust the heating capacity<br />

to the exact power requirement<br />

in each single section over the<br />

entire <strong>nozzle</strong> length in order to reach<br />

a homogenous temperature.<br />

The plastic material in the material<br />

tube is hardly exposed to thermal<br />

stress, which means that the<br />

physical properties of the end<br />

product are obtainable even with<br />

thermally sensitive plastics and very<br />

small parts.<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

FIg. Microfilter<br />

iT<br />

Example: Microfilter (automotive<br />

sector)<br />

Microfilter (outlet valve for an<br />

automotive application), injectionmolded<br />

in one process step from<br />

unreinforced PA66. This method has<br />

replaced the earlier procedure of<br />

insert-molding of an available metal<br />

or plastic mesh to obtain a ready-toinstall<br />

component. The resulting<br />

savings are dramatic: costs have<br />

decreased by 60-80%, depending<br />

on the product.<br />

Details: thread size 0.13;<br />

1848 gaps with 0.07 x 0.07 mm. 2<br />

Passage surface approx. 9 mm .<br />

Max. allowed flash is 4.5 µm.<br />

1.4. 34


1.4. 35<br />

iT<br />

Assembly of the star manifold<br />

Insert the star manifold and use 4<br />

hexagon socket head cap screws<br />

M3x12 to fasten it to the sleeve-type<br />

heating.<br />

®<br />

<strong>Hot</strong>-<strong>runner</strong> <strong>nozzle</strong> OktaFlow<br />

for side multi-tip gatin under 90°<br />

without cold slug, in connection with a<br />

manifold or can be used as a single<br />

<strong>nozzle</strong> with heated adaptor.)<br />

Assembly of support<br />

Insert the support and mount the lid<br />

from the parting line. Note: the lid<br />

must be solidly bonded to the insert.<br />

<strong>Hot</strong>-<strong>runner</strong> <strong>nozzle</strong> PektaFlow®<br />

Number of tips: up to 24 tips, for side<br />

multi-tip gating under 90° without cold<br />

slug.<br />

Be used as a single <strong>nozzle</strong> with<br />

heated adaptor.<br />

<strong>Hot</strong>-<strong>runner</strong> <strong>nozzle</strong> PektaFlow® type<br />

PLT are designed for challenging<br />

applications e.g. in medical technology<br />

and packaging.<br />

• Direct injection onto the product<br />

• Divided inserts<br />

• Tips individually replaceable<br />

• Leading-edge area heated for optimum<br />

temperature development<br />

• Supported on floating bearings and<br />

therefore independent of the ther<br />

mal expansions<br />

<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong><br />

Assembly of the hot-<strong>runner</strong> <strong>nozzle</strong><br />

Push the hot-<strong>runner</strong> <strong>nozzle</strong> (MT) in<br />

from the <strong>nozzle</strong> side!<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong><br />

Without extended <strong>nozzle</strong> tip With extended <strong>nozzle</strong> tip<br />

L +0.02<br />

L1 +0.02<br />

L1 +0.02<br />

Shimmed Inserted<br />

Shim<br />

7/12 Subject to technical changes<br />

+0.02<br />

L1<br />

Fig. Use of <strong>nozzle</strong> with extended tip<br />

Fig. Side gating under 90° without a “cold slug”<br />

www.guenther-hot<strong>runner</strong>.com<br />

+0.02<br />

L1<br />

Nozzle holding plate<br />

Cavity plate<br />

Nozzle<br />

holding plate<br />

Cavity plate<br />

iT<br />

Extended <strong>nozzle</strong> tips in<br />

connection with the material<br />

It is often necessary to use several<br />

different <strong>nozzle</strong> lengths when gating<br />

a part. Extended <strong>nozzle</strong> tips allow<br />

sprueless molding of parts even in<br />

space constrained environments.<br />

Side gating<br />

Under 90° without a ”cold slug” in<br />

combination with a manifold. Gating<br />

should always be against the core.<br />

Always specify the material to be<br />

processed and the part weight when<br />

making inqiries. Also specify whether<br />

a part is to be gated with several tips,<br />

or if several parts are to be molded.<br />

Note:<br />

Slide out the inserts only horizontally!<br />

1.4. 36


1.4. 37<br />

iT<br />

Fig. Disassembly of a multi-tip <strong>nozzle</strong><br />

<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong><br />

Reference notes on disassembly of a multi-tip<br />

<strong>nozzle</strong><br />

To avoid damaging <strong>nozzle</strong> tips, we suggest a mechanical<br />

construction which imposes a change in the way the<br />

<strong>nozzle</strong> is disassembled :<br />

1. Loosen the wedge and the counter-pressure insert.<br />

2. Push out the divided form inserts to the right and left<br />

over the <strong>nozzle</strong> tips to their limits.<br />

3. Now pull out the form inserts downwards in the direction<br />

of the cavity.<br />

4. Loosen the screw fastening for the suppressor and<br />

remove it<br />

5. Now the <strong>nozzle</strong> can be taken up-wards.<br />

What should be observed in the construction phase:<br />

1 To prevent jetting, inject against a core, for example.<br />

2. The shear edge must amount to at least the injection<br />

gate diameter + 0.2 mm (see drawing).<br />

3. There should not be any draft angle in the injection<br />

gate area (see drawing).<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


Valve gate technology<br />

Fig. Valve gate system<br />

Commissioning<br />

• Before heating the <strong>nozzle</strong>s and the manifold, switch on<br />

the mould temperature control.<br />

Heating the hot <strong>runner</strong> system:<br />

• With the soft-start function the manifold is heated to about<br />

100°C and held at this temperature for approximately 10<br />

minutes.<br />

• The <strong>nozzle</strong>s and manifold must be heated evenly (ramp<br />

function). In any case, it is essential to prevent the <strong>nozzle</strong>s<br />

reaching the processing temperature before the manifold<br />

does. Heating the manifold to the required temperature<br />

can take up to 20 minutes depending on the size and<br />

circumstances.<br />

• Only when the hot <strong>runner</strong> system has reached<br />

production temperature, may the needle mechanism<br />

be put into operation, whereby it must be ensured too<br />

that the plastic is in molten form in the needle guide area. It<br />

might be necessary to extend the heating time for the <strong>nozzle</strong><br />

by 5… 10 minutes.<br />

• With putting into operation for the first time, several injections<br />

may be necessary to fill the hot <strong>runner</strong> completely with<br />

plastic.<br />

Until all parts are filled completely, the cavities must be<br />

checked after every cycle for parts that have not been<br />

filled completely.<br />

Dwell time:<br />

To keep the thermal damage to the melt as low as possible,<br />

the idle time at production temperature should be adapted to<br />

the sensitivity of the material. As a rule, the dwell time can be<br />

up to 10 minutes depending on the type of plastic.<br />

Interruption in production<br />

When a process is interrupted, the hot <strong>runner</strong> temperature<br />

must be lowered (depending on the material and down-time<br />

by 100… 150K). The needles must be in the “closed” position.<br />

Make sure the process temperature is reached again before<br />

activating the needles again.<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

Connection values<br />

Electric<br />

Voltage 230 V~<br />

* If special <strong>nozzle</strong>s or other components with a pressure limit (less<br />

than 2000 bar) are fitted to systems or individual tools, this situation<br />

is documented in the height adjustment and on the type plate.<br />

Hydraulic<br />

Single valve- gate <strong>nozzle</strong><br />

Lifting plate mechanism<br />

Sliding cam mechanism<br />

Pneumatic<br />

max. permissible operating<br />

pressure in the hot-<strong>runner</strong> system<br />

Single valve gate <strong>nozzle</strong><br />

Single needle valve<br />

Lifting plate mechanism<br />

Sliding cam mechanism<br />

iT<br />

Set-up operation<br />

To prevent damage to the gate bores/valve needles from cold<br />

material in the needle guide, the valve needles may not be<br />

activated while the injection moulding machine is being set up<br />

or during the flushing-out process. If the melt is to be ejected<br />

through the open mould / hot <strong>runner</strong>, the needles must be<br />

opened during the injecting-through process and closed<br />

during the dosing phase.<br />

Switching off the hot <strong>runner</strong><br />

When the hot <strong>runner</strong> system is being turned off, all control<br />

circuits can be turned off at the same time. To prevent the hot<br />

<strong>runner</strong> system being damaged by the build-up of heat, let the<br />

mould cooling run on at about 30°C for another 30 min.<br />

approximately.<br />

The valve gates should be in the “closed” position for this.<br />

Before starting disassembly, make sure the hot <strong>runner</strong> is<br />

switched off. To prevent damage to the needle guide/needle,<br />

the needles must be in the “open” position. Before putting the<br />

system into operation again, make sure the needles are in the<br />

“closed” position again.<br />

Needle actuation<br />

• To reach a high needle speed, the valve for actuation<br />

(hydraulics pneumatics) must be designed to be as lare<br />

as possible.<br />

• The connection tube dimensioning must be designed to<br />

suit the flow rate.<br />

• The distance between the pressure generation and<br />

pressureconsumption (mould) should be as little as<br />

possible. (Needle closing time 20-40 ms/7-10 mm travel)<br />

Note!<br />

The first filling of the hydraulic cylinders should be done at a<br />

low speed or the cylinders should be vented.<br />

System *<br />

max. permissible operating<br />

pressure in the hot-<strong>runner</strong> system 2000 bar<br />

40<br />

40-60<br />

40-60<br />

8-10<br />

8-10<br />

8-10<br />

8-10<br />

8-10<br />

bar<br />

bar<br />

bar<br />

bar<br />

bar<br />

bar<br />

bar<br />

bar<br />

1.4. 40


1.4. 41<br />

iT<br />

Insulation ring<br />

Fixed<br />

power connection<br />

Fixed<br />

thermo connection<br />

* Power receptacle CMT<br />

* Thermoplug CMLK<br />

* 5-6NEST = pluggable connection<br />

* 8-12NEST1 = fixed connection<br />

Fig. Single valve-gate <strong>nozzle</strong> 12NEST1<br />

Needle closing<br />

Needle opening<br />

There are three 0.1-mm shims over / under the needle<br />

head.<br />

Caution! When assembling / dismantling the needle<br />

holder (A/F 10), care must be taken not to deform the<br />

steel piston rings. Use the flat of the piston! It is essential<br />

to put the metal O ring back in after replacing the disk<br />

package. The piston and/or the steel piston rings must be<br />

greased again before assembly (GÜNTHER recommends<br />

Klüber paste UH 196-402 [NSF registered]).<br />

Furthermore, it is essential to ensure that the steel piston<br />

rings have been inserted correctly. The rings have a<br />

marking (XXX) on the face surface, indicating the side<br />

that must point towards the pressurised side.<br />

Installation of the complete <strong>nozzle</strong><br />

The cables for activating the needles are located at the<br />

bottom of the <strong>nozzle</strong>. Accordingly the centring ring can be<br />

produced as a “bell”. This measure makes it possible to<br />

reduce the height of the mould.<br />

Screw centring with at least 6x M10 (12.9) screws, with<br />

due consideration to lift forces. For an optimum thermal<br />

separation between the <strong>nozzle</strong> and the mould, use the<br />

(blue) insulation ring.<br />

Caution: Grind in the K dimension in compliance with the<br />

data in the chapter. 2.3 yellow page.<br />

Valve gate technology<br />

Steel piston ring, large<br />

Marking XXX<br />

Steel piston ring, small<br />

Marking XXX<br />

Inlet/ outlet pipes for activating the needle<br />

It is preferable to use channels with diameters of 6 mm<br />

and a minimum length of 200 mm. The inlet and outlet<br />

lines must be placed in the cooled mould plate in order to<br />

prevent the medium overheating. If the mould<br />

temperatures exceed the thermal stress capability of the<br />

pneumatic valves, a separately cooled manifold must be<br />

installed. The mechanics of the needle drive and the<br />

valve gate <strong>nozzle</strong> are absolutely capable of withstanding<br />

high temperatures.<br />

Note on guarantee<br />

GÜNTHER guarantees <strong>nozzle</strong> type NEST1 only if they<br />

have been fitted or serviced on GÜNTHER premises or<br />

by a GÜNTHER specialist. GÜNTHER will not provide<br />

any guarantee for damage caused by the incorrect fitting<br />

of the steel piston ring operated <strong>nozzle</strong> type NEST by<br />

the pur-chaser, its representatives or contractors.<br />

The same applies to inappropriate or neglected maintenance.<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


Valve gate technology<br />

Lifting plate mechanism ANEH<br />

The lifting mechanism is recommendable for a precisely<br />

simultaneous opening and closing of all needles.<br />

Special holes in the mould clamping plate allow the<br />

down-stroke depth of the valve needles to be adjusted<br />

individually from the outside.<br />

The maximum working temperature is 100° C.<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

Electromagnet ME 10/UV75<br />

The ME 10 bistable heavy-duty lifting magnet serves<br />

to actuate the valve gate needles in valve gate<br />

systems.<br />

Excellent for fully electric injection moulding machines<br />

and for clean room use.<br />

Single needle valve ENV<br />

Needle actuation in single and multiple systems.<br />

Sequential opening and closing of the needles.<br />

Special holes in the mould clamping plate allow the<br />

down-stroke depth of the valve gate to be adjusted<br />

individually from the outside.<br />

Maximum working temperature is 100° C.<br />

Pay attention to the balancing of the oil feed and oil<br />

outlet ducts as well as of the air feed and air outlet ducts.<br />

Note on guarantee<br />

GÜNTHER guarantees single needle valves only if they have been fitted or serviced on GÜNTHER premises or by a<br />

GÜNTHER specialist. GÜNTHER will not provide any guarantee for damage caused by the incorrect fitting of the O-rings<br />

in hydraulically/pneumatically operated single needle valves by the purchaser, its representatives or contractors.<br />

The same applies to inappropriate or neglected maintenance.<br />

Note: See operating instructions for details.<br />

Sliding cam mechanism ANES<br />

iT<br />

For narrow cavity spacing a sliding cam mechanism is the<br />

preferred drive.<br />

Exact opening and closing of all needles.<br />

Special holes in the mould clamping plate allow the<br />

down-stroke depth of the valve gate to be adjusted<br />

individually from the outside.<br />

Maximum working temperature is 100° C.<br />

1.4. 42


1.4. 43<br />

iT<br />

Notes on valve needles<br />

The needle length is dependent on the <strong>nozzle</strong> length,<br />

type of actuation and manifold structure. The needles<br />

have a basic hardness of 64 HRC (HSS steel) and are<br />

coated. The needles are fitted with a cylindrical seal<br />

towards the cavity and are adjustable.<br />

The 2 mm Ø needle design for <strong>nozzle</strong>s with material<br />

tube-Ø 4 mm, threads M6x 0,5<br />

gate-Ø: 0,8 mm, 1,0 m, 1,2 mm, 1,4 mm, (1,6 mm).<br />

The 3 mm Ø needle design for <strong>nozzle</strong>s with material<br />

tube- Ø 5, 6 mm, threads M8 x 0,5<br />

gate Ø: 0,8mm, 1,0 mm, 1,2 mm, 1,4 mm.<br />

The 3 mm Ø needle design for <strong>nozzle</strong>s with material<br />

tube- Ø 8 mm, threads M8 x 0,5<br />

gate Ø: 2,0 mm, 2,5 mm.<br />

The 5 mm Ø needle design for <strong>nozzle</strong>s with material<br />

tube- Ø 10-12 mm, threads M10 x 0,75<br />

gate- Ø: 3,0 mm, 4,0 mm.<br />

Tools to disassembling the needle guide (piece of PM),<br />

see chapter 7.<br />

Thread tightening torque for needle adjustment<br />

Needle Ø Thread Tightening torque<br />

M A [Nm]<br />

Ø 2 mm M6 x 0,50 15<br />

Ø 3 mm M8 x 0,50 30<br />

Ø 5 mm M10 x 0,75 45<br />

Typ NEP<br />

Typ NHP<br />

Maintenance<br />

Fig.<br />

Sliding cam mechanism<br />

with externally accessible<br />

grease fittings<br />

Valve gate technology<br />

Sliding cam mechanismus -ANES-<br />

When fitting the sliding cam mechanism, use a hightemperature<br />

long-life grease to lubricate the movable<br />

parts. This allows the sliding cam mechanism to work<br />

without any problems even at higher temperatures over a<br />

long period of time. Make sure the mould temperature<br />

does not exceed 100° C in the area of the frame plate/<br />

clamping plate.<br />

During maintenance the sliding cam mechanism must be<br />

checked for dirt and wear. Melts that have exuded from<br />

the manifold sealing because of the stroke movement of<br />

the needles must be removed. In older hot-<strong>runner</strong><br />

systems the sliding cam mechanism can be relubricated<br />

through the ball impact holes (DIN 3410 Form F); in new<br />

systems the sliding cam mechanism can be relubricated<br />

without disassembly.<br />

Fig.<br />

Ball impact holes<br />

To ensure optimal greasing performance also at higher<br />

temperatures, avoid using different greases. We<br />

recommend the lubricating grease from Klueber<br />

Barrierta L55/2 high temperature long-life grease. The<br />

lubricating grease can be purchased either directly from<br />

the manufacturer or from us. Safety data sheets can be<br />

called up at www.klueber.com.<br />

Introduction: Lubrication after 150.000 shots or<br />

1x weekly.<br />

Maintainance work (cleaning) must be done on the<br />

needle-driving mechanisms every 400.000 shots!<br />

This frequency depends greatly on the material to be<br />

processed or the application. If a thermoplastic<br />

elastomer (TPE) is being processed, it may be necessary<br />

to do maintenance work on the sliding cam after just<br />

approximately 200.000 shots. This also concerns<br />

polymers, in which the viscosity is greatly reduced by the<br />

shearing.<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


<strong>Hot</strong> <strong>runner</strong> systems / manifolds<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

V2<br />

iT<br />

Sign up at<br />

www.guenther-hot<strong>runner</strong>.com to start configuring your<br />

individual hot <strong>runner</strong> system with CADHOC V2 System<br />

Designer.<br />

You will save time and cut costs by having detailed<br />

information at an early phase of your project.<br />

<strong>Hot</strong> half on the basis of the<br />

•<br />

•<br />

•<br />

8-cavity H manifold“<br />

2-cavity straight manifold" and<br />

4-cavity cross manifold"<br />

For mould size up 196x296 mm to 796x996 mm<br />

(depending on the manifold size and manifold design).<br />

<strong>Hot</strong> half as 2-plate system, incl. guide elements, cable<br />

duct, cooling etc.<br />

All system <strong>nozzle</strong>s with a tip and an open <strong>nozzle</strong> piece<br />

can be used (Catalogue Chapter 2.1).<br />

Valve-gate systems with<br />

single needle valves for “individual” types of manifold.<br />

• Straight manifold 1-cavity, 2-cavity und 4-cavity<br />

• H manifold 4-cavity and 8-cavity,<br />

• T manifold 2-cavity and<br />

• Cross manifold 4-cavity<br />

with <strong>nozzle</strong>s from our valve gate portfolio.<br />

Catalogue Chapter 2.3).<br />

1.4. 50


1.4. 51<br />

iT<br />

View straight/frame version<br />

Fig. View: straight version<br />

Fig. View: f rame version<br />

<strong>Hot</strong> <strong>runner</strong> systems / manifolds<br />

Position of power connections<br />

Note:<br />

• Nozzles should always be surrounded by heater loops.<br />

• Heater lines should be routed mirror-inverted (cold<br />

ends of the tube heaters compensate for one another).<br />

• When possible, reserve an area for connectors where<br />

no material-carrying bore holes are located.<br />

• For high temperature applications > 320°C external<br />

connectors are appropriate.<br />

Fig. Internal heater<br />

connections<br />

Fig. Cable channel<br />

Not recommended<br />

Fig. External heater<br />

connections<br />

Frame plate / rail<br />

Edges absolutely burr-free<br />

Supporting plate /<br />

cavity plate<br />

Recommended<br />

Fig. Cable channel Fig. Cable channel<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


<strong>Hot</strong> <strong>runner</strong> systems / manifolds<br />

Air circulation<br />

Fig. Optimal air circulation<br />

Connector housing<br />

On account of heat convection, do<br />

not mount the connector housing<br />

onto the mould directly.<br />

We recommend the use of sufficiently<br />

long spacer bolts.<br />

High temperature application<br />

Special hot <strong>runner</strong> design is necessary<br />

for plastics with processing<br />

temperatures over 320°C. This includes<br />

full insulation, external heater<br />

connectors and high tempe-rature<br />

resistant thermo-couples.<br />

In the <strong>nozzle</strong> area it requires a fixed,<br />

high temperature resistant thermocouple<br />

connection, a hard metal tip<br />

(for reinforced polymers) as well as a<br />

high temperature pro-tective sleeve<br />

for cables.<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

Clamping plate<br />

Insulating plate<br />

Frame structure<br />

Fig. Manifold for high temperature application<br />

Attachment<br />

:<br />

housing<br />

Manifold<br />

Fig. Cross section of a mold - optimal air circulation<br />

iT<br />

Distance bolts<br />

1.4. 52


Note:<br />

1.4. 53<br />

iT<br />

Fig. Screw fastenings for _MT/_TT <strong>nozzle</strong>s<br />

Titanium washer<br />

Screw M6,<br />

M8, M10, (12.9)<br />

depending on<br />

manifold design<br />

Nozzle type<br />

_MT, _TT<br />

<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong>s of the _MT/_TT type are not screwfastened<br />

to the manifold. The system is started with coldstate<br />

play. Please refer to the respective heat expansion<br />

table. In its cold state, the hot <strong>runner</strong> system has no<br />

positive seal between <strong>nozzle</strong>s and manifold. Operating<br />

temperature must first be reached in order to seal the<br />

system. Please provide for adequate screw fixation of<br />

the clamping plate towards the cavity plate close enough<br />

to the manifold with at least 2x M10 per <strong>nozzle</strong> or, based<br />

on the length, 2x M10 per every 80 mm. We recommend<br />

connecting with screws of the 12.9 property class.<br />

Please use a pry bar or a <strong>nozzle</strong> extractor tool to<br />

professionally disassemble the <strong>nozzle</strong> from the gate<br />

bushing and/or cavity plate. See chapter 8.<br />

<strong>Hot</strong> <strong>runner</strong> systems / manifolds<br />

Fig. Manifold with _TT <strong>nozzle</strong> type,<br />

screwed to the<br />

parting line<br />

Advantages:<br />

• For high number of cavities and tight pitch spacing.<br />

• Easy front mounting of the <strong>nozzle</strong>s -<br />

the mold can remain on the machine for maintenance.<br />

• Two fits provide a precise positioning to the pitch<br />

distance.<br />

• Safety due to spatial and thermal separation of the<br />

connecting cable from the manifold.<br />

• Protection against leakage by sealing the manifold<br />

from the cable channels om the cable channels.<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


<strong>Hot</strong> <strong>runner</strong> systems / manifolds<br />

Manifold power calculation (230 V)<br />

Power Voltage Current Approximate resistance<br />

Watt Volt A<br />

values to be measured in<br />

Ohm [S]<br />

2300<br />

3680<br />

1500<br />

1400<br />

1100<br />

1000<br />

750<br />

500<br />

630<br />

500<br />

400<br />

250<br />

600 (max.)<br />

600 (max.)<br />

P = U • I<br />

R = U/I<br />

P = U 2 / R<br />

Thermocouple<br />

cable<br />

Red = plus<br />

Blue = minus<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

230<br />

230<br />

230<br />

230<br />

230<br />

230<br />

230<br />

230<br />

230<br />

230<br />

230<br />

230<br />

5<br />

24<br />

PE earthed lead<br />

Fig. Manifold - correlation of cables<br />

Example:<br />

P = (230 V) 2 / 23 Ohm<br />

P = 2300 W<br />

10<br />

16<br />

6.5<br />

6.1<br />

4.8<br />

4.4<br />

3.3<br />

2.8<br />

2.2<br />

1.8<br />

1.4<br />

1.1<br />

125 (max.)<br />

25 (max.)<br />

23.0<br />

14.375<br />

35.4<br />

37.7<br />

47.9<br />

52.3<br />

69.1<br />

82.1<br />

104.5<br />

127.8<br />

164.3<br />

209.1<br />

0.1 - 0.2<br />

0.2 - 0.4<br />

Alternating current 230 V<br />

iT<br />

1.4. 54


Assembly of the manifold<br />

1.4. 55<br />

iT<br />

Signs and symbols:<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

23<br />

24<br />

22<br />

21<br />

20<br />

25<br />

Surface mounted thermocouple, chap. 7<br />

Bores in the clamping plate<br />

to fix the <strong>nozzle</strong><br />

26 27<br />

PE-ground cable connection, chap. 7<br />

Connection elements, chap. 6<br />

Pressure pads, chap. 8<br />

Clamping plate<br />

Manifold, chap. 4<br />

Nozzle holding plate<br />

Cable channel<br />

19<br />

Air circulation above and below depending<br />

on the position of the mould<br />

STT SHT<br />

NMT NHF<br />

18<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

1 2 3 4<br />

5<br />

17<br />

Nozzle length, chap.2 + 3<br />

Nozzle protrusion<br />

<strong>Hot</strong> <strong>runner</strong> systems / manifolds<br />

16<br />

Cylindrical pin to prevent twisting,<br />

chap. 4.1<br />

<strong>Hot</strong> <strong>runner</strong> <strong>nozzle</strong>, chap. 2 + 3<br />

Height temperature insulating plate, optional<br />

Support piece, chap. 8<br />

Gate bushing, chap. 2.2 + 3.2<br />

Tempering<br />

Cavity plate<br />

Height of the <strong>nozzle</strong> head<br />

A B C<br />

Needle adjustment from outside Protected heating conductor<br />

connection in the manifold<br />

B<br />

C<br />

15<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

Needle guide and sealing<br />

in the manifold<br />

A<br />

14<br />

13<br />

Manifold height<br />

19<br />

12<br />

Recess for the hot <strong>runner</strong> system in the tool<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12<br />

7<br />

8<br />

9<br />

10<br />

11<br />

Installation height of the hot<strong>runner</strong> without<br />

pressure pad<br />

Heat expansion gap dimension K, chap. 4.1<br />

Pressure pad height<br />

Protection against leakage:<br />

The manifold area is sealed off from the<br />

cable ducts<br />

Melt direction element<br />

6


<strong>Hot</strong> <strong>runner</strong> systems / manifolds<br />

Complete “<strong>Hot</strong> Halves”<br />

The hot half is delivered as a <strong>nozzle</strong>side<br />

mold half without cavity plates.<br />

The <strong>nozzle</strong> overhang over the supporting<br />

plate can be set individually.<br />

The height-matched hot <strong>runner</strong> is<br />

completely wired and functionally<br />

tested. This ready-to-install solution<br />

eliminates extensive design matching<br />

work and possible installation errors.<br />

Prior to delivery, hot halves are<br />

subjected to a functional test which is<br />

documented according to DIN EN<br />

ISO 9001:2000.<br />

Complete “<strong>Hot</strong> Halves” normally<br />

guarantee a smooth production<br />

start-up.<br />

Fig. Complete mold half “<strong>Hot</strong> Half”, valve gate system<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

Fig. Cross section of a mold<br />

iT<br />

1.4. 56


Service program<br />

Our comprehensive program of services<br />

is meant to provide you with the<br />

service you need, from consul-tation<br />

and layout for hot <strong>runner</strong> systems to<br />

practice-oriented seminars for users<br />

and designers.<br />

On the GÜNTHER website you will<br />

find many tools and programs to<br />

make your work easier.<br />

You can now configure your hot<br />

<strong>runner</strong> system individually via the<br />

GÜNTHER Internet platform. 3-D CAD<br />

data including negative volume and<br />

drawings are available for downloading<br />

for each hot <strong>runner</strong> system.<br />

To round this service off, price<br />

information (as a PDF file) is also<br />

provided.<br />

Once you have configured your<br />

individual hot <strong>runner</strong> system, you<br />

can select various data formats. The<br />

„CADHOC V2“ System Designer and<br />

the systems running in the background<br />

generate the required data.<br />

All files are then compressed and<br />

made available for downloading.<br />

You will be notified by e-mail a few<br />

minutes later.<br />

This e-mail will contain a link to the<br />

product data for the configured hot<br />

<strong>runner</strong> system.<br />

With its high functionality, the system<br />

is designed to suit the requirements<br />

of our customers, first of all<br />

designers of injection molds and<br />

sales personnel, to meet the desire<br />

for quicker availability of complete<br />

hot <strong>runner</strong> systems including negative<br />

volumes.<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

iT<br />

Register once on our Internet platform „www.guenther-hot<strong>runner</strong>.com“ and<br />

you can then start the CADHOC V2 system designer to configure your own<br />

individual hot-<strong>runner</strong> system.<br />

Advantages of the new CADHOC system-designers version 2:<br />

• optimised calculation of the <strong>nozzle</strong> size<br />

• extensive choice of types of plastic<br />

• two different methods of configuration<br />

- application-specific by entering processing parameters<br />

- direct configuration without entering processing parameters<br />

• shorter waiting periods during the configuration process<br />

1.4. 60


Fig. Delta Tool calculation program<br />

Fig. Application database with many applications already implemented<br />

1.4. 61<br />

iT<br />

Service program<br />

Reworking the 1.2 mm gate<br />

For gate diameters smaller than ØD<br />

= 1.2 mm, the <strong>nozzle</strong> must be<br />

installed further back from the gate.<br />

You will find a Delta Tool calculation<br />

program on our homepage at<br />

www.guenther-hot<strong>runner</strong>.com under<br />

the menu item “Service” available<br />

for download free of charge.<br />

Application database<br />

The application database is a program<br />

for selecting from design proposals<br />

and machine parameter data.<br />

Following the entry of simple search<br />

criteria for hot <strong>runner</strong> requirements<br />

and material compa-tibility, the<br />

program makes available a selection<br />

of systems which have already been<br />

implemented along with their results.<br />

You can also enter your own applications<br />

directly into the data-base.<br />

The application will be reviewed and<br />

subsequently released under the<br />

menu item “Service”.<br />

The registration is free of charge.<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12


Service program<br />

Download / catalog<br />

Under the menu item Catalog you<br />

will find all hot <strong>runner</strong> components<br />

with their relevant data available as a<br />

PDF file.<br />

The online catalog provides you with<br />

the newest version of the technical<br />

information.<br />

Pressure drop /<br />

Filling analysis<br />

The melt channels are dimensioned<br />

by GÜNTHER on the basis of application-specific<br />

rheologic calculations,<br />

with pressure drop, shear<br />

and dwell time standing in the foreground.<br />

Our calculations can be expanded to<br />

include the filling analysis of plastic<br />

parts per Moldflow. This is particularly<br />

advisable when laying out family<br />

molds with different cavities. By<br />

performing this calcu-lation, we offer<br />

you support in determining an optimal<br />

gate position and demon-strate the<br />

flow front course for the ideal part<br />

filling along with anticipated air<br />

pockets and the course of the weld<br />

line.<br />

www.guenther-hot<strong>runner</strong>.com<br />

7/12 Subject to technical changes<br />

Fig. Online catalog<br />

Fig. Filling analysis<br />

Fig. BlueFlow®<br />

Energie cost comparsion<br />

iT<br />

Here you can find GÜNTHER hot <strong>runner</strong><br />

components with all the relevant information<br />

as a PDF file. Make use of extensive<br />

TM<br />

Acrobat Reader features, such as shortcuts,<br />

bookmarks and icons, for a comfortable and<br />

quick search for information!<br />

1.4. 62


Fig. Seminars for designers and users<br />

1.4. 63<br />

iT<br />

Service program<br />

Seminars for users and designers<br />

Topics, such as layout, smooth<br />

running operation and professional<br />

maintenance of GÜNTHER hot <strong>runner</strong><br />

systems, are handled in a comprehensive<br />

manner.<br />

Additional services in our program<br />

include performing injection molding<br />

experiments in our in-house labora-<br />

tory as well as conducting external<br />

seminars. Please look for dates and<br />

locations on our website<br />

www.guenther-hot<strong>runner</strong>.com under<br />

the menu item ”Seminars” or ask by<br />

phone at<br />

+49 (0) 64 51 - 5008-0.<br />

Webinar, what's that?<br />

Webinar is an acronym formed from<br />

the words web (world wide web) and<br />

seminar.<br />

In short, it is a seminar held over the<br />

Internet.<br />

Advantages for you:<br />

• concise and specific information<br />

• no travelling and overnight accommodation<br />

expenses,<br />

• no loss of working days!<br />

See website<br />

www.guenther-hot<strong>runner</strong>.com<br />

www.guenther-hot<strong>runner</strong>.com<br />

Subject to technical changes 7/12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!