21.09.2013 Views

Topics in algebra Chapter IV: Commutative rings and modules I - 1

Topics in algebra Chapter IV: Commutative rings and modules I - 1

Topics in algebra Chapter IV: Commutative rings and modules I - 1

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Topics</strong> <strong>in</strong> <strong>algebra</strong><br />

<strong>Chapter</strong> <strong>IV</strong>: <strong>Commutative</strong> r<strong>in</strong>gs <strong>and</strong> <strong>modules</strong> I<br />

Hs<strong>in</strong>-Ju Wang<br />

Contents<br />

4.1 R<strong>in</strong>gs, ideals <strong>and</strong> homomorphisms.<br />

4.2 Basic properties of commutative r<strong>in</strong>gs.<br />

4.3 R<strong>in</strong>gs of quotients <strong>and</strong> localization.<br />

4.4 Modules, homomorphisms <strong>and</strong> exact sequences.<br />

4.5 Projective <strong>modules</strong> <strong>and</strong> <strong>in</strong>jective <strong>modules</strong>.<br />

4.6 Hom <strong>and</strong> tensor product.<br />

97


1 R<strong>in</strong>gs, ideals <strong>and</strong> homomorphisms<br />

Def<strong>in</strong>ition 1.1 A r<strong>in</strong>g is a nonempty set R together with two b<strong>in</strong>ary operations<br />

(usually denoted as addition + <strong>and</strong> multiplication) such that :<br />

(i) (R, +) is an additive (abelian) group;<br />

(ii) (ab)c = a(bc) for all a, b, c ∈ R;<br />

(iii) a(b + c) = ab + ac <strong>and</strong> (a + b)c = ac + bc for all a, b, c ∈ R.<br />

If <strong>in</strong> addition:<br />

(iv) ab = ba for all a, b ∈ R,<br />

then R is said to be a commutative r<strong>in</strong>g. If R conta<strong>in</strong>s an element 1R such<br />

that<br />

(v) 1Ra = a1R = a for all a ∈ R.<br />

then R is said to be a r<strong>in</strong>g with identity.<br />

Def<strong>in</strong>ition 1.2 Let R be a r<strong>in</strong>g.<br />

(i) An element a ∈ R is said to be a zero divisor if there is a nonzero element<br />

b ∈ R such that ab = 0 or ba = 0.<br />

(ii) An element a ∈ R is said to be nilpotent if there is a positive <strong>in</strong>teger n<br />

such that a n = 0.<br />

(iii) A nonzero element u ∈ R is said to be <strong>in</strong>vertible or a unit if u has a<br />

multiplicative <strong>in</strong>verse <strong>in</strong> R.<br />

Def<strong>in</strong>ition 1.3 A commutative r<strong>in</strong>g with identity <strong>and</strong> no zero divisor (except<br />

0) is called an (<strong>in</strong>tegral) doma<strong>in</strong>. A r<strong>in</strong>g D with identity <strong>in</strong> which every<br />

nonzero element is a unit is called a division r<strong>in</strong>g. A field is a commutative<br />

division r<strong>in</strong>g.<br />

Example 1.4 Z is an <strong>in</strong>tegral doma<strong>in</strong>. Q, R <strong>and</strong> C are fields. 2Z is a<br />

commutative r<strong>in</strong>g without identity. Zn is a commutative r<strong>in</strong>g with identity<br />

<strong>and</strong> is a field if <strong>and</strong> only if n is prime.<br />

Example 1.5 The polynomial r<strong>in</strong>g over any field (e.g. Q or R or C) <strong>in</strong> one<br />

variable is an <strong>in</strong>tegral doma<strong>in</strong>.<br />

Example 1.6 The n × n matrices (n ≥ 2) over any field F (e.g. Q or R or<br />

C) form a noncommutative r<strong>in</strong>g with identity (denoted by Mn(F )).<br />

There is a famous division r<strong>in</strong>g. The division r<strong>in</strong>g of real quaternions.<br />

98


Example 1.7 Let R be the field of real numbers. Let D be the abelian group<br />

R ⊕ R ⊕ R ⊕ R. Write the elements of D as formal sums (a0, a2, a2, a3) =<br />

a0 + a1i + a2j + a3k. (i, j, k are symbols)<br />

The addition <strong>in</strong> D is given by<br />

(a0 + a1i + a2j + a3k) + (b0 + b1i + b2j + b3k)<br />

= (a0 + b0) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k .<br />

The multiplication <strong>in</strong> D is obta<strong>in</strong>ed by multiply<strong>in</strong>g the formal sums term by<br />

term subject to the follow<strong>in</strong>g relations: (i) ri = ir, rj = jr, rk = kr for<br />

all r ∈ R; (ii) i 2 = j 2 = k 2 = ijk = −1; ij = −ji = k; jk = −ki = i;<br />

ki = −ik = j.<br />

Example 1.8 Let G be an abelian group <strong>and</strong> End G be the set of all group<br />

homomorphism from G to itself. Def<strong>in</strong>e addition <strong>in</strong> End G by (f + g)(a) =<br />

f(a) + g(a) <strong>and</strong> multiplication <strong>in</strong> End G by composition of functions. Then<br />

End G is a r<strong>in</strong>g with identity.<br />

Def<strong>in</strong>ition 1.9 Let R, S be r<strong>in</strong>gs. A function f : R −→ S is a homomorphism<br />

of r<strong>in</strong>gs if for all a, b ∈ R:<br />

f(a + b) = f(a) + f(b) <strong>and</strong> f(ab) = f(a)f(b).<br />

f is called a monomorphism (resp. epimorphism, isomorphism) if f is <strong>in</strong>jective<br />

(resp. surjective, bijective). The kernel of f, denoted by kerf, is the set<br />

{r ∈ R | f(r) = 0}.<br />

We use the symbol ∼ = for r<strong>in</strong>g isomorphisms.<br />

Example 1.10 (i) The canonical map Z −→ Zn given by a −→ ā is an<br />

epimorphism.<br />

(ii) The canonical map Q[x] −→ Q[ √ 2] given by f(x) −→ f( √ 2) is an<br />

epimorphism.<br />

(iii) The identity map 2Z −→ Z given by a −→ a is a monomorphism.<br />

Def<strong>in</strong>ition 1.11 Let R be a r<strong>in</strong>g. If there is a least <strong>in</strong>teger n such that na =<br />

0 for all a ∈ R, then R is said to have characteristic n (write charR = n).<br />

If no such n exist, then R is said to have characteristic 0 (write charR = 0).<br />

Lemma 1.12 Let R be an <strong>in</strong>tegral doma<strong>in</strong>; then charR is a prime number.<br />

99


Def<strong>in</strong>ition 1.13 Let (R, +, ·) be a r<strong>in</strong>g <strong>and</strong> S a nonempty subset of R that<br />

is closed under +, ·. If S itself a r<strong>in</strong>g under + <strong>and</strong> ·, then S is called a<br />

sub-r<strong>in</strong>g of R. An sub-r<strong>in</strong>g I of a r<strong>in</strong>g R is a left ideal (denoted by I l R) if<br />

r ∈ R <strong>and</strong> x ∈ I =⇒ rx ∈ I;<br />

I is a right ideal (denoted by I r R) if<br />

r ∈ R <strong>and</strong> x ∈ I =⇒ xr ∈ I;<br />

I is an ideal (denoted by I R) if I is both a left <strong>and</strong> right ideal.<br />

Example 1.14 Z is a sub-r<strong>in</strong>g of Q, Q is a sub-r<strong>in</strong>g of R <strong>and</strong> R is a sub-r<strong>in</strong>g<br />

of C.<br />

Example 1.15 Let R be a r<strong>in</strong>g then the set C(R) = {a ∈ R | ra = ar∀r ∈<br />

R} is a sub-r<strong>in</strong>g of R <strong>and</strong> is called the center of R. In general C(R) is not<br />

an ideal of R. For example, the center of M2(R) is R <strong>and</strong> R is not an ideal<br />

of M2(R).<br />

Example 1.16 Any ideal of Z is of the form nZ.<br />

Lemma 1.17 Every r<strong>in</strong>g R may be embedded <strong>in</strong>to a r<strong>in</strong>g S with identity.<br />

Proof. Let S be the abelian group R ⊕ Z <strong>and</strong> def<strong>in</strong>e multiplication <strong>in</strong> S by<br />

(r1, n1)(r2, n2) = (r1r2 + n2r1 + n1r2, n1n2),<br />

where ri ∈ R <strong>and</strong> ni ∈ Z. Then S is a r<strong>in</strong>g with identity (0, 1) conta<strong>in</strong><strong>in</strong>g R.<br />

Def<strong>in</strong>ition 1.18 Let X be a subset of a r<strong>in</strong>g R. Let {Ii | i ∈ Λ} be the set<br />

of all ideals of R which conta<strong>in</strong> X. Then the ideal ∩i∈ΛIi is called the ideal<br />

of R generated by the set X. This ideal is denoted (X). If X = {a}, then<br />

(X) = (a) = {ra + as + na + n i=1 riasi | r, s, ri, si ∈ R, n ∈ Z}. In this case,<br />

(a) is called a pr<strong>in</strong>cipal ideal of R.<br />

We use aR for the set {ar | r ∈ R} <strong>and</strong> Ra for the set {ra | r ∈ R}. In general<br />

a /∈ aR <strong>and</strong> a /∈ Ra. If R is commutative with identity, then aR = (a) = Ra.<br />

100


Example 1.19 Let f : R −→ S be a r<strong>in</strong>g homomorphism; then ker f is an<br />

ideal of R.<br />

Example 1.20 Let R be a r<strong>in</strong>g <strong>and</strong> I, J be ideals of R. We use IJ for the<br />

smallest ideal conta<strong>in</strong><strong>in</strong>g both I <strong>and</strong> J. If R is commutative, then IJ =<br />

{ n<br />

i=1 aibi | ai ∈ I, bi ∈ J}.<br />

A commutative r<strong>in</strong>g with identity is called a pr<strong>in</strong>cipal ideal r<strong>in</strong>g if every<br />

ideal of the r<strong>in</strong>g is pr<strong>in</strong>cipal.<br />

Example 1.21 Z is a pr<strong>in</strong>cipal ideal doma<strong>in</strong> (P.I.D. for short.).<br />

Let R be a r<strong>in</strong>g <strong>and</strong> I be an ideal of R; then the set of coset of I,<br />

{a + I | a ∈ R}, forms a r<strong>in</strong>g.<br />

Lemma 1.22 Let R be a r<strong>in</strong>g <strong>and</strong> I be an ideal of R; then the abelian group<br />

R/I = {a + I | a ∈ R} is a r<strong>in</strong>g with multiplication given by<br />

(a + I)(b + I) = ab + I.<br />

R/I is called the quotient r<strong>in</strong>g of R with respect to I. If R is commutative,<br />

then so is R/I.<br />

Example 1.23 It is easy to see that the quotient r<strong>in</strong>g Z/nZ is isomorphic<br />

to Zn.<br />

To end this section, we <strong>in</strong>troduce the fundamental theorems of r<strong>in</strong>g theory.<br />

Theorem 1.24 (First isomorphism theorem) If f : R −→ S is a homomorphism<br />

of r<strong>in</strong>gs, then f <strong>in</strong>duces an isomorphism of r<strong>in</strong>gs R/kerf ∼ = Imf,<br />

where Imf = {f(a) | a ∈ R}.<br />

Theorem 1.25 (Second isomorphism theorem) Let I <strong>and</strong> J be ideals of a<br />

r<strong>in</strong>g R. Then there is an isomorphism of r<strong>in</strong>gs I/(I ∩ J) ∼ = (I + J)/J.<br />

Theorem 1.26 (Third isomorphism theorem) Let I <strong>and</strong> J be ideals of a r<strong>in</strong>g<br />

R. If I ⊆ J, then J/I is an ideal of R/I <strong>and</strong> there is an isomorphism of<br />

r<strong>in</strong>gs (R/I)/(J/I) ∼ = R/J.<br />

101


Problem set<br />

1. F<strong>in</strong>d a formula for the <strong>in</strong>verse of a nonzero element a0 +a1i+a2j +a3k<br />

<strong>in</strong> the division r<strong>in</strong>g of real quaternions.<br />

2. Let R be a commutative r<strong>in</strong>g with identity; then the set of all units of<br />

R form a multiplicative subgroup of R.<br />

3. Let R be a commutative r<strong>in</strong>g; then the set of all nilpotent elements of<br />

R is an ideal of R.<br />

4. Let R be a r<strong>in</strong>g <strong>and</strong> I be a left ideal of R then the set annR(I) = {r ∈<br />

R | ra = 0∀a ∈ I} is an ideal of R.<br />

5. Let R be a commutative r<strong>in</strong>g <strong>and</strong> I be an ideal of R. Then the set<br />

rad(I) = √ I = {r ∈ R | r n ∈ I for some n} is an ideal of R.<br />

6. Let R be a r<strong>in</strong>g <strong>and</strong> I be an ideal of R. Then the sets I : R = {r ∈<br />

R | ar ∈ I∀a ∈ R} <strong>and</strong> 0 : I = {r ∈ R | ar ∈ 0∀a ∈ I} are ideals of R.<br />

7. Let S be the r<strong>in</strong>g of all 2 × 2 matrices over a field F . Prove the follow<strong>in</strong>g:<br />

<br />

a 0<br />

(a) The center of S consists of all matrices of the form .<br />

0 a<br />

(b) The center of S is not an ideal of S.<br />

What is the center of Mn(F )?<br />

8. A r<strong>in</strong>g R such that a 2 = a for all a ∈ R is called a Boolean r<strong>in</strong>g. Prove<br />

that every Boolean r<strong>in</strong>g is commutative <strong>and</strong> a + a = 0 for all a ∈ R.<br />

9. Let G = Z ⊕ Z. Prove that End G is a noncommutative r<strong>in</strong>g with<br />

identity.<br />

10. Let G = {1, −1, i, −i, j, −j, k, −k} be the subset of the division r<strong>in</strong>g<br />

of real quaternions. Prove that G is a group.<br />

11 Prove that a r<strong>in</strong>g R with identity is a division r<strong>in</strong>g if <strong>and</strong> only if R has<br />

102


no left ideal other than R <strong>and</strong> 0.<br />

12. An element e ∈ R is said to be idempotent if e 2 = e. F<strong>in</strong>d all idempotents<br />

of M2(Q).<br />

13. Let f : R −→ S be a r<strong>in</strong>g homomorphism, I R <strong>and</strong> J S.<br />

(a) Prove that f −1 (J) = {r ∈ R | f(r) ∈ J} is an ideal of R.<br />

(b) If f is surjective, then f(I) is an ideal of S.<br />

14. F<strong>in</strong>d all idempotents of the r<strong>in</strong>g Z17·19.<br />

15. Let D be the real quaternions group. Let x = a0+a1i+a2j+a3k ∈ D;<br />

then the conjugate of x is the element x ∗ = a0 − a1i − a2j − a3k. Prove that<br />

(xy) ∗ = y ∗ x ∗ for every elements x, y ∈ D.<br />

16. Use Exercise 15 to show the Euler’s Identity for real numbers ai, bi, ci, di,<br />

i = 1, 2.:<br />

(a 2 1 + b 2 1 + c 2 1 + d 2 1)(a 2 2 + b 2 2 + c 2 2 + d 2 2) = (a1a2 + b1b2 + c1c2 + d1d2) 2<br />

+(a1b2 − b1a2 + c1d2 − d1c2) 2<br />

+(a1c2 − c1a2 + d1b2 − b1d2) 2<br />

+(a1d2 − d1a2 + c1b2 − b1c2) 2<br />

17. Let R be a Boolean r<strong>in</strong>g. Prove that a nonzero proper ideal P is a<br />

prime ideal if <strong>and</strong> only if it is a maximal ideal.<br />

103<br />

.


2 Basic properties of commutative r<strong>in</strong>gs.<br />

From now on, every r<strong>in</strong>g is commutative with identity.<br />

Def<strong>in</strong>ition 2.1 Let R be a r<strong>in</strong>g <strong>and</strong> P be an ideal of R. P is said to be<br />

prime if P = R <strong>and</strong> for any ideal I, J of R, we have<br />

IJ ⊆ P =⇒ I ⊆ P or J ⊆ P.<br />

Prime ideals have the follow<strong>in</strong>g properties.<br />

Lemma 2.2 If P is an ideal <strong>in</strong> a r<strong>in</strong>g R such that P = R, then P is prime<br />

if <strong>and</strong> only if for all a, b ∈ R,<br />

ab ∈ P =⇒ a ∈ P or b ∈ P. (1)<br />

Proof. If P is a prime ideal <strong>and</strong> ab ∈ P for some a, b ∈ R, then (a)(b) ⊆ P ,<br />

so that (a) ⊆ P or (b) ⊆ P , it follows that a ∈ P or b ∈ P . Conversely,<br />

assume that P satisfies (1), <strong>and</strong> IJ ⊆ P for some ideals I, J of R. Assume<br />

that I P , then there is an element a ∈ I such that a /∈ P but ab ∈ P for<br />

all b ∈ J, it follows that J ⊆ P .<br />

From the above lemma, it is easy to see the follow<strong>in</strong>g:<br />

Corollary 2.3 If P is an ideal <strong>in</strong> a r<strong>in</strong>g R such that P = R, then P is<br />

prime if <strong>and</strong> only if R/P is an <strong>in</strong>tegral doma<strong>in</strong>.<br />

Another important ideals are maximal ideals.<br />

Def<strong>in</strong>ition 2.4 Let R be a r<strong>in</strong>g <strong>and</strong> M be an ideal of R such that M = R.<br />

M is said to be maximal if M is maximal with respect to the <strong>in</strong>clusion.<br />

It is easy to show by Zorn’s lemma that R has at least one maximal ideal.<br />

It is possible that R has more than one maximal ideals.<br />

Lemma 2.5 If M is an ideal <strong>in</strong> a r<strong>in</strong>g R such that M = R, then M is<br />

maximal if <strong>and</strong> only if R/M is a field.<br />

Proof. Observe first that R/M is a commutative r<strong>in</strong>g with identity.<br />

(⇒) Let M be a maximal ideal of R <strong>and</strong> a /∈ M; we need to show that ā<br />

(= a + M) is a unit <strong>in</strong> R/M. However, (a) + M = R, there are r ∈ R <strong>and</strong><br />

b ∈ M such that 1 = ar + b, it follows that ā¯r = ¯1.<br />

(⇐) Assume that R/M is a field. If N is an ideal of R such that M N,<br />

then there is an element a ∈ N such that a /∈ M, so that there is an element<br />

r ∈ R such that ā¯r = ¯1, it follows that R ⊆ (a) + M ⊆ N.<br />

An immediately consequence is the follow<strong>in</strong>g.<br />

104


Corollary 2.6 Every maximal ideal is prime.<br />

Corollary 2.7 The follow<strong>in</strong>g are equivalent for a r<strong>in</strong>g R:<br />

(i) R has only two ideals: R <strong>and</strong> 0.<br />

(ii) R is a field.<br />

(iii) 0 is a maximal ideal of R.<br />

(iv) Every r<strong>in</strong>g homomorphism from R to any r<strong>in</strong>g is an <strong>in</strong>jection.<br />

Def<strong>in</strong>ition 2.8 Let R be an <strong>in</strong>tegral doma<strong>in</strong>. An nonzero element a is said<br />

to be irreducible if a is not a unit <strong>and</strong> if a = bc for some b, c ∈ R then b or c<br />

is a unit. An nonzero element a is said to be prime if (a) is a prime ideal.<br />

An easy consequence is that if a is prime then a is irreducible. If R is a<br />

U.F.D. (unique factorization doma<strong>in</strong>), which we will <strong>in</strong>troduce later, then<br />

the converse holds.<br />

Example 2.9 Every prime ideal of Z is 0 or of the form pZ. Every maximal<br />

ideal is of the form pZ.<br />

Example 2.10 Let F [x] be the polynomial r<strong>in</strong>g <strong>in</strong> one variable over a field<br />

F . Every prime ideal of F [x] is 0 or of the form (f(x)), where f is an<br />

irreducible polynomial of F [x]. Moreover, every maximal ideal of F [x] of the<br />

form (f(x)), where f is an irreducible polynomial of F [x].<br />

We next <strong>in</strong>troduce a well-known theorem: Ch<strong>in</strong>ese Rema<strong>in</strong>der Theorem.<br />

Def<strong>in</strong>ition 2.11 Let {Ri | i ∈ I} be a nonempty family of r<strong>in</strong>gs <strong>and</strong> <br />

i∈I Ri<br />

the<br />

<br />

direct product of the additive abelian groups Ri. If the multiplication of<br />

i∈I Ri is def<strong>in</strong>ed by {ai}i∈I{bi}i∈I = {aibi}i∈I, then <br />

i∈I Ri is a r<strong>in</strong>g.<br />

If I is a f<strong>in</strong>ite set <strong>in</strong> the above def<strong>in</strong>ition, say I = {1, . . . , n}, then we often<br />

write the direct product r<strong>in</strong>g as R1 × R2 × · · · × Rn.<br />

Def<strong>in</strong>ition 2.12 Let R be a r<strong>in</strong>g <strong>and</strong> I, J be ideals of R. I <strong>and</strong> J are said<br />

to be co-maximal if I + J = R.<br />

Example 2.13 If (n, m) = 1, then nZ <strong>and</strong> mZ are co-maximal.<br />

105


Lemma 2.14 Let I1, . . . , In be ideals of a r<strong>in</strong>g R such that Ii <strong>and</strong> Ij are<br />

co-maximal for i = j, Then R = Ii + ∩j=iIj for every i.<br />

Proof. It suffice to show that R = I1 + ∩j≥2Ij. Notice that for every j ≥ 2,<br />

R = I1+Ij. Therefore R = R n−1 = <br />

j≥2 (I1+Ij) ⊆ I1+I2 · · · In ⊆ I1+∩j≥2Ij.<br />

Theorem 2.15 (Ch<strong>in</strong>ese Rema<strong>in</strong>der Theorem) Let R be a r<strong>in</strong>g <strong>and</strong> I1, . . . , In<br />

be ideals of R such that Ii <strong>and</strong> Ij are co-maximal for i = j. Then<br />

R/(I1 ∩ · · · ∩ In) ∼ = R/I1 × R/I2 × · · · × R/In.<br />

Proof. Let φ : R −→ R/I1 × R/I2 × · · · × R/In be the canonical map given<br />

by φ(r) = (r + I1, . . . , r + In); then it is clear that φ is a r<strong>in</strong>g homomorphism<br />

<strong>and</strong> kerφ = I1 ∩ · · · ∩ In, therefore to f<strong>in</strong>ish the proof, it suffices to show that<br />

φ is onto, or equivalently, to show that if b1, . . . , bn ∈ R, then there is an<br />

element b ∈ R such that<br />

b ≡ bi (mod Ii).<br />

By Lemma 2.14, there are ai ∈ Ii, ri ∈ ∩j=iIj such that bi = ai + ri <strong>and</strong><br />

ri ≡ bi (mod Ii) <strong>and</strong> ri ≡ 0 (mod Ij) for j = i.<br />

Now let b = r1 + · · · + rn; then it is easy to check that b ≡ bi (mod Ii) for<br />

every i.<br />

Corollary 2.16 Let m1, . . . , mn be positive <strong>in</strong>tegers such that (mi, mj) = 1<br />

if i = j. If b1, . . . , bn are non-negative <strong>in</strong>tegers, then there is an <strong>in</strong>teger b<br />

such that<br />

b ≡ bi (mod mi) ∀i.<br />

The second part of this section is devoted to discuss<strong>in</strong>g the properties of<br />

three k<strong>in</strong>ds of r<strong>in</strong>gs. Namely, U.F.D., P.I.D. <strong>and</strong> Euclidean doma<strong>in</strong>.<br />

Def<strong>in</strong>ition 2.17 An <strong>in</strong>tegral doma<strong>in</strong> R is a unique factorization doma<strong>in</strong><br />

(U.F.D.) provided that:<br />

(i) Any nonzero nonunit element a ∈ R can be written as a = c1 · · · cn with<br />

c1, . . . , cn irreducible.<br />

(ii) If a = c1 · · · cn <strong>and</strong> a = d1 · · · dm (ci, di irreducible) then n = m <strong>and</strong><br />

after a rearrangement, ci <strong>and</strong> di are associates for every i.<br />

106


In a doma<strong>in</strong> R, two elements a, b are associates if there is a unit u ∈ R such<br />

that a = bu.<br />

Lemma 2.18 Let R be a U.F.D. <strong>and</strong> a ∈ R. If a is irreducible then a is a<br />

prime element.<br />

Proof. Let b, c ∈ R such that bc ∈ (a) <strong>and</strong> b /∈ (a); then bc = ad for some<br />

d ∈ R. S<strong>in</strong>ce b /∈ (a), every irreducible factor of b is not associate with<br />

a, therefore there is an irreducible factor of c that associates with a, thus<br />

c ∈ (a).<br />

Theorem 2.19 Let R be an <strong>in</strong>tegral doma<strong>in</strong>; then R is a U.F.D. if <strong>and</strong> only<br />

if the follow<strong>in</strong>g hold:<br />

(i) R has the ascend<strong>in</strong>g cha<strong>in</strong> condition (a.c.c.) on pr<strong>in</strong>cipal ideals.i.e., if<br />

(a1) ⊆ (a2) ⊆ · · ·<br />

is an ascend<strong>in</strong>g cha<strong>in</strong>, then there is an <strong>in</strong>teger n such that (an) =<br />

(an+1) = · · · .<br />

(ii) Every irreducible element is a prime element.<br />

Proof. (⇒) Suppose that R is a U.F.D.. By Lemma 2.18, (ii) is satisfied. To<br />

prove (i), let (a1) ⊆ (a2) ⊆ · · · be an ascend<strong>in</strong>g cha<strong>in</strong> of pr<strong>in</strong>cipal ideals. We<br />

may assume that (ai) (ai+1) for every i. Write a1 = c1 · · · cn with c1, . . . , cn<br />

irreducible. Then it is easy to see that (an) = (an+1) = · · · . Therefore the<br />

ascend<strong>in</strong>g cha<strong>in</strong> must stationary.<br />

(⇐) We first show that every nonzero non-unit element can be written as a<br />

f<strong>in</strong>ite product of irreducible elements. Suppose not. Then the set T = {a ∈<br />

R | a = 0, a is not a unit, a is not a f<strong>in</strong>ite product of irreducible elements}<br />

is not empty. Let a1 ∈ T ; then a is reducible, so that there are non-unit<br />

b, c ∈ R such that a1 = bc, it follows that b ∈ T or c ∈ T by the def<strong>in</strong>ition<br />

of T . We may assume b ∈ T <strong>and</strong> write a2 for b. Then (a1) (a2). By us<strong>in</strong>g<br />

the fact that a2 ∈ T , we can construct a strictly ascend<strong>in</strong>g cha<strong>in</strong> of pr<strong>in</strong>cipal<br />

ideals, a contradiction. Therefore, we conclude that every nonzero nonunit<br />

element a ∈ R can be written as a f<strong>in</strong>ite product of irreducible elements.<br />

Now, suppose that a = c1 · · · cn <strong>and</strong> a = d1 · · · dm (ci, di irreducible). S<strong>in</strong>ce<br />

c1 is a prime element <strong>and</strong> d1 · · · dm ∈ (c1), there is an <strong>in</strong>teger i such that di ∈<br />

(c1). However, d1 is irreducible, we see that c1 <strong>and</strong> di are associate. We may<br />

107


assume w.l.o.g. that i = 1 <strong>and</strong> d1 = c1. It follows that c2 . . . cn = d2 · · · dm.<br />

Therefore, by <strong>in</strong>duction, m = n <strong>and</strong> di is associated with ci for every i ≥ 2<br />

after a rearrangement.<br />

Theorem 2.20 Every pr<strong>in</strong>cipal ideal doma<strong>in</strong> is a unique factorization doma<strong>in</strong>.<br />

Proof. Let R be a P.I.D.. We first show that R has the ascend<strong>in</strong>g cha<strong>in</strong><br />

condition on pr<strong>in</strong>cipal ideals. Let (a1) ⊆ (a2) ⊆ · · · be an ascend<strong>in</strong>g cha<strong>in</strong> of<br />

pr<strong>in</strong>cipal ideals of R <strong>and</strong> let I = ∪ ∞ i=1(ai); then I is an ideal <strong>and</strong> I = aR for<br />

some a ∈ R as R is a P.I.D.. S<strong>in</strong>ce a ∈ ∪ ∞ i=1(ai), there is an <strong>in</strong>teger n such<br />

that a ∈ (an), it follows that (a) = (an) = (an+1) = · · · .<br />

To f<strong>in</strong>ish the proof, by Theorem 2.19, we need to show that every irreducible<br />

element is a prime element. Let a be an irreducible element. If we can show<br />

that (a) is a maximal ideal <strong>in</strong> R, then (a) is a prime ideal, <strong>and</strong> so a is a prime<br />

element as desired. To show (a) is maximal, let (a) I; then I = (b) as R<br />

is a P.I.D., so that a = bc for some nonunit c ∈ R, it follows that b is a unit<br />

<strong>and</strong> I = R.<br />

Def<strong>in</strong>ition 2.21 Let R be a r<strong>in</strong>g <strong>and</strong> N be the set of all non-negative <strong>in</strong>tegers.<br />

R is called a Euclidean r<strong>in</strong>g if there is a map φ : R − {0} −→ N such<br />

that<br />

(i) if a, b ∈ R <strong>and</strong> ab = 0, then φ(a) ≤ φ(ab);<br />

(ii) if a, b ∈ R <strong>and</strong> b = 0, then there exist q, r ∈ R such that a = bq + r with<br />

r = 0, or r = 0 <strong>and</strong> φ(r) < φ(b).<br />

A Euclidean r<strong>in</strong>g which is an <strong>in</strong>tegral doma<strong>in</strong> is called a Euclidean r<strong>in</strong>g.<br />

Example 2.22 The r<strong>in</strong>g Z of <strong>in</strong>tegers with φ(x) = |x| is a Euclidean doma<strong>in</strong>.<br />

Example 2.23 If F is a field, let φ(x) = 1 for all x ∈ F . Then F is a<br />

Euclidean doma<strong>in</strong>.<br />

Example 2.24 If F is a field, then the polynomial r<strong>in</strong>g <strong>in</strong> one variable F [x]<br />

is a Euclidean doma<strong>in</strong> with φ(f) = degree(f).<br />

108


Example 2.25 Let R = Z[i] = {a + bi | a, b ∈ Z} (i = √ −1); then R is a<br />

r<strong>in</strong>g <strong>and</strong> is called the doma<strong>in</strong> of Gaussian <strong>in</strong>tegers. Def<strong>in</strong>e φ(a+bi) = a 2 +b 2 .<br />

Then it is easy to check that Z[i] is a Euclidean doma<strong>in</strong> under φ.<br />

Def<strong>in</strong>ition 2.26 Let R be a sub-r<strong>in</strong>g of S <strong>and</strong> a ∈ S. a is said to be <strong>in</strong>tegral<br />

over R if there is a monic polynomial f(x) ∈ R[x] such that f(a) = 0, or<br />

equivalently, there are r0, . . . , rn−1 ∈ R such that a n + r1a n−1 + · · · + rn−1a +<br />

rn = 0. S is said to be <strong>in</strong>tegral over R if every element of S is <strong>in</strong>tegral over<br />

R.<br />

Lemma 2.27 Let R be a sub-r<strong>in</strong>g of S; then the set of elements of S <strong>in</strong>tegral<br />

over R is a sub-r<strong>in</strong>g of S, denoted by ¯ R S , called the <strong>in</strong>tegral closure of R <strong>in</strong><br />

S.<br />

Def<strong>in</strong>ition 2.28 Let Q( √ d) be the quadratic field, where d is a square free<br />

<strong>in</strong>teger. Let Ad be the <strong>in</strong>tegral closure of Z <strong>in</strong> Q( √ d). Elements of Ad are<br />

called <strong>in</strong>tegers of Q( √ d).<br />

Lemma 2.29 Ad = Z[ √ d] if d ≡ 2, 3 (mod 4). Ad = Z[ 1 + √ d<br />

] if d ≡<br />

2<br />

1 (mod 4).<br />

Theorem 2.30 Any Euclidean doma<strong>in</strong> is a pr<strong>in</strong>cipal ideal doma<strong>in</strong>.<br />

Proof. Let R be a Euclidean doma<strong>in</strong> with φ : R − {0} −→ N <strong>and</strong> I be a<br />

non-zero ideal of R. Let n = m<strong>in</strong>{φ(a) | a ∈ I, a = 0}; then there is an<br />

element b ∈ I such that φ(b) = n. It is easy to check that I = (b).<br />

It is well-known that A−19 is a P.I.D. <strong>and</strong> is not a Euclidean doma<strong>in</strong>.<br />

Moreover, Ad is a P.I.D. if it is a U.F.D..<br />

To end this section, we prove that if D is a U.F.D. then so is D[x], the<br />

polynomial r<strong>in</strong>g <strong>in</strong> one variable over D.<br />

Def<strong>in</strong>ition 2.31 Let X be a non-empty subset of a r<strong>in</strong>g R. An element<br />

d ∈ R is said to be a greatest common divisor (g.c.d.) of X if<br />

(i) d|a for all a ∈ X;<br />

(ii) If c|a for all a ∈ X, then c|d.<br />

Greatest common divisors are not always exist. However, any two greatest<br />

common divisors of X are clearly associates.<br />

109


Lemma 2.32 If R is a U.F.D. then for every f<strong>in</strong>ite set {a1, . . . , an} of R<br />

there exists a greatest common divisor.<br />

Def<strong>in</strong>ition 2.33 If d is a greatest common divisor of a f<strong>in</strong>ite set {a1, . . . , an},<br />

then we use d = (a1, . . . , an) for this fact. If (a1, . . . , an) = 1, then we say<br />

that a1, . . . , an are relatively prime.<br />

Def<strong>in</strong>ition 2.34 Let D be a U.F.D. <strong>and</strong> f =<br />

n<br />

aix i ∈ D[x] be a poly-<br />

nomial. A greatest common divisor of the coefficients a0, . . . , an is called a<br />

content of f <strong>and</strong> is denoted C(f). f is said to be primitive if C(f) is a unit.<br />

In particular, if f is monic then f is primitive.<br />

Lemma 2.35 (Gauss lemma) If D is a U.F.D. <strong>and</strong> f, g ∈ D[x], then C(fg) =<br />

C(f)C(g). In particular, the product of any two primitive polynomials is<br />

primitive.<br />

Proof. S<strong>in</strong>ce f = C(f)f1 <strong>and</strong> g = C(g)g1 with f1, g1 primitive, C(fg) =<br />

C(C(f)f1C(g)g1) = C(f)C(g)C(f1g1). Therefore, it suffices to show that<br />

n<br />

f1g1 is primitive. Let f1 = aix i m<br />

<strong>and</strong> g1 = bix i m+n <br />

; then f1g1 = ckx k ,<br />

with ck = <br />

i+j=k<br />

i=0<br />

i=0<br />

i=0<br />

k=0<br />

aibj. If f1g1 is not primitive, then there is a prime element<br />

p ∈ R such that p|ck for all k. S<strong>in</strong>ce C(f1) is a unit, there is an <strong>in</strong>teger s<br />

such that<br />

p|ai for i < s <strong>and</strong> p ∤ as.<br />

Similarly, there is an <strong>in</strong>teger t such that<br />

p|bi for i < t <strong>and</strong> p ∤ bt.<br />

S<strong>in</strong>ce p is a factor of cs+t = b0as+t+b1as+t−1+· · ·+btas+· · ·+bs+t−1a1+bs+ta0,<br />

asbt ∈ (p), a contradiction. Therefore, f1g1 is primitive.<br />

Lemma 2.36 Let D be a U.F.D. with quotient field F <strong>and</strong> let f <strong>and</strong> g be<br />

primitive polynomials of D[x] such that f <strong>and</strong> g are associate <strong>in</strong> F [x]; then<br />

f <strong>and</strong> g are associate <strong>in</strong> D[x].<br />

110


Proof. By assumption, there are a, b ∈ D such that f = a/bg, or equivalently,<br />

af = bg. We may assume that (a, b) = 1. If a is not a unit then there is a<br />

prime factor of a that is a factor of C(g), which is impossible. Therefore a<br />

is a unit <strong>in</strong> D. Similarly, b is a unit. Thus, we conclude that f <strong>and</strong> g are<br />

associate <strong>in</strong> D[x].<br />

Lemma 2.37 Let D be a U.F.D. with quotient field F <strong>and</strong> let f be primitive<br />

polynomial of D[x] of positive degree such that f is irreducible <strong>in</strong> D[x]; then<br />

f is irreducible <strong>in</strong> F [x].<br />

Proof. Suppose that f is reducible <strong>in</strong> F [x]. Then there are polynomials<br />

g, h ∈ F [x] of positive degree such that f = gh. Write g = a<br />

b g1 <strong>and</strong> h = c<br />

d h1<br />

with a, b, c, d ∈ D <strong>and</strong> g1, h1 ∈ D[x]. Therefore, f = ac<br />

bd g1h1. We may assume<br />

that (ac, bd) = 1 <strong>and</strong> g1, h1 are primitive. From the above lemma, we see that<br />

f <strong>and</strong> g1h1 are associate <strong>in</strong> D[x] <strong>and</strong> f is reducible <strong>in</strong> D[x], a contradiction.<br />

Theorem 2.38 If D is a U.F.D. then so is D[x].<br />

Proof. Let F be the quotient field of D.<br />

Let f be a polynomial of D[x] of positive degree; then f = C(f)f1 for some<br />

primitive polynomial of D[x]. S<strong>in</strong>ce F [x] is a P.I.D., f1 can be written as<br />

g1 · · · gk for some irreducible polynomials of F [x]. Therefore, there are a, b ∈<br />

D such that (a, b) = 1 <strong>and</strong> f1 = a<br />

b h1 · · · hk for some primitive irreducible<br />

polynomials of D[x]. However, f1 is primitive <strong>and</strong> (a, b) = 1, we see that<br />

f1 = h1 · · · hk. S<strong>in</strong>ce C(f) is either a unit or a product of irreducible elements<br />

of D. f can be written as a f<strong>in</strong>ite product of irreducible elements of D[x].<br />

Let f be a polynomial of D[x] of positive degree. Assume that<br />

f = c1 · · · cng1 · · · gk<br />

= d1 · · · dmh1 . . . hl<br />

where ci, di, gi, hi are irreducible <strong>in</strong> D[x]. Then gi <strong>and</strong> hi are primitive. S<strong>in</strong>ce<br />

c1 · · · cn <strong>and</strong> d1 · · · dm are associate <strong>and</strong> D is a U.F.D., we see that m = n<br />

<strong>and</strong> ci, di are associate after a rearrangement. W.l.o.g. we assume that<br />

g1 · · · gk = h1 · · · hl. S<strong>in</strong>ce F [x] is a U.F.D., k = l <strong>and</strong> gi, hi are associate <strong>in</strong><br />

F [x] after a rearrangement. Therefore gi <strong>and</strong> hi are associate <strong>in</strong> D[x] as well<br />

as gi <strong>and</strong> hi are primitive.<br />

111<br />

,


Theorem 2.39 (Eisenste<strong>in</strong>’s Criterion) Let D be a U.F.D. with quotient<br />

field F . If f(x) =<br />

n<br />

aix i ∈ D[x], deg(f) ≥ 1 <strong>and</strong> p is an irreducible<br />

i=0<br />

element of D such that<br />

p ∤ an; p|ai for i = 0, . . . , n − 1; p 2 ∤ a0,<br />

then f is irreducible <strong>in</strong> F [x]. If f is primitive then f is irreducible <strong>in</strong> D[x].<br />

Proof. S<strong>in</strong>ce C(f) is a unit <strong>in</strong> F , we may assume that f is primitive. Suppose<br />

that f is reducible <strong>in</strong> F [x]. Then f is reducible <strong>in</strong> D[x]. Therefore there are<br />

m<br />

primitive polynomials g = bix i k<br />

, h = cix i of D[x] of positive degree<br />

i=0<br />

such that f = gh. S<strong>in</strong>ce p|a0 <strong>and</strong> p 2 ∤ a0, we may assume that p|b0 <strong>and</strong> p ∤ c0.<br />

Let t be the <strong>in</strong>teger such that<br />

i=0<br />

p|bi for i = 0, . . . , bt; p ∤ bt+1.<br />

Notice that t + 1 ≤ m < n as k ≥ 1. Therefore, s<strong>in</strong>ce at+1 = bt+1c0 + btc1 +<br />

· · · + b0ct+1 is a multiple of p, we conclude that bt+1c0 is a multiple of p, a<br />

contradiction. Thus, f is irreducible <strong>in</strong> F [x].<br />

Problem set<br />

1. Determ<strong>in</strong>e all prime ideals <strong>and</strong> maximal ideals of Zn.<br />

2. Let f : R −→ S be a r<strong>in</strong>g homomorphism <strong>and</strong> Q is a prime ideal of S;<br />

then f −1 (Q) is a prime ideal of R.<br />

3. Let f : R −→ S be a r<strong>in</strong>g epimorphism <strong>and</strong> Q is a maximal ideal of<br />

S; then f −1 (Q) is a maximal ideal of R.<br />

4. Let N be the ideal of all nilpotent elements of R; then R/N has no<br />

nontrivial nilpotent element.<br />

5. F<strong>in</strong>d an <strong>in</strong>tegral doma<strong>in</strong> R <strong>and</strong> an element a ∈ R such that a is irreducible<br />

but a is not a prime element of R.<br />

112


6. F<strong>in</strong>d all solutions of the equations:<br />

(a) x ≡ 1 (mod 3), x ≡ 1 (mod 5) <strong>and</strong> x ≡ 1 (mod 7).<br />

(b) x ≡ 1 (mod 3), x ≡ 2 (mod 5) <strong>and</strong> x ≡ 3 (mod 7).<br />

(c) x ≡ 1 (mod 2), x ≡ 4 (mod 5) <strong>and</strong> x ≡ 6 (mod 7).<br />

(d) x ≡ 1 (mod 3), x ≡ 2 (mod 7) <strong>and</strong> x ≡ 3 (mod 11).<br />

7. Prove that Z[i] is a Euclidean doma<strong>in</strong>.<br />

8. Prove that the <strong>in</strong>tegral closure of Z <strong>in</strong> Q is Z.<br />

9. F<strong>in</strong>d an example of a r<strong>in</strong>g R so that there is a set X with no greatest<br />

common divisor.<br />

10. Let R be a P.I.D. <strong>and</strong> d is a greatest common divisor of {a1, . . . , an}.<br />

Prove that d = r1a1 + · · · + rnan for some ri ∈ R.<br />

11. F<strong>in</strong>d a, b, c ∈ Z so that 6a + 10b + 15c = 1.<br />

12 Let R = Z[ √ d] be the sub-r<strong>in</strong>g of C, where d is a square free <strong>in</strong>teger.<br />

Let N : R −→ Z be the map given by N(a + b √ d) = a 2 − db 2 . Prove the<br />

follow<strong>in</strong>g:<br />

(i) For any α, β ∈ R, N(αβ) = N(α)(β).<br />

(ii) α is a unit if <strong>and</strong> only if N(α) = ±1.<br />

13. Let R = {a + b √ 10 | a, b ∈ Z} be the sub-r<strong>in</strong>g of R <strong>and</strong> N : R −→ Z<br />

be the map given by N(a + b √ 10) = (a + b √ 10)(a − b √ 10) = a 2 − 10b 2 .<br />

Prove the follow<strong>in</strong>g:<br />

(i) 2, 3, 4 + √ 10, 4 − √ 10 are irreducible elements of R.<br />

(ii) 2, 3, 4 + √ 10, 4 − √ 10 are not prime elements of R.<br />

(iii) R is not a U.F.D..<br />

14. Let R = {a + b √ 5 | a, b ∈ Z} be the sub-r<strong>in</strong>g of R <strong>and</strong> N : R −→ Z<br />

be the map given by N(a + b √ 5) = (a + b √ 5)(a − b √ 5) = a 2 − 5b 2 . Prove<br />

the follow<strong>in</strong>g:<br />

(i) 2, 1 + √ 5, 1 − √ 5 are irreducible elements of R.<br />

(ii) 2, 1 + √ 5, 1 − √ 5 are not prime elements of R.<br />

(iii) R is not a U.F.D..<br />

113


15. F<strong>in</strong>d all units of Z[i].<br />

16. F<strong>in</strong>d all units of Z[ √ −3].<br />

17. F<strong>in</strong>d all units of Z[ √ 2].<br />

18. Let I be a proper ideal of a r<strong>in</strong>g R; then there is a maximal ideal M<br />

of R such that I ⊆ M.<br />

19. A nonzero ideal <strong>in</strong> a pr<strong>in</strong>cipal ideal doma<strong>in</strong> is maximal if <strong>and</strong> only if<br />

it is prime.<br />

20. If R is a U.F.D. then every nonzero prime ideal of R conta<strong>in</strong>s a<br />

nonzero pr<strong>in</strong>cipal prime ideal.<br />

21. Let R be a Euclidean r<strong>in</strong>g <strong>and</strong> a ∈ R; then a is a unit if <strong>and</strong> only if<br />

φ(a) = φ(1).<br />

22. Let R = Z[ √ −3]; then 2 <strong>and</strong> 5 are irreducible <strong>in</strong> R but 3 <strong>and</strong> 7 are not.<br />

23. rove the follow<strong>in</strong>g polynomials are irreducible <strong>in</strong> [x]: (a) x 3 + x + 15.<br />

(b) X 4 + nx + 1, where n is an odd <strong>in</strong>teger.<br />

24. Factor both x 8 − 1 <strong>and</strong> x 6 − 1 <strong>in</strong>to irreducible factors <strong>in</strong> each of the<br />

follow<strong>in</strong>g r<strong>in</strong>gs: Z[x], Z2[x] <strong>and</strong> Z3[x].<br />

25. F<strong>in</strong>d the l.c.m. <strong>and</strong> g.c.d. of 11 + 3i <strong>and</strong> 8 − i <strong>in</strong> Z[i].<br />

26. Use Eisenste<strong>in</strong>’s Criterion to show that x 2 + y 2 + 1 is irreducible <strong>in</strong><br />

C[x, y].<br />

27. F<strong>in</strong>d the prime factors of 5 <strong>in</strong> Z[i].<br />

28. Let a = 3 + 8i, b = −2 + 3i ∈ Z[i]. F<strong>in</strong>d c, d = x + yi ∈ Z[i] such that<br />

a = cb + d, where either d = 0 or x 2 + y 2 < 13.<br />

29. In Z[ √ −5], the greatest common divisor of 2 <strong>and</strong> 1 + √ −5 is 1. However,<br />

the greatest common divisor of 6(1 − √ −5) <strong>and</strong> 3(1 + √ −5)(1 − √ −5)<br />

114


does not exist.<br />

30. In Z[i], f<strong>in</strong>d gcd(9 − 5i, −9 + 13i).<br />

31. If R is a subr<strong>in</strong>g of a U.F.D., then is R a U.F.D.?<br />

115


3 R<strong>in</strong>gs of quotients <strong>and</strong> localization<br />

Def<strong>in</strong>ition 3.1 Let R be a r<strong>in</strong>g <strong>and</strong> S be a subset of R. S is said to be<br />

multiplicative closed if 1 ∈ S <strong>and</strong> ab ∈ S whenever a, b ∈ S.<br />

Example 3.2 Let R be a r<strong>in</strong>g; then the follow<strong>in</strong>g sets are all multiplicative<br />

closed subsets of R.<br />

(i) S = {a n | n ≥ 0}, where a is not a nilpotent element of R.<br />

(ii) S = 1 + I = {1 + a | a ∈ I}, where I is an ideal of R.<br />

(iii) S = R − ∪ n i=1Pi, where Pi is a prime ideal for every i.<br />

(iv) S = {a ∈ R | a is not a zero divisor}.<br />

Def<strong>in</strong>ition 3.3 Let R be a r<strong>in</strong>g <strong>and</strong> S be a multiplicative subset of R. Def<strong>in</strong>e<br />

a relation on the set<br />

R × S = {(r, s) | r ∈ R, s ∈ S}<br />

as follows: (a, s) ∼ (b, t) if <strong>and</strong> only if there is an element u ∈ S such that<br />

u(at − bs) = 0. It is easy to show that ∼ is an equivalent relation. Let D =<br />

(R × S)/ ∼; <strong>and</strong> we use [a, s] for the equivalent class {(b, t) | (b, t) ∼ (a, s)};<br />

then any element <strong>in</strong> D is of the form [a, s]. Moreover, the addition on D is<br />

given by<br />

[a, s] + [b, t] = [at + bs, st]<br />

<strong>and</strong> the multiplication is given by<br />

[a, s] · [b, t] = [ab, st];<br />

then it is easy to see that D is a commutative r<strong>in</strong>g with identity [1, 1] <strong>and</strong><br />

0D = [0, 1]. For convenience, we replace [a, s] by a<br />

s <strong>and</strong> D by RS. We call<br />

RS the r<strong>in</strong>g of quotient (fraction) of R with respect to S.<br />

Remark 3.4 (a) If S consists of NZD (non-zero-divisor) then we can def<strong>in</strong>e<br />

the equivalent relation by (a, s) ∼ (b, t) if <strong>and</strong> only if (at − bs) = 0.<br />

(b) RS has the follow<strong>in</strong>g universal property: Let R be a r<strong>in</strong>g <strong>and</strong> S be a<br />

multiplicative subset of R. Let f : R −→ R ′ be a r<strong>in</strong>g homomorphism such<br />

that f(a) is a unit <strong>in</strong> R ′ for every a ∈ S; then there is an unique r<strong>in</strong>g<br />

homomorphism ˜ f : RS −→ R ′ <strong>in</strong>duced by f such that f = ˜ f ◦ iS, where<br />

iS : R −→ RS is the canonical r<strong>in</strong>g homomorphism given by iS(a) = a<br />

1 .<br />

116


Def<strong>in</strong>ition 3.5 Let R be a r<strong>in</strong>g <strong>and</strong> S be the set of all NZD of R; then<br />

the r<strong>in</strong>g of quotient of R w.r.t. S is called the total quotient r<strong>in</strong>g of R. In<br />

particular, if R is a an <strong>in</strong>tegral doma<strong>in</strong> then RS is the quotient r<strong>in</strong>g of R.<br />

Example 3.6 The quotient r<strong>in</strong>g of Z is Q <strong>and</strong> the quotient r<strong>in</strong>g of the polynomial<br />

r<strong>in</strong>g F [x] is F (x), where F is a field.<br />

Example 3.7 Let a be a nonzero <strong>in</strong>teger; then the set R = { m<br />

| n ∈ N ∪<br />

an {0}, m ∈ Z} is a r<strong>in</strong>g between Z <strong>and</strong> Q as R = ZS <strong>and</strong> S = {an | n ∈ N∪{0}}.<br />

Example 3.8 Let p be a prime number; then the set Z(p) = { m<br />

| p ∤ n, m ∈<br />

n<br />

Z} is a r<strong>in</strong>g between Z <strong>and</strong> Q as Z(p) = ZS <strong>and</strong> S = Z − pZ.<br />

Let R be a r<strong>in</strong>g <strong>and</strong> S be a multiplicative closed subset of R. In order<br />

to discover the relation between ideals of R <strong>and</strong> ideals of RS, we study the<br />

canonical r<strong>in</strong>g homomorphism iS : R −→ RS. For an ideal I of R, we use Ie for the ideal of RS generated by iS(I), i.e., Ie = iS(I)RS. Let IS = { a<br />

| a ∈<br />

s<br />

I, s ∈ S}; then it is easy to see that<br />

I e = IRS = IS.<br />

Moreover, for any ideal J of RS, we use J c for the ideal i −1<br />

S (J) ( often written<br />

as J ∩ R).<br />

Proposition 3.9 Let iS : R −→ RS be the canonical r<strong>in</strong>g homomorphism;<br />

then the follow<strong>in</strong>g hold:<br />

(a) iS is a monomorphism if <strong>and</strong> only if S consists of non-zero-divisors.<br />

(b) IS = RS if <strong>and</strong> only if I ∩ S = ∅.<br />

(c) For every ideal J of RS, J ce = J. In particular, J = IS for some ideal<br />

I of R.<br />

(d) If P is a prime ideal of R such that P ∩ S = ∅, then P ec = P .<br />

(e) If P is a prime ideal of R then PS = P RS is either RS or is a prime<br />

ideal of RS.<br />

117


Proof. (a) If S conta<strong>in</strong>s a non-zero zero-divisor, say s, then there is a nonzero<br />

element a ∈ R such that as = 0, it follows that a ∈ ker(iS) as a<br />

= 0 <strong>in</strong> RS.<br />

1<br />

If iS is not a monomorphism, then there is a non-zero element a ∈ R such<br />

that a<br />

1 = 0 <strong>in</strong> RS, or equivalently, there is an element s ∈ S such that as = 0.<br />

It follows that s is a zero-divisor.<br />

(b) If IS = RS, then 1 a<br />

= for some a ∈ I <strong>and</strong> s ∈ S, so that there is an t ∈ S<br />

1 s<br />

such that t(a − s) = 0, it follows that st ∈ I <strong>and</strong> then I ∩ S = ∅. Conversely,<br />

if I ∩ S = ∅, then there is an element a ∈ I ∩ S, so that 1 a<br />

=<br />

1 a ∈ IS, it<br />

follows that RS = IS.<br />

(c) It is clear that J ce ⊆ J. Let a a<br />

∈ J; then<br />

s 1 ∈ J so that a ∈ J c , it follows<br />

that a 1 a<br />

= ·<br />

s s 1 ∈ J ce .<br />

(d) It is clear that P ⊆ P ec . Conversely, let a ∈ P ec ; then a b<br />

= for some<br />

1 s<br />

b ∈ P <strong>and</strong> s ∈ S, so that there is an t ∈ S such that t(as − b) = 0, it follows<br />

that ast ∈ P . However, P ∩ S = ∅, we conclude that a ∈ P <strong>and</strong> P ec ⊆ P .<br />

(e) If P ∩ S = ∅ then PS = RS by (b). So, we may assume that P ∩ S = ∅.<br />

Let a b<br />

·<br />

s t ∈ PS; then ab ∈ P ec = P by (d), so that a ∈ P or b ∈ P , it follows<br />

that a<br />

s ∈ PS or b<br />

∈ PS.<br />

t<br />

From Proposition 3.9, we see that if I is an ideal of R with I ∩ S = ∅ then<br />

I = I ec does not hold <strong>in</strong> general. However, if P is a prime ideal of R with<br />

P ∩ S = ∅, then P ec = P . Therefore we may ask that what k<strong>in</strong>d of ideals <strong>in</strong><br />

R will satisfy I ec = I. The answer is primary ideals.<br />

Def<strong>in</strong>ition 3.10 Let Q be an ideal of a r<strong>in</strong>g R; Q is said to primary if<br />

ab ∈ Q then either a ∈ Q or b n ∈ Q for some positive <strong>in</strong>teger n.<br />

Lemma 3.11 Let Q be a primary ideal of a r<strong>in</strong>g R; then √ Q is a prime<br />

ideal.<br />

Proof. Let P = √ Q <strong>and</strong> ab ∈ P with b /∈ P ; then b n /∈ Q for every n, so that<br />

by the def<strong>in</strong>ition of primary ideal a ∈ Q ⊆ P .<br />

From now on, if Q is a primary ideal of a r<strong>in</strong>g R with √ Q = P , then we say<br />

that Q is a P -primary ideal.<br />

Corollary 3.12 The follow<strong>in</strong>g are equivalent for an ideal of a r<strong>in</strong>g R:<br />

118


(a) Q is a P -primary ideal.<br />

(b) √ Q = P is a prime ideal <strong>and</strong> if ab ∈ Q with b /∈ P then a ∈ Q.<br />

Lemma 3.13 Let iS : R −→ RS be the canonical r<strong>in</strong>g homomorphism; then<br />

for every P -primary ideal Q, we have Q ec = Q <strong>and</strong> √ QS = PS if P ∩ S = ∅.<br />

Proof. It is clear that Q ⊆ Qec . Conversely, let a ∈ Qec ; then a b<br />

=<br />

1 s for<br />

some b ∈ Q <strong>and</strong> s ∈ S, so that there is an t ∈ S such that t(as − b) = 0, it<br />

follows that ast ∈ Q. However, P ∩ S = ∅, we conclude by Corollary 3.12<br />

that a ∈ Q <strong>and</strong> Qec ⊆ Q.<br />

To show that QS is PS-primary; let a b<br />

·<br />

s t ∈ QS with b<br />

t /∈ √ QS; then ab ∈<br />

Qec = Q with b /∈ P , so that a ∈ Q, it follows that a<br />

s ∈ QS. Moreover, it is<br />

easy to see that √ QS = PS.<br />

From the above, we obta<strong>in</strong> the follow<strong>in</strong>g:<br />

Corollary 3.14 Let R be a r<strong>in</strong>g <strong>and</strong> S be a multiplicative closed subset of<br />

R; then there is a one to one correspondence between<br />

<strong>and</strong><br />

{Q | Q is a primary ideal of R with Q ∩ S = ∅}<br />

{Q | Q is a primary ideal of RS}.<br />

Def<strong>in</strong>ition 3.15 Let R be a r<strong>in</strong>g; then R is said to be local if R has only one<br />

maximal ideal. R is said to be semi-local if R has only f<strong>in</strong>itely many maximal<br />

ideals.<br />

Example 3.16 Let p be a prime number; then the set Z(p) = { m<br />

n<br />

n, m, n ∈ Z} is a local r<strong>in</strong>g.<br />

| p ∤<br />

Proof. Let P = { m<br />

| p ∤ n, p|m, m, n ∈ Z}; then it is easy to see that P is an<br />

n<br />

ideal of Z(p). Moreover, if I is an ideal of Z(p) such that I P , then there is<br />

an a ∈ I such that a /∈ P . However, a = m<br />

for some m, n such that p ∤ m<br />

n<br />

<strong>and</strong> p ∤ n, therefore a is a unit of Z(p) <strong>and</strong> I = Z(p).<br />

Lemma 3.17 The follow<strong>in</strong>g are equivalent for a r<strong>in</strong>g R:<br />

119


(a) R is a local r<strong>in</strong>g.<br />

(b) The set of non-units of R is conta<strong>in</strong>ed <strong>in</strong> a proper ideal of R.<br />

(c) The set of non-units of R forms an ideal.<br />

Proof. Let T be the set of all non-units of R.<br />

(a) ⇒ (b) Let P be the unique maximal ideal of R <strong>and</strong> a /∈ P . If a is not<br />

a unit, then (a) ⊆ M for some maximal ideal of R, so that a ∈ M = P , a<br />

contradiction. Therefore a is a unit <strong>and</strong> T ⊆ P .<br />

(b) ⇒ (c) Suppose that T ⊆ P for some proper ideal P . As a proper ideal,<br />

P consists of non-units, therefore P ⊆ T <strong>and</strong> then T = P is an ideal of R.<br />

(c) ⇒ (a) By assumption, T is an ideal of R. Let I be an ideal of R such<br />

that I T ; then there is an element a ∈ I \ T , so that a is a unit <strong>and</strong><br />

I = R. Therefore every proper ideal of R is conta<strong>in</strong>ed <strong>in</strong> T <strong>and</strong> T is the<br />

unique maximal ideal of R.<br />

Example 3.18 Let R be a r<strong>in</strong>g <strong>and</strong> S = R − ∪ n i=1Pi, where Pi is a prime<br />

ideal of R for every i; then RS is a semi-local r<strong>in</strong>g <strong>and</strong> the maximal ideals of<br />

RS is conta<strong>in</strong>ed <strong>in</strong> {P e 1 , . . . , P e n}. If S = R − P for some prime P of R, then<br />

RS (often written as RP ) is a local r<strong>in</strong>g with maximal ideal PS = P RP .<br />

The r<strong>in</strong>g RP is called the localization of R at P . There is a well-known<br />

local r<strong>in</strong>g: the formal power series r<strong>in</strong>g.<br />

Def<strong>in</strong>ition 3.19 Let F be a field; then the set<br />

∞<br />

F [[x]] = {<br />

i=0<br />

aix i | ai ∈ F }<br />

of all formal power series is a r<strong>in</strong>g under the formulas:<br />

<strong>and</strong><br />

where ck = <br />

i+j=k<br />

∞<br />

aix i +<br />

i=0<br />

∞<br />

bix i =<br />

i=0<br />

∞<br />

(ai + bi)x i<br />

i=0<br />

∞<br />

( aix i ∞<br />

) · ( bix i ) =<br />

i=0<br />

i=0<br />

∞<br />

ckx k ,<br />

k=0<br />

aibj = a0bk + a1bk−1 + · · · + akb0.<br />

120


Example 3.20 Let F be a field; then the formal power series r<strong>in</strong>g F [[x]] is<br />

a local r<strong>in</strong>g.<br />

Proof. It is enough to show that (x) is the unique maximal ideal of F [[x]]. For<br />

∞<br />

this, let f =<br />

i=0<br />

aix i /∈ (x); then a0 = 0. Let b0 = a −1<br />

0 <strong>and</strong> bi = −a −1<br />

0 (bi−1a1+<br />

∞<br />

· · · + b0ai) for every i ≥ 1; then it is easy to see that f · ( bix i ) = 1 <strong>and</strong> f<br />

is a unit <strong>in</strong> F [[x]].<br />

Problem set<br />

1. Let R be an <strong>in</strong>tegral doma<strong>in</strong> <strong>and</strong> S be a multiplicative subset of R.<br />

Def<strong>in</strong>e a relation on the set R × S as follows: (a, s) ∼ (b, t) if <strong>and</strong> only if<br />

(at − bs) = 0. Prove that ∼ is an equivalent relation.<br />

2. F<strong>in</strong>d a r<strong>in</strong>g R <strong>and</strong> a multiplicative closed subset S of R such that iS<br />

is not 1-1.<br />

3. F<strong>in</strong>d a r<strong>in</strong>g R <strong>and</strong> a multiplicative closed subset S of R such that there<br />

are ideals I = J of R such that IS = JS.<br />

4. Let p be a prime number. Prove that any (p)-primary ideal of Z is of<br />

the form (p n ).<br />

5. Let R be a r<strong>in</strong>g <strong>and</strong> S be a multiplicative subset of R. Prove that<br />

(I1 ∩ I2) e = I e 1 ∩ I e 2, (I1I2) e = I e 1I e 2 <strong>and</strong> (I1 + I2) e = I e 1 + I e 2.<br />

6. Prove that if R is a P.I.D., then so is RS, where S is a multiplicative<br />

closed subset of R.<br />

7. Let R be a r<strong>in</strong>g <strong>and</strong> S be a multiplicative subset of R. Let I be an<br />

ideal of R; then ( √ I)S = √ IS.<br />

8. If S = {2, 4} <strong>and</strong> R = Z6, then RS ∼ = Z3.<br />

121<br />

i=0


9. Let R be a r<strong>in</strong>g. Then R is local if <strong>and</strong> only if for all r, s ∈ R, r +s = 1<br />

implies r or s is a unit.<br />

10. Let R be a r<strong>in</strong>g <strong>and</strong> M be a maximal ideal of R; then R/M n is a<br />

local r<strong>in</strong>g, where n is a positive <strong>in</strong>teger.<br />

11. Let R be a r<strong>in</strong>g. Prove that the follow<strong>in</strong>g are equivalent:<br />

(a) R has a unique prime ideal.<br />

(b) Every nonunit is nilpotent.<br />

(c) R has a unique m<strong>in</strong>imal prime which conta<strong>in</strong>s all zero-divisors, <strong>and</strong> all<br />

non-units of R are zero-divisor.<br />

12. Let R <strong>and</strong> R ′ be r<strong>in</strong>gs. R ′ is said to a homomorphic image of R if<br />

there is a epimorphism from R to R ′ . Prove that every homomorphic image<br />

of a local r<strong>in</strong>g is local.<br />

13. Let F be a field. Prove that F [x]S is a local r<strong>in</strong>g, where S =<br />

n<br />

{ aix i | a0 = 0, ai ∈ F }.<br />

i=0<br />

14. F<strong>in</strong>d the <strong>in</strong>verse of 1 + x <strong>in</strong> the power series r<strong>in</strong>g F [[x]].<br />

15. Let S <strong>and</strong> T be two multiplicative closed subsets of a r<strong>in</strong>g R. Prove<br />

that RST ∼ = (RS)iS(T ), where iS is the canonical r<strong>in</strong>g homomorphism from R<br />

to RS.<br />

16. Let R be a r<strong>in</strong>g. Prove that if a, b ∈ R are NZDs then so is ab.<br />

122


4 Modules, homomorphisms <strong>and</strong> exact sequences<br />

Def<strong>in</strong>ition 4.1 Let R be a r<strong>in</strong>g. A left R-module is an additive abelian group<br />

M together with a function R × M −→ M (the image of (r, x) is denoted by<br />

rx) such that for all r, s ∈ R <strong>and</strong> x, y ∈ M:<br />

(a) r(x + y) = rx + ry.<br />

(b) (r + s)x = rx + sx.<br />

(c) r(sx) = (rs)x.<br />

(d) 1Rx = x.<br />

Right R-<strong>modules</strong> are def<strong>in</strong>ed <strong>in</strong> a similar fashion.<br />

Def<strong>in</strong>ition 4.2 Let R be a r<strong>in</strong>g. M is an R-module if M is both a left <strong>and</strong><br />

a right R-module, <strong>and</strong> rx = xr for all r ∈ R <strong>and</strong> x ∈ M.<br />

Example 4.3 Let G be an abelian group then G is a Z-module.<br />

Example 4.4 Let F be a field; then any F -module is a vector space over F .<br />

Example 4.5 Let R be a r<strong>in</strong>g; then R is an R-module <strong>and</strong> every ideal of R<br />

is an R-module.<br />

Example 4.6 Let {Mi | i ∈ Λ} be R-<strong>modules</strong>; then, <br />

Mi, the direct prod-<br />

uct of the abelian groups Mi is an R-module with the action of R given by<br />

r{ai} = {rai}.<br />

Example 4.7 Let R be a r<strong>in</strong>g <strong>and</strong> R n = ⊕ n i=1R be the direct sum of n copies<br />

of the abelian group R; then R n is an R-module with the action of R given<br />

by r(a1, · · · , an) = (ra1, · · · , ran).<br />

Example 4.8 Let f : R −→ S be a r<strong>in</strong>g homomorphism; then S can be<br />

viewed as an R-module by def<strong>in</strong>e ra = f(r)a for all r ∈ R, a ∈ S. In<br />

particular, every quotient r<strong>in</strong>g R/I (I is an ideal of R) is an R-module as<br />

r(a + I) = ra + I.<br />

123<br />

i∈Λ


Example 4.9 Let M be an R-module <strong>and</strong> I be an ideal of R; then the set<br />

n<br />

IM = { aixi | ai ∈ I, xi ∈ M} is an R-module.<br />

i=1<br />

Def<strong>in</strong>ition 4.10 Let M <strong>and</strong> N be two R-<strong>modules</strong>. A function f : M −→ N<br />

is a homomorphism of R-<strong>modules</strong> (R-homomorphism or R-l<strong>in</strong>ear map) if for<br />

all x, y ∈ M, r ∈ R:<br />

f(x + y) = f(x) + f(y) <strong>and</strong> f(rx) = rf(x).<br />

f is called a monomorphism (resp. epimorphism, isomorphism) if f is <strong>in</strong>jective<br />

(resp. surjective, bijective). The kernel of f, denoted by kerf, is<br />

the set {x ∈ M | f(x) = 0}. The image of f, denoted by Imf, is the set<br />

{f(x) | x ∈ M}.<br />

Notice that if f : M −→ N is an R-module homomorphism, then f is a<br />

monomorphism if <strong>and</strong> only if kerf = 0.<br />

In the sequel, we use the symbol ∼ = for R-module isomorphisms.<br />

Def<strong>in</strong>ition 4.11 Let R be a r<strong>in</strong>g <strong>and</strong> M be an R-module. A subgroup N of<br />

M is a submodule of M if rx ∈ N whenever r ∈ R <strong>and</strong> x ∈ N.<br />

Def<strong>in</strong>ition 4.12 Let N ⊆ M be R-<strong>modules</strong>; then the abelian group M/N =<br />

{x + N | x ∈ M} is an R-module with r(x + N) = rx + N for all x ∈ M <strong>and</strong><br />

r ∈ R.<br />

Example 4.13 Let f : nZ −→ mZ given by f(na) = ma is a Z-module<br />

isomorphism. Hence nZ ∼ = mZ as Z-module.<br />

Example 4.14 Let R be a r<strong>in</strong>g; then every ideal of R is a sub-module of R.<br />

Example 4.15 Let f : M −→ N be an R-module homomorphism; then<br />

kerf is a submodule of M <strong>and</strong> Imf is a submodule of N.<br />

Example 4.16 Let M be an R-module <strong>and</strong> I be an ideal of R, then IM is<br />

a submodule of M. Moreover, if x ∈ M, then xR is a submodule of M.<br />

Example 4.17 Let {Mi | i ∈ Λ} be R-<strong>modules</strong>; then ⊕i∈ΛMi, the direct sum<br />

of the abelian groups Mi, is a submodule of <br />

Mi.<br />

124<br />

i∈Λ


As <strong>in</strong> r<strong>in</strong>g theory, we have some fundamental theorems for <strong>modules</strong>.<br />

Theorem 4.18 If f : M −→ N is a homomorphism of R-<strong>modules</strong>, then f<br />

<strong>in</strong>duces an isomorphism of R-<strong>modules</strong> M/kerf ∼ = Imf.<br />

Theorem 4.19 Let M <strong>and</strong> N be R-sub<strong>modules</strong> of an R-<strong>modules</strong> L. Then<br />

there is an isomorphism of R-<strong>modules</strong> M/(M ∩ N) ∼ = (M + N)/N.<br />

We next discuss the notion: generators.<br />

Def<strong>in</strong>ition 4.20 Let M an R-module <strong>and</strong> X be a non-empty subset of M;<br />

then the submodule of M generated by X, is denoted by (X), is the <strong>in</strong>tersection<br />

of all sub<strong>modules</strong> of M conta<strong>in</strong><strong>in</strong>g X, or equivalently, the set<br />

n<br />

{ rixi | ri ∈ R, xi ∈ X}. If X = {x1, . . . , xn} is a f<strong>in</strong>ite set, then<br />

i=1<br />

(X) = (x1, . . . , xn)R = x1R + · · · + xnR.<br />

Def<strong>in</strong>ition 4.21 An R-module M is said to be f<strong>in</strong>itely generated (f.g. for<br />

short) if there are x1, . . . , xn ∈ M such that M is generated by these elements.<br />

M is said to by cyclic if M is generated by a s<strong>in</strong>gle element x, i.e., M = xR.<br />

Lemma 4.22 Let M be an R-module. M is cyclic if <strong>and</strong> only if M ∼ = R/I<br />

for some ideal I of R.<br />

Proof. (⇒) By assumption, there is an element x ∈ M such that M = xR.<br />

Let φ : R −→ xR be the map given by φ(r) = xr; then it is easy to see that<br />

φ is an R-module epimorphism. Let I = kerφ; then R/I ∼ = M as R-module.<br />

(⇐) If M ∼ = R/I for some ideal I of R then s<strong>in</strong>ce R/I is generated by 1 + I,<br />

M is cyclic.<br />

Lemma 4.23 Let M be an R-module generated by {x1, . . . , xn}; then there<br />

is an epimorphism from R n to M.<br />

Proof. Let φ : R n −→ M be the map given by φ((a1, . . . , an)) =<br />

n<br />

aixi;<br />

then it is easy to check that φ is an epimorphism of R-<strong>modules</strong>.<br />

An important tool <strong>in</strong> study<strong>in</strong>g <strong>modules</strong> theory is the notion: exact sequences.<br />

125<br />

i=1


Def<strong>in</strong>ition 4.24 A pair of <strong>modules</strong> homomorphisms, L f<br />

−→ M g<br />

−→ N is<br />

said to be exact at M if kerg = Imf. A f<strong>in</strong>ite sequence of <strong>modules</strong> homo-<br />

morphisms, M0<br />

f1<br />

−→ M1<br />

f2<br />

−→ · · · fn−1<br />

−→ Mn−1<br />

fn<br />

−→ Mn is said to be exact (resp.<br />

a complex) if kerfi+1 = Imfi (resp. Imfi ⊆ kerfi+1) for i = 1, 2, . . . , n − 1.<br />

An <strong>in</strong>f<strong>in</strong>ite sequence of <strong>modules</strong> homomorphisms, · · · fi−1<br />

−→ Mi−1<br />

fi<br />

−→ Mi<br />

fi+1<br />

−→<br />

Mi+1<br />

fi+2<br />

−→ · · · is said to be exact (resp. a complex) if kerfi+1 = Imfi (resp.<br />

Imfi ⊆ kerfi+1) for every i.<br />

Def<strong>in</strong>ition 4.25 A f<strong>in</strong>ite sequence of <strong>modules</strong> homomorphisms, 0 −→ L f<br />

−→<br />

M g<br />

−→ N −→ 0 is said to be a short exact sequence (s.e.s. for short ) if it is<br />

exact.<br />

Remark 4.26 If 0 −→ L f<br />

−→ M g<br />

−→ N −→ 0 is a s.e.s. then f is 1-1 <strong>and</strong><br />

g is onto.<br />

Example 4.27 Let R be a r<strong>in</strong>g <strong>and</strong> I be an ideal of R; then<br />

0 −→ I<br />

i<br />

−→ R π<br />

−→ R/I −→ 0<br />

is a s.e.s., where i is the <strong>in</strong>clusion map <strong>and</strong> π is the canonical surjective map.<br />

Example 4.28 Let f : M −→ N be an R-homomorphism; then f <strong>in</strong>duces<br />

an exact sequence:<br />

0 −→ kerf<br />

i<br />

−→ M f<br />

−→ N π<br />

−→ N/Imf −→ 0,<br />

where i is the <strong>in</strong>clusion map <strong>and</strong> π is the canonical surjective map.<br />

Example 4.29 Let M <strong>and</strong> N be R-<strong>modules</strong>; then<br />

0 −→ M f<br />

−→ M ⊕ N g<br />

−→ N −→ 0<br />

is a s.e.s., where f is the R-homomorphism given by f(x) = (x, 0) <strong>and</strong> g is<br />

the R-homomorphism given by g(x, y) = y, where x ∈ M <strong>and</strong> y ∈ N.<br />

There are several important results of short exact sequences.<br />

Lemma 4.30 Let 0 −→ L f<br />

−→ M g<br />

−→ N −→ 0 be a s.e.s.; then the follow<strong>in</strong>g<br />

hold:<br />

126


(a) If M is f.g. then so is N.<br />

(b) If L <strong>and</strong> N are f.g. then so is M.<br />

Proof. (a) If M is generated by {x1, . . . , xn}, then it is clear that N is generated<br />

by {g(x1), . . . , g(xn)}.<br />

(b) Suppose that L is generated by {x1, . . . , xn} <strong>and</strong> N is generated by<br />

{y1, . . . , yk}. Let {z1, . . . , zk} ⊆ M such that g(zi) = yi for every i; then<br />

we shall see that M is generated by {z1, . . . , zk, f(x1), . . . , f(xn)}. To show<br />

this, let x ∈ M; then g(x) ∈ N, so that there are r1 . . . , rk ∈ R such that<br />

k<br />

k<br />

g(x) = riyi, it follows that x − rizi ∈ kerg = Imf. Therefore, there<br />

i=1<br />

are s1, . . . , sn ∈ R such that x −<br />

i=1<br />

k<br />

rizi =<br />

i=1<br />

n<br />

sif(xi). Thus, we conclude<br />

that M is generated by {z1, . . . , zk, f(x1), . . . , f(xn)}.<br />

There is a well-known result about s.e.s.: called The snake’s lemma.<br />

Lemma 4.31 (The snake’s lemma) Let<br />

i=1<br />

0 −→ L<br />

f<br />

−→ M g<br />

−→ N −→ 0<br />

↓ α ↓ β ↓ γ<br />

0 −→ L ′ f ′<br />

−→ M ′ g ′<br />

−→ N ′ −→ 0<br />

be a commutative diagram of R-<strong>modules</strong> <strong>and</strong> R-homomorphisms such that<br />

each row is a s.e.s.. Then there is a long exact sequence<br />

0 −→ kerα f1<br />

−→ kerβ g1<br />

−→ kerγ d<br />

−→ L ′ /Imα f ′ 1 ′<br />

g<br />

−→ M /Imβ ′ 1 ′<br />

−→ N /Imγ −→ 0,<br />

where f1 (resp. g1) is an R-homomorphism <strong>in</strong>duced by f (resp. g) <strong>and</strong> f ′ 1<br />

(resp. g ′ 1) is an R-homomorphism <strong>in</strong>duced by f ′ (resp. g ′ ).<br />

Proof. (Sketch) 0 −→ kerα f1<br />

−→ kerβ is exact:<br />

Let x ∈ kerα such that f1(x) = 0; then x = 0 as f is 1-1, so that<br />

kerf1 = 0.<br />

kerα f1<br />

−→ kerβ g1<br />

−→ kerγ is exact:<br />

Let x ∈ kerg1; then g(x) = 0. S<strong>in</strong>ce kerg = Imf, there is an element<br />

y ∈ L such that x = f(y), it follows that (f ′ ◦ α)(y) = (β ◦ f)(y) = β(x) = 0.<br />

S<strong>in</strong>ce f ′ is 1-1, α(y) = 0 <strong>and</strong> then y ∈ kerα. Therefore x = f1(y).<br />

127


M ′ /Imβ g′ 1 ′ ′ −→ N /Imγ −→ 0 is exact as g is onto.<br />

L ′ /Imα f ′ 1 ′<br />

g<br />

−→ M /Imβ ′ 1 ′ −→ N /Imγ is exact:<br />

Let x + Imβ ∈ kerg ′ 1; then g ′ (x) ∈ Imγ, so that there is an element<br />

y ∈ N such that g ′ (x) = γ(y). S<strong>in</strong>ce g is onto, there is an element x ′ ∈ M<br />

such that g(x ′ ) = y. It follows that g ′ (x − β(x ′ )) = g ′ (x) − (γ ◦ g)(x ′ ) = 0.<br />

Therefore there is an element z ∈ L ′ such that f ′ (z) = x − β(x ′ ). Hence<br />

f ′ 1(z + Imα) = x + Imβ.<br />

To f<strong>in</strong>ish the proof, we need to know the def<strong>in</strong>ition of d. The map d :<br />

kerγ −→ L ′ /Imα is given as follows: Let z ∈ kerγ. S<strong>in</strong>ce g is onto <strong>and</strong><br />

z ∈ N, there is an element y ∈ M such that g(y) = z. Furthermore,<br />

(g ′ ◦ β)(y) = (γ ◦ g)(y) = 0, therefore β(y) ∈ kerg ′ = Imf ′ . Hence, there<br />

is an element x ∈ L ′ such that f ′ (x) = β(y). Now, d(z) = x + Imα.<br />

From the above, we need to show that d is well-def<strong>in</strong>ed, i.e., the def<strong>in</strong>ition is<br />

<strong>in</strong>dependent of the choice of y. Suppose there is another element y ′ ∈ M such<br />

that g(y ′ ) = z. Then β(y ′ ) = f ′ (x ′ ) for some x ′ ∈ L ′ . On the other h<strong>and</strong>,<br />

s<strong>in</strong>ce y−y ′ ∈ kerg = Imf, there is an element x ′′ ∈ L such that f(x ′′ ) = y−y ′ .<br />

S<strong>in</strong>ce f ′ is 1-1, α(x ′′ ) = x − x ′ . This shows that x + Imα = x ′ + Imα.<br />

kerβ g1<br />

−→ kerγ d<br />

−→ L ′ /Imα is exact:<br />

Let z ∈ kerγ <strong>and</strong> z ∈ kerd. Let x ∈ L ′ <strong>and</strong> y ∈ M be such that g(y) = z<br />

<strong>and</strong> f ′ (x) = β(y). S<strong>in</strong>ce d(z) = 0, x ∈ Imα, so there is an element x ′ ∈ L<br />

such that x = α(x ′ ). It follows that β(y) = (f ′ ◦ α)(x ′ ) = (β ◦ f)(x ′ ).<br />

Therefore y − f(x ′ ) ∈ kerβ. S<strong>in</strong>ce g(y − f(x ′ )) = g(y) = z, z ∈ Img1.<br />

−→ L ′ /Imα f ′ 1<br />

Let x ∈ L ′ such that f ′ (x) ∈ Imβ; then there is an element y ∈ M such<br />

that β(y) = f ′ (x). S<strong>in</strong>ce (g ′ ◦ f ′ ) = 0, (γ ◦ g)(y) = (g ′ ◦ β)(y) = 0. Let<br />

z = g(y); then z ∈ kerγ, so that by the def<strong>in</strong>ition of d, d(z) = x + Imα <strong>and</strong><br />

kerf ′ 1 ⊆ Im(d).<br />

kerγ d<br />

−→ M ′ /Imβ is exact:<br />

Corollary 4.32 (The short five lemma) Let<br />

0 −→ L<br />

f<br />

−→ M g<br />

−→ N −→ 0<br />

↓ α ↓ β ↓ γ<br />

0 −→ L ′ f ′<br />

−→ M ′ g ′<br />

−→ N ′ −→ 0<br />

be a commutative diagram of R-<strong>modules</strong> <strong>and</strong> R-homomorphisms such that<br />

each row is a s.e.s.. Then the follow<strong>in</strong>g hold:<br />

(a) If α <strong>and</strong> γ are monomorphism then so is β.<br />

128


(b) If α <strong>and</strong> γ are epimorphism then so is β.<br />

(c) If α <strong>and</strong> γ are isomorphism then so is β.<br />

Theorem 4.33 Let 0 −→ L f<br />

−→ M g<br />

−→ N −→ 0 be a s.e.s.; then the<br />

follow<strong>in</strong>g conditions are equivalent:<br />

(a) There is an R-homomorphism g ′ : N −→ M with g ◦ g ′ = idN.<br />

(b) There is an R-homomorphism f ′ : M −→ L with f ′ ◦ f = idL.<br />

(c) The s.e.s. is isomorphic (with identity maps on L <strong>and</strong> N) to the s.e.s.<br />

0 −→ L i<br />

−→ L ⊕ N π<br />

−→ N −→ 0. In particular, M ∼ = L ⊕ N.<br />

Proof. (a)⇒(c) The homomorphisms f <strong>and</strong> g ′ <strong>in</strong>duce a module homomorphism<br />

φ : L ⊕ N −→ M, given by φ(a, b) = f(a) + g ′ (b). It is easy to see<br />

that the follow<strong>in</strong>g diagram<br />

0 −→ L<br />

i<br />

−→ L ⊕ N π<br />

−→ N −→ 0<br />

↓ idL ↓ φ ↓ idN<br />

0 −→ L<br />

f<br />

−→ M<br />

g<br />

−→ N −→ 0<br />

is commutative. By Corollary 4.32, φ is an isomorphism.<br />

(b)⇒(c) The homomorphisms f ′ <strong>and</strong> g <strong>in</strong>duce a module homomorphism ψ :<br />

M −→ L ⊕ N, given by φ(a) = (f ′ (a), g(a)). It is easy to see that the<br />

follow<strong>in</strong>g diagram<br />

0 −→ L<br />

f<br />

−→ M<br />

g<br />

−→ N −→ 0<br />

↓ idL ↓ ψ ↓ idN<br />

0 −→ L<br />

i<br />

−→ L ⊕ N π<br />

−→ N −→ 0<br />

is commutative. By Corollary 4.32, ψ is an isomorphism.<br />

(c) ⇒ (a) <strong>and</strong> (c) ⇒ (b) are easy.<br />

Def<strong>in</strong>ition 4.34 Let M be an R-module. M is said to be simple if M has<br />

no sub<strong>modules</strong> other than 0 <strong>and</strong> M itself.<br />

Example 4.35 If p is a prime number then Z/pZ is a simple Z-module. In<br />

fact, if m is a maximal ideal of a r<strong>in</strong>g R, then R/m is a simple R-module.<br />

129


Lemma 4.36 Let M be a simple R-module; then there is a maximal ideal m<br />

of R such that M ∼ = R/m.<br />

Def<strong>in</strong>ition 4.37 Let M be an R-module. M is said to be a f<strong>in</strong>ite length<br />

module if there is a f<strong>in</strong>ite cha<strong>in</strong> of R-sub<strong>modules</strong> of M:<br />

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn−1 ⊆ Mn = M<br />

such that Mi+1/Mi is simple for i = 0, . . . , n − 1. If Mi = Mi+1 for every i,<br />

we say that the length of M is n <strong>and</strong> denoted by lR(M) = n.<br />

We will show later that lR(M) is well-def<strong>in</strong>ed.<br />

Example 4.38 Z/30Z is a f<strong>in</strong>ite length module as<br />

0 ⊆ 15Z/30Z ⊆ 5Z/30Z ⊆ Z/30Z<br />

<strong>and</strong> 15Z/30Z ∼ = Z/2Z, 5Z/30Z<br />

15Z/30Z ∼ = Z/3Z <strong>and</strong> Z/30Z<br />

5Z/30Z ∼ = Z/5Z. In particular,<br />

lZ(Z/30Z) = 3.<br />

Later we will show that if 0 −→ L f<br />

−→ M g<br />

−→ N −→ 0 is a s.e.s. of<br />

R-<strong>modules</strong>, then M is a f<strong>in</strong>ite length R-module if <strong>and</strong> only if L <strong>and</strong> N are<br />

both f<strong>in</strong>ite length R-<strong>modules</strong>. If this is the case, lR(M) = lR(L) + lR(N).<br />

Problem set<br />

1. Let M be an R-module; prove that annRM = {r ∈ R | rx = 0 ∀x ∈<br />

M} is an ideal of R.<br />

2. Let a be an element of a r<strong>in</strong>g R <strong>and</strong> M be an R-module; then<br />

(0 :M a) = {x ∈ M | ax = 0} is a submodule of M.<br />

3. Let M be an R-module <strong>and</strong> x ∈ M; then (0 :R x) = {r ∈ R | rx = 0}<br />

is an ideal of R.<br />

4. Let m be a factor of n <strong>and</strong> k = n<br />

m . Prove that mZ/nZ ∼ = Z/kZ.<br />

130


5. F<strong>in</strong>d a s.e.s. 0 −→ L f<br />

−→ M g<br />

−→ N −→ 0 such that M is f.g. but L<br />

is not f.g..<br />

6. Let M be a f<strong>in</strong>ite length R-module <strong>and</strong> P is a prime ideal of R but<br />

not maximal. Prove that there is no monomorphism from R/P to M.<br />

7. Let R be a local r<strong>in</strong>g with maximal ideal m <strong>and</strong> M be a f<strong>in</strong>ite length<br />

R-module. Prove that there is a module monomorphism from R/m to M.<br />

(H<strong>in</strong>t: F<strong>in</strong>d a simple R-submodule of M.)<br />

8. Let M be an R-module <strong>and</strong> I be an ideal of R; then the follow<strong>in</strong>g<br />

conditions are equivalent:<br />

(a) There is an R-monomorphism from R/I to M.<br />

(b) There is an element x ∈ M such that I = (0 :R x) = {r ∈ R | rx = 0}.<br />

9. Let M be an R-module <strong>and</strong> I = annRM; then M can be viewed as an<br />

R/I-module.<br />

10. Prove that L f<br />

−→ M g<br />

−→ N is a complex if <strong>and</strong> only if g ◦ f = 0.<br />

11. If 0 −→ L f<br />

−→ M g<br />

−→ R −→ 0 is a s.e.s. of R-<strong>modules</strong>, then<br />

M ∼ = L ⊕ R.<br />

12. F<strong>in</strong>d lZ(Z/120Z) <strong>and</strong> lZ(Z/200Z).<br />

13. Let M be an R-module <strong>and</strong> x ∈ M; then the set annR(x) = {r ∈<br />

R | rx = 0} is an ideal of R. If annR(x) = 0, then x is said to be a torsion<br />

element of M. Prove that if R is an <strong>in</strong>tegral doma<strong>in</strong> then the set T (M) of<br />

all torsion elements of M is a submodule of M.<br />

14. Let M be an R-module <strong>and</strong> I be an ideal of R. If IM = 0, then M<br />

can be viewed as R/I module.<br />

131


5 Projective <strong>modules</strong> <strong>and</strong> <strong>in</strong>jective <strong>modules</strong><br />

We first <strong>in</strong>troduce the notion: free <strong>modules</strong>.<br />

Def<strong>in</strong>ition 5.1 Let F be an R-module. F is a free module if there is a<br />

subset X = {ei | i ∈ Λ} (which is called a basis) of F such that F = (X),<br />

i.e., for every x ∈ F , there are e1, . . . , en ∈ X <strong>and</strong> r1, . . . , rn ∈ R such<br />

n<br />

that x = riei, <strong>and</strong> that X is l<strong>in</strong>ear <strong>in</strong>dependent, i.e., for every f<strong>in</strong>ite set<br />

i=1<br />

{e1, . . . , en} of X with<br />

F ∼ = ⊕i∈ΛR.<br />

n<br />

riei = 0, then ri = 0 for every i. In this case,<br />

i=1<br />

If F is free with a f<strong>in</strong>ite basis then F ∼ = R n for some n <strong>and</strong> F is called a free<br />

R-module of rank n.<br />

We now <strong>in</strong>troduce the notion: projective <strong>modules</strong>.<br />

Def<strong>in</strong>ition 5.2 Let P be an R-module. P is said to be projective if for any<br />

exact sequence M g<br />

−→ N −→ 0 <strong>and</strong> R-homomorphism f : P −→ N there is<br />

an R-homomorphism h : P −→ M such that g ◦ h = f.<br />

It is easy to see that free <strong>modules</strong> are projective.<br />

There are several equivalent characterizations for projective <strong>modules</strong>.<br />

Proposition 5.3 Let R be a r<strong>in</strong>g. Then the follow<strong>in</strong>g are equivalent for an<br />

R-module P :<br />

(a) P is projective.<br />

(b) Any s.e.s. of the form 0 −→ L f<br />

−→ M g<br />

−→ P −→ 0 splits.<br />

(c) P is a direct summ<strong>and</strong> of some free R-module F .<br />

Proof. (a) ⇒ (b) Let 0 −→ L f<br />

−→ M g<br />

−→ P −→ 0 be a s.e.s.. Let i : P −→ P<br />

be the identity map; then there is a R-homomorphism h : P −→ M such<br />

that g ◦ h = i, so that g ◦ h = idP ,i.e., the s.e.s. splits.<br />

(b) ⇒ (c) Let X = {xi | i ∈ Λ} be a generat<strong>in</strong>g set of P ; then there is a free<br />

module F = ⊕i∈ΛR <strong>and</strong> a R-epimorphism g : F −→ P . Let K be the kernel<br />

of g; then 0 −→ K i<br />

−→ F g<br />

−→ P −→ 0 is a s.e.s., so that the sequence splits<br />

132


y assumption, it follows that F ∼ = K ⊕ P <strong>and</strong> P is a direct summ<strong>and</strong> of F .<br />

(c) ⇒ (a) Let P be a direct summ<strong>and</strong> of a free R-module F . Then there are<br />

R-monomorphism i : P −→ F <strong>and</strong> R-epimorphism π : F −→ P such that<br />

π ◦ i = idP . Let M g<br />

−→ N −→ 0 be an exact sequence <strong>and</strong> f : P −→ N be<br />

an R-homomorphism. S<strong>in</strong>ce f ◦ π : F −→ N is an R-homomorphism <strong>and</strong> F<br />

is free, there is an R-homomorphism h : F −→ M such that g ◦ h = f ◦ π,<br />

therefore h ◦ i is an R-homomorphism from P to M such that g ◦ (h ◦ i) =<br />

f ◦ π ◦ i = f.<br />

Projective <strong>modules</strong> are not free <strong>modules</strong> <strong>in</strong> general as the follow<strong>in</strong>g example<br />

suggests.<br />

Example 5.4 Let R = Z6; then Z2 <strong>and</strong> Z3 are Projective R-<strong>modules</strong> as<br />

there is a R-isomorphism Z6 ∼ = Z2 ⊕ Z3. However, Z2 is not a free R-module<br />

as ¯1 is a torsion element.<br />

Lemma 5.5 Let {Pi | i ∈ Λ} be R-<strong>modules</strong>; then ⊕i∈ΛPi is projective if <strong>and</strong><br />

only if Pi is a projective R-module for every i.<br />

Proof. (⇒) For every j, there are R-homomorphism ij : Pj −→ ⊕i∈ΛPi <strong>and</strong><br />

g<br />

R-epimorphism πj : ⊕i∈ΛPi −→ Pj such that πj◦ij = idPj . Let M −→ N −→<br />

0 be an exact sequence <strong>and</strong> f : Pj −→ N be an R-homomorphism. S<strong>in</strong>ce<br />

f ◦πj : ⊕i∈ΛPi −→ N is an R-homomorphism <strong>and</strong> ⊕i∈ΛPi is projective, there<br />

is an R-homomorphism h : ⊕i∈ΛPi −→ M such that g ◦ h = f ◦ πj, therefore<br />

h◦ij is an R-homomorphism from Pj to M such that g◦(h◦ij) = f ◦πj◦ij = f.<br />

(⇐) For every j, there are R-homomorphism ij : Pj −→ ⊕i∈ΛPi <strong>and</strong> R-<br />

g<br />

epimorphism πj : ⊕i∈ΛPi −→ Pj such that πj ◦ij = idPj . Let M −→ N −→ 0<br />

be an exact sequence <strong>and</strong> f : ⊕i∈ΛPi −→ N be an R-homomorphism. For<br />

every j, s<strong>in</strong>ce Pj is projective <strong>and</strong> f ◦ ij is an R-homomorphism from Pj to<br />

N, there is an R-homomorphism hj : Pj −→ M such that g ◦ hj = f ◦ ij. Let<br />

h : ⊕i∈ΛPi −→ M be the R-homomorphism <strong>in</strong>duced by hj, i.e., h ◦ ij = hj;<br />

then it is easy to see that g ◦ h = f.<br />

The second part of this section is to <strong>in</strong>troduce the notion: <strong>in</strong>jective <strong>modules</strong>.<br />

Def<strong>in</strong>ition 5.6 A module E over a r<strong>in</strong>g R is said to be <strong>in</strong>jective if for every<br />

exact sequence 0 −→ L f<br />

−→ M <strong>and</strong> an R-homomorphism g : L −→ E, g may<br />

be extended to an R-homomorphism h : M −→ E. i.e., h ◦ f = g.<br />

As projective <strong>modules</strong>, <strong>in</strong>jective <strong>modules</strong> have some equivalent characterizations.<br />

133


Lemma 5.7 Let E be an R-module. E is an <strong>in</strong>jective module if <strong>and</strong> only if<br />

for every ideal I of R, any R-homomorphism I −→ E may be extended to<br />

an R-homomorphism R −→ E.<br />

Proof. (⇒) S<strong>in</strong>ce 0 −→ I −→ R is exact, the assertion follows.<br />

(⇐) Let 0 −→ N g<br />

−→ M be an exact sequence <strong>and</strong> f : N −→ E be an R<br />

homomorphism; to show that E is <strong>in</strong>jective, we must f<strong>in</strong>d a homomorphism<br />

h : M −→ E with h ◦ g = f. Let T be the set of all R-homomorphism<br />

h : M ′ −→ E with h ◦ g = f, where Img ⊆ M ′ ⊆ M. Partially order T by<br />

the natural way <strong>and</strong> verify the assumptions of Zorn’s Lemma, we conclude<br />

that T conta<strong>in</strong>s a maximal element h : M ′ −→ E with h ◦ g = f. We will<br />

show that M ′ = M.<br />

If M ′ = M <strong>and</strong> x ∈ M − M ′ , then I = {r ∈ R | rx ∈ M ′ } is an ideal of<br />

R. The map i : I −→ E given by i(r) = h(rx) is an R-homomorphism. By<br />

assumption, there is an R-homomorphism j : R −→ E such that j(r) = h(rx)<br />

for all r ∈ I. Let y = j(1R) <strong>and</strong> def<strong>in</strong>e a map ˜ h : M ′ + xR −→ E by<br />

˜h(a + rx) = h(a) + ry. ˜ h is well-def<strong>in</strong>ed: If a1 + r1x = a2 + r2x, then<br />

a1 − a2 = (r2 − r1)x ∈ M ′ ∩ xR, so that r2 − r1 ∈ I <strong>and</strong><br />

h(a1)−h(a2) = h(a1−a2) = h((r2−r1)x) = j(r2−r1) = (r2−r1)j(1R) = (r2−r1)y.<br />

It is easy to see that ˜ h is an R-homomorphism. This contradicts the maximality<br />

of h <strong>and</strong> hence M ′ = M. Therefore E is <strong>in</strong>jective.<br />

There is an important fact about <strong>in</strong>jective <strong>modules</strong>: Every R-module<br />

can be imbedded <strong>in</strong> an <strong>in</strong>jective R-module. To show this, we need some<br />

preparation.<br />

Def<strong>in</strong>ition 5.8 An abelian group G is said to be divisible if for every a ∈ G<br />

<strong>and</strong> 0 = n ∈ Z there exists b ∈ G such that bn = a.<br />

Example 5.9 Q is a divisible abelian group.<br />

Lemma 5.10 An abelian group D is divisible if <strong>and</strong> only if D is an <strong>in</strong>jective<br />

Z-module.<br />

Proof. (⇒) Let D be a divisible abelian group <strong>and</strong> f : I −→ D be a Zmodule<br />

homomorphism. Let I = nZ <strong>and</strong> f(n) = a; then there is an element<br />

b ∈ D such that nb = a. Let g : Z −→ D be the map given by g(m) = mb,<br />

then it is easy to check that g is a Z-homomorphism <strong>and</strong> is an extension of<br />

134


f.<br />

(⇐) Let D be an <strong>in</strong>jective Z-module, a ∈ D <strong>and</strong> 0 = n ∈ Z. Let f :<br />

nZ −→ D be the Z-homomorphism <strong>in</strong>duced by f(n) = a; then there is a Zhomomorphism<br />

g : Z −→ D such that g(n) = a. Let b = g(1); then bn = a.<br />

Example 5.11 Q is an <strong>in</strong>jective Z-module.<br />

Lemma 5.12 Every abelian group G may be embedded <strong>in</strong> a divisible abelian<br />

group.<br />

Proof. Let G be a Z-module; then there is a free Z-module F <strong>and</strong> an epimorphism<br />

F −→ G with kernel K so that F/K ∼ = G. S<strong>in</strong>ce F is a direct sum of<br />

copies of Z <strong>and</strong> Z ⊆ Q, there is a monomorphism f : F −→ D where D is<br />

a direct sum of copies of Q. Therefore A ∼ = F/K ∼ = f(F )/f(K) ⊆ D/f(K).<br />

S<strong>in</strong>ce D is divisible <strong>and</strong> so is D/f(K), the assertion follows.<br />

Let R be a r<strong>in</strong>g; then R is an abelian group. Let G be an abelian group;<br />

then the set of all group homomorphisms (Z-homomorphisms) from R to G,<br />

HomZ(R, G), is an R-module with (rf)(a) = f(ra) for all a ∈ R, where<br />

r ∈ R <strong>and</strong> f ∈ HomZ(R, G).<br />

Lemma 5.13 Let D be an <strong>in</strong>jective Z module; then HomZ(R, D) is an <strong>in</strong>jective<br />

R module.<br />

Proof. Let I be an ideal of R <strong>and</strong> f : I −→ HomZ(R, D) be an Rhomomorphism;<br />

then the map g : I −→ D given by g(a) = [f(a)](1R) is<br />

a group homomorphism <strong>in</strong>duced by f. S<strong>in</strong>ce D is an <strong>in</strong>jective Z module,<br />

there is a group homomorphism ˜g : R −→ D such that ˜g|I = g. Def<strong>in</strong>e<br />

˜f : R −→ HomZ(R, D) by ˜ f(r)(x) = ˜g(xr) for all x ∈ R. ˜ f is well-def<strong>in</strong>ed<br />

as ˜ f(r) is a group homomorphism from R to D. ˜ f is an R-homomorphism:<br />

Let r, s, x ∈ R; then ˜ f(rs)(x) = ˜g(xrs) = ˜g((xs)r)) = ˜ f(r)(xs), so that<br />

by the R-module structure of HomZ(R, D), ˜ f(r)(xs) = s ˜ f(r)(x), therefore<br />

˜f(rs) = s ˜ f(r). To f<strong>in</strong>ish the proof, it rema<strong>in</strong>s to check that ˜ f is an extension<br />

of f. Let r ∈ I <strong>and</strong> x ∈ R; then ˜ f(r)(x) = ˜g(xr) = g(xr) = [f(xr)](1R).<br />

S<strong>in</strong>ce f is an R-homomorphism f(xr) = xf(r). Moreover, HomZ(R, D) is an<br />

R-module, [xf(r)](1R) = f(r)(1Rx) = f(r)(x). We conclude that ˜ f|I = f.<br />

Corollary 5.14 Any R-module can be imbedded <strong>in</strong> an <strong>in</strong>jective R-module.<br />

135


Proof. Let M be an R-module. S<strong>in</strong>ce M is an abelian group, M is embedded<br />

<strong>in</strong> an <strong>in</strong>jective Z-module D. By the previous lemma, HomZ(R, D) is an<br />

<strong>in</strong>jective R-module. Therefore, to f<strong>in</strong>ish the proof, it rema<strong>in</strong>s to show that M<br />

is an R-submodule of HomZ(R, D). Notice that the group monomorphism<br />

M −→ D <strong>in</strong>duces the R-monomorphism HomZ(R, M) −→ HomZ(R, D).<br />

Moreover, let i : M −→ HomZ(R, M) be the map given by i(x)(r) = xr for<br />

x ∈ M <strong>and</strong> r ∈ R; then it is easy to check that i is an R-monomorphism.<br />

We now conclude that M is an R-submodule of HomZ(R, D).<br />

Proposition 5.15 Let R be a r<strong>in</strong>g. Then the follow<strong>in</strong>g are equivalent for<br />

an R-module E:<br />

(a) E is <strong>in</strong>jective.<br />

(b) Any s.e.s. of the form 0 −→ E f<br />

−→ M g<br />

−→ N −→ 0 splits.<br />

(c) E is a direct summ<strong>and</strong> of any R-module M of which it is a submodule.<br />

Proof. (a) ⇒ (b) Let 0 −→ E f<br />

−→ M g<br />

−→ N −→ 0 be a s.e.s.. Let i : E −→<br />

E be the identity map; then there is a R-homomorphism h : M −→ E such<br />

that h ◦ f = i, so that h ◦ f = idE,i.e., the s.e.s. splits.<br />

(b) ⇒ (c) Suppose E is a submodule of M. Then there is a s.e.s. 0 −→<br />

E i<br />

−→ M π<br />

−→ M/E −→ 0. S<strong>in</strong>ce it splits, E is a direct summ<strong>and</strong> of M.<br />

(c) ⇒ (a) S<strong>in</strong>ce E can be embedded <strong>in</strong> an <strong>in</strong>jective R-module E ′ by the<br />

previous corollary <strong>and</strong> E is a direct summ<strong>and</strong> of E ′ by assumption, therefore<br />

E is an <strong>in</strong>jective module.<br />

Problem set<br />

1. Let R be a field; then every module is free.<br />

2. The follow<strong>in</strong>g are equivalent for a r<strong>in</strong>g:<br />

(a) Every R-module is projective.<br />

(b) Every s.e.s. splits.<br />

(c) Every R-module is <strong>in</strong>jective.<br />

3. Let E be an R-module; then E is <strong>in</strong>jective if <strong>and</strong> only if for every ideal<br />

I <strong>and</strong> R-homomorphism g : I −→ E there is an element x ∈ E such that<br />

136


g(a) = ax for all a ∈ I.<br />

4. Q is not a projective Z module.<br />

5. Let D be a direct sum of copies of Q; then D is an <strong>in</strong>jective Z module.<br />

6. Every homomorphic image of a divisible abelian group is a divisible<br />

abelian group. Every direct summ<strong>and</strong> of a divisible abelian group is a divisible<br />

abelian group.<br />

7. Let E be a direct summ<strong>and</strong> of an <strong>in</strong>jective R-module; then E is <strong>in</strong>jective.<br />

8. Let {Ei | i ∈ Λ} be R-<strong>modules</strong>; then <br />

Ei is <strong>in</strong>jective if <strong>and</strong> only if<br />

Ei is <strong>in</strong>jective for every i.<br />

9. Let R be an P.I.D.; then the quotient field of R is an <strong>in</strong>jective Rmodule.<br />

10. Let p be a prime number <strong>and</strong> let Z(p ∞ ) be the subset of the additive<br />

group Q/Z:<br />

i∈Λ<br />

Z(p ∞ ) = {a/b ∈ Q/Z | a, b ∈ Z, b = p i for some i ≥ 0}.<br />

Prove that Z(p ∞ ) is a subgroup of Q/Z.<br />

11. Prove that Z(p ∞ ) is a divisible abelian group.<br />

12. A Z-module M is said to be torsion-free if T (M) = 0. Prove that if<br />

M is a torsion-free divisible then M is a direct sum of copies of Q.<br />

137


6 Hom <strong>and</strong> tensor product<br />

The first part of this section is to study the functors HomR(−, M) <strong>and</strong><br />

HomR(M, −), where M is an R-module. Recall that the set of all Rhomomorphism<br />

from M to N, denoted by HomR(M, N), is an R-module<br />

with the action of R given by rf(x) = f(rx) for r ∈ R <strong>and</strong> x ∈ M.<br />

Lemma 6.1 Let 0 −→ N1<br />

φ<br />

−→ N2<br />

ψ<br />

−→ N3 be an exact sequence; then<br />

HomR(M, −) <strong>in</strong>duces the exact sequence<br />

0 −→ HomR(M, N1)<br />

˜φ<br />

˜ψ<br />

−→ HomR(M, N2) −→ HomR(M, N3),<br />

where ˜ φ(f) = φ ◦ f for f ∈ HomR(M, N1), <strong>and</strong> ˜ ψ(g) = ψ ◦ g for g ∈<br />

HomR(M, N2).<br />

Proof. ˜ φ is 1-1:<br />

Let f ∈ HomR(M, N1) with ˜ φ(f) = 0; then φ(f(x)) = 0 for all x ∈ M, so<br />

that f(x) = 0 for all x ∈ M as φ is 1-1, it follows that f = 0.<br />

˜φ<br />

˜ψ<br />

HomR(M, N1) −→ HomR(M, N2) −→ HomR(M, N3) is exact:<br />

It is easy to see that ˜ ψ ◦ ˜ φ = 0. Therefore Im ˜ φ ⊆ ker ˜ ψ. To show ker ˜ ψ ⊆<br />

Im ˜ φ, let g ∈ ker ˜ ψ; then ψ(g(x)) = 0 for every x ∈ M. Let x ∈ M; then<br />

there is a unique element y ∈ N1 such that φ(y) = g(x). Now, def<strong>in</strong>e a<br />

map f : M −→ N1 by f(x) = y; then it is easy to check that f is an<br />

R-homomorphism <strong>and</strong> ˜ φ(f) = g.<br />

We say that HomR(M, −) is exact if it preserve every short exact se-<br />

quences,i.e., if 0 −→ N1<br />

HomR(M, N1)<br />

φ<br />

−→ N2<br />

˜φ<br />

−→ HomR(M, N2)<br />

ψ<br />

−→ N3 −→ 0 is a s.e.s., then 0 −→<br />

˜ψ<br />

−→ HomR(M, N3) −→ 0 stays exact.<br />

Lemma 6.2 Let N1<br />

φ<br />

−→ N2<br />

ψ<br />

−→ N3 −→ 0 be an exact sequence; then<br />

HomR(−, M) <strong>in</strong>duces the exact sequence<br />

0 −→ HomR(N3, M)<br />

˜ψ<br />

˜φ<br />

−→ HomR(N2, M) −→ HomR(N1, M),<br />

where ˜ ψ(f) = f ◦ ψ for f ∈ HomR(N3, M), <strong>and</strong> ˜ φ(g) = g ◦ φ for g ∈<br />

HomR(N2, M).<br />

138


Proof. ˜ ψ is 1-1:<br />

Let f ∈ HomR(N3, M) such that ˜ ψ(f) = 0; then f(ψ(x)) = 0 for every<br />

x ∈ N2. S<strong>in</strong>ce ψ is onto, f(y) = 0 for all y ∈ N3, therefore f = 0.<br />

˜ψ<br />

˜φ<br />

HomR(N3, M) −→ HomR(N2, M) −→ HomR(N1, M) is exact:<br />

It is easy to see that ˜ φ◦ ˜ ψ = 0. Therefore Im ˜ ψ ⊆ ker ˜ φ. To show ker ˜ φ ⊆ Im ˜ ψ,<br />

let g ∈ HomR(N2, M) such that ˜ φ(g) = 0; then g(φ(N1)) = 0. Let x ∈ N3;<br />

then there is an element y ∈ N2 such that ψ(y) = x. Now, def<strong>in</strong>e a map<br />

f : N3 −→ M by f(x) = g(y), then f is well-def<strong>in</strong>e as g(φ(N1)) = 0.<br />

Moreover, it is easy to check that f is an R-homomorphism <strong>and</strong> ˜ ψ(f) = g.<br />

We say that HomR(−, M) is exact if it preserve every short exact sequences,i.e.,<br />

φ ψ<br />

˜ψ<br />

if 0 −→ N1 −→ N2 −→ N3 −→ 0 is a s.e.s., then 0 −→ HomR(N3, M) −→<br />

˜φ<br />

HomR(N2, M) −→ HomR(N1, M) −→ 0 stays exact.<br />

Lemma 6.3 The follow<strong>in</strong>g are equivalent for an R-module P :<br />

(a) P is projective.<br />

(b) HomR(P, −) is exact.<br />

Proof. Let P be an R-module <strong>and</strong> 0 −→ N1<br />

φ<br />

−→ N2<br />

ψ<br />

−→ N3 −→ 0 be a s.e.s.;<br />

then P is projective if <strong>and</strong> only if for every R-homomorphism f : P −→ N3<br />

there is an R-homomorphism g : P −→ N2 such that ψ ◦ g = f. Therefore P<br />

is projective if <strong>and</strong> only if ˜ ψ : HomR(P, N2) −→ HomR(P, N3) is surjective,<br />

or equivalently, P is projective if <strong>and</strong> only if HomR(P, −) is exact.<br />

Lemma 6.4 The follow<strong>in</strong>g are equivalent for an R-module E:<br />

(a) E is <strong>in</strong>jective.<br />

(b) HomR(−, E) is exact.<br />

φ ψ<br />

Proof. Let E be an R-module <strong>and</strong> 0 −→ N1 −→ N2 −→ N3 −→ 0 be a s.e.s.;<br />

then E is <strong>in</strong>jective if <strong>and</strong> only if for every R-homomorphism f : N1 −→ E<br />

there is an R-homomorphism g : N2 −→ E such that g ◦ φ = f. Therefore E<br />

is <strong>in</strong>jective if <strong>and</strong> only if ˜ φ : HomR(N2, E) −→ HomR(N1, E) is surjective,<br />

or equivalently, E is <strong>in</strong>jective if <strong>and</strong> only if HomR(−, E) is exact.<br />

The second part of the section is to <strong>in</strong>troduce the notion: tensor product<br />

⊗.<br />

139


Def<strong>in</strong>ition 6.5 Let M, N, P be three R-<strong>modules</strong>. A mapp<strong>in</strong>g f : M ×N −→<br />

P is said to be R-bil<strong>in</strong>ear if for each x ∈ M the mapp<strong>in</strong>g y −→ f(x, y) of N<br />

<strong>in</strong>to P is R-l<strong>in</strong>ear, <strong>and</strong> for each y ∈ N the mapp<strong>in</strong>g x −→ f(x, y) of M <strong>in</strong>to<br />

P is R-l<strong>in</strong>ear. Or equivalently, f satisfies the conditions:<br />

f(x1 + x2, y) = f(x1) + f(x2),<br />

f(x, y1 + y2) = f(x, y1) + f(x, y2),<br />

f(rx, y) = f(x, ry) = rf(x, y).<br />

Proposition 6.6 Let M, N be R-<strong>modules</strong>. Then there exists a pair (T, i)<br />

consist<strong>in</strong>g of an R-module T <strong>and</strong> an R-bil<strong>in</strong>ear mapp<strong>in</strong>g i : M × N −→ T ,<br />

with the follow<strong>in</strong>g property:<br />

Given any R-module P <strong>and</strong> any R-bil<strong>in</strong>ear mapp<strong>in</strong>g f : M × N −→ P<br />

there exists a unique R-l<strong>in</strong>ear mapp<strong>in</strong>g f ′ : T −→ P such that f = f ′ ◦ i.<br />

Proof. Let C denote the free R-module R M×N ,i.e., free abelian group on<br />

the set M × N. The elements of C are formal comb<strong>in</strong>ations of the form<br />

n<br />

i=1 ai(xi, yi) (ai ∈ R, xi ∈ M, yi ∈ N). Let D be the sub<strong>modules</strong> of C<br />

generated by all elements of C of the follow<strong>in</strong>g types:<br />

(x + x ′ , y) − (x, y) − (x ′ , y)<br />

(x, y + y ′ ) − (x, y) − (x, y ′ )<br />

(ax, y) − a(x, y)<br />

(x, ay) − a(x, y).<br />

Let T = C/D. For each element (x, y) of C, let x ⊗ y denotes its image <strong>in</strong><br />

T . Then T is generated by the element of the form x ⊗ y <strong>and</strong> we have<br />

(x + x ′ ) ⊗ y = x ⊗ y + x ′ ⊗ y<br />

x ⊗ (y + y ′ ) = x ⊗ y + x ⊗ y ′<br />

ax ⊗ y = a(x ⊗ y) = (x ⊗ ay).<br />

It is clear that i : M × N −→ T is given by i((x, y)) = x ⊗ y. Now, if<br />

f : M × N −→ P is a R-bil<strong>in</strong>ear map then f(D) = 0, so f <strong>in</strong>duces an<br />

R-homomorphism f ′ : T −→ P such that f = f ′ ◦ i.<br />

If h is another R-homomorphism from T to P with f = h◦i, then h(x⊗y) =<br />

140


f((x, y)) = x ⊗ y = f ′ (x ⊗ y). S<strong>in</strong>ce T is generated by elements of the form<br />

x ⊗ y, h = f ′ .<br />

The module T constructed above is called the tensor product of M <strong>and</strong><br />

N, <strong>and</strong> is denoted by M ⊗R N.<br />

Lemma 6.7 (Adjo<strong>in</strong>t associativity) Let M, N, L be R-<strong>modules</strong>; then there is<br />

a natural R-isomorphism<br />

HomR(M ⊗ N, L) ∼ = HomR(M, HomR(N, L)).<br />

Proof. (Sketch) Let α : HomR(M ⊗ N, L) −→ HomR(M, HomR(N, L))<br />

be the map given by [α(f)(a)](b) = f(a ⊗ b), where f ∈ HomR(M ⊗<br />

N, L), a ∈ M <strong>and</strong> b ∈ N. It is easy to check that α is well-def<strong>in</strong>ed,i.e.,<br />

α(f)(a) ∈ HomR(N, L), α(f) ∈ HomR(M, HomR(N, L)) <strong>and</strong> α is an Rhomomorphism.<br />

Let β : HomR(M, HomR(N, L)) −→ HomR(M ⊗ N, L)<br />

be the map given by (βg)(a ⊗ b) = [g(a)](b), where a ∈ M, b ∈ N <strong>and</strong><br />

g ∈ HomR(M, HomR(N, L)). It is easy to check that β is well-def<strong>in</strong>ed,i.e,<br />

βg ∈ HomR(M ⊗ N, L) <strong>and</strong> β is an R-homomorphism. Now, it is also easy<br />

to see that every compositions α ◦ β, β ◦ α is the identity map. We conclude<br />

that α is an isomorphism.<br />

Lemma 6.8 Let N1<br />

φ<br />

−→ N2<br />

ψ<br />

−→ N3 −→ 0 be an exact sequence of R<strong>modules</strong>;<br />

then ⊗RM <strong>in</strong>duces the exact sequence<br />

N1 ⊗R M φ⊗i<br />

−→ N2 ⊗R M ψ⊗i<br />

−→ N3 ⊗R M −→ 0,<br />

where i is the identity map of M.<br />

φ ψ<br />

Proof. Let E. be the s.e.s. N1 −→ N2 −→ N3 −→ 0; then we need to show<br />

that E. ⊗R M is exact. Let P be any module; then HomR(E., HomR(M, P ))<br />

is exact as E. is exact; so by the above lemma HomR(E. ⊗R M, P ) is exact,<br />

it follows by Exercise 6 that E. ⊗R M is exact.<br />

Remark 6.9 From the above, one can see that if N is a submodule of L then<br />

it is not necessary that N ⊗R M is a submodule of L ⊗R M.<br />

Example 6.10 Consider the exact sequence of Z-<strong>modules</strong> 0 −→ 2Z i<br />

−→ Z,<br />

where i is the canonical <strong>in</strong>jection. Then the sequence 0 −→ 2Z ⊗Z Z/2Z i<br />

−→<br />

Z ⊗Z Z/2Z is not exact as 2 ⊗ ¯1 is a nonzero element <strong>in</strong> 2Z ⊗Z Z/2Z but<br />

2 ⊗ ¯1 = 1 ⊗ ¯2 = 0 <strong>in</strong> Z ⊗Z Z/2Z<br />

141


Let M be an R-module; M is said to be flat if ⊗RM preserve short<br />

exact sequences,i.e., if 0 −→ N1<br />

φ<br />

−→ N2<br />

ψ<br />

−→ N3 −→ 0 is a s.e.s., then<br />

0 −→ N1 ⊗R M φ⊗idM<br />

−→ N2 ⊗R M ψ⊗idM<br />

−→ N3 ⊗R M −→ 0 stays exact.<br />

Lemma 6.11 Let M be an R-module; then R⊗R M <strong>and</strong> M ⊗R R are canonical<br />

isomorphic to M.<br />

Proof. Let i : R ⊗R M −→ M be the map given by i(r ⊗ x) = rx; then i<br />

is well-def<strong>in</strong>ed <strong>and</strong> is an R-homomorphism as i is <strong>in</strong>duced by the R-bil<strong>in</strong>ear<br />

map ĩ : R × M −→ M with ĩ(r, x) = rx. It is easy to see that i is an<br />

isomorphism <strong>and</strong> R ⊗R M ∼ = M. Similarly, M ⊗R R ∼ = M.<br />

Corollary 6.12 R is a flat R-module.<br />

φ<br />

Proof. Let 0 −→ N1 −→ N2 be an exact sequence of R-<strong>modules</strong>; then ⊗RR<br />

<strong>in</strong>duces the sequence 0 −→ N1 ⊗R R φ⊗idR<br />

−→ N2 ⊗R R. Moreover,<br />

0 −→ N1 ⊗R R φ⊗idR<br />

−→ N2 ⊗R R<br />

↓ ↓<br />

0 −→ N1<br />

φ<br />

−→ N2<br />

is a commutative diagram of R-<strong>modules</strong> <strong>and</strong> R-homomorphisms such that<br />

the second row is exact <strong>and</strong> the vertical homomorphisms are isomorphisms.<br />

Therefore we conclude that φ ⊗ idR is 1-1.<br />

Let R be a r<strong>in</strong>g <strong>and</strong> S be a multiplicative subset of R; then the construction<br />

of RS can be carried through with an R-module M <strong>in</strong> place of the r<strong>in</strong>g R.<br />

Def<strong>in</strong>ition 6.13 Let R be a r<strong>in</strong>g, S be a multiplicative subset of R <strong>and</strong> M be<br />

an R-module. Def<strong>in</strong>e a relation on the set M × S = {(x, s) | x ∈ M, s ∈ S}<br />

as follows: (x, s) ∼ (y, t) if <strong>and</strong> only if there is an element u ∈ S such that<br />

u(xt − ys) = 0. It is easy to show that ∼ is an equivalent relation. As<br />

the above (M × S)/ ∼ can be made <strong>in</strong>to an RS-module. We use x<br />

for the<br />

s<br />

equivalent class of the element (x, s), <strong>and</strong> MS for the module (M × S)/ ∼.<br />

As before, if S = R−P for some prime P , then we use MP <strong>in</strong>stead of MS.i.e.,<br />

MP = { x<br />

| x ∈ M, s /∈ P }.<br />

s<br />

Lemma 6.14 Let M be an R-module <strong>and</strong> S be a multiplicative subset of R;<br />

then M ⊗R RS is canonically isomorphic to MS, so is RS ⊗R M.<br />

142<br />

.


Proof. Let ˜ f : M × RS −→ MS be the R-bil<strong>in</strong>ear map f(x, a xa<br />

) =<br />

s s ;<br />

then ˜ f <strong>in</strong>duces the canonical R-homomorphism f : M ⊗R RS −→ MS with<br />

f(x ⊗ a xa<br />

) = . To f<strong>in</strong>ish the proof, it rema<strong>in</strong>s to show that f is 1-1 as f is<br />

s s<br />

n<br />

clearly a surjection. For this, let xi ⊗ (ai/si) be any element of M ⊗R RS.<br />

i=1<br />

If s = <br />

i si, ti = <br />

j=i sj, we have<br />

n<br />

xi ⊗ ( ai<br />

n<br />

) = xi ⊗ ( aiti<br />

n<br />

) = aitixi ⊗<br />

s 1<br />

n<br />

= ( aitixi) ⊗<br />

s 1<br />

s ,<br />

i=1<br />

si<br />

i=1<br />

so that every element of M ⊗R RS is of the form x ⊗ 1<br />

. Suppose that<br />

s<br />

f(x ⊗ 1<br />

x<br />

) = 0. Then = 0, hence tx = 0 for some t ∈ S, <strong>and</strong> therefore<br />

s s<br />

x ⊗ 1<br />

s<br />

= x ⊗ t<br />

st<br />

i=1<br />

= xt ⊗ 1<br />

st<br />

= 0 ⊗ 1<br />

st<br />

i=1<br />

= 0.<br />

Hence f is 1-1 <strong>and</strong> therefore an isomorphism.<br />

As <strong>in</strong> the proof of the fact that R is a flat R-module, we have the follow<strong>in</strong>g<br />

consequence.<br />

Corollary 6.15 Let R be a r<strong>in</strong>g <strong>and</strong> S be a multiplicative subset of R; then<br />

RS is a flat R-module.<br />

Problem set<br />

If G <strong>and</strong> H are abelian group then Hom(G, H) is the set of all group homomorphisms<br />

from G to H. Moreover, G ⊗ H = G ⊗Z H.<br />

1. Let M be an R-module <strong>and</strong> I be an ideal of R. Prove that HomR(R/I, M) ∼ =<br />

(0 :M I) = {x ∈ M | xI = 0}. In particular, HomR(R, M) ∼ = M.<br />

2. Let I, J be ideals of a r<strong>in</strong>g R; then HomR(R/I, R/J) ∼ = (J : I)/J,<br />

where (J : I) = {r ∈ R | rI ⊆ J}.<br />

3. Let R be an <strong>in</strong>tegral doma<strong>in</strong> <strong>and</strong> I be a non-zero ideal of R; then<br />

HomR(R/I, R) = 0. In particular, Hom(Zn, Z) = 0.<br />

143


4. Hom(Zn, Zm) ∼ = Zd, where d is g.c.d. of m <strong>and</strong> n.<br />

5. The sequence 0 −→ N1<br />

φ<br />

−→ N2<br />

R-module M, the sequence 0 −→ HomR(M, N1)<br />

HomR(M, N3) is exact.<br />

6. The sequence N1<br />

φ<br />

−→ N2<br />

R-module M, the sequence 0 −→ HomR(N3, M)<br />

HomR(N1, M) is exact.<br />

ψ<br />

ψ<br />

−→ N3 is exact if <strong>and</strong> only if for every<br />

˜φ<br />

−→ HomR(M, N2)<br />

˜ψ<br />

−→<br />

−→ N3 −→ 0 is exact if <strong>and</strong> only if for every<br />

˜ψ<br />

−→ HomR(N2, M)<br />

7. Let M <strong>and</strong> N be R-<strong>modules</strong>; then M ⊗R N ∼ = N ⊗R M.<br />

8. Prove that free <strong>modules</strong> are flat.<br />

˜φ<br />

−→<br />

9. Let M be an R-module <strong>and</strong> I be an ideal of R; then M ⊗R R/I ∼ =<br />

M/IM.<br />

10. Let I <strong>and</strong> J be ideals of R; then R/I ⊗R R/J ∼ = R/(I + J).<br />

11. Zm ⊗ Zn ∼ = Zd, where d is g.c.d. of m <strong>and</strong> n.<br />

12. Let G be a torsion abelian group; then G ⊗ Q = 0.<br />

13. Let M be an R-module <strong>and</strong> Mm = 0 for every maximal ideal m of R;<br />

then M = 0.<br />

14. Let f : N −→ M be an R-homomorphism <strong>and</strong> fm : Nm −→ Mm is an<br />

<strong>in</strong>jection for every maximal ideal m of R; then f is an <strong>in</strong>jection.<br />

15. Q ⊗ Q ∼ = Q.<br />

16. If P is a projective module, then PS is a projective RS module, where<br />

S is a multiplicative subset of R.<br />

144

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!