27.01.2015 Views

DISPLACEMENT-BASED SEISMIC DESIGN

DISPLACEMENT-BASED SEISMIC DESIGN

DISPLACEMENT-BASED SEISMIC DESIGN

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ISRAELI STRUCTURAL ENGINEERING CONFERENCE<br />

TEL AVIV, JUNE 2009<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> <strong>SEISMIC</strong><br />

<strong>DESIGN</strong><br />

Nigel Priestley<br />

European School for Advanced Studies in<br />

Reduction of Seismic Risk, Pavia, Italy<br />

1


Review of a 15 year research effort<br />

culminating in the preparation of a design text<br />

book:<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> <strong>SEISMIC</strong><br />

<strong>DESIGN</strong> OF STRUCTURES<br />

Priestley, Calvi and Kowalsky<br />

IUSS Press (May 2007)<br />

Available online (www.iusspress.it)<br />

2


WITHIN A PERFORMANCE-<strong>BASED</strong><br />

ENVIRONMENT:<br />

• WHAT SHOULD BE THE STRUCTURAL<br />

STRENGTH (BASE SHEAR FORCE)<br />

• HOW SHOULD THIS STRENGTH BE<br />

DISTRIBUTED<br />

• HOW CAN <strong>DESIGN</strong> BE ELEVATED<br />

ABOVE ANALYSIS<br />

• WHAT SHOULD BE THE STRENGTH<br />

OF CAPACITY-PROTECTED ACTIONS<br />

3


1. The Need for DDBD<br />

(Problems with Force-based Design)<br />

• Estimating Elastic Stiffness<br />

• Distribution of Required Strength based on Elastic<br />

Stiffness<br />

• Displacement-Equivalence Rules (equal displacement)<br />

• Specified Ductility or Force-Reduction Factors<br />

• Assumption that Increased Strength Reduces<br />

potential for damage<br />

Note: Damage is strain or drift (not strength)<br />

related<br />

4


Concrete Bridge under Longitudinal Seismic Excitation<br />

Spectral Acceleration S A(T)<br />

H A H<br />

H C<br />

B<br />

C<br />

A<br />

B<br />

Structure<br />

Elastic<br />

Ductile<br />

Period T (seconds)<br />

Acceleration Response Spectrum<br />

K<br />

long<br />

Stiffness:<br />

= K + K<br />

A<br />

Period:<br />

T = 2π m /<br />

F<br />

i<br />

B<br />

+<br />

K long<br />

K<br />

C<br />

=<br />

Base shear force:<br />

=<br />

F =<br />

m ⋅<br />

g ⋅ S<br />

R<br />

A ( T )<br />

Pier Shear Force:<br />

F<br />

K<br />

K<br />

i<br />

long<br />

Design Displacement:<br />

2<br />

T<br />

∆<br />

long<br />

= ⋅ S<br />

2 A(<br />

T )<br />

4π<br />

⋅ g<br />

∑<br />

A,<br />

B,<br />

C<br />

5<br />

12EI<br />

H<br />

3


T = 2π m /<br />

K long<br />

Concrete Bridge Under Longitudinal Response<br />

H A H B<br />

H C<br />

C<br />

A<br />

Stiffness:<br />

K<br />

long<br />

B<br />

= K<br />

A<br />

+<br />

K<br />

B<br />

+<br />

K<br />

C<br />

=<br />

∑<br />

A,<br />

B,<br />

C<br />

12EI<br />

H<br />

3<br />

Period:<br />

T = 2π m /<br />

K long<br />

Pier Strength:<br />

F =<br />

i<br />

F<br />

K<br />

K<br />

i<br />

long<br />

What value for EI What force-reduction<br />

factor Is the strength distribution logical<br />

6


STIFFNESS OF CONCRETE ELEMENTS:<br />

Stiffness is assumed to be independent of strength,<br />

and a fixed percentage (often 100% or 50%) of gross<br />

(uncracked) section stiffness<br />

7


Elastic Stiffness<br />

40000<br />

EI=M y /φ y<br />

50000<br />

40000<br />

Nu/f'cAg = 0.4<br />

Nu/f'cAg = 0.3<br />

Nu/f'cAg = 0.2<br />

Nu/f'cAg = 0.1<br />

Moment (kNm)<br />

30000<br />

20000<br />

Nu/f'cAg = 0.4<br />

Nu/f'cAg = 0.3<br />

Nu/f'cAg = 0.2<br />

Nu/f'cAg = 0.1<br />

Nu/f'cAg = 0<br />

Moment (kNm)<br />

30000<br />

20000<br />

Nu/f'cAg = 0<br />

10000<br />

10000<br />

0<br />

0<br />

0 0.002 0.004 0.006<br />

Curvature (1/m)<br />

(a) Reinforcement Ratio = 1%<br />

0 0.002 0.004 0.006<br />

Curvature (1/m)<br />

(b) Reinforcement Ratio = 3%<br />

SELECTED MOMENT-CURVATURE CURVES FOR<br />

CIRCULAR COLUMNS (D=2m,f’ c = 35MPa, f y = 450MPa)<br />

8


Dimensionless Moment (M N<br />

/f'cD 3 )<br />

0.2<br />

0.16<br />

0.12<br />

0.08<br />

0.04<br />

0<br />

ρ l<br />

= 0.04<br />

ρ l<br />

= 0.03<br />

ρ l<br />

= 0.02<br />

ρ l<br />

= 0.01<br />

ρ l = 0.005<br />

Dimensionless Curvature (φ y<br />

D/ε y<br />

)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Ave. +10%<br />

ρ l<br />

= 0.04<br />

Ave. -10%<br />

ρ l<br />

= 0.005<br />

Average φ y<br />

D/ε y<br />

= 2.25<br />

Average φ y<br />

D/ε y<br />

= 2.25<br />

0 0.1 0.2 0.3 0.4<br />

0 0.1 0.2 0.3 0.4<br />

Axial Load Ratio (N u<br />

/f'cA g<br />

)<br />

Axial Load Ratio (N u<br />

/f' c<br />

A g<br />

)<br />

(a) Nominal Moment<br />

(b) Yield Curvature<br />

DIMENSIONLESS NOMINAL MOMENT AND YIELD<br />

CURVATURE FOR CIRCULAR COLUMNS<br />

STRENGTH VARIES; YIELD CURVATURE IS CONSTANT<br />

9


1<br />

0.90<br />

0.8<br />

ρ l<br />

= 0.04<br />

Stiffness Ratio (EI/EI gross<br />

)<br />

0.6<br />

0.4<br />

ρ l<br />

= 0.03<br />

ρ l<br />

= 0.02<br />

ρ l<br />

= 0.01<br />

ρ l<br />

= 0.005<br />

EI eff = M N /φ y<br />

EI eff /EI gross<br />

=M N /φ y EI gross<br />

0.2<br />

0<br />

0.12<br />

0 0.1 0.2 0.3 0.4<br />

Axial Load Ratio (N u<br />

/f' c<br />

A g<br />

)<br />

EFFECTIVE STIFFNESS RATIO FOR<br />

CIRCULAR COLUMNS<br />

10


INTERDEPENDENCY OF STRENGTH AND STIFFNESS<br />

Stiffness EI = M/φ<br />

M<br />

M 1<br />

M<br />

M 1<br />

M 2<br />

M 2<br />

M 3<br />

M 3<br />

φ y3<br />

φ y2<br />

φ y1<br />

φ φ y<br />

φ<br />

(a) Design assumption<br />

(constant stiffness)<br />

(b) Realistic assumption<br />

(constant yield curvature)<br />

INFLUENCE OF STRENGTH ON MOMENT-CURVATURE RESPONSE<br />

11


Bridge Under Longitudinal Response: Elastic Strength<br />

Distribution<br />

Force-Based Design: Column Stiffness<br />

Force-Based Design: Column Moments:<br />

K = C EI<br />

i<br />

M = C V h =<br />

Bi<br />

h<br />

3<br />

1 i.<br />

eff<br />

/<br />

i<br />

C C<br />

EI<br />

h<br />

2<br />

2 i i 1 2 i.<br />

eff<br />

/<br />

i<br />

Short columns need highest long.rebar: stiffness increases: higher moment! 12


BRIDGE WITH UNEQUAL COLUMN HEIGHTS<br />

• Shortest piers are stiffest. Shear is in proportion to 1/h 3 .<br />

Therefore moments (and, approximately reinforcement ratio)<br />

are in proportion to 1/h 2 . Increasing the reinforcement ratio<br />

of the short piers relative to the long piers increases the<br />

relative stiffness of the short piers, attracting still higher<br />

shear in elastic response.<br />

• Allocating high shear to the short column increases its<br />

susceptibility to shear failure.<br />

• Displacement capacity of the short pier is DECREASED by<br />

increasing its reinforcement ratio<br />

• It doesn’t make sense to have a higher reinforcement ratio for<br />

the shorter columns than the longest columns (and in practice,<br />

they would probably have the same reinforcement ratio, for<br />

simplicity of construction)<br />

13


YIELD DRIFTS OF<br />

CONCRETE FRAMES<br />

ELASTIC DEFORMATION<br />

CONTRIBUTIONS TO DRIFT<br />

OF A BEAM/COLUMN<br />

JOINT SUBASSEMBLAGE<br />

Beam flexure and shear deform.<br />

Column flexure and shear deform.<br />

Joint shear deformation<br />

14


CONCRETE FRAME DRIFT EQUATION<br />

θ y = 0.5ε y (l b /h b )<br />

Equation Checked against test data with:<br />

• Column height/beam length aspect ratio (l c /l b ) : 0.4 – 0.86<br />

• Concrete compression strength (f’ c ) : 22.5MPa – 88MPa<br />

• Beam Reinforcement yield strength (f y ) : 276MPa – 611MPa<br />

• Maximum beam reinforcement ratio (A’ s /b w d) : 0.53% – 3.9%<br />

• Column axial load ratio (N u /f’ c A g ) : 0 – 0.483<br />

• Beam aspect ratio (l b /h b ) : 5.4 – 12.6<br />

15


θ y = 0.5ε y (l b /h b )<br />

EXPERIMENTAL DRIFTS OF BEAM/COLUMN<br />

TEST UNITS COMPARED WITH EQUATION<br />

16


DIMENSIONLESS YIELD CURVATURES<br />

AND DRIFTS<br />

• Circular column: φ = 2.25ε<br />

D<br />

y y<br />

/<br />

• Rectangular column: φ<br />

y<br />

= 2.10ε<br />

y<br />

/ hc<br />

• Rectangular cantilever walls: φ<br />

y<br />

= 2.00ε<br />

y<br />

/ lw<br />

• T-Section Beams: φ<br />

y<br />

= 1.70ε<br />

y<br />

/ hb<br />

Concrete Frames:<br />

Steel Frames:<br />

θ = 0. 5ε<br />

y<br />

y<br />

θ = 0. 65ε<br />

y<br />

y<br />

l<br />

h<br />

b<br />

b<br />

l<br />

h<br />

b<br />

b<br />

17


FORCE-REDUCTION FACTORS IN DIFFERENT<br />

COUNTRIES<br />

Structural Type and<br />

Material<br />

US West Coast Japan New**<br />

Zealand<br />

Europe<br />

Concrete Frame 8 1.8-3.3 9 5.85<br />

Conc. Struct. Wall 5 1.8-3.3 7.5 4.4<br />

Steel Frame 8 2.0-4.0 9 6.3<br />

Steel EBF* 8 2.0-4.0 9 6.0<br />

Masonry Walls 3.5 6 3.0<br />

Timber (struct. Wall) 2.0-4.0 6 5.0<br />

Prestressed Wall 1.5 - - -<br />

Dual Wall/Frame 8 1.8-3.3 6 5.85<br />

Bridges 3-4 3.0 6 3.5<br />

* Eccentrically Braced Frame **S P factor of 0.67 incorporated.<br />

18


FRAME DUCTILITY LIMITS<br />

NOTE: CODES LIMIT DRIFT TO 0.02-0.025<br />

Yield Drift:<br />

θ = 0. 5ε<br />

Example: l b = 6m, h b =0.6m, f y = 500MPa<br />

ε y = 500/200,000 = 0.0025;<br />

y<br />

y<br />

l<br />

h<br />

b<br />

b<br />

θ y = 0.5*0.0025*6.0/0.6 = 0.0125<br />

Thus ductility limit is 1.6 to 2.0<br />

Note: using high-strength reinforcement<br />

provides no benefit in reduced steel content!<br />

19


2. DIRECT <strong>DISPLACEMENT</strong> -<br />

<strong>BASED</strong> <strong>SEISMIC</strong> <strong>DESIGN</strong><br />

A RATIONAL <strong>SEISMIC</strong> <strong>DESIGN</strong><br />

APPROACH<br />

20


FORMULATION OF THE DIRECT<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> (DDBD)<br />

APPROACH<br />

DDBD is based on the observation that damage is directly<br />

related to strain (structural effects) or drift (nonstructural<br />

effects), and both can be integrated to obtain<br />

displacements. Hence damage and displacement can be<br />

directly related. The design approach ACHIEVES a<br />

specified damage limit state.<br />

It is not possible to formulate an equivalent relationship<br />

between strength (force) and damage. This is one of the<br />

major deficiencies of current force-based seismic design).<br />

The level of damage is uncertain<br />

21


ELASTIC RESPONSE OF STRUCTURES<br />

1<br />

0.5<br />

Acceleration a(T) (g)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Force-based design<br />

Displacement ∆(T) (m)<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

DDBD<br />

0<br />

0 1 2 3 4 5<br />

Period T (seconds)<br />

(a) Acceleration Spectrum for 5% damping<br />

0<br />

0 1 2 3 4 5<br />

Period T (seconds)<br />

(b Displacement Spectrum for 5% damping<br />

Elastic, Force Based: F = m.a(T).g; D = F/K<br />

Elastic, Displ. Based: F = K.D(T)<br />

22


COMPARISON OF ELASTIC FORCE AND<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> <strong>DESIGN</strong><br />

We require to know force (F) and displacement (∆)<br />

FORCE <strong>BASED</strong>: F =m.a (T) .g<br />

Calculate K,T,a (T) , F,∆<br />

∆= F/K<br />

(5 steps)<br />

<strong>DISPLACEMENT</strong> <strong>BASED</strong>: F = K.∆ (T)<br />

Calculate K,T,∆ (T) ,F<br />

(4 steps)<br />

23


FUNDAMENTALS OF DDBD<br />

F<br />

m e<br />

h e<br />

F u<br />

F n<br />

K e<br />

K i<br />

∆y ∆d<br />

(a) SDOF Simulation (b) Effective Stiffness K e<br />

Damping (%)<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

←<br />

Elasto-Plastic<br />

Steel Frame<br />

Concrete Frame<br />

Concrete Bridge<br />

Hybrid Prestress<br />

Displacement (m)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

∆ d<br />

→<br />

5%<br />

10%<br />

15%<br />

20%<br />

30%<br />

0<br />

0 2 4 6<br />

Displacement Ductility<br />

↑<br />

(c) Equivalent damping vs. ductility<br />

0<br />

↓<br />

T e<br />

0 1 2 3 4 5<br />

Period (seconds)<br />

(d) Design Displacement Spectra<br />

24


Damping (%)<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

←<br />

Elasto-Plastic<br />

Steel Frame<br />

Concrete Frame<br />

Concrete Bridge<br />

Hybrid Prestress<br />

Displacement (m)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

∆ d<br />

→<br />

5%<br />

10%<br />

15%<br />

20%<br />

30%<br />

0<br />

↑<br />

0<br />

↓<br />

T e<br />

0 2 4 6<br />

Displacement Ductility<br />

0 1 2 3 4 5<br />

Period (seconds)<br />

(c) Equivalent damping vs. ductility<br />

(d) Design Displacement Spectra<br />

Limit State Displacement; Ductility Damping<br />

Damping+Displacement T e ; K=4π 2 m e /T e<br />

2<br />

25


m e F u<br />

F F n rK i<br />

H e K i K e<br />

Limit State Displacement; Ductility Damping<br />

Damping+Displacement Te; K=4π 2 me/T e<br />

2<br />

∆ y ∆ d<br />

F u = K e ∆ d<br />

26


ELEMENTS OF DDBD: Multi-storey Building<br />

Effective Stiffness:<br />

K<br />

e<br />

=<br />

2 2<br />

4π<br />

me<br />

/ Te<br />

Base Shear Force:<br />

F<br />

=<br />

V Base<br />

= K e<br />

∆<br />

d<br />

MDOF Design Displacement:<br />

∆<br />

d<br />

=<br />

n<br />

∑<br />

i=<br />

1<br />

n<br />

( m ∆<br />

2 ) ∑( ∆ )<br />

i i<br />

/ mi<br />

i<br />

i=<br />

1<br />

Effective Mass:<br />

m<br />

n<br />

= ∑<br />

e<br />

m i<br />

i=<br />

1<br />

( ∆ )<br />

i<br />

/ ∆d<br />

Effective Height:<br />

H<br />

e<br />

=<br />

n<br />

∑<br />

i=<br />

1<br />

( m ) ∑<br />

i∆iH<br />

i<br />

/ ( mi∆i<br />

)<br />

n<br />

i=<br />

1<br />

27


3. EQUIVALENT VISCOUS DAMPING<br />

Relationships between displacement ductility and<br />

equivalent viscous damping have been determined by<br />

extensive inelastic time-history analyses, using two<br />

different approaches:<br />

• “Real” accelerograms, matching displacement of<br />

equivalent elastic system to inelastic displacement,<br />

on a record-by-record approach, then averaging the<br />

EVD over a very large number of records.<br />

• Spectrum compatible accelerograms averaging the<br />

inelastic response, and matching average equivalent<br />

elastic displacement.<br />

Results were nearly identical<br />

28


F F y<br />

βF y<br />

BASIC HYSTERESIS RULES CONSIDERED<br />

F<br />

F<br />

rk i<br />

k i k i<br />

∆<br />

∆<br />

(a) Elasto-plastic (EPP)<br />

(b) Bi-linear, r = 0.2 (BI)<br />

F<br />

k i<br />

k i µ −α<br />

∆<br />

F<br />

k i<br />

∆<br />

k i µ −α<br />

(c) Takeda “Thin” (TT) (d) Takeda “Fat” (TF)<br />

k i<br />

∆<br />

k i<br />

∆<br />

(e) Ramberg-Osgood (RO) (f) Flag Shaped (FS)<br />

29


RELATIONSHIPS FOR TANGENT-STIFFNESS<br />

DAMPING<br />

Concrete Wall Building, Bridges (TT):<br />

Concrete Frame Building (TF):<br />

Steel Frame Building (RO):<br />

Hybrid Prestressed Frame (FS,β=0.35):<br />

Friction Slider (EPP):<br />

Bilinear Isolation System (BI, r=0.2):<br />

ξ<br />

ξ<br />

ξ<br />

ξ<br />

ξ<br />

ξ<br />

eq<br />

eq<br />

eq<br />

eq<br />

eq<br />

eq<br />

⎛ µ −1⎞<br />

= 0.05 + 0.444⎜<br />

⎟<br />

⎝ µπ ⎠<br />

⎛ µ −1⎞<br />

= 0.05 + 0.565⎜<br />

⎟<br />

⎝ µπ ⎠<br />

⎛ µ −1⎞<br />

= 0.05 + 0.577⎜<br />

⎟<br />

⎝ µπ ⎠<br />

⎛ µ −1⎞<br />

= 0.05 + 0.186⎜<br />

⎟<br />

⎝ µπ ⎠<br />

⎛ µ −1⎞<br />

= 0.05 + 0.670⎜<br />

⎟<br />

⎝ µπ ⎠<br />

⎛ µ −1⎞<br />

= 0.05 + 0.519⎜<br />

⎟<br />

⎝ µπ ⎠<br />

30


4<br />

GENERAL FORM OF ELASTIC 5% <strong>DISPLACEMENT</strong><br />

SPECTRUM, FROM EC8<br />

∆ max<br />

Plateau<br />

∆ max<br />

T C Period T D T E<br />

∆ PG<br />

Displacement<br />

Corner<br />

Period<br />

Linear<br />

∆ PG<br />

T C Period T D T E<br />

31


.<strong>DESIGN</strong> <strong>DISPLACEMENT</strong> SPECTRA (1)<br />

• Can be approximately generated from design<br />

acceleration spectra (5% damping) using accelerationdisplacement<br />

relationships:<br />

∆ (T,5) = (T 2 /4π 2 ).g.a (T,5)<br />

• Values for damping other than 5% can be generated<br />

from relationships such as:<br />

∆<br />

T , ξ<br />

= ∆<br />

T ,5<br />

⋅<br />

⎛<br />

⎜<br />

⎝<br />

2<br />

7 ⎞ ⎟⎠<br />

+ ξ<br />

0.5<br />

“Normal” records, EC8 1998<br />

∆<br />

T , ξ<br />

= ∆<br />

T ,5<br />

⋅<br />

⎛<br />

⎜<br />

⎝<br />

2<br />

7 ⎞ ⎟⎠<br />

+ ξ<br />

0.25<br />

“Velocity pulse” records (Forward<br />

directionality) (tentative!)<br />

32


<strong>DESIGN</strong> <strong>DISPLACEMENT</strong> SPECTRA (4)<br />

• Based on Faccioli’s observations,the corner period T c<br />

appears to increase almost linearly with moment<br />

magnitude. For earthquakes with M W > 5.7, the<br />

following expression seems conservative:<br />

( 5.7)<br />

T 1.0<br />

+ 2.5 M −<br />

c<br />

=<br />

w<br />

seconds<br />

• Peak displacement at the corner period can be<br />

estimated from the following expression (firm ground):<br />

δ<br />

max<br />

=<br />

10<br />

( M −3.2)<br />

W<br />

r<br />

mm<br />

r = nearest<br />

distance to fault<br />

plane (km)<br />

33


Spectral Displacement (mm)<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

0<br />

M = 7.5<br />

M = 7.0<br />

M = 6.5<br />

M = 6.0<br />

0 2 4 6 8 10<br />

Period (seconds)<br />

5% Damped Spectra Resulting from the<br />

Equations, at r = 10km<br />

34


Spectral Displacement (mm)<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

0<br />

M = 7.5<br />

M = 7.0<br />

M = 6.5<br />

0 2 4 6 8 10<br />

Period (seconds)<br />

5% Damped spectra, Resulting from the<br />

Equations, at r = 20 km<br />

35


Spectral Displacement (mm)<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

0<br />

M = 7.5<br />

M = 7.0<br />

M = 6.5<br />

0 2 4 6 8 10<br />

Period (seconds)<br />

5% Damped spectra Resulting from the<br />

Equations, at r = 40 km<br />

36


INFLUENCE OF DAMPING AND DUCTILITY ON<br />

SPECTRAL <strong>DISPLACEMENT</strong> RESPONSE<br />

Current EC8:<br />

1998 EC8:<br />

Newmark and Hall 1987:<br />

∆<br />

∆<br />

∆<br />

T , ξ<br />

T , ξ<br />

=<br />

∆<br />

= ∆<br />

T ,5<br />

T ,5<br />

⋅<br />

⋅<br />

⎛<br />

⎜<br />

⎝<br />

⎛<br />

⎜<br />

⎝<br />

10 ⎞ ⎟⎠<br />

5 + ξ<br />

2<br />

7 ⎞ ⎟⎠<br />

+ ξ<br />

0.5<br />

0.5<br />

( 1.31 ln )<br />

.ξ<br />

ξ<br />

= ∆T<br />

,5<br />

T ,<br />

−<br />

Independent analyses by Priestley et al, Kowalsky et al, Sullivan et<br />

al, support the 1998 EC8, not the 2003 Eqn,nor Newmark and Hall.<br />

Tentative Expression<br />

for Forward Directivity,<br />

Near field<br />

∆<br />

T , ξ<br />

= ∆<br />

T ,5<br />

⋅<br />

⎛<br />

⎜<br />

⎝<br />

2<br />

7 ⎞ ⎟⎠<br />

+ ξ<br />

0.25<br />

37


Recommended Spectral correction for Damping<br />

Relative Displacement ∆ T,ξ<br />

/∆ 4,5%<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

(Eq.(2.8))<br />

ξ= 0.05<br />

ξ= 0.10<br />

ξ= 0.15<br />

ξ= 0.20<br />

ξ= 0.30<br />

Relative Displacement ∆ T,ξ<br />

/∆ 4,5%<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

(Eq.(2.11))<br />

ξ= 0.05<br />

ξ= 0.10<br />

ξ= 0.15<br />

ξ= 0.20<br />

ξ= 0.30<br />

0 1 2 3 4 5<br />

Period T (seconds)<br />

(a) "Normal" Conditions<br />

0 1 2 3 4 5<br />

Period T (seconds)<br />

(b) Velocity Pulse Conditions<br />

K e =4π 2 m e /T e<br />

2<br />

; V base =K e ∆ d<br />

38


SCOPE OF RESEARCH AND BOOK<br />

The research study (and the text book) considered<br />

the following structural systems:<br />

• Frames (concrete, steel, infilled, braced, precast)<br />

• Structural walls (cantilever and coupled)<br />

• Dual Wall/Frame structures<br />

• Timber structures<br />

• Unreinforced masonry buildings<br />

• Structures with Seismic Isolation and added<br />

damping<br />

• Bridges<br />

• Marginal wharves<br />

39


CHAPTER 4<br />

ANALYSIS TOOLS FOR DIRECT<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> <strong>DESIGN</strong><br />

Deals with a number of particularly relevant issues:<br />

• Moment-curvature analysis (Cumbia on CD)<br />

• Equilibrium considerations<br />

• Section stiffness<br />

• Shear strength<br />

• Capacity design analyses<br />

• Inelastic time-history analyses (Ruaumoko, SeismoStruct<br />

on CD)<br />

• Pushover analyses (Ruaumoko, SeismoStruct)<br />

40


CHAPTER 5<br />

FRAME BUILDINGS<br />

Considers issues specially relevant to design of frames:<br />

• design displacement profiles<br />

• one way/two way frames<br />

• irregular frames<br />

• elastic response<br />

• combination with gravity-load effects (consider<br />

separately!<br />

• capacity design for columns, and beams<br />

• hybrid precast frames<br />

41


CHAPTER 6<br />

STRUCTURAL WALL BUILDINGS<br />

Issues specially relevant to wall buildings considered:<br />

• Yield displacement and elastically responding walls<br />

• Torsional response<br />

• Capacity design effects<br />

• Foundation rotational stiffness<br />

• Coupled wall design (based on equilibrium, not elastic<br />

stiffness)<br />

42


CHAPTER 7<br />

DUAL WALL/FRAME BUILDINGS<br />

(a) Plan View<br />

(b) Long Direction Model<br />

Issues: How to distribute lateral<br />

force between walls and frames<br />

(a designer’s choice –not based<br />

on elastic stiffness)<br />

How to distribute shear up the<br />

frame (also a designer’s choice)<br />

Analysis for design requires no<br />

information about relative<br />

stiffnesses, which are, in fact<br />

irrelevant.<br />

(c) Short Direction Model<br />

43


CHAPTER 8<br />

MASONRY BUILDINGS<br />

This chapter essentially deals with unreinforced, or very<br />

lightly reinforced buildings, such as are used extensively in<br />

Europe and Central and South America. Displacementbased<br />

design is a much more rational way of designing such<br />

structures than current force-based approaches. Coupling<br />

between walls by floor slabs and spandrels is rationally<br />

considered with an innovative design approach<br />

44


Chapter 9: DUCTILE TIMBER STRUCTURES<br />

F<br />

Joint<br />

Framing<br />

Shear<br />

Panel<br />

End View<br />

(a) Ductile Moment-Resisting Frame (b) Timber Shear Panel Bracing<br />

Ductile<br />

connectors<br />

Post-tensioning<br />

P<br />

P<br />

(c) Post-tensioned Timber Frame<br />

45


CHAPTER 10<br />

BRIDGES<br />

Consideration of aspects specially applicable to bridges:<br />

• Longitudinal/transverse design<br />

• Elastically responding bridges<br />

• Influence of bearings and foundation flexibility<br />

• P-∆ Effects<br />

• Different foundation conditions<br />

• Capacity design (Effective modal superposition)<br />

46


Isolator<br />

Isolated rigid<br />

structure<br />

Braced frame<br />

with added<br />

damping<br />

Isolated bridge<br />

Partially isolated bridge<br />

Foundation<br />

sliding on gravel<br />

layer<br />

Pier<br />

Gravel<br />

layer Soil<br />

Concrete<br />

Chapter 11<br />

ISOLATION<br />

Deck<br />

Rocking bridge bent<br />

47


CHAPTER 12<br />

WHARVES AND PIERS<br />

Design is dominated by soil/structure interaction effects<br />

Displacement-based design, to specified limit-strains in<br />

piles (two-level design)<br />

Torsional response is critical<br />

This chapter is the basis of the POLA seismic design code<br />

48


INELASTIC FORCE-<strong>DISPLACEMENT</strong> RESPONSE<br />

FROM PUSHOVER ANALYSIS<br />

Wharf Deck<br />

F E D C B A<br />

T F T E T D T C T B T A<br />

F L<br />

L Cl<br />

Ground<br />

L sp<br />

IG F<br />

IG E<br />

IG D<br />

IG C<br />

IG B<br />

IG A<br />

Piles<br />

Inelastic pile<br />

members<br />

Inelastic Soil<br />

Springs<br />

x F<br />

x E<br />

x D<br />

x C<br />

x B<br />

x A<br />

49


CHAPTER 13<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> <strong>SEISMIC</strong> ASSESSMENT<br />

The principles of displacement-based design are adapted to<br />

assessment of existing structures. Both buildings and<br />

bridges are considered in developing the topic, and in the<br />

design examples<br />

50


MDOF PLASTIC MECHANISMS<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Height<br />

Limit state<br />

∆ P,c<br />

Yield<br />

Plastic mechanism<br />

Displacement<br />

(a) Beam Sway, S i < 0.85, all levels (b) Beam Sway Displacement Profiles<br />

5<br />

4<br />

3<br />

2<br />

Height<br />

Yield<br />

Column sway<br />

at Level 1<br />

Column sway<br />

at Level 2<br />

1<br />

∆ P<br />

Plastic mechanism<br />

Displacement<br />

(c) Column Sway, S i > 1, Levels 1 or 2 (d) Column Sway Displacement<br />

51


CHAPTER 14<br />

DRAFT <strong>DISPLACEMENT</strong>-<strong>BASED</strong> CODE FOR<br />

<strong>SEISMIC</strong> <strong>DESIGN</strong> OF BUILDINGS<br />

Intended as a starting point for development of design<br />

codes.<br />

52


DIRECT DISPLACEMEMENT-<strong>BASED</strong> <strong>DESIGN</strong><br />

<strong>DESIGN</strong> <strong>DISPLACEMENT</strong><br />

Damage is strain dependent. (e.g. onset of concrete<br />

crushing: strain = 0.004, residual crack widths require<br />

grouting if peak reinforcement strain exceeds 0.015).<br />

From strains we can calculate curvature. We can<br />

integrate curvature to find displacement.<br />

Thus we can directly relate structural damage to<br />

displacement<br />

Non-structural damage can generally be related to<br />

drift (Drift = interstorey displacement divided by<br />

interstorey height). Drift can be integrated to find<br />

displacement.<br />

Thus we can relate non-structural damage to<br />

displacement<br />

53


EXAMPLE OF STRAIN LIMIT STATES<br />

Curvature from concrete<br />

compression:<br />

φ mc = ε cm /c<br />

Curvature from reinforcement<br />

tension:<br />

φ ms = ε sm /(d-c)<br />

Chose lesser of φ mc and φ ms ,<br />

Design Displacement is:<br />

∆ ds = ∆ y + ∆ p<br />

= φ y H 2 /3 + (φ m -φ y )L p H<br />

L p = plastic hinge length.<br />

54


CRITICAL <strong>DISPLACEMENT</strong>S<br />

•Frames: normally governed by structural or nonstructural<br />

drift in beams of lowest storey<br />

• Cantilever Wall buildings: normally governed by<br />

plastic rotation at the wall base (for longest wall),<br />

or drift in top storey<br />

• Bridges: normally governed by plastic rotation,<br />

or drift limit, of the shortest column<br />

55


FRAMES<br />

1.0<br />

n=4:<br />

δ<br />

i<br />

=<br />

H /<br />

i<br />

H<br />

n<br />

H/H n<br />

n>4:<br />

δ =<br />

i<br />

4<br />

3<br />

⎛<br />

⋅<br />

⎜<br />

⎝<br />

H<br />

H<br />

i<br />

n<br />

⎞ ⎛ ⎟ ⋅ ⎜1<br />

−<br />

⎠ ⎝<br />

Hi<br />

4H<br />

n<br />

⎞<br />

⎟<br />

⎠<br />

Mode displ. 1.0<br />

(Based on results of inelastic timehistory<br />

analysis. Note, in some cases<br />

it may be necessary to review the<br />

displacement profile after initial<br />

analysis)<br />

56


CANTILEVER WALL <strong>DESIGN</strong> PROFILES:<br />

If roof drift is less than the code drift limit θ c , the<br />

design displacement profile is:<br />

∆<br />

i<br />

= ∆<br />

yi<br />

+ ∆<br />

pi<br />

=<br />

ε y ⎛ H ⎞ ⎛<br />

i<br />

y<br />

Hi<br />

m<br />

lw<br />

H<br />

+ ε<br />

⎜ − ⎟<br />

⎜φ<br />

−<br />

2<br />

2<br />

1<br />

⎝ 3<br />

n ⎠ ⎝ lw<br />

⎟ ⎞<br />

L<br />

⎠<br />

p<br />

H<br />

i<br />

If the code drift limit governs the roof drift, the design<br />

displacement profile is:<br />

∆<br />

i<br />

= ∆<br />

yi<br />

+<br />

( − )<br />

y<br />

i<br />

y n<br />

H =<br />

2<br />

θ θ H ⎜1<br />

⎟ ⎜θc<br />

− Hi<br />

c<br />

yn<br />

i<br />

ε<br />

l<br />

w<br />

i<br />

⎛<br />

⎜ −<br />

⎝<br />

H<br />

3H<br />

n<br />

⎞ ⎛<br />

⎟ + ⎜<br />

⎠ ⎝<br />

ε H<br />

l<br />

w<br />

⎟ ⎞<br />

⎠<br />

57


BRIDGE CHARACTERISTIC MODE SHAPES<br />

∆<br />

∆ 1<br />

∆<br />

∆ 2<br />

∆ 3<br />

∆ 4<br />

∆ 5<br />

∆ 1<br />

∆ 2<br />

∆<br />

∆ 3<br />

∆<br />

∆<br />

(a) Symm., Free abuts. (b) Asymm., Free abuts. (c) Symm., free abuts.<br />

Rigid SS translation Rigid SS translation+rotation Flexible SS<br />

∆ 1 ∆ 1 ∆ 1<br />

∆ 2 ∆ 2 ∆ 2<br />

∆ 3 ∆ 3 ∆ 3<br />

∆ 4<br />

∆ 4 ∆ 4 ∆ 4<br />

∆ 5<br />

∆ 5<br />

∆ 5<br />

∆ 5<br />

(d) Symm,. Restrained abuts. (e) Internal movement joint (f) Free abuts., M.joint<br />

Flexible SS Rigid SS, Restrained abuts. Flexible SS<br />

58


ELASTIC RESPONSE OF FRAMES<br />

The shape of the displacement spectrum, with a peak displacement<br />

plateau, implies that in regions of moderate seismicity, tall frames<br />

will respond elastically<br />

Assuming start of the constant velocity slope of acceleration<br />

spectrum at T = 0.5 sec, and peak spectral acceleration = 2.5<br />

times PGA, then the plateau displacement can be written as:<br />

∆<br />

TC<br />

=<br />

0.031×<br />

PGA(1<br />

+ 2.5( M −1))<br />

W<br />

Taking a typical frame of n storeys with beam length/depth =10,<br />

f ye = 400MPa the equivalent yield displacement can be approximated<br />

as<br />

∆<br />

y<br />

= θ<br />

y.( 0.7×<br />

3.5n)<br />

= 0.01×<br />

0.7×<br />

3.5n<br />

= 0. 0245n<br />

59


1.6<br />

Displacement (m)<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

Yield<br />

displacement<br />

Peak elastic spectral<br />

Displacement<br />

0.7g<br />

0.6g<br />

0.5g<br />

0.4g<br />

0.3g<br />

0.2g<br />

0.1g<br />

24 storeys<br />

20 storeys<br />

16 stories<br />

12 storeys<br />

8 storeys<br />

4 storeys<br />

6 6.4 6.8 7.2 7.6 8<br />

Moment Magnitude, M W<br />

60


DRIFT-LIMITED DUCTILITY FOR WALLS<br />

Maximum Design Ductility (µ)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

θ c =0.02<br />

Elastic<br />

θ c =0.025<br />

2 4 6 8 10<br />

Wall Aspect Ratio (A r =H n /l w )<br />

Maximum Design Ductility (µ)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

θ c =0.02<br />

Elastic<br />

θ c =0.02<br />

2 4<br />

Wall Aspec<br />

(a) Yield Drift = ε y A r (b) Yield Drift =<br />

61


ANALYSIS OF FRAMES UNDER LATERAL FORCES<br />

F 4 V B4 V B4<br />

Level 4<br />

Base Overturning Moment<br />

F 2<br />

F 3 V B3 V B3<br />

V B2 V B2<br />

Level 3<br />

Level 2<br />

OTM<br />

OTM<br />

OTM<br />

∑<br />

= Fi<br />

⋅ H<br />

i<br />

= T ⋅ Lb<br />

+<br />

= V ⋅ L<br />

∑<br />

Bi<br />

∑<br />

base<br />

M<br />

+<br />

Cj<br />

∑<br />

M<br />

Cj<br />

V B1 V B1<br />

F 1 Level 1<br />

V C1 V C2 V C3<br />

0.6H 1<br />

M C1 M C2 M C3<br />

T C<br />

L base<br />

Level 0<br />

H 3<br />

Lateral force distribution<br />

F<br />

i<br />

=<br />

V<br />

B<br />

( m ∆ ) ∑( ∆ )<br />

i i<br />

/ mi<br />

i<br />

n<br />

i=<br />

1<br />

62


PLASTIC <strong>DISPLACEMENT</strong> OF CANTILEVER WALLS<br />

l W<br />

( )<br />

Plastic<br />

Hinge<br />

H e<br />

∆ p<br />

L P<br />

L SP<br />

θ p<br />

0.5L P -L SP<br />

P<br />

φ p φ y<br />

(a) Wall (b) Curvature (c) Plastic Displacement<br />

P<br />

P<br />

( H − 0.5L<br />

− L ) = θ ( H − ( 0. L − L ))<br />

∆ = φ L<br />

5<br />

∆<br />

P<br />

P<br />

P<br />

e<br />

= φ L H = θ H<br />

P<br />

e<br />

P<br />

P<br />

e<br />

e<br />

SP<br />

63<br />

plastic hinge length: L = k ⋅ H + 0. 1l<br />

+ L k = 0.2(fu/fy – 1) =0.08<br />

W<br />

P<br />

SP<br />

e<br />

P<br />

SP<br />

(acceptable approximation)


LIMIT STATE CURVATURES FOR WALLS:<br />

From analyses:<br />

• Serviceability curvature:<br />

• Damage Control curvature:<br />

φ s<br />

⋅l<br />

w<br />

= 0.0175<br />

φ dc<br />

⋅l<br />

w<br />

= 0.072<br />

In both cases steel strain limit dominates. A general equation can be<br />

written:<br />

• General limit curvature:<br />

φ ⋅ =1.2ε<br />

ls<br />

l<br />

w s,<br />

ls<br />

Design Displacement<br />

profile is thus:<br />

ε H<br />

2<br />

y i ⎛ ∆<br />

i = ∆<br />

yi + ∆<br />

pi =<br />

l<br />

⎜1<br />

−<br />

w<br />

3<br />

⎝<br />

H<br />

i<br />

H<br />

n<br />

⎞<br />

⎟ + θ<br />

pH<br />

⎠<br />

i<br />

64


TORSIONAL RESPONSE OF WALL BUILDINGS WITH<br />

STRENGTH AND STIFFNESS ECCENTRICITY<br />

Z<br />

Wall 4<br />

k trans<br />

L Z =15m<br />

k Z1,<br />

C R<br />

C V<br />

Wall C M<br />

Wall 2<br />

V 1<br />

e VX Strength V2<br />

e RX<br />

V<br />

eccentricity<br />

Stiffness<br />

B<br />

k<br />

eccentricity<br />

trans<br />

Wall 3<br />

L X = 25 m<br />

k Z2<br />

X<br />

Both strength and stiffness eccentricity affect torsional response.<br />

In DDBD the design displacement at centre of mass is reduced to<br />

account for torsional response<br />

65


COUPLED WALLS -TYPICAL ELEVATION<br />

F i<br />

H i<br />

Gravity<br />

Frame<br />

1 2<br />

Coupled<br />

Walls<br />

(a) Structure and Lateral Forces<br />

66


COUPLING BEAM DRIFTS<br />

reinforcement<br />

Conventional<br />

θ W<br />

θ CB<br />

0.5l W L CB 0.5l W<br />

Diagonal<br />

reinforcement<br />

α<br />

α<br />

(a) Drift Geometry (b) Coupling Beam<br />

θ<br />

CB<br />

= θ<br />

W<br />

( 1+ l / L )<br />

W<br />

CB<br />

67


CAPACITY <strong>DESIGN</strong><br />

• Overstrength: Material strengths will generally<br />

exceed dependable strengths used for design;<br />

confinement and strain-hardening further<br />

increase flexural strength above design strength<br />

• Higher mode effects: Either not considered<br />

(equivalent lateral force approach), or incorrectly<br />

considered (elastic modal superposition) in current<br />

design.<br />

68


STRUCTURAL WALL<br />

FAILURE<br />

Inadequate transverse<br />

reinforcement in plastic<br />

hinge region<br />

69<br />

KOBE, 1995


INADEQUATE CONSIDER-<br />

ATION OF HIGHER MODE<br />

EFFECTS<br />

Hinge forms above base<br />

70<br />

VALPARAISO, 1985


HIGHER MODE EFFECTS<br />

Two effects in DDBD<br />

1. Drift amplification – A reduction to the design drift<br />

is applied to frames higher than about 10 storeys<br />

2. Moment and Shear amplification for capacityprotected<br />

actions and members. These have been<br />

extensively researched by inelastic time-history<br />

analysis. Results are found to depend on the effective<br />

structural displacement ductility demand. New design<br />

equations and simplified design approaches have been<br />

developed for different structural systems.<br />

71


EFFECTIVE MODAL SUPERPOSITION FOR<br />

HIGHER MODE EFFECTS<br />

A modal analysis procedure combining the inelastic<br />

first mode and ELASTIC higher modes by a SRSS<br />

approach provides good simulation of higher mode<br />

effects. The agreement is improved if the stiffness<br />

of plastic hinges is reduced to reflect the design<br />

ductility<br />

i.e. use EI/µ for members with plastic hinges.<br />

72


60<br />

30<br />

40<br />

MMS THA MMS THA MMS THA<br />

Height (m)<br />

20<br />

10<br />

Height (m)<br />

30<br />

20<br />

10<br />

Height (m)<br />

40<br />

20<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

0<br />

0<br />

0 1000 2000 3000 4000<br />

0 1000 2000 3000 4000<br />

Shear Force (kN)<br />

Shear Force (kN)<br />

Shear Force (kN)<br />

(m) Twelve-Storey Wall, IR=0.5 (q) Sixteen-Storey Wall, IR=0.5 (u) Twenty-Storey Wall, IR=0.5<br />

60<br />

30<br />

40<br />

Height (m)<br />

20<br />

10<br />

MMS THA<br />

Height (m)<br />

30<br />

20<br />

10<br />

THA MMS<br />

Height (m)<br />

40<br />

20<br />

THA MMS<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

0<br />

0<br />

0 1000 2000 3000 4000<br />

0 1000 2000 3000 4000<br />

Shear Force (kN)<br />

Shear Force (kN)<br />

Shear Force (kN)<br />

(n) Twelve-Storey Wall, IR=1.0 (r) Sixteen-Storey Wall, IR=1.0 (v) Twenty-Storey Wall, IR=1.0<br />

60<br />

MMS Shear Envelopes Compared with Time History Results<br />

30<br />

40<br />

for Different Seismic Intensity Ratios (IR=1= Design)<br />

ht (m)<br />

20<br />

ht (m)<br />

30<br />

ht (m)<br />

40<br />

83 73


DOES DDBD MAKE A DIFFERENCE<br />

• Determining moment demand by elastic modal<br />

analysis is inappropriate, resulting in poor<br />

distributions of lateral strength<br />

• Force-based design uses elastic stiffness which is<br />

NOT KNOWN at the start of the design. DDBD uses<br />

yield displacement or drift which IS known at the<br />

start of the design.<br />

• DDBD achieves a specified limit state at the design<br />

intensity; force-based design, at best, is bounded by<br />

the limit state, and vulnerability to damage is<br />

variable.<br />

• The design effort with DDBD is less than with<br />

force-based design.<br />

74


INFLUENCE OF <strong>SEISMIC</strong> INTENSITY ON <strong>DESIGN</strong><br />

FORCES<br />

Force-Based Design Displacement-Based Design<br />

V<br />

Z<br />

e 2<br />

=<br />

e1<br />

, but<br />

2<br />

b 2<br />

= V<br />

Z2<br />

b1<br />

Z<br />

Hence: K<br />

1<br />

e<br />

If Z 2<br />

= 0.5Z 1<br />

, V b2<br />

= 0.5V b1<br />

Hence:<br />

T<br />

T<br />

Z<br />

1<br />

V<br />

=<br />

K<br />

K<br />

e<br />

⎛ Z<br />

⎜<br />

=<br />

⎞<br />

2<br />

2 1 ⎟ e ⎜<br />

⎝ Z1<br />

⎠<br />

2<br />

= V<br />

⎛ Z<br />

⎜<br />

⎝<br />

⎞<br />

2<br />

2 1 ⎟ B B ⎜ Z1<br />

⎠<br />

2 2<br />

4π<br />

me<br />

/ Te<br />

2<br />

: V 75 b2<br />

= 0.25V b1


BRIDGE COLUMNS OF UNEQUAL HEIGHT<br />

`<br />

F H c<br />

H A H B H C<br />

H A<br />

C<br />

H B<br />

A<br />

B<br />

Force-Based Design Displacement-Based Design<br />

∆<br />

Stiffness: prop. to 1/H 3 prop. to 1/H<br />

Shear Force: prop. to 1/H 3 prop. to 1/H<br />

Moments: prop. to 1/H 2<br />

Rebar: prop. to 1/H 2<br />

equal<br />

equal<br />

Ductility: equal (!) prop. to 1/H 2<br />

76


CONCLUSIONS<br />

DOES DDBD MAKE A DIFFERENCE<br />

YES!<br />

Thank you<br />

77

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!