26.01.2015 Views

Perfect Matchings in Lattice Animals and Lattice Paths with Constraints

Perfect Matchings in Lattice Animals and Lattice Paths with Constraints

Perfect Matchings in Lattice Animals and Lattice Paths with Constraints

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

258 T. DO[LI]<br />

a)<br />

(0,0)<br />

(6,0)<br />

(0,0) (6,0)<br />

b)<br />

Figure 12. A perfect match<strong>in</strong>g<br />

<strong>in</strong> a ziggurath <strong>and</strong> the correspond<strong>in</strong>g<br />

Schröder path.<br />

Figure 13. All-vertical perfect<br />

match<strong>in</strong>gs <strong>in</strong> Z 3 <strong>and</strong> the correspond<strong>in</strong>g<br />

Dyck paths.<br />

As our last task, we consider the perfect match<strong>in</strong>gs<br />

<strong>in</strong> a ziggurath Z n that have exactly 2n vertical edges. (It is<br />

clear from the above correspondence, <strong>and</strong> it can be also<br />

shown us<strong>in</strong>g parity arguments, that no perfect match<strong>in</strong>g<br />

<strong>in</strong> Z n can conta<strong>in</strong> more than 2n vertical edges.) We call<br />

such perfect match<strong>in</strong>gs all-vertical. Such perfect match<strong>in</strong>gs<br />

correspond to the Schröder paths <strong>with</strong>out horizontal<br />

steps, <strong>and</strong> these, <strong>in</strong> turn, are noth<strong>in</strong>g else but the Dyck<br />

paths on 2n steps, reflected across the l<strong>in</strong>e y = x <strong>and</strong> rotated<br />

45 degrees clockwise. Hence, we have the follow<strong>in</strong>g<br />

result:<br />

From Propositions 6.1 <strong>and</strong> 5.2 it follows that there<br />

must exist a bijection between perfect match<strong>in</strong>gs <strong>in</strong> a triangular<br />

benzenoid T n <strong>and</strong> perfect match<strong>in</strong>gs <strong>in</strong> a ziggurath<br />

Z n+1 . We <strong>in</strong>vite the reader to work it out explicitly. Tak<strong>in</strong>g<br />

this bijection as the start<strong>in</strong>g po<strong>in</strong>t, it is possible to<br />

derive the results about the number of perfect match<strong>in</strong>gs<br />

<strong>in</strong> zigguraths <strong>and</strong> augmented Aztec diamonds <strong>in</strong> an alternative<br />

way.<br />

The author is <strong>in</strong>debted to the anonymous referees<br />

for their careful read<strong>in</strong>g of the manuscript <strong>and</strong> valuable<br />

suggestions.<br />

Proposition 6.1<br />

The number of all-vertical perfect match<strong>in</strong>gs <strong>in</strong> a ziggurath<br />

Z n is the n-th Catalan number C n .<br />

<br />

The five all-vertical perfect match<strong>in</strong>gs of Z 3 <strong>and</strong> the<br />

correspond<strong>in</strong>g Schröder paths are shown <strong>in</strong> Figure 13.<br />

In a similar way it can be shown that the number of<br />

all-vertical perfect match<strong>in</strong>gs <strong>in</strong> an augmented Aztec diamond<br />

AA n is equal to ( 2 2 n ). Hence, perfect match<strong>in</strong>gs <strong>in</strong><br />

zigguraths <strong>and</strong> <strong>in</strong> augmented Aztec diamonds provide<br />

comb<strong>in</strong>atorial <strong>in</strong>terpretations for the well-known pair of<br />

formulas<br />

n<br />

n<br />

k<br />

r n = <br />

<br />

n k C k<br />

k <br />

0<br />

<br />

D n =<br />

n<br />

<br />

k0<br />

n<br />

k<br />

2k<br />

<br />

<br />

n<br />

k<br />

<br />

k .<br />

<br />

REFERENCES<br />

1. E. Catalan, Notes sur une équation aux différences f<strong>in</strong>ies,<br />

Journ. de Math. pur. et appl. 3 (1838) 508–516.<br />

2. M. Ciucu, Enumeration of perfect match<strong>in</strong>gs <strong>in</strong> graphs <strong>with</strong><br />

reflective symmetry, prepr<strong>in</strong>t, 1999.<br />

3. S. J. Cyv<strong>in</strong> <strong>and</strong> I. Gutman, Kekulé Structures <strong>in</strong> Benzenoid<br />

Hydrocarbons, Lec. Notes <strong>in</strong> Chemistry, Spr<strong>in</strong>ger, Heidelberg,<br />

1988.<br />

4. T. Do{li}, Morgan trees <strong>and</strong> Dyck paths, Croat. Chem. Acta<br />

75 (2002) 881–889.<br />

5. T. Eisenkölbl, Rhombus til<strong>in</strong>gs of a hexagon <strong>with</strong> three fixed<br />

border tiles, Journ. Comb. Theory A 88 (1999) 368–378.<br />

6. N. Elkies, G. Kuperberg, M. Larsen, <strong>and</strong> J. Propp, Alternat<strong>in</strong>g-sign<br />

matrices <strong>and</strong> dom<strong>in</strong>o til<strong>in</strong>gs, J. Alg. Comb<strong>in</strong>atorics<br />

1 (1992) 111–132, 219–234.<br />

7. M. Gordon <strong>and</strong> W. H. T. Davison, Theory of Resonance Topology<br />

of Fully Aromatic Hydrocarbons. I, J. Chem. Phys.<br />

20 (1952) 428–435.<br />

Croat. Chem. Acta 78 (2) 251–259 (2005)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!