21.09.2013 Views

Topics in algebra Chapter IV: Commutative rings and modules I - 1

Topics in algebra Chapter IV: Commutative rings and modules I - 1

Topics in algebra Chapter IV: Commutative rings and modules I - 1

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Def<strong>in</strong>ition 4.24 A pair of <strong>modules</strong> homomorphisms, L f<br />

−→ M g<br />

−→ N is<br />

said to be exact at M if kerg = Imf. A f<strong>in</strong>ite sequence of <strong>modules</strong> homo-<br />

morphisms, M0<br />

f1<br />

−→ M1<br />

f2<br />

−→ · · · fn−1<br />

−→ Mn−1<br />

fn<br />

−→ Mn is said to be exact (resp.<br />

a complex) if kerfi+1 = Imfi (resp. Imfi ⊆ kerfi+1) for i = 1, 2, . . . , n − 1.<br />

An <strong>in</strong>f<strong>in</strong>ite sequence of <strong>modules</strong> homomorphisms, · · · fi−1<br />

−→ Mi−1<br />

fi<br />

−→ Mi<br />

fi+1<br />

−→<br />

Mi+1<br />

fi+2<br />

−→ · · · is said to be exact (resp. a complex) if kerfi+1 = Imfi (resp.<br />

Imfi ⊆ kerfi+1) for every i.<br />

Def<strong>in</strong>ition 4.25 A f<strong>in</strong>ite sequence of <strong>modules</strong> homomorphisms, 0 −→ L f<br />

−→<br />

M g<br />

−→ N −→ 0 is said to be a short exact sequence (s.e.s. for short ) if it is<br />

exact.<br />

Remark 4.26 If 0 −→ L f<br />

−→ M g<br />

−→ N −→ 0 is a s.e.s. then f is 1-1 <strong>and</strong><br />

g is onto.<br />

Example 4.27 Let R be a r<strong>in</strong>g <strong>and</strong> I be an ideal of R; then<br />

0 −→ I<br />

i<br />

−→ R π<br />

−→ R/I −→ 0<br />

is a s.e.s., where i is the <strong>in</strong>clusion map <strong>and</strong> π is the canonical surjective map.<br />

Example 4.28 Let f : M −→ N be an R-homomorphism; then f <strong>in</strong>duces<br />

an exact sequence:<br />

0 −→ kerf<br />

i<br />

−→ M f<br />

−→ N π<br />

−→ N/Imf −→ 0,<br />

where i is the <strong>in</strong>clusion map <strong>and</strong> π is the canonical surjective map.<br />

Example 4.29 Let M <strong>and</strong> N be R-<strong>modules</strong>; then<br />

0 −→ M f<br />

−→ M ⊕ N g<br />

−→ N −→ 0<br />

is a s.e.s., where f is the R-homomorphism given by f(x) = (x, 0) <strong>and</strong> g is<br />

the R-homomorphism given by g(x, y) = y, where x ∈ M <strong>and</strong> y ∈ N.<br />

There are several important results of short exact sequences.<br />

Lemma 4.30 Let 0 −→ L f<br />

−→ M g<br />

−→ N −→ 0 be a s.e.s.; then the follow<strong>in</strong>g<br />

hold:<br />

126

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!