14.11.2012 Views

(1) Let I be a proper ideal of a ring R; then there is a maximal ideal m ...

(1) Let I be a proper ideal of a ring R; then there is a maximal ideal m ...

(1) Let I be a proper ideal of a ring R; then there is a maximal ideal m ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Solutions to exerc<strong>is</strong>e 2<br />

(1) <strong>Let</strong> I <strong>be</strong> a <strong>proper</strong> <strong>ideal</strong> <strong>of</strong> a <strong>ring</strong> R; <strong>then</strong> <strong>there</strong> <strong>is</strong> a <strong>maximal</strong> <strong>ideal</strong> m <strong>of</strong><br />

R such that I ⊆ m.<br />

Pro<strong>of</strong>. <strong>Let</strong> S <strong>be</strong> the set <strong>of</strong> all <strong>proper</strong> <strong>ideal</strong>s which contain I; <strong>then</strong> S <strong>is</strong><br />

a partially ordered set with respect to ⊆. It <strong>is</strong> easy to check that S<br />

sat<strong>is</strong>fies the assumptions <strong>of</strong> Zorn’s Lemma. Therefore S has a <strong>maximal</strong><br />

element, say m. Of course m <strong>is</strong> a <strong>maximal</strong> <strong>ideal</strong> <strong>of</strong> R and I ⊆ m.<br />

(2) If R <strong>is</strong> a U.F.D. <strong>then</strong> every nonzero prime <strong>ideal</strong> <strong>of</strong> R contains a nonzero<br />

principal prime <strong>ideal</strong>.<br />

Pro<strong>of</strong>. <strong>Let</strong> P <strong>be</strong> a nonzero prime <strong>ideal</strong> <strong>of</strong> R; <strong>then</strong> <strong>there</strong> <strong>is</strong> an element<br />

a ∈ P such that a �= 0 and a <strong>is</strong> not a unit. Since R <strong>is</strong> a U.F.D.,<br />

a = b1 · · · bn for some irreducible elements bi. As P <strong>is</strong> prime and a ∈ P ,<br />

bi ∈ P for some i. Therefore (bi) <strong>is</strong> a nonzero principal prime <strong>ideal</strong><br />

contained in P .<br />

(3) Find a <strong>ring</strong> R and a multiplicative closed subset S <strong>of</strong> R such that <strong>there</strong><br />

are <strong>ideal</strong>s I �= J <strong>of</strong> R such that IS = JS.<br />

Solution: <strong>Let</strong> R = Z and S = Z − {0}. <strong>Let</strong> I = 2Z and J = 3Z; <strong>then</strong><br />

IS = JS = RS = Q.<br />

(4) <strong>Let</strong> p <strong>be</strong> a prime num<strong>be</strong>r. Prove that any (p)-primary <strong>ideal</strong> <strong>of</strong> Z <strong>is</strong> <strong>of</strong><br />

the form (p n ).<br />

Pro<strong>of</strong>. <strong>Let</strong> Q <strong>be</strong> a (p)-primary <strong>ideal</strong>; <strong>then</strong> Q = (k) for some positive<br />

integer k as Z <strong>is</strong> a P.I.D.. Since p m ∈ (k) for some positive integer m,<br />

k <strong>is</strong> a factor <strong>of</strong> p m . Therefore k = p n for some positive integer n.<br />

(5) <strong>Let</strong> R <strong>be</strong> a <strong>ring</strong> and S <strong>be</strong> a multiplicative subset <strong>of</strong> R. <strong>Let</strong> I <strong>be</strong> an <strong>ideal</strong><br />

<strong>of</strong> R; <strong>then</strong> ( √ I)S = √ IS.<br />

Pro<strong>of</strong>. <strong>Let</strong> a ∈ ( √ I)S; <strong>then</strong> <strong>there</strong> are b ∈ √ I, s ∈ S such that a = b/s,<br />

so that b n ∈ I, it follows that a n = b n /s n ∈ IS. Therefore a ∈ √ IS.<br />

Conversely, if a/s ∈ √ IS, <strong>then</strong> a n /s n = b/t for some n and for some<br />

b ∈ I, t ∈ S, so that <strong>there</strong> <strong>is</strong> an element u ∈ S such that u(a n t − bs n ) =<br />

0, it follows that a n tu ∈ I. Therefore atu ∈ √ I and <strong>then</strong> a/s ∈ ( √ I)S.<br />

1


(6) <strong>Let</strong> R <strong>be</strong> a <strong>ring</strong>. Then R <strong>is</strong> local if and only if for all r, s ∈ R, r + s = 1<br />

implies r or s <strong>is</strong> a unit.<br />

Pro<strong>of</strong>. <strong>Let</strong> T <strong>be</strong> the set <strong>of</strong> non-units <strong>of</strong> R.<br />

⇒ <strong>Let</strong> R <strong>be</strong> a local <strong>ring</strong>; <strong>then</strong> T <strong>is</strong> an <strong>ideal</strong> <strong>of</strong> R. <strong>Let</strong> r, s ∈ R such<br />

that r + s = 1 and s ∈ T . If t ∈ T , <strong>then</strong> 1 ∈ T . Therefore t /∈ T and t<br />

<strong>is</strong> a unit.<br />

⇐ It <strong>is</strong> enough to show that T <strong>is</strong> an <strong>ideal</strong> <strong>of</strong> R, or equivalently, T <strong>is</strong><br />

an additive subgroup <strong>of</strong> R. For th<strong>is</strong>, let r, s ∈ T . If r + s <strong>is</strong> a unit<br />

<strong>then</strong> ar + as = 1, where a = (r + s) −1 , so that ar or as <strong>is</strong> a unit by<br />

assumption, it follows that r or s <strong>is</strong> a unit. Therefore r + s ∈ T .<br />

(7) Find the inverse <strong>of</strong> 1 + x in the power series <strong>ring</strong> F [[x]].<br />

Solution: It <strong>is</strong> easy to check that (1 + x) −1 ∞�<br />

=<br />

i=0<br />

(−1) n x n .<br />

(8) <strong>Let</strong> M <strong>be</strong> an R-module; prove that annRM = {r ∈ R | rx = 0 ∀x ∈ M}<br />

<strong>is</strong> an <strong>ideal</strong> <strong>of</strong> R.<br />

Pro<strong>of</strong>. <strong>Let</strong> a, b ∈ annRM; <strong>then</strong> aM = bM = 0, so that x(a − b) =<br />

xa−xb = 0 for every x ∈ M, it follows that a−b ∈ annRM. Moreover,<br />

let a ∈ annRM and r ∈ R; <strong>then</strong> raM ⊆ aM = 0, so that ra ∈ annRM.<br />

We conclude that annRM <strong>is</strong> an <strong>ideal</strong>.<br />

(9) <strong>Let</strong> R <strong>be</strong> a <strong>ring</strong>.<br />

(a) Prove that if a, b ∈ R are NZDs, <strong>then</strong> so <strong>is</strong> ab.<br />

(b) <strong>Let</strong> Σ <strong>be</strong> the set <strong>of</strong> all <strong>ideal</strong>s in which every element <strong>is</strong> a zero-div<strong>is</strong>or.<br />

Prove that the set Σ has <strong>maximal</strong> elements and that every <strong>maximal</strong><br />

element <strong>of</strong> Σ <strong>is</strong> a prime <strong>ideal</strong>.<br />

Pro<strong>of</strong>. (a) If (ab)c = 0 for some element c ∈ R, <strong>then</strong> bc = 0 as a <strong>is</strong> a<br />

NZD, so that c = 0 as b <strong>is</strong> a NZD. Thus ab <strong>is</strong> a NZD.<br />

(b) <strong>Let</strong> ⊆ <strong>be</strong> the order <strong>of</strong> Σ; <strong>then</strong> Σ <strong>is</strong> a partially ordered set. It <strong>is</strong> easy<br />

to check that Σ sat<strong>is</strong>fies the assumptions <strong>of</strong> Zorn’s Lemma. Therefore<br />

Σ has <strong>maximal</strong> elements. <strong>Let</strong> P <strong>be</strong> a <strong>maximal</strong> element <strong>of</strong> Σ and <strong>there</strong><br />

are a, b ∈ R such that ab ∈ P , a /∈ P and b /∈ P ; <strong>then</strong> P <strong>is</strong> <strong>proper</strong>ly<br />

contained in the <strong>ideal</strong>s (a) + P and (b) + P , so that by the choice <strong>of</strong> P ,<br />

<strong>there</strong> are r, s ∈ R and c, d ∈ P such that ar + c and bs + d are NZDs, it<br />

follows that (ar + c)(bs + d) ∈ P , which <strong>is</strong> a NZD by (a). Contradicts<br />

to the fact that P ∈ Σ. Therefore P <strong>is</strong> prime.<br />

2


(10) <strong>Let</strong> M <strong>be</strong> an R-module and I <strong>be</strong> an <strong>ideal</strong> <strong>of</strong> R. If IM = 0, <strong>then</strong> M<br />

can <strong>be</strong> viewed as R/I module.<br />

Pro<strong>of</strong>. Define x · (r + I) = xr for x ∈ M and r ∈ R. Then it <strong>is</strong> easy to<br />

see that · <strong>is</strong> well-defined and M <strong>is</strong> an R/I-module.<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!