21.09.2013 Views

Topics in algebra Chapter IV: Commutative rings and modules I - 1

Topics in algebra Chapter IV: Commutative rings and modules I - 1

Topics in algebra Chapter IV: Commutative rings and modules I - 1

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Example 4.9 Let M be an R-module <strong>and</strong> I be an ideal of R; then the set<br />

n<br />

IM = { aixi | ai ∈ I, xi ∈ M} is an R-module.<br />

i=1<br />

Def<strong>in</strong>ition 4.10 Let M <strong>and</strong> N be two R-<strong>modules</strong>. A function f : M −→ N<br />

is a homomorphism of R-<strong>modules</strong> (R-homomorphism or R-l<strong>in</strong>ear map) if for<br />

all x, y ∈ M, r ∈ R:<br />

f(x + y) = f(x) + f(y) <strong>and</strong> f(rx) = rf(x).<br />

f is called a monomorphism (resp. epimorphism, isomorphism) if f is <strong>in</strong>jective<br />

(resp. surjective, bijective). The kernel of f, denoted by kerf, is<br />

the set {x ∈ M | f(x) = 0}. The image of f, denoted by Imf, is the set<br />

{f(x) | x ∈ M}.<br />

Notice that if f : M −→ N is an R-module homomorphism, then f is a<br />

monomorphism if <strong>and</strong> only if kerf = 0.<br />

In the sequel, we use the symbol ∼ = for R-module isomorphisms.<br />

Def<strong>in</strong>ition 4.11 Let R be a r<strong>in</strong>g <strong>and</strong> M be an R-module. A subgroup N of<br />

M is a submodule of M if rx ∈ N whenever r ∈ R <strong>and</strong> x ∈ N.<br />

Def<strong>in</strong>ition 4.12 Let N ⊆ M be R-<strong>modules</strong>; then the abelian group M/N =<br />

{x + N | x ∈ M} is an R-module with r(x + N) = rx + N for all x ∈ M <strong>and</strong><br />

r ∈ R.<br />

Example 4.13 Let f : nZ −→ mZ given by f(na) = ma is a Z-module<br />

isomorphism. Hence nZ ∼ = mZ as Z-module.<br />

Example 4.14 Let R be a r<strong>in</strong>g; then every ideal of R is a sub-module of R.<br />

Example 4.15 Let f : M −→ N be an R-module homomorphism; then<br />

kerf is a submodule of M <strong>and</strong> Imf is a submodule of N.<br />

Example 4.16 Let M be an R-module <strong>and</strong> I be an ideal of R, then IM is<br />

a submodule of M. Moreover, if x ∈ M, then xR is a submodule of M.<br />

Example 4.17 Let {Mi | i ∈ Λ} be R-<strong>modules</strong>; then ⊕i∈ΛMi, the direct sum<br />

of the abelian groups Mi, is a submodule of <br />

Mi.<br />

124<br />

i∈Λ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!