26.01.2015 Views

The crustal shortening /thickening within high Tibet and its tectonic ...

The crustal shortening /thickening within high Tibet and its tectonic ...

The crustal shortening /thickening within high Tibet and its tectonic ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Hotine-Marussi Symposium of <strong>The</strong>oretical <strong>and</strong> Computational Geodesy, Wuhan, China, May 29, 2006<br />

Area : ~ 1,000,000 km 2<br />

Elevation : 4000-5000 m<br />

<strong>The</strong> <strong>crustal</strong> <strong>shortening</strong> /<strong>thickening</strong> <strong>within</strong> <strong>high</strong><br />

<strong>Tibet</strong> <strong>and</strong> <strong>its</strong> <strong>tectonic</strong> implication<br />

Wang Qi 1,2 Tan Kai 1 <strong>and</strong> Yang Shaomin 1<br />

1 Institute of Seismology, CEA Wuhan<br />

2 Chinese University of Geoscience , Wuhan<br />

From Burchfiel , GSA Today , 14( 2), 4–10, 2004


<strong>Tibet</strong>an Plateau : Tectonic Setting<br />

1) India <strong>and</strong> Asia collide each other along<br />

Himalayas at 40-60 Ma<br />

2) Since then, India, subcontinent is moving<br />

northward at 40-55 mm/a<br />

3) <strong>Tibet</strong> is deforming in the Cenozoic era ,<br />

associated with various styles of <strong>tectonic</strong><br />

features in continent<br />

faulting, metamorphism, sedimentation,<br />

magmatism, earthquake, so on<br />

As summaried by Molnar & Tapponnier,<br />

Science,189, 419, 1975<br />

Features of recent continental <strong>tectonic</strong>s in Asia<br />

can be interpreted as results of the India-<br />

Eurasia collision.<br />

.<br />

Tapponnier et al., Science ,<br />

294,1671, 2001


Telling Feature : Raised <strong>Tibet</strong> with Striking Flatness<br />

South<br />

North<br />

<strong>Tibet</strong><br />

Seismic sounding profile<br />

India<br />

Vertical Stretching<br />

Horizontal N-S Shortening<br />

E-W Extending<br />

1 Crustal <strong>shortening</strong> is taking place<br />

in the direction of Indian northward<br />

movement path.<br />

2 Crust <strong>and</strong>/or upper mantle beneath <strong>Tibet</strong><br />

are thickened to double mean thickness of<br />

continental crust<br />

3 <strong>The</strong> <strong>Tibet</strong> is uplift, st<strong>and</strong>ing as the<br />

<strong>high</strong>est plateau in the world<br />

Question : How is the crust thickened <br />

Kind et al., Science, 298, 1219,2003


Uplift mode in <strong>Tibet</strong> I<br />

Subduction Model : Indian plate is underthrusting<br />

entirely into <strong>Tibet</strong>, proposed by Arg<strong>and</strong>, 1924<br />

1 <strong>The</strong> Indian plate plunged at<br />

Himalayas <strong>and</strong> extended<br />

northerly beneath the <strong>Tibet</strong>an<br />

crust<br />

North<br />

South<br />

2 <strong>Tibet</strong> is raised to the present<br />

topography progressively from<br />

south to north.<br />

Boosting in part, initiated in<br />

south <strong>and</strong> migrating to north<br />

Himalayas<br />

Tarim


Uplift mode in <strong>Tibet</strong> II<br />

Indentor ( Bulldoser ) Model : the crust is thickened by pure shear as with India<br />

indenting , proposed by Dewey & Bird , 1973<br />

Pre-collision<br />

South<br />

North<br />

Backstop<br />

Indentor<br />

Himalaya<br />

<strong>Tibet</strong> is raising steadily <strong>and</strong><br />

uniformly<br />

Tarim<br />

1 ) <strong>Tibet</strong> is deforming<br />

homogeneously<br />

throughout the lithosphere<br />

as viscous sheet<br />

Post-collision<br />

2) <strong>Tibet</strong> is uniformly<br />

raised to the present<br />

height


Uplift mode in <strong>Tibet</strong> III<br />

Injection “ Lift” Model: India lower crust is injecting<br />

into middle layer of <strong>Tibet</strong> crust , proposed by Zhao &<br />

Morgan 1987<br />

1 <strong>The</strong> India upper mantle<br />

is detached from overlying<br />

crust <strong>and</strong> sinking into<br />

asthenosphere<br />

North<br />

South<br />

2 <strong>The</strong> Indian crust is<br />

injecting into weak layer<br />

of <strong>Tibet</strong> crust <strong>and</strong><br />

weakening with reheating<br />

Upper crust is lifted<br />

up step by step<br />

Injecting, then<br />

steadily heating<br />

3 <strong>Tibet</strong> on wholesale is<br />

lifted hydrostatically <strong>and</strong><br />

reach ultimately to the<br />

maximum elevation<br />

Himalayas<br />

the weakened crust is<br />

flowing horizontally in the<br />

channel


Approaches for Model Constraint<br />

1 <strong>The</strong>se models are originally proposed to<br />

interpret features observed geologically <strong>and</strong><br />

geophysically<br />

Wang et al. Science, 249, 574 2001<br />

2 No single approach alone(geology , seismology,<br />

geomagnetism, palaeontology …) could yield all<br />

insights into the fundamental problem<br />

3 Geodesy can provide very useful constraints<br />

on present-day <strong>crustal</strong> deformation.<br />

4 GPS inferred velocity field is leading to better<br />

underst<strong>and</strong>ing of kinematics of <strong>tectonic</strong>s <strong>and</strong><br />

ultimately geodynamics of continental lithosphere.<br />

Zhang et al., Geology,32, 809, 2004


Kinematic Description of Asian Tectonics :<br />

Rigid block motion vs Viscous continuous deformation<br />

Molnar et al., Science 286, 516, 1999<br />

A<br />

B<br />

Royden et al., Science, 276, 788, 1997.<br />

Avouac & Tapponnier, Geophys Res Lett, 20, 895, 1993<br />

Royden et al., Science, 276, 788, 1997.


Velocity Pattern for rigid blocks :<br />

1 Localized deformation on weaken <strong>crustal</strong> zone<br />

2 Velocity leap in narrow belt by slip on active fault<br />

3 Stepwise velocity curve<br />

San Andreas<br />

GPS profile<br />

Deformation across the San Andreas fault,<br />

California, Prescott et al., JGR, 106, 6673, 2001<br />

GPS across Basin <strong>and</strong> Range Province, North<br />

America Thatcher Int Geol Rev, 45, 191, 2003.


Velocity Pattern for Viscous medium<br />

1 Distributed deformation throughout crust<br />

2 Velocity changes little across active fault<br />

3 Smooth velocity curve, decrease monotonically or<br />

linearly with respect to fixed point<br />

Visco-elastic Medium<br />

Driving Force<br />

Velocity<br />

fault<br />

Fixed point<br />

O<br />

Length<br />

Continuously<br />

Deforming<br />

Extension<br />

GPS Profile across boundary zone between the<br />

Australian <strong>and</strong> Pacific Plate, New Zeal<strong>and</strong>,<br />

Bourne et al, Nature, 391, 655,1998


GPS across <strong>Tibet</strong>an Plateau<br />

Conclusion I :<br />

In general, Conclusion GPS across I :<br />

<strong>Tibet</strong> shows a linearly<br />

In general, GPS across<br />

decreased velocity rates<br />

<strong>Tibet</strong> shows a linearly<br />

respect to Siberia from<br />

decreased velocity rates<br />

40 mm/yr to zero<br />

respect to Siberia from<br />

40 mm/yr to zero<br />

Wang et al. Science, 249, 574, 2001<br />

Conclusion II :<br />

Faults in <strong>Tibet</strong> slip at rates no more than 10 mm/yr except Himalayas,<br />

Perhaps the deformation is continuous <strong>and</strong> homogeneous<br />

Zhang et al., Geology,32, 809, 2004<br />

Problem : Sparse dataset does not rule out<br />

the discontinuous mode


~ 2000 site velocities from 1991 to 2004,


GPS Profile across <strong>Tibet</strong><br />

mm/yr<br />

Zanbo<br />

Nujiang<br />

Jinsha<br />

1 Thrust Slip Rates<br />

Zangbo : 6.2 ±1.4 mm/yr<br />

Nujiang : 7.4 ± 1.0 mm/yr<br />

Jinsha : 8.4 ± 1.3 mm/yr<br />

N15°E component<br />

Lhasa<br />

Velocity Profile based on<br />

elastic dislocation model<br />

Qiangtang<br />

Songpang<br />

2 <strong>The</strong> stepwise velocity in<br />

N15°E component across<br />

the High <strong>Tibet</strong><br />

3 Intervening blocks (Lhasa,<br />

Qiangtang, Songpan )<br />

Zangbo<br />

Nujiang<br />

Jinsha<br />

deform less than 2-3 mm/yr<br />

Zhang et al., Geology,32, 809, 2004


Himalayan-<strong>Tibet</strong>an Orogen<br />

Suture <strong>and</strong> Tertiary Fault:<br />

underthrusting was dominating in the <strong>high</strong> <strong>Tibet</strong><br />

Tertiary Shortening 10-20 Ma<br />

Hacker et al. , Science ,<br />

287, 2463, 2000<br />

Jinsha (Fenghuo Shan<br />

Thrust)<br />

60 - 80 km<br />

Bangong Nujiang<br />

(Amdo-Gaze Thrust)<br />

~250 km<br />

Yarlung Zangbo (Gangdes<br />

Thrust )<br />

> 60 km<br />

Tapponnier et al., Science ,<br />

294, 1671, 2001<br />

Fenghuo<br />

Shan Thrust<br />

Amdo-Gaze Thrust<br />

Gangdes Thrust,<br />

Yin et al., Annu Rev Earth Sci. 28,<br />

211,2 000.


Fault Plane Solution of Earthquake :<br />

No reverse fault in the<br />

interior of <strong>Tibet</strong> is identified<br />

Molnar & Lyon-Caen ,<br />

Geophys. J. int. , 99, 123, 1989<br />

From Chen et al., J.Geophys.Res. 109, 2002JB002151, 2004<br />

Quaternary Faults in <strong>Tibet</strong><br />

Yin et al., Annu Rev Earth Sci. 28, 211,2 000.<br />

No thrusting events M>6 in the<br />

interior of <strong>Tibet</strong> was recorded<br />

美 国 地 质 调 查 局<br />

Normal <strong>and</strong> striking-slip<br />

faulting is prevailing at<br />

present


Discussion<br />

• Have these thrusting structures be active since the collision or be<br />

reactivated during late Quaternary (100 kyr) , (10 kyr) Holocene ,<br />

even recent several years <br />

• <strong>The</strong> thrusting events may occur on the blind reverse faults, producing<br />

no rupture on surface instead of folding growth smeared by<br />

unroofing erosion.<br />

• Thrusting earthquake overcome harder friction on the larger interface<br />

than striking-slip events, thus requires long repeat time <strong>and</strong><br />

corresponding large earthquake<br />

• Localized elastic strain is absorbed by aseismic slip-event <br />

Tapponnier et al., Science ,294, 1671, 2001


Summary<br />

• New GPS show a pattern of discontinuous deformation from south to<br />

north across <strong>Tibet</strong>.<br />

• <strong>The</strong> thrusting slip rates on Gangdes, Banggong-Nujiang <strong>and</strong> Jinsha<br />

Suture are 6-8 mm/yr<br />

• Intra-<strong>crustal</strong> subduction along the sutures has thickened the uppermiddle<br />

crust under <strong>Tibet</strong>.<br />

• This is facilitated by continuous insertion of the Indian lower crust into the<br />

<strong>Tibet</strong>an lower curst, raising <strong>Tibet</strong>


Conceptional Model Modified after DeCelles et al, Tectonics, 21, 1062, 2002<br />

A variant of subduction model propsed<br />

by Arg<strong>and</strong> 1924<br />

Elevation History :<br />

Northerly migrating the 4000-meter front of <strong>Tibet</strong>an plateau,<br />

constrained by isotope-based palaeo-altimetry<br />

Rowley & Currie, Nature, 439,677 2006


Hotine-Marussi Symposium of <strong>The</strong>oretical <strong>and</strong> Computational Geodesy, Wuhan, China, May 29, 2006<br />

Area : ~ 1,000,000 km 2<br />

Elevation : 4000-5000 m<br />

<strong>The</strong> <strong>crustal</strong> <strong>shortening</strong> /<strong>thickening</strong> <strong>within</strong> <strong>high</strong> <strong>Tibet</strong> <strong>and</strong> <strong>its</strong> <strong>tectonic</strong> implication<br />

Thank your attention<br />

Wang Qi 1,2 Tan Kai 1 <strong>and</strong> Yang Shaomin 1<br />

1 Institute of Seismology, CEA Wuhan<br />

2 Chinese University of Geoscience , Wuhan<br />

From Burchfiel , GSA Today , 14( 2), 4–10, 2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!