27.01.2015 Views

Set-1 Final by Ali (1-9) (R).p65 - SIA GROUP

Set-1 Final by Ali (1-9) (R).p65 - SIA GROUP

Set-1 Final by Ali (1-9) (R).p65 - SIA GROUP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Probability Theory and Stochastic Processes (May-2012, <strong>Set</strong>-1) JNTU-Kakinada<br />

Code No: R21043/R10<br />

II B.Tech. I Semester Supplementary Examinations<br />

May - 2012<br />

PROBABILITY THEORY AND STOCHASTIC PROCESSES<br />

( Electronics and Communications Engineering )<br />

WARNING : Xerox/Photocopying of this book is a CRIMINAL act. Anyone found guilty is LIABLE to face LEGAL proceedings.<br />

S.1<br />

Time: 3 Hours Max. Marks: 75<br />

Answer any FIVE Questions<br />

All Questions carry equal marks<br />

- - -<br />

1. (a) A survey of 100 companies shows that 75 of them have installed wireless local area network (WLANS) on their<br />

premises. If three of these companies are chosen at random without replacement, what is the probability that<br />

each of the three has installed WLANS. (Unit-I, Topic No. 1.4)<br />

(b) State and prove the Baye’s theorem. [8+7] (Unit-I, Topic No. 1.5)<br />

⎧ x<br />

⎪<br />

2. (a) The PDF of a random variable X is given <strong>by</strong> f x<br />

(x) = ⎨2<br />

− x<br />

⎪<br />

⎩ 0<br />

(i) Find the CDF of X<br />

(ii) Find P [0.2 < X < 0.8]<br />

(iii) Find P [0.6 < X < 1.2] (Unit-II, Topic No. 2.2)<br />

0 < x < 1<br />

1 ≤ x ≤ 2<br />

otherwise<br />

(b) Write short notes on “Gaussian distribution”. [8+7] (Unit-II, Topic No. 2.3)<br />

3. (a) The PDF of a random variable X is given <strong>by</strong> f x<br />

(x) = 4x(9 – x 2 )/ 81 0 ≤ x ≤ 3. Find the mean, variance and third<br />

moment of X. (Unit-III, Topic No. 3.3)<br />

⎧1<br />

⎪<br />

(b) The random variable X has the following PDF f x<br />

(x) = ⎨3<br />

⎪⎩ 0<br />

−1<br />

< x < 2<br />

Otherwise<br />

If we desire Y = 2X + 3, what is the PDF of Y. [7+8] (Unit-III, Topic No. 3.4)<br />

4. (a)<br />

2 2<br />

Two random variables X and Y have zero mean and variance σ x<br />

= 16 and σ y = 36. If their correlation<br />

coefficient is 0.5 determine the following,<br />

(i) The variance of the sum of X and Y<br />

(ii) The variance of the difference of X and Y. (Unit-IV, Topic No. 4.3)<br />

(b) State and prove the ‘Central limit theorem’. [8+7] (Unit-IV, Topic No. 4.4)<br />

⎧ 1<br />

⎪<br />

24<br />

5. (a) A joint probability density function is f xy<br />

(x, y) = ⎨<br />

⎪ 0<br />

⎪<br />

⎩<br />

(b)<br />

0 < x < 6<br />

0 < y < 4<br />

elsewhere<br />

Find out the expected value of the function g(X, Y) = (XY) 2 . (Unit-V, Topic No. 5.1)<br />

<strong>Set</strong>-1<br />

Solutions<br />

Prove that the moment generating function of the sum of two independent variables is the product of their<br />

moment generating function. [8+7] (Unit-V, Topic No. 5.1)


S.2 Spectrum ALL-IN-ONE Journal for Engineering Students, 2012<br />

6. (a) Explain the following,<br />

(i) Stationarity<br />

(ii) Ergodicity<br />

(iii) Statistical independence with respect to random processes. (Unit-VI, Topic No. 6.4)<br />

(b) State and prove the properties of cross correlation function. [8+7] (Unit-VI, Topic No. 6.5)<br />

7. (a) A random process Y(t) has the power spectral density S YY<br />

(ω) =<br />

Find,<br />

(i) The average power of the process<br />

(ii) The auto correlation function. (Unit-VII, Topic No. 7.1)<br />

9<br />

ω 2 + 64<br />

(b) State the properties of power spectral density. [8+7] (Unit-VII, Topic No. 7.1)<br />

8. Write short notes on the following,<br />

(i) Thermal noise (Unit-VIII, Topic No. 8.5)<br />

(ii) Effective noise temperature. [7+8] (Unit-VIII, Topic No. 8.5)<br />

WARNING : Xerox/Photocopying of this book is a CRIMINAL act. Anyone found guilty is LIABLE to face LEGAL proceedings.


Probability Theory and Stochastic Processes (May-2012, <strong>Set</strong>-1) JNTU-Kakinada<br />

S.3<br />

SOLUTIONS TO MAY-2012, SET-1, QP<br />

Q1. (a) A survey of 100 companies shows that<br />

75 of them have installed wireless local<br />

area network (WLANS) on their premises.<br />

If three of these companies are chosen<br />

at random without replacement, what is<br />

the probability that each of the three has<br />

installed WLANS.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q1(a) M[8]<br />

Given that,<br />

In a survey,<br />

Total number of companies = 100<br />

Number of WLAN installed companies = 75<br />

Number of WLAN installed companies chosen at<br />

random without replacement = 3<br />

P(All the three WLAN installed companies) = <br />

Let A be the event of selecting first company that<br />

installed WLAN.<br />

Then, the probability of A is given <strong>by</strong>,<br />

P(A)=<br />

Number of<br />

75c<br />

=<br />

100<br />

75<br />

= 100<br />

1<br />

c1<br />

∴ P( A)<br />

= 0.75<br />

companies installed WLAN<br />

companies<br />

Total number of<br />

Now, the total number of companies remained = 99<br />

Number of WLAN installed companies remained = 74<br />

Let B be the event of selecting second company that<br />

installed WLAN.<br />

Then, the probability of selecting B after selecting A<br />

is given <strong>by</strong>,<br />

P(B)=<br />

74<br />

99<br />

c1<br />

c1<br />

74<br />

= = 0.7475 99<br />

∴ P( B)<br />

= 0.7475<br />

Now,<br />

The total number of companies remained = 98<br />

Number of WLAN installed companies remained = 73<br />

Let C be the event of selecting third company that<br />

installed WLAN.<br />

Then, the probability of selecting C after selecting A<br />

and B is given <strong>by</strong>,<br />

73c1<br />

P(C) =<br />

98<br />

c1<br />

73<br />

= = 0.7449 98<br />

∴ P( C)<br />

= 0. 7449<br />

∴ The probability that all the three companies have<br />

installed WLAN is given <strong>by</strong>,<br />

P(A ∩ B ∩ C) = P(A) P(B) P(C)<br />

[Q Selection of companies A, B and<br />

C is independent to each other]<br />

= 0.7449 × 0.7475 × 0.75<br />

= 0.4176<br />

∴ P( A ∩ B ∩C)<br />

= 0.4176<br />

(b) State and prove the Baye’s theorem.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q1(b) M[7]<br />

For answer refer Unit-I, Q23.<br />

Q2. (a) The PDF of a random variable X is given<br />

⎧ x<br />

⎪<br />

<strong>by</strong> f x<br />

(x) = ⎨2<br />

− x<br />

⎪<br />

⎩ 0<br />

(i)<br />

Find the CDF of X<br />

0 < x < 1<br />

1≤<br />

x ≤ 2<br />

otherwise<br />

(ii) Find P[0.2 < X < 0.8]<br />

(iii) Find P[0.6 < X < 1.2]<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q2(a) M[8]<br />

The given probability density function of a random<br />

variable ‘X’ is,<br />

⎧ x<br />

⎪<br />

F X<br />

(x) = ⎨ 2 − x<br />

⎪⎩<br />

0<br />

0 < x < 1<br />

1 ≤ x ≤ 2<br />

Otherwise<br />

WARNING : Xerox/Photocopying of this book is a CRIMINAL act. Anyone found guilty is LIABLE to face LEGAL proceedings.


S.4 Spectrum ALL-IN-ONE Journal for Engineering Students, 2012<br />

(i)<br />

(i) CDF of X, F X<br />

(x) = <br />

(ii) P(0.2 < X < 0.8) = <br />

(ii) P(0.6 < X < 1.2) = <br />

The cumulative distributive function of ‘X’ is given<br />

<strong>by</strong>,<br />

∞<br />

F X<br />

(x) = ∫<br />

f X ( x)<br />

dx<br />

−∞<br />

1<br />

=<br />

∫xdx<br />

+<br />

∫<br />

2 −<br />

0<br />

1<br />

⎡<br />

2<br />

x<br />

=<br />

2 ⎥ ⎥ ⎤<br />

⎢<br />

⎢⎣<br />

⎦<br />

0<br />

2<br />

1<br />

( x)<br />

dx<br />

+ 2 [] x 2 1 –<br />

⎡<br />

2<br />

x<br />

2 ⎥ ⎥ ⎤<br />

⎢<br />

⎢⎣<br />

⎦<br />

⎡1 2 − 0⎤<br />

⎡2<br />

= ⎢ ⎥ + 2 [2 – 1] – ⎢<br />

⎢⎣<br />

2 ⎥⎦<br />

⎢⎣<br />

1 ⎡ 4 −1⎤<br />

= + 2 [1] – ⎢ ⎥⎦ 2 ⎣ 2<br />

2<br />

1<br />

2<br />

−<br />

2<br />

2<br />

1 ⎤<br />

⎥<br />

⎥⎦<br />

(iii)<br />

0.64<br />

− 0.04<br />

=<br />

2<br />

= 0.6/2<br />

= 0.3<br />

∴ P( 0.2 < X < 0.8 = 0.3<br />

The value of P(0.6 < X < 1.2) is obtained as,<br />

1. 2<br />

P(0.6 < X < 1.2) = ∫<br />

0.6<br />

1<br />

f X<br />

( x)<br />

dx<br />

= ∫<br />

f X x)<br />

dx +<br />

∫<br />

0.6<br />

1<br />

1.2<br />

( f ( x)<br />

dx<br />

=<br />

∫xdx<br />

+<br />

∫<br />

2 −<br />

0.6<br />

1<br />

⎡<br />

2<br />

x<br />

=<br />

2 ⎥ ⎥ ⎤<br />

⎢<br />

⎢⎣<br />

⎦<br />

0.6<br />

1.2<br />

1<br />

1<br />

X<br />

( x)<br />

dx<br />

⎡<br />

2<br />

1. 2<br />

x<br />

+ 2 [x] 1<br />

–<br />

2 ⎥ ⎥ ⎤<br />

⎢<br />

⎢⎣<br />

⎦<br />

1.2<br />

1<br />

(ii)<br />

∴<br />

F X<br />

= 2<br />

1 + 2 + 2<br />

3<br />

1 + 4 + 3<br />

=<br />

2<br />

= 2<br />

8<br />

= 4<br />

( x)<br />

= 4<br />

The value of P(0.2 < X < 0.8) is obtained as,<br />

0.8<br />

P(0.2 < X < 0.8) = ∫<br />

0.2<br />

f X<br />

0<br />

= ∫ . 8<br />

xdx<br />

0. 2<br />

⎡<br />

2<br />

x<br />

=<br />

2 ⎥ ⎥ ⎤<br />

⎢<br />

⎢⎣<br />

⎦<br />

( x)<br />

dx<br />

0.8<br />

0.2<br />

⎡<br />

2 2<br />

1 − (0.6) ⎤<br />

⎡<br />

2 2<br />

(1.2) −1<br />

⎤<br />

= ⎢ ⎥ + 2 [1.2– 1] – ⎢ ⎥<br />

⎢⎣<br />

2 ⎥⎦<br />

⎢⎣<br />

2 ⎥⎦<br />

⎡1−<br />

0.36⎤<br />

⎡1.44<br />

−1⎤<br />

= ⎢ ⎥ + 2 (0.2) –<br />

⎣ 2<br />

⎢ ⎥ ⎦ ⎣ 2 ⎦<br />

=<br />

0.64<br />

2<br />

∴ P( 0.6 < X < 1.2) = 0.5<br />

+ 0.4 –<br />

= 0.32 + 0.4 – 0.22<br />

= 0.5<br />

0.44<br />

2<br />

(b) Write short notes on “Gaussian distribution”.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q2(b) M[7]<br />

For answer refer Unit-II, Q20.<br />

Q3. (a) The PDF of a random variable X is given<br />

<strong>by</strong> f x<br />

(x) = 4x(9 – x 2 )/ 81 0 ≤ x ≤ 3. Find the<br />

mean, variance and third moment of X.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q3(a) M[7]<br />

The given probability density function of a random<br />

variable ‘X’ is,<br />

=<br />

(0.8)<br />

2 −<br />

(0.2)<br />

2<br />

2<br />

f X<br />

(x) =<br />

2<br />

4x(9<br />

− x )<br />

, 0 ≤ x ≤ 3<br />

81<br />

WARNING : Xerox/Photocopying of this book is a CRIMINAL act. Anyone found guilty is LIABLE to face LEGAL proceedings.


Probability Theory and Stochastic Processes (May-2012, <strong>Set</strong>-1) JNTU-Kakinada<br />

Mean, E[X] = <br />

Consider,<br />

2<br />

Variance, σ X<br />

= <br />

∞<br />

Third moment of X, E[X 3 E[X 2 2<br />

]=<br />

] = <br />

∫<br />

x f X ( x)<br />

dx<br />

−∞<br />

The mean of random variable ‘X’ is given <strong>by</strong>,<br />

3<br />

2<br />

∞<br />

2 4x(9<br />

− x )<br />

=<br />

E[X] = ∫<br />

xf X ( x)<br />

dx<br />

∫<br />

x<br />

dx<br />

81<br />

0<br />

−∞<br />

3<br />

3<br />

2<br />

4 3 5<br />

x x<br />

= ∫ x 4 (9 − )<br />

=<br />

dx<br />

81<br />

∫<br />

( 9x<br />

− x ) dx<br />

81<br />

0<br />

0<br />

= 4 3<br />

⎧<br />

3 3<br />

⎫<br />

4 ⎪ ⎡<br />

4<br />

⎤ ⎡<br />

6<br />

x x ⎤ ⎪<br />

2 2<br />

81<br />

∫<br />

x ( 9 − x ) dx<br />

= ⎨9⎢<br />

⎥ − ⎢ ⎥ ⎬<br />

81 ⎢<br />

0<br />

⎪⎩ ⎣ 4 ⎥⎦<br />

⎢⎣<br />

6<br />

0<br />

⎥⎦<br />

0 ⎪⎭<br />

= 4 3<br />

4<br />

2 4<br />

⎪⎧<br />

⎛<br />

4<br />

⎞ ⎛<br />

6<br />

⎞⎪⎫<br />

81<br />

∫<br />

( 9x<br />

− x ) dx<br />

= ⎨ ⎜<br />

3 − 0<br />

⎟ ⎜<br />

3 − 0<br />

9 − ⎟<br />

81<br />

⎬<br />

0<br />

⎪⎩ ⎝ 4 ⎠ ⎝ 6 ⎠⎪⎭<br />

⎧<br />

3 3<br />

⎫<br />

4 ⎪ ⎡<br />

3<br />

⎤ ⎡<br />

5<br />

4 ⎧ ⎛ 81⎞<br />

⎛ 729 ⎞⎫<br />

x x ⎤ ⎪<br />

= ⎨9⎜<br />

⎟ − ⎜ ⎟⎬<br />

= ⎨9⎢<br />

⎥ − ⎢ ⎥ ⎬<br />

81 ⎩ ⎝ 4 ⎠ ⎝ 6 ⎠⎭<br />

81 ⎢ ⎥ ⎢ ⎥<br />

⎪⎩ ⎣ 3 ⎦0<br />

⎣ 5 ⎦ 0 ⎪⎭<br />

4 81 4 729<br />

= × 9 × – ×<br />

4 ⎪⎧<br />

⎡<br />

3<br />

3 − 0 ⎤ ⎡<br />

5<br />

3 − 0⎤⎪⎫<br />

81 4 81 6<br />

= ⎨9⎢<br />

⎥ − ⎢ ⎥⎬<br />

81 ⎪⎩ ⎢⎣<br />

3 ⎥⎦<br />

⎢⎣<br />

5 ⎥⎦<br />

= 9 – 6<br />

⎪⎭<br />

= 3<br />

4 ⎧ ⎛ 27 ⎞ ⎛ 243⎞⎫<br />

∴ E[X 2 ]= 3<br />

= ⎨9⎜<br />

⎟ − ⎜ ⎟⎬<br />

81 ⎩ ⎝ 3 ⎠ ⎝ 5 ⎠⎭<br />

Then,<br />

2<br />

σ<br />

4 4 243<br />

X<br />

= E[X 2 ] – E[X] 2<br />

= × 3 × 27 – × 81 81 5<br />

= 3 – (1.6) 2<br />

= 0.44<br />

12<br />

= 4 –<br />

5<br />

∴Variance,<br />

σ 2 X = 0.44<br />

20 −12<br />

The third moment of ‘X’ is given <strong>by</strong>,<br />

=<br />

5<br />

∞<br />

E[X 3 3<br />

]=<br />

8<br />

∫<br />

x f X ( x)<br />

dx<br />

=<br />

−∞<br />

5<br />

3<br />

2<br />

= 1.6<br />

3 4x(9<br />

− x )<br />

=<br />

∫<br />

x<br />

dx<br />

81<br />

∴ Mean, E[<br />

X ] = 1.6<br />

0<br />

The variance of random variable ‘X’ is given <strong>by</strong>,<br />

3<br />

4 4 2<br />

σ = E[X 2 ] – E[X] 2 = 81<br />

∫<br />

x ( 9 − x ) dx<br />

2<br />

X<br />

0<br />

S.5<br />

WARNING : Xerox/Photocopying of this book is a CRIMINAL act. Anyone found guilty is LIABLE to face LEGAL proceedings.


S.6 Spectrum ALL-IN-ONE Journal for Engineering Students, 2012<br />

3<br />

= 4 4 6<br />

81<br />

∫<br />

( 9x<br />

− x ) dx<br />

4<br />

= 81<br />

4<br />

= 81<br />

4<br />

= 81<br />

0<br />

⎧<br />

⎪ ⎡<br />

5<br />

x ⎤<br />

⎨9⎢<br />

⎥<br />

⎢ ⎥ ⎪⎩ ⎣ 5 ⎦<br />

3<br />

0<br />

3<br />

⎡<br />

7 ⎫<br />

x ⎤ ⎪<br />

− ⎢ ⎥ ⎬<br />

⎢⎣<br />

7 ⎥⎦<br />

0 ⎪⎭<br />

⎪⎧<br />

⎛<br />

5<br />

⎞ ⎛<br />

7<br />

⎞⎪⎫<br />

⎨ ⎜<br />

3 − 0<br />

⎟ ⎜<br />

3 − 0<br />

9 − ⎟<br />

⎬<br />

⎪⎩ ⎝ 5 ⎠ ⎝ 7 ⎠⎪⎭<br />

⎧ ⎛ 243 ⎞<br />

⎨9⎜<br />

⎩ ⎝ 5<br />

⎟ −<br />

⎠<br />

⎛ 2187 ⎞⎫<br />

⎜ ⎟⎬<br />

⎝ 7 ⎠⎭<br />

4 243 4 2187<br />

= × 9 × – × 81 5 81 7<br />

=<br />

108 108 –<br />

5 7<br />

⎡ 7 − 5⎤<br />

= 108 ⎢ ⎥<br />

⎣ 35 ⎦<br />

216<br />

= 35<br />

= 6.17<br />

∴ Third moment of X , E[<br />

X 3 ] = 6.17<br />

(b)<br />

The random variable X has the following<br />

PDF f x<br />

(x) =<br />

⎧1<br />

⎪<br />

⎨3<br />

⎪⎩ 0<br />

−1<<br />

x < 2<br />

Otherwise<br />

If we desire Y = 2X + 3, what is the PDF<br />

of Y.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q3(b) M[8]<br />

The given probability density function of random<br />

variable ‘X’ is,<br />

⎧1<br />

⎪<br />

F X<br />

(x) = ⎨ 3<br />

⎪⎩ 0<br />

−1<br />

< x < 2<br />

Otherwise<br />

Transformation function, Y = 2 X + 3.<br />

Probability density function of Y, f Y<br />

(y) = <br />

From the monotonic transformation function, the<br />

probability density function of transformation ‘Y’ is given<br />

<strong>by</strong>,<br />

dx<br />

f Y<br />

(y)= f X<br />

(x)<br />

dy<br />

From the transformation ‘Y’ we have,<br />

Y = 2X + 3<br />

Y − 3<br />

X =<br />

2<br />

or<br />

y − 3<br />

x =<br />

2<br />

Limits<br />

For x = – 1, y = 2(– 1) + 3<br />

= – 2 + 3<br />

y = 1<br />

For x = 2, y = 2(2) + 3<br />

= 4 + 3<br />

y = 7<br />

... (1)<br />

... (2)<br />

By differentiating the equation (2) with respect to ‘y’<br />

we get,<br />

dx 1 = ... (3)<br />

dy 2<br />

By substituting equations (2) and (3) in equation (1),<br />

we get,<br />

∴<br />

f Y<br />

⎛ y − 3 ⎞<br />

f Y<br />

(y)= f ⎜ ⎟<br />

X ⎝ 2 ⎠<br />

( y)<br />

=<br />

3<br />

1<br />

=<br />

=<br />

1<br />

6<br />

0<br />

1 1 =<br />

2 6<br />

;<br />

;<br />

1<br />

2<br />

1 < y < 7<br />

Otherwise<br />

Q4. (a) Two random variables X and Y have<br />

2<br />

zero mean and variance σ x<br />

= 16 and<br />

2<br />

σ y = 36. If their correlation coefficient<br />

is 0.5, determine the following,<br />

(i) The variance of the sum of X and Y<br />

(ii) The variance of the difference of X<br />

and Y.<br />

May-12, <strong>Set</strong>-1, Q4(a) M[8]<br />

WARNING : Xerox/Photocopying of this book is a CRIMINAL act. Anyone found guilty is LIABLE to face LEGAL proceedings.


Probability Theory and Stochastic Processes (May-2012, <strong>Set</strong>-1) JNTU-Kakinada<br />

Answer :<br />

Given that,<br />

For two random variables X and Y,<br />

Variance of X,<br />

2<br />

σ X<br />

= 16<br />

S.7<br />

2<br />

Variance of Y, σ Y<br />

= 36<br />

Correlation coefficient, ρ XY<br />

= 0.5<br />

(i) The variance of sum of X and Y,<br />

2<br />

( X + Y )<br />

σ = <br />

(i)<br />

2<br />

( X −Y )<br />

(ii) The variance of difference of X and Y, σ = <br />

The variance of the sum of X and Y is obtained as,<br />

2<br />

( X + Y )<br />

σ = E[(X + Y) 2 ] – (E[X + Y]) 2<br />

= E[X 2 + 2 × Y + Y 2 ] – (E[X] + E[Y]) 2<br />

= E[X 2 ] + 2 E[X Y] + E[Y 2 ] – (E[X] 2 + 2 E[X] E[Y] + E[Y] 2 )<br />

= E[X 2 ] + 2 E[X Y] + E[Y 2 ] – E[X] 2 – 2 E[X] E[Y] – E[Y] 2<br />

= E[X 2 ] – E[X] 2 + E[Y 2 ] – E[Y] 2 + 2(E[X Y] – E[X] E[Y])<br />

2 2<br />

= σ X<br />

+ σ Y<br />

+ 2(E[X Y] – E[X] E[Y]) ... (1)<br />

The correlation coefficient of X and Y is given <strong>by</strong>,<br />

ρ XY<br />

=<br />

E[<br />

XY]<br />

− E[<br />

X ] E[<br />

Y ]<br />

σ σ<br />

X<br />

Y<br />

E[X Y] – E[X] E[Y] = ρ XY<br />

σ X<br />

σ Y<br />

= 0.5 × 4 × 6<br />

= 12 ... (2)<br />

By substituting equation (2) in equation (1), we get,<br />

2<br />

( X + Y )<br />

σ<br />

2 2<br />

= σ X<br />

+ σ Y<br />

+ 2(E[X Y] – E[X] E[Y])<br />

= 16 + 36 + 2 (12)<br />

= 76<br />

(ii)<br />

2<br />

∴ X +Y )<br />

The variance of sum of X and Y , σ ( = 76<br />

The variance of the difference of X and Y is given <strong>by</strong>,<br />

2<br />

( X −Y )<br />

σ = E[(X – Y) 2 ] – (E[X – Y]) 2<br />

= E[X 2 – 2 X Y + Y 2 ] – (E[X] – E[Y]) 2<br />

= E[X 2 ] – 2 E[X Y] + E[Y 2 ] – (E[X] 2 – 2 E[X] E[Y] + E[Y] 2 )<br />

= E[X 2 ] – 2 E[X Y] + E[Y 2 ] – E[X] 2 + 2 E[X] E[Y] – E[Y] 2<br />

= (E[X 2 ] – E[X] 2 ) + (E[Y 2 ] – E[Y]) 2 – 2(E[X Y] – E[X] E[Y])<br />

2 2<br />

= σ X<br />

+ σ Y<br />

– 2(E[X Y] – E[X] E[Y])<br />

= 16 + 36 – 2 (12)<br />

= 28<br />

2<br />

X −Y )<br />

∴ The variance of difference of X and Y , σ ( = 28<br />

WARNING : Xerox/Photocopying of this book is a CRIMINAL act. Anyone found guilty is LIABLE to face LEGAL proceedings.


S.8 Spectrum ALL-IN-ONE Journal for Engineering Students, 2012<br />

(b) State and prove the ‘Central limit theorem’.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q4(b) M[7]<br />

For answer refer Unit-IV, Q26.<br />

Q5. (a) A joint probability density function is<br />

f XY<br />

(x, y) =<br />

⎧ 1<br />

⎪<br />

24<br />

⎨<br />

⎪ 0<br />

⎪<br />

⎩<br />

0 < x < 6<br />

0 < y < 4<br />

Elsewhere<br />

Find out the expected value of the function<br />

g(X, Y) = (XY) 2<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q5(a) M[8]<br />

Given that,<br />

For a two random variables X and Y,<br />

Joint probability density function,<br />

⎧ 1<br />

⎪<br />

24<br />

f XY<br />

(x, y)= ⎨<br />

⎪ 0<br />

⎪<br />

⎩<br />

0 < x < 6<br />

0 < y < 4<br />

Elsewhere<br />

g(X, Y)= (X Y) 2<br />

Expected value of g(X, Y), E[g(X, Y)] = <br />

Then, the expected value of g(X, Y) is obtained as,<br />

∞<br />

∞<br />

E[g(X, Y)] = ∫∫<br />

g(<br />

X , Y ) f XY ( x,<br />

y)<br />

dxdy<br />

−∞ −∞<br />

6 4<br />

= ∫∫<br />

0 0<br />

1<br />

= 24<br />

1<br />

=<br />

24<br />

1<br />

=<br />

24<br />

1<br />

=<br />

24<br />

= 64<br />

∴E[ g(<br />

X , Y)<br />

= 64<br />

2 1<br />

( XY)<br />

dxdy<br />

24<br />

6<br />

∫<br />

0<br />

X<br />

2<br />

dx<br />

⎡<br />

3<br />

X<br />

3 ⎥ ⎥ ⎤<br />

⎢<br />

⎢⎣<br />

⎦<br />

6<br />

0<br />

4<br />

∫<br />

0<br />

Y<br />

2<br />

dy<br />

3<br />

⎡Y<br />

3 ⎥ ⎥ ⎤<br />

⎢<br />

⎢⎣<br />

⎦<br />

⎡6 3 − 0⎤<br />

⎡ 4 3 − 0<br />

⎢ ⎥<br />

⎢⎣<br />

3 ⎥⎦<br />

⎥ ⎥ ⎤<br />

⎢<br />

⎢⎣<br />

3 ⎦<br />

216<br />

3<br />

64<br />

3<br />

4<br />

0<br />

(b) Prove that the moment generating<br />

function of the sum of two independent<br />

variables is the product of their moment<br />

generating function.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q5(b) M[7]<br />

Let, A 1<br />

and A 2<br />

are two independent random variables<br />

with moment generating function MA ( ) and M A ( ) .<br />

WARNING : Xerox/Photocopying of this book is a CRIMINAL act. Anyone found guilty is LIABLE to face LEGAL proceedings.<br />

1 V<br />

2 V<br />

From the definition of moment generating function,<br />

M A<br />

(V)= E[e VA ]<br />

Then, the moment generating function for the sum of<br />

two independent random variables is given <strong>by</strong>,<br />

M A + A ( V ) = E[<br />

e ]<br />

1<br />

2<br />

V ( A 2 ) 1 + A<br />

2<br />

= E[ e VA . e ]<br />

1 VA<br />

Since, A 1<br />

and A 2<br />

are independent random variables.<br />

E[A 1<br />

A 2<br />

]= E[A 1<br />

] E[A 2<br />

]<br />

⇒ M A + A ( V )<br />

2<br />

= E[ e<br />

VA 1 ]. E[<br />

e<br />

VA ]<br />

1<br />

∴<br />

1+<br />

2<br />

M A A ( V ) = M<br />

2<br />

A1<br />

( V ). M<br />

A2<br />

( V )<br />

Hence, proved.<br />

Q6. (a) Explain the following,<br />

(i) Stationarity<br />

(ii) Ergodicity<br />

(iii) Statistical independence with<br />

respect to random processes.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q6(a) M[8]<br />

(i) Stationarity<br />

For answer refer Unit-VI, Q5, Topic: Stationary<br />

Random Process.<br />

(ii) Ergodicity<br />

For answer refer Unit-VI, Q13, Topic: Ergodic Random<br />

Process.<br />

(iii) Statistical Independence with Respect to Random<br />

Processes<br />

For answer refer Unit-VI, Q5, Topic: Statistical<br />

Independence.<br />

(b) State and prove the properties of cross<br />

correlation function.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q6(b) M[7]<br />

Cross Correlation<br />

For answer refer Unit-VI, Q20, Topic: Cross Correlation.<br />

Cross Correlation Properties<br />

For answer refer Unit-VI, Q19(ii).


Probability Theory and Stochastic Processes (May-2012, <strong>Set</strong>-1) JNTU-Kakinada<br />

Q7. (a) A random process Y(t) has the power<br />

spectral density S YY<br />

(ω) =<br />

Find,<br />

(i) The average power of the process<br />

(ii) The auto correlation function.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q7(a) M[8]<br />

The given power spectral density of a random process<br />

Y(t) is,<br />

ω<br />

9<br />

2 +<br />

64<br />

(ii)<br />

S.9<br />

The auto correlation function of random process Y(t)<br />

is given <strong>by</strong>,<br />

R YY<br />

(τ) = F.T –1 [S YY<br />

(ω)]<br />

⎡ 9 ⎤<br />

= F.T –1 ⎢ 2 ⎥<br />

⎣ω + 64 ⎦<br />

9<br />

= F.T<br />

–1<br />

⎡<br />

⎢ 8 ⎣ ω<br />

2<br />

8<br />

+ 8<br />

2<br />

⎤<br />

⎥<br />

⎦<br />

(i)<br />

9<br />

S YY<br />

(ω) =<br />

ω 2 + 64<br />

(i) Average power of the process, P YY<br />

= <br />

(ii) Auto correlation function, R YY<br />

(τ) = <br />

The average power of the process Y(t) is given <strong>by</strong>,<br />

9<br />

= sin 8τ 8<br />

⎡ −1<br />

⎡ a ⎤ ⎤<br />

⎢Q F.<br />

T ⎢ ⎥ = sin at u(<br />

t)<br />

2 2<br />

⎥<br />

⎣ ⎣a<br />

+ ω ⎦ ⎦<br />

P YY<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

1<br />

2π<br />

1<br />

2π<br />

9<br />

2π<br />

9<br />

2π<br />

∞<br />

∫<br />

−∞<br />

S YY ( ω)<br />

dω<br />

∞<br />

∫<br />

−∞<br />

∞<br />

∫<br />

−∞<br />

9<br />

dω<br />

2<br />

ω + 64<br />

ω<br />

2<br />

⎡<br />

⎢ tan<br />

⎣8<br />

1<br />

+ 8<br />

1 − 1<br />

2<br />

dω<br />

⎛ ω ⎞⎤<br />

⎜ ⎟⎥<br />

⎝ 8 ⎠⎦<br />

∞<br />

−∞<br />

9 1 × [tan –1 (∞) – tan –1 (– ∞)]<br />

2π 8<br />

9 1 ×<br />

2π 8<br />

⎡<br />

⎢tan<br />

⎣<br />

−1<br />

⎛ π ⎞ −1⎛<br />

π ⎞⎤<br />

⎜ tan ⎟ + tan ⎜ tan ⎟⎥<br />

⎝ 2 ⎠ ⎝ 2 ⎠⎦<br />

∴<br />

R XX<br />

9<br />

( τ)<br />

= sin8τu(<br />

τ)<br />

8<br />

(b) State the properties of power spectral<br />

density.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q7(b) M[7]<br />

For answer refer Unit-VII, Q1.<br />

Q8. Write short notes on the following,<br />

(i) Thermal noise<br />

(ii) Effective noise temperature.<br />

Answer :<br />

May-12, <strong>Set</strong>-1, Q8 M[7+8]<br />

(i) Thermal Noise<br />

For answer refer Unit-VIII, Q19, Topic: Thermal Noise.<br />

(ii) Effective Noise Temperature<br />

For answer refer Unit-VIII, Q21(i).<br />

=<br />

9<br />

16π<br />

⎡ π π ⎤<br />

⎢ + ⎥<br />

⎣ 2 2 ⎦<br />

=<br />

= 16<br />

9<br />

9 [π]<br />

16π<br />

∴ Average power, P =<br />

XX<br />

9<br />

16<br />

WARNING : Xerox/Photocopying of this book is a CRIMINAL act. Anyone found guilty is LIABLE to face LEGAL proceedings.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!