27.01.2015 Views

CONTROL TECHNIQUES FOR WAVE ENERGY CONVERTERS

CONTROL TECHNIQUES FOR WAVE ENERGY CONVERTERS

CONTROL TECHNIQUES FOR WAVE ENERGY CONVERTERS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SUPERGEN MARINE 7th DOCTORAL TRAINING PROGRAMME WORKSHOP<br />

Control of Wave and Tidal Converters<br />

22-26 February 2010, Lancaster University<br />

<strong>CONTROL</strong> <strong>TECHNIQUES</strong> <strong>FOR</strong> <strong>WAVE</strong><br />

<strong>ENERGY</strong> <strong>CONVERTERS</strong><br />

António F. de O. Falcão<br />

Instituto Superior Técnico, Lisbon, Portugal


How far have we gone in 30+ yrs Some milestones:<br />

1974 - Salter & the duck<br />

1976 – Masuda<br />

& Kaimei<br />

1975- …The early theoreticians<br />

1985-91<br />

The early OWCs<br />

Early 1980s<br />

Point absorbers<br />

in Scandinavia<br />

1975-82 - The<br />

British Program<br />

Goal: 2 GW plant<br />

1991: EU<br />

backs up<br />

wave energy<br />

1996<br />

EURATLAS<br />

1999-2000<br />

OWCs in<br />

Europe<br />

Since 2004<br />

The “new”<br />

offshore devices


Introduction<br />

Technology<br />

challenge


Introduction<br />

Oscillating<br />

Water Column<br />

(with air turbine)<br />

Fixed<br />

structure<br />

Isolated: Pico, LIMPET, Oceanlinx<br />

In breakwater: Sakata, Mutriku<br />

Floating: Mighty Whale, BBDB<br />

Oscillating body<br />

(hydraulic motor, hydraulic<br />

turbine, linear<br />

electric generator)<br />

Floating<br />

Submerged<br />

Heaving: Aquabuoy, IPS Buoy, Wavebob,<br />

PowerBuoy, FO3<br />

Pitching: Pelamis, PS Frog, Searev<br />

Heaving: AWS<br />

Bottom-hinged: Oyster, Waveroller<br />

Overtopping<br />

(low head<br />

water turbine)<br />

Fixed<br />

structure<br />

Shoreline (with concentration): TAPCHAN<br />

In breakwater (without concentration): SSG<br />

Floating structure (with concentration): Wave Dragon


Introduction<br />

The size<br />

While, in other renewables, the power is<br />

more or less proportional to size/area,<br />

…<br />

… the power-versus-size relationship is much more<br />

complex for wave energy converters.<br />

The concept of “point absorber” was introduced in<br />

Scandinavia around 1980 to describe efficient waveenergy<br />

absorption by well-tuned small devices.<br />

Theoretically (in linear wave theory), energy from a regular wave of given<br />

frequency can be absorbed by a large oscillating body as well as from a small<br />

one, provided both are tuned.<br />

The oscillation amplitude is larger for the smaller body.


Absorbed power<br />

Spectral power density (m 2 s)<br />

m<br />

Introduction<br />

Large body<br />

Small body<br />

Wave energy absorption is widerbanded<br />

for a large body than for a<br />

“point-absorber”.<br />

This is relevant for real polychromatic<br />

multi-frequency waves.<br />

Here smaller oscillating-bodies are less<br />

efficient than larger ones.<br />

This can be (partially) overcome by<br />

control (phase control).<br />

Wave frequency<br />

1.5<br />

1<br />

0.5<br />

0<br />

0.5<br />

1<br />

100<br />

200<br />

150 200 250 3<br />

t s<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

T e<br />

H s<br />

10 s<br />

2m<br />

0<br />

0 0.5 1 1.5<br />

Frequency (rad/s)


Oscillating-body dynamics<br />

Most wave energy converters are complex (possibly multi-body)<br />

mechanical systems with several degrees of freedom.<br />

Buoy<br />

We consider first the simplest case:<br />

• A single floating body.<br />

• One degree of freedom: oscillation in heave<br />

(vertical oscilation).<br />

Spring<br />

PTO<br />

Damper


Oscillating-body dynamics<br />

x<br />

Basic equation (Newton):<br />

m<br />

m<br />

x<br />

f<br />

h<br />

( t)<br />

f ( t)<br />

m<br />

on wetted<br />

surface<br />

PTO<br />

PTO<br />

f<br />

h<br />

f<br />

f<br />

f<br />

d<br />

r<br />

hs<br />

excitation force (incident wave)<br />

radiation force (body motion)<br />

gS x<br />

= hydrostatic force (body position)<br />

Spring<br />

Damper<br />

S<br />

mx<br />

f<br />

d<br />

f<br />

r<br />

gSx<br />

f<br />

m<br />

Cross-section


Oscillating-body dynamics<br />

Frequency-domain analysis<br />

• Sinusoidal monochromatic waves<br />

• Linear system


Oscillating-body dynamics<br />

x<br />

mx<br />

f r<br />

f<br />

d<br />

f<br />

r<br />

Ax <br />

A<br />

gSx<br />

Bx<br />

f<br />

m<br />

f m<br />

B radiation damping<br />

added mass<br />

Kx<br />

Linear<br />

spring<br />

Cx<br />

Linear<br />

damper<br />

Spring<br />

m<br />

PTO<br />

Damper<br />

A and B to be computed (commercial codes WAMIT,<br />

AQUADYN, ...) for given ω and body geometry.<br />

( m A)<br />

x ( B C)<br />

x<br />

( gS K)<br />

x<br />

f d<br />

mass<br />

added<br />

buoyancy<br />

mass radiation PTO<br />

PTO<br />

damping<br />

damping<br />

spring<br />

Excitation<br />

force


Oscillating-body dynamics<br />

( m A)<br />

x ( B C)<br />

x<br />

( gS K)<br />

x<br />

f d<br />

Method of solution: ( e i t cos t isin<br />

t )<br />

• Regular waves<br />

• Linear system<br />

x( t)<br />

Re X0e<br />

i<br />

t<br />

,<br />

f<br />

d<br />

Re<br />

F<br />

d<br />

e<br />

i<br />

t<br />

or simply<br />

x t)<br />

X e ,<br />

( 0<br />

i<br />

t<br />

f<br />

d<br />

F<br />

d<br />

e<br />

i<br />

t<br />

Note : X0,<br />

Fd<br />

are in general<br />

complex<br />

amplitudes<br />

F d<br />

wave amplitude<br />

(<br />

)<br />

to be computed for given<br />

and body geometry<br />

X<br />

0<br />

2<br />

( m<br />

A)<br />

i<br />

F<br />

d<br />

( B<br />

C)<br />

gS<br />

K


Oscillating-body dynamics<br />

X<br />

0<br />

2<br />

( m<br />

A)<br />

i<br />

F<br />

d<br />

( B<br />

C)<br />

gS<br />

K<br />

Power = force velocity<br />

Time-averaged power absorbed from the waves :<br />

P<br />

1<br />

8B<br />

F<br />

d<br />

2<br />

B<br />

2<br />

i<br />

= 0<br />

X<br />

0<br />

Fd<br />

2B<br />

2<br />

Note: for given body and given wave amplitude and frequency ω, B and<br />

are fixed.<br />

Then, the absorbed power P will be maximum when :<br />

F d<br />

i<br />

X<br />

0<br />

Fd<br />

2B<br />

B<br />

C<br />

gS<br />

m<br />

K<br />

Resonance condition<br />

A<br />

Radiation damping = PTO damping<br />

m<br />

K<br />

K<br />

m


Oscillating-body dynamics<br />

Capture width L : measures the power absorbing capability<br />

of device (like power coefficient of wind turbines)<br />

L<br />

P<br />

E<br />

P<br />

= absorbed power<br />

E = energy flux of incident wave per unit crest length<br />

For an axisymmetric body oscillating in heave (vertical<br />

oscillations), it can be shown (1976) that<br />

P<br />

max<br />

E<br />

2<br />

or<br />

L max<br />

2<br />

Note: L max<br />

may be larger<br />

than width of body<br />

For wind turbines, Betz’s limit is<br />

C P<br />

0.593


Oscillating-body dynamics<br />

Incident<br />

waves<br />

2<br />

Axisymmetric<br />

heaving body<br />

Max. capture<br />

width<br />

Incident<br />

waves<br />

Axisymmetric<br />

surging body<br />

wave


ma<br />

Oscillating-body dynamics<br />

Example: hemi-spherical heaving buoy of radius a<br />

No spring, no reactive control, K = 0<br />

P<br />

T*<br />

P max<br />

T<br />

g<br />

a<br />

1<br />

for<br />

2<br />

If T = 9 s<br />

a opt<br />

22m<br />

Too large !<br />

6<br />

P max<br />

P P x<br />

1<br />

P<br />

C<br />

0.8 C* 0.5 C*<br />

2. 0<br />

5 2 1 2<br />

a g<br />

0.6<br />

0.4<br />

0.2<br />

C*<br />

5<br />

C*<br />

2<br />

0<br />

5 7.5 10 12.5 15 17.5<br />

1 2<br />

Dimensionless g T<br />

wave period<br />

T*<br />

T<br />

a<br />

Dimensionless<br />

PTO damping


Oscillating-body dynamics<br />

How to decrease the<br />

resonance frequency of a<br />

given floater, without<br />

affecting the excitation and<br />

radiation forces <br />

gS<br />

m<br />

K<br />

A<br />

Resonance condition<br />

B<br />

C<br />

Radiation damping = PTO damping


PTO<br />

system<br />

Body 1<br />

Body 2<br />

<strong>WAVE</strong>BOB


Oscillating-body dynamics<br />

Time-domain analysis<br />

• Regular or irregular waves<br />

• Linear or non-linear PTO<br />

• May require significant computing-time<br />

• Yields time-series<br />

• Essential for control studies


Oscillating-body dynamics<br />

x<br />

m<br />

Time domain<br />

From Fourier transform techniques:<br />

Spring<br />

PTO<br />

Damper<br />

( m A ) x(<br />

t)<br />

f ( t)<br />

gS x(<br />

t)<br />

L(<br />

t ) x(<br />

) d f ( x,<br />

x<br />

, t)<br />

d<br />

t<br />

m<br />

(1)<br />

added mass<br />

excitation<br />

hydrostatic<br />

radiation<br />

PTO<br />

L(<br />

t)<br />

1<br />

2<br />

0<br />

B(<br />

)<br />

sin<br />

t d<br />

memory function<br />

forces<br />

f ( t)<br />

d ( t)<br />

f d,<br />

n<br />

n<br />

from ( ) and spectral distribution (Pierson-Moskowitz, …)<br />

Equation (1) to be numerically integrated


Oscillating-body dynamics<br />

Example: Heaving buoy with hydraulic PTO (oil)<br />

• Hydraulic cylinder (ram)<br />

• HP and LP gas accumulator<br />

• Hydraulic motor<br />

PTO force:<br />

Coulomb type (imposed by<br />

pressure in accumulator, piston<br />

area and rectifying valve system)<br />

Buoy<br />

LP gas HP gas<br />

accumulator accumulator<br />

Motor<br />

A<br />

Valve<br />

Cylinder<br />

B


PTO Equipment<br />

High-pressureoil<br />

PTO<br />

Pelamis<br />

One of the three<br />

power modules<br />

of a Pelamis<br />

Peniche shipyard,<br />

Portugal, 2006


PTO Equipment<br />

High-pressure-oil PTO<br />

Inside power<br />

module<br />

Pelamis<br />

LP accumulators<br />

Hydraulic ram<br />

HP accumulators<br />

LP<br />

accumulators


PTO Equipment<br />

High-pressure-oil PTO<br />

High-pressure accumulators<br />

• Commercially available<br />

• Bladder or piston types<br />

• Gas: Nitrogen<br />

• Max. working pressure up to ~ 500 bar<br />

• Banks of unit required for full-sized WECs<br />

Thermodynamics of gas in accumulator (isentropic process):<br />

• pressure-volume<br />

• pressure-temperature<br />

pV constant . 4<br />

p constant T<br />

1 for air and Nitrogen<br />

( 1)<br />

• energy storage (internal energy)<br />

U<br />

C<br />

v<br />

T


PTO Equipment<br />

High-pressure-oil PTO<br />

Hydraulic motor<br />

β<br />

Pistons<br />

Bent axis, variable<br />

displacement<br />

Swashplate


PTO Equipment<br />

High-pressure-oil PTO<br />

Hydraulic motor<br />

• Positive displacement machine.<br />

• Max. power up to ~ 300 – 500 kW at > 1000 rpm.<br />

• Direct drive of electric generator.<br />

• Relatively compact.<br />

• Variable displacement (double flow control capability).<br />

• Fairly good efficiency at maximum flow.<br />

• Reversible (as pump).<br />

• Available from a few manufacturers.<br />

• Not “too expensive”.


B<br />

L<br />

Oscillating-body dynamics<br />

Example:<br />

• Hemispherical buoy, radius = a<br />

B *<br />

Dimensionless radiation<br />

damping coefficient<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

Analytical<br />

Hulme 1982<br />

L *<br />

Dimensionless memory function<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0.05<br />

0<br />

0<br />

0 1 2 3 4 5<br />

ka<br />

ka<br />

Dimensionless radius<br />

0.01<br />

0 2 4 6 8 10 12 14<br />

g t<br />

Dimensionless time t*<br />

t<br />

a


Oscillating-body dynamics<br />

Buoy<br />

LP gas HP gas<br />

accumulator accumulator<br />

External PTO force:<br />

Coulomb type (imposed by<br />

pressure in accumulator,<br />

piston area and rectifying<br />

valve system)<br />

Cylinder<br />

A<br />

Motor<br />

Valve<br />

B<br />

Irregular waves with H s , T e and Pierson-Moskowitz spectral distribution<br />

S ( )<br />

263H<br />

2<br />

s<br />

T<br />

e<br />

4 5<br />

exp(<br />

1054T<br />

e<br />

4<br />

4<br />

)


Sphere radius a 5m<br />

Sphere radius a 5m Sea state H s 3m, T e 11s<br />

Sea state H s 3m, T e 11s<br />

x (m)<br />

Oscillating-body dynamics<br />

x (m)<br />

x x (m) (m)<br />

P (kW)<br />

P (kW)<br />

P P<br />

(kW)<br />

Under damped<br />

Externalforce 200 kN<br />

Optimally damped<br />

Externalforce 647 kN<br />

Over damped<br />

Externalforce<br />

1000 kN<br />

P<br />

83.1kW<br />

P<br />

178.4 kW<br />

P<br />

97.0 kW


Avoid overdamping and underdamping. Recall that<br />

accumulator size is finite.<br />

How to control the damping level (PTO force or accumulator<br />

pressure) to the current sea state (or wave group) <br />

Answer: Control the oil flow rate q through hydraulic motor<br />

as function of pressure difference Δp<br />

Algorithm:<br />

q<br />

p<br />

constant<br />

Buoy<br />

LP gas HP gas<br />

accumulator accumulator<br />

Δp<br />

q<br />

q G S<br />

c 2<br />

Δp<br />

control<br />

piston<br />

area<br />

parameter<br />

Cylinder<br />

A<br />

B<br />

Valve


How to control the instantaneous flow rate of oil<br />

• Control the rotational speed<br />

and/or<br />

• control the angle β (displacement)<br />

β


<strong>CONTROL</strong> OF <strong>WAVE</strong> <strong>ENERGY</strong> CONVERTER<br />

Note: hydrodynamically the system is linear<br />

2<br />

(kW/m<br />

Performance curves, radius a = 5m<br />

12<br />

Te=5s<br />

5s 7s 9s 11s<br />

10<br />

Te=7s<br />

Te=9s<br />

8<br />

P<br />

Te=11s<br />

13s<br />

2<br />

Te=13s<br />

H 6 s<br />

4<br />

)<br />

2<br />

0<br />

0 50 100 150 200 250 300 350<br />

S p PTO force<br />

(kN/m)<br />

c<br />

H s


<strong>CONTROL</strong> OF <strong>WAVE</strong> <strong>ENERGY</strong> CONVERTER<br />

Control algorithm<br />

q(<br />

t)<br />

Sc 2 G<br />

p<br />

P<br />

S c p piston force<br />

2<br />

q p G<br />

motor<br />

P<br />

motor G<br />

2<br />

2<br />

Hs 2<br />

H s<br />

(kW/m<br />

2<br />

)<br />

piston area<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Control<br />

parameter<br />

G 1<br />

G 2 G 3<br />

0 50 100 150 200<br />

H s<br />

Regulation curves<br />

(kN/m)<br />

parabolae


<strong>CONTROL</strong> OF <strong>WAVE</strong> <strong>ENERGY</strong> CONVERTER<br />

Control algorithm<br />

qm ( t)<br />

S<br />

c<br />

G<br />

p<br />

piston area<br />

control parameter<br />

12<br />

G 1 G 2 G 3<br />

10<br />

(kW/m<br />

P<br />

2<br />

H s<br />

2<br />

)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

5s<br />

7s<br />

9s<br />

11s<br />

13s<br />

Te=5s<br />

Te=7s<br />

Te=9s<br />

Te=11s<br />

Te=13s<br />

G=G1<br />

G=G2<br />

G=G3<br />

0 50 100 150 200 250<br />

H s<br />

(kN/m)


P Hs 2 , Pm Hs 2 k W m 2<br />

k W m 2<br />

Oscillating-body dynamics<br />

Buoy<br />

radius 5m<br />

LINEAR DAMPER<br />

H 2 s<br />

H 2 s<br />

(kW/m 2 )<br />

P<br />

(kW/m 2 )<br />

H s<br />

12<br />

10<br />

(kN/m) 8<br />

6<br />

T e<br />

5s<br />

7<br />

9<br />

(KN 8<br />

4<br />

4<br />

effective in irregular waves (NO PHASE <strong>CONTROL</strong>).<br />

2<br />

2<br />

G4<br />

G3<br />

G2<br />

13<br />

G1<br />

11<br />

P H s<br />

2<br />

10<br />

6<br />

7<br />

9 11<br />

13<br />

A hydraulic PTO and a linear damper may be almost equally<br />

P<br />

C<br />

s/m)


Oscillating-body dynamics<br />

For point absorbers (relatively small bodies) the resonance<br />

frequency of the body is in general much larger than the<br />

typical wave frequency of sea waves:<br />

• No resonance can be achieved.<br />

• Poor energy absorption.<br />

How to increase energy absorption<br />

Phase control !


Oscillating-body dynamics<br />

Phase control, i.e. wave-to-wave control in radom waves, is one of<br />

the main issues in wave energy conversion.<br />

Optimal control is a difficult theoretical control problem, that has<br />

been under investigation since the late 1970s.<br />

Control is made difficult by the randomness of the waves and by the<br />

wave-device interaction being a process with memory.<br />

The difficulty increases for multimode<br />

oscillations and for multibody<br />

systems.<br />

Control should be regarded as an open problem and a<br />

major challenge in the development of wave energy<br />

conversion.


Oscillating-body dynamics<br />

Phase-control by latching<br />

Whenever the body velocity comes down to zero, keep the body<br />

fixed for an appropriate perid of time.<br />

This is an artificial way of reducing the frequency of the body freeoscillations,<br />

and achieving resonance.<br />

Phase-control by latching was introduced by<br />

Falnes and Budal<br />

J. Falnes, K. Budal, Wave-power conversion by<br />

power absorbers. Norwegian Maritime<br />

Research, vol. 6, p. 2-11, 1978.<br />

Johannes<br />

Falnes<br />

Kjell Budall<br />

(1933-89)


Optimal phase control in random waves requires the<br />

prediction of incoming wave and heavy computing.<br />

Sub-optimal control strategies by latching were devised by<br />

several teams.<br />

Usually, control algorithm determines the duration of time<br />

the oscillator is kept fixed (latched) in each wave cycle.<br />

Alternative strategy is in terms of load (not time<br />

duration):<br />

Opposing force to be overcome before the body is<br />

released.


Numerical simulations of phase control<br />

Sphere radius<br />

5 m<br />

Gas (Nitrogen):<br />

• accumulator: 100 kg<br />

• turbine casing: 20 kg<br />

qm ( t)<br />

G S<br />

c<br />

p<br />

S c<br />

0.0314<br />

m<br />

2<br />

(diameter 200<br />

mm)<br />

Phase-control by latching: body is released when<br />

hydrodynam<br />

ic<br />

force on body exceeds<br />

R(<br />

S<br />

c<br />

p)<br />

( R<br />

1)<br />

Control parameters:<br />

G controls oil flow rate through hydraulic motor<br />

R controls latching (release of body)


x m<br />

d x d t m s , 1 0 fd M N<br />

PHASE <strong>CONTROL</strong><br />

How to achieve phase-control by latching in a<br />

floating body with a hydraulic power-take-off<br />

mechanism<br />

4<br />

2<br />

0<br />

2<br />

excit. force<br />

velocity<br />

Introduce a delay in the release of the<br />

latched body.<br />

4<br />

608<br />

600 602 604 606 608 610 612 614<br />

4<br />

t s<br />

2<br />

0<br />

2<br />

No phase-control:<br />

optimal G, R = 1<br />

displacement<br />

4<br />

600 602 604 608 606 608 610 612 614<br />

t (s)<br />

t s<br />

How<br />

Increase the resisting force the<br />

hydrodynamic forces have to<br />

overcome to restart the body<br />

motion.


REGULAR <strong>WAVE</strong>S<br />

Period T = 9 s<br />

Amplitude 0,667 m


x m<br />

d x d t m s , 1 0 fd M N<br />

x m<br />

d x d t m s , 1 0 fd M N<br />

G<br />

R<br />

Regular waves: T = 9 s, amplitude 0.67 m<br />

0.86 10<br />

6<br />

s/kg<br />

G 7.7 10<br />

1 P 55.0 kW R 16 P 206.1kW<br />

6<br />

s/kg<br />

4<br />

2<br />

0<br />

2<br />

4<br />

600 602 604 606 608 610 612 614<br />

4<br />

t s<br />

2<br />

Excit.<br />

force<br />

velocity<br />

No phase-control:<br />

displacement<br />

4<br />

2<br />

0<br />

2<br />

4<br />

600 602 604 606 608 610 612<br />

4<br />

t s<br />

2<br />

Phase-control:<br />

0<br />

0<br />

2<br />

2<br />

4<br />

600 602 604 608 4<br />

606 608 610 612 614<br />

608<br />

600 602 604 606 608 610 612<br />

t (s) t s<br />

t t (s(s)<br />

)<br />

t s


250<br />

200<br />

P(kW)<br />

150<br />

100<br />

50<br />

G is optimized<br />

for each R<br />

0<br />

0 5 10 15 20 25 30<br />

R<br />

R


IRREGULAR <strong>WAVE</strong>S<br />

Period T e = 7, 9, 11 s<br />

Height H s = 2 m


T e 7 s, Hs<br />

2 m<br />

25<br />

kW<br />

P<br />

2<br />

H s<br />

m<br />

2<br />

20<br />

15<br />

10<br />

5<br />

4<br />

R = 1<br />

28<br />

8 12 16 20 24<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

G<br />

10 6<br />

(s/kg)


T e 9 s, Hs<br />

2 m<br />

30<br />

kW<br />

P<br />

2<br />

H s<br />

m<br />

2<br />

20<br />

10<br />

4<br />

R = 1<br />

28<br />

8 12 16 20 24<br />

0<br />

0 2 4 6 8 10 12<br />

G 10 6 (s/kg)


T e 11 s, Hs<br />

2 m<br />

30<br />

P<br />

2<br />

H s<br />

20<br />

4<br />

28<br />

kW<br />

m<br />

2<br />

10<br />

R = 1<br />

8 12 16 20 24<br />

0<br />

0 2 4 6 8 10<br />

G 10 6 (s/kg)


Detailed analysis<br />

T e = 9 s<br />

H s =2 m


d x d t Hs s 1 , 1 0 fd Hs M N m<br />

d x d t Hs s 1 , 1 0 fd Hs M N m<br />

G<br />

0.7<br />

10<br />

6<br />

s/kg<br />

G<br />

4.2<br />

10<br />

6<br />

s/kg<br />

R<br />

1<br />

P<br />

2<br />

H s<br />

10.3 kW/m<br />

2<br />

R<br />

16<br />

P<br />

2<br />

H s<br />

28.5 kW/m<br />

2<br />

3<br />

diffr. force<br />

2<br />

3<br />

2<br />

1<br />

1<br />

0<br />

0<br />

1<br />

2<br />

velocity<br />

1<br />

2<br />

3<br />

700 720 740 760 760 780 800<br />

2<br />

t s<br />

3<br />

760<br />

700 720 740 760 780 80<br />

2<br />

t s<br />

1<br />

displacement<br />

1<br />

x Hs<br />

0<br />

x Hs<br />

0<br />

1<br />

1<br />

2<br />

700 720 740 760 760 780 800<br />

t (s)<br />

t s<br />

2<br />

700 720 740 760<br />

t (s) 760 780 8<br />

t s


The large increase in time-averaged power output<br />

results:<br />

• from a large increase in oil flow rate (increase in<br />

control parameter G), and hence in motor size;<br />

• not from an increase in hydraulic circuit pressure.<br />

100<br />

80<br />

Pressure in HP accumulator<br />

p 1<br />

(bar)<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30<br />

R


Oscillating-body dynamics<br />

Phase control by latching may significantly increase the amount<br />

of absorbed energy by point absorbers.<br />

Control of load prior to release is an alternative to latch duration<br />

control.<br />

Control parameters (G, R) are practically independent of wave height<br />

and weakly dependent on wave period.<br />

Problems with latching phase control:<br />

• Latching forces may be very large.<br />

• Latching control is less effective in two-body WECs.<br />

Apart from latching, there are forms of phase control<br />

(reactive, uncluching, …).


Oscillating-body dynamics<br />

Several degrees of freedom<br />

• Each body has 6 degrees of freedom<br />

• A WEC may consist of n bodies (n >1)<br />

All these modes of oscillation interact with each<br />

other through the wave fields they generate.<br />

Number of dynamic equations = 6n<br />

The interference between modes affects:<br />

• added masses<br />

• radiation damping coefficients<br />

Hydrodynamic coefficients<br />

accordingly.<br />

A ij , B ij<br />

are defined<br />

They can be computed with commercial software<br />

(WAMIT, …).<br />

body 2<br />

PTO<br />

body 1


<strong>WAVE</strong> <strong>ENERGY</strong> TECHNOLOGIES<br />

Oscillating<br />

water column<br />

(with air turbine)<br />

Isolated: Pico, LIMPET<br />

Fixed structure<br />

In breakwater: Sakata, Douro river<br />

Floating structure: Mighty Whale, BBDB, Oceanlinx<br />

Oscillating bodies<br />

(with hydraulic motor,<br />

hydraulic turbine,linear<br />

electrical generator)<br />

Run up<br />

(with low-head hydraulic<br />

turbine)<br />

Floating<br />

Submerged<br />

Fixed<br />

structure<br />

Essencially translation (heave):<br />

IPS Buoy, WaveBob, PowerBuoy<br />

Essencially rotation: Pelamis, PS Frog, SEAREV<br />

Essencially translation (heave): AWS<br />

Rotation: WaveRoller, Oyster<br />

TWO-BODY<br />

Shoreline (with concentration): TAPCHAN<br />

POINT ABSORBERS<br />

In breakwater (without concentration): SSG<br />

Floating structure (with concentration): Wave Dragon


Oscillating-body dynamics<br />

Several degrees of freedom<br />

Example: heaving bodies 1 and 2 reacting<br />

against each other.<br />

( m<br />

( m<br />

<br />

<br />

1 A1<br />

) x1<br />

B1<br />

x1<br />

gS1x1<br />

C(<br />

x1<br />

x2)<br />

K(<br />

x1<br />

x2)<br />

A12<br />

x2<br />

B12x<br />

2 f d 1<br />

<br />

<br />

2 A2<br />

) x2<br />

B2x2<br />

gS2x2<br />

C(<br />

x1<br />

x2)<br />

K(<br />

x1<br />

x2)<br />

A12<br />

x1<br />

B12x<br />

1 f d 2<br />

<br />

<br />

<br />

<br />

PTO<br />

body 1<br />

Note:<br />

A<br />

12 A21, B12<br />

B21<br />

body 2


IPS Buoy<br />

Wave Bob<br />

AquaBuoy<br />

Hose<br />

pumps<br />

Hydraulic<br />

ram


Simplifying assumptions for optimization and control<br />

Buoy represented by body 1a<br />

(hemispherical buoy)<br />

1a<br />

Acceleration tube represented by<br />

body 1b<br />

Inertia of piston and enclosed water<br />

represented by body 2<br />

Bodies 1b and 2 are “deeply”<br />

submerged:<br />

• Wave excitation forces neglected<br />

• Radiation forces neglected<br />

1b<br />

Hydrodynamic interference between<br />

bodies 1a, 1b and 2 neglected<br />

2


Two-body motion, linear PTO<br />

Coordinates:<br />

x : body 1 (1a+1b)<br />

y : body 2<br />

1a<br />

M 1 b , M 2<br />

include added mass<br />

<br />

<br />

( m1 a A1<br />

a M1b<br />

) x B1<br />

x gSx C(<br />

x y)<br />

K(<br />

x y)<br />

fd1<br />

<br />

<br />

damper spring<br />

1b<br />

M2<br />

y C(<br />

x<br />

y<br />

) K(<br />

x y)<br />

0<br />

2


Regular waves, frequency domain<br />

i t<br />

x(<br />

t)<br />

X0 e , y(<br />

t)<br />

Y0<br />

e<br />

i<br />

t<br />

f ( t)<br />

A ( ) e<br />

dj<br />

w<br />

j<br />

i<br />

t<br />

X<br />

0<br />

Y<br />

2<br />

0<br />

( m<br />

( i<br />

1a<br />

C<br />

A<br />

1a<br />

K)<br />

(<br />

)<br />

A<br />

w<br />

M<br />

1b<br />

1a<br />

,<br />

)<br />

i<br />

( B<br />

C)<br />

gS<br />

X0( i C K)<br />

Y0<br />

( M2<br />

i C K)<br />

2<br />

0 .<br />

Time-averaged absorbed power<br />

1<br />

P<br />

2<br />

2<br />

C X<br />

0<br />

Y<br />

0<br />

2<br />

Theoretical max power (axisymmetric body, heave motion):<br />

P<br />

max<br />

g<br />

3<br />

4<br />

2<br />

A w<br />

3


Radius of buoy = 7.5 m<br />

Mass of buoy<br />

m 1a<br />

905.7<br />

10<br />

kg<br />

Hydrostatic restoring force coeff. gS<br />

3<br />

1.776 MNm<br />

1<br />

Dimensionless values<br />

1a<br />

Motion amplitude<br />

X*<br />

X 0<br />

A w<br />

Mass of body 1b<br />

*<br />

M1b<br />

M1b<br />

m1<br />

a<br />

Mass of body 2<br />

*<br />

M2<br />

M2<br />

m1<br />

a<br />

Damping coefficient<br />

Spring stiffness<br />

Power<br />

C*<br />

K*<br />

P*<br />

C<br />

B(<br />

K<br />

gS<br />

P<br />

P<br />

max<br />

8<br />

)<br />

1b<br />

2


Results from optimization<br />

Regular waves<br />

Linear PTO<br />

No spring K = 0<br />

1a<br />

P*<br />

P<br />

P max<br />

1<br />

1b<br />

X*<br />

Motion amplitude (dimensionless)<br />

Y*<br />

R* (relative)<br />

2


T<br />

8s<br />

T<br />

12 10s<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

*<br />

M 2<br />

X *<br />

Y *<br />

R*<br />

0 0,25 0,5 0,75 1 1,25 1,5<br />

*<br />

M 1b<br />

C *<br />

0 0,25 0,5 0,75 1 1,25 1,5<br />

*<br />

M 1b<br />

6<br />

10<br />

X *<br />

X *<br />

5<br />

8<br />

4<br />

Y * Y *<br />

6<br />

3<br />

* *<br />

4<br />

MM 2 2<br />

R*<br />

2<br />

R*<br />

2<br />

1<br />

0<br />

0<br />

0 0 10,5 12 1,5 * 3 2 42,5 35<br />

3,5<br />

M 1b *<br />

M 1b<br />

200<br />

80<br />

15060<br />

10040<br />

C *<br />

5020<br />

0 0<br />

0 0 0,5 1 1 2 1,5 *<br />

3 2 2,5 4 35<br />

3,5<br />

M * 1b M 1b


Results from optimization<br />

Irregular waves<br />

(Pierson-Moskowitz)<br />

Linear PTO<br />

No spring K = 0<br />

1a<br />

1b<br />

2


T e<br />

8s<br />

T e<br />

10s<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

25<br />

20<br />

15<br />

*<br />

10 P irr<br />

Fix<br />

*<br />

M 2<br />

M 1 b , M 2<br />

0 0,5 1 1,5 2 2,5 3 3,5<br />

*<br />

M 1b<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

50<br />

40<br />

30<br />

*<br />

10 P irr<br />

*<br />

M 2<br />

0 1 2 3 4 5<br />

*<br />

M 1b<br />

10<br />

5<br />

C *<br />

20<br />

10<br />

C *<br />

0<br />

0 0,5 1 1,5 2 2,5 3 3,5<br />

*<br />

M 1b<br />

0<br />

0 1 2 3 4 5<br />

*<br />

M 1b


Results from optimization<br />

Reactive phase control<br />

Irregular waves<br />

(Pierson-Moskowitz)<br />

*<br />

M 1b<br />

*<br />

M 2<br />

2<br />

1.76<br />

Linear PTO<br />

Spring K 0<br />

1a<br />

1b<br />

2


T e<br />

8s<br />

T e<br />

10s 12s<br />

0,48<br />

0,47<br />

0,46<br />

0,45<br />

0,44<br />

4<br />

3,5<br />

3<br />

2,5<br />

*<br />

P irr<br />

0 0,05 0,1 0,15 0,2<br />

C *<br />

K *<br />

0,45<br />

0,35<br />

0,4<br />

irr *<br />

0,3<br />

P irr<br />

0,35 0,25<br />

0,2<br />

0,3<br />

0,15<br />

0,25 0,1<br />

8<br />

6<br />

4<br />

2<br />

0 0,1 0,1 0,2 0,20,3 0,4 0,3 0,5 0,4 0,6 0,5 0,7<br />

K K **<br />

C *<br />

C *<br />

2<br />

0 0,05 0,1 0,15 0,2<br />

K *<br />

0<br />

0 0,1 0,1 0,2 0,20,3 0,4 0,3 0,5 0,4 0,6 0,5 0,7<br />

K *


Phase control by latching<br />

PTO: high pressure oil circuit<br />

Hydraulic ram<br />

Hydraulic motor<br />

Gas accumulator<br />

Wavebob (Ireland)


1a<br />

LP gas<br />

accumulator<br />

HP gas<br />

accumulator<br />

Motor<br />

1b<br />

Valve<br />

Cylinder<br />

2


Flow rate control through motor<br />

LP gas<br />

accumulator<br />

HP gas<br />

accumulator<br />

q<br />

m<br />

( t)<br />

G S<br />

2<br />

c<br />

p<br />

Motor<br />

S c<br />

p<br />

piston area<br />

pressuredifference<br />

Cylinder<br />

Valve<br />

Phase-control by latching: body is released when<br />

hydrodynam<br />

ic<br />

force on body exceeds<br />

R(<br />

S<br />

c<br />

p)<br />

( R<br />

1)<br />

Control parameters:<br />

G controls oil flow rate through hydraulic motor<br />

R controls latching (release of body)


Non-linear PTO: time-domain analysis<br />

( m<br />

1a<br />

t<br />

A<br />

1a<br />

L(<br />

t<br />

(<br />

)<br />

M<br />

) x(<br />

t)<br />

d<br />

1b<br />

) x(<br />

t)<br />

f<br />

d1<br />

( t)<br />

gSx(<br />

t)<br />

f<br />

m<br />

,<br />

M<br />

y<br />

( t )<br />

f<br />

2 m<br />

.<br />

Continuity equation for oil-flow<br />

Accumulator gas thermodynamics


0,4<br />

a<br />

M<br />

M<br />

*<br />

1b<br />

*<br />

2<br />

7.5m<br />

2<br />

1.76<br />

*<br />

P irr<br />

*<br />

P irr<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

0,10<br />

0,08<br />

0,06<br />

*<br />

P irr<br />

0,04<br />

0,02<br />

R=1<br />

R=2<br />

Te=8s<br />

R=4<br />

0 1 2 3 4 5<br />

R=1<br />

R=2<br />

R=4<br />

Te=10s<br />

0 1 2 3 4 5<br />

R=1<br />

R=2<br />

R=4<br />

Te=12s<br />

0,00<br />

0 1 2 3 4 5<br />

G<br />

10 6 (s/kg)


0,4<br />

0,3<br />

*<br />

P irr<br />

0,2<br />

R=1<br />

R=2<br />

R=4<br />

a<br />

M<br />

M<br />

*<br />

1b<br />

*<br />

2<br />

7.5m<br />

1<br />

3<br />

0,1<br />

0,0<br />

0,25<br />

0,20<br />

0,15<br />

*<br />

P irr<br />

0,10<br />

Te=8s<br />

0,0 0,5 1,0 1,5 2,0 2,5 3,0<br />

R=1<br />

R=2<br />

R=4<br />

0,05<br />

Te=10s<br />

0,00<br />

0,0 0,5 1,0 1,5 2,0 2,5 3,0<br />

0,12<br />

0,08<br />

*<br />

P irr<br />

R=1<br />

R=2<br />

R=4<br />

0,04<br />

Te=12s<br />

0,00<br />

0,0 0,5 1,0 1,5 2,0 2,5 3,0<br />

G 10 6 (s/kg)


0,4<br />

a<br />

M<br />

M<br />

*<br />

1b<br />

*<br />

2<br />

7.5m<br />

1<br />

6<br />

0,3<br />

0,3<br />

0,2<br />

*<br />

P irr<br />

0,2<br />

0,1<br />

0,0<br />

0,20<br />

Te=8s<br />

R=1<br />

R=4<br />

R=8<br />

0,0 0,5 1,0 1,5 2,0<br />

*<br />

P irr<br />

0,1<br />

R=1<br />

Te=10s<br />

R=2<br />

R=4<br />

0,0<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

0,10<br />

0,15<br />

*<br />

P irr<br />

0,10<br />

0,05<br />

0,00<br />

Te=12s<br />

R=1<br />

0,0 0,1 0,2 0,3 0,4<br />

G<br />

10 6 (s/kg)<br />

*<br />

P irr<br />

0,08<br />

0,06<br />

0,04<br />

R=2<br />

0,02<br />

R=4 Te=14s<br />

0,00<br />

R=1<br />

R=2<br />

R=4<br />

0,00 0,05 0,10 0,15 0,20 0,25<br />

G<br />

10 6 (s/kg)


0,4<br />

a<br />

M<br />

M<br />

*<br />

2<br />

7.5m<br />

*<br />

1b<br />

1<br />

0,3<br />

*<br />

P irr<br />

0,2<br />

0,1<br />

0,0<br />

0,25<br />

0,20<br />

0,15<br />

*<br />

P irr<br />

0,10<br />

0,05<br />

0,00<br />

Te=8s<br />

R=1<br />

R=4<br />

R=8<br />

0,0 0,5 1,0 1,5 2,0<br />

Te=10s<br />

R=1<br />

R=4<br />

R=8<br />

0,0 0,5 1,0 1,5<br />

0,15<br />

*<br />

P irr<br />

0,10<br />

0,05<br />

0,00<br />

T=12s<br />

R=1<br />

R=4<br />

R=8<br />

0,0 0,2 0,4 0,6<br />

G<br />

10 6 (s/kg)


We are far from:<br />

a<br />

M<br />

M<br />

*<br />

1b<br />

0<br />

*<br />

2<br />

5m<br />

Cylinder<br />

LP gas<br />

HP gas<br />

accumulator<br />

accumulator<br />

Motor<br />

Valve<br />

30<br />

P<br />

2<br />

H s<br />

20<br />

4<br />

28<br />

kW<br />

m<br />

2<br />

10<br />

R = 1<br />

8 12 16 20 24<br />

0<br />

0 2 4 6 8 10<br />

A. Falcão, Ocean Engineering, 35,<br />

358-366, 2008.<br />

G 10 6 (s/kg)


CONCLUSIONS<br />

• A two-body system with a linear damper can be optimized to<br />

absorb theoretical maximum energy from regular waves: P* 1 .<br />

• This drops to typically less than 50% in irregular waves.<br />

• For fixed masses, a linear PTO with a “negative spring” (reactive<br />

control) can significantly increase the energy absorbed from irregular<br />

waves.<br />

• Simulations were made for high-pressure-oil PTO.<br />

• The performance is slightly poorer than with a linear damper.<br />

• In the simulated situations, latching was unable to improve<br />

the performance, except if mass of body 2 is very large<br />

(approaching a single-body system).


OSCILLATING<br />

WATER COLUMNS


Power output<br />

The problem:<br />

• The performance of self-rectifying air turbines (Wells,<br />

impulse, …) is strongly dependent on pressure (or on<br />

flow rate) and on rotational speed.<br />

constant<br />

rotational<br />

speed<br />

Air pressure Δp<br />

• How to control the turbine (instantaneous rotational<br />

speed) to achieve maximum energy production


OWC Dynamics<br />

Two different approaches to modelling:<br />

weightless<br />

piston<br />

uniform air<br />

pressure<br />

Oscillating body (piston) model<br />

(rigid free surface)<br />

Uniform pressure model<br />

(deformable free surface)


OWC Dynamics<br />

m (t)<br />

V0<br />

p(t)<br />

air volume<br />

pressure<br />

q(t)<br />

m (t)<br />

volume-flow rate displace by<br />

free-surface<br />

mass-flow rate of air<br />

through turbine<br />

a<br />

q(t)<br />

a air density p(t)<br />

air pressure<br />

Conservation of air mass<br />

(linearized)<br />

m<br />

( t)<br />

a<br />

q(<br />

t)<br />

V<br />

0<br />

2<br />

aca<br />

dp(<br />

t)<br />

dt<br />

flow rate<br />

q<br />

q<br />

q r<br />

exc<br />

excitation<br />

radiation<br />

Effect of air compressibility


Air turbine<br />

N<br />

D<br />

P<br />

t<br />

p<br />

rotational speed<br />

rotor diameter<br />

power output<br />

pressure head<br />

OWC Dynamics<br />

In dimensionless form:<br />

m<br />

p<br />

3<br />

aND<br />

aN<br />

flow pressure<br />

head<br />

2 D<br />

2<br />

Performance curves of turbine<br />

(dimensionless form):<br />

P<br />

t<br />

3 D 5<br />

aN<br />

power<br />

power Π<br />

flow<br />

Φ<br />

f w ( ), fP(<br />

)<br />

pressure head


OWC Dynamics<br />

Frequency domain<br />

m (t)<br />

a<br />

q(t)<br />

Linear air turbine<br />

K<br />

p( t),<br />

m<br />

, q(<br />

t),<br />

q ( t),<br />

q<br />

<br />

r<br />

exc ( t)<br />

P,<br />

M , Q,<br />

Qr<br />

,<br />

Q<br />

exc<br />

e<br />

i<br />

t<br />

Q r (<br />

P(<br />

)<br />

)<br />

B(<br />

)<br />

iC(<br />

)<br />

B<br />

C<br />

radiation conductance<br />

radiation susceptance<br />

Q ) ( ) A<br />

exc (<br />

excitation<br />

coeff.<br />

w<br />

wave<br />

ampl.<br />

P<br />

KD<br />

N<br />

a<br />

B<br />

Q<br />

exc<br />

i C<br />

V<br />

a<br />

0<br />

2<br />

a<br />

c


OWC Dynamics<br />

2<br />

0<br />

exc<br />

a<br />

a<br />

a<br />

c<br />

V<br />

C<br />

i<br />

B<br />

N<br />

KD<br />

Q<br />

P<br />

K<br />

gS<br />

C<br />

B<br />

i<br />

A<br />

m<br />

F<br />

X<br />

d<br />

)<br />

(<br />

)<br />

(<br />

2<br />

0<br />

q(t)<br />

m (t)<br />

a<br />

q(t)<br />

m (t)<br />

a<br />

)<br />

(<br />

),<br />

( P<br />

f w f<br />

t<br />

i<br />

Pe<br />

t<br />

p<br />

Re<br />

)<br />

(<br />

2<br />

2<br />

5<br />

3<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

:<br />

power output<br />

D<br />

N<br />

t<br />

p<br />

f<br />

D<br />

N<br />

t<br />

P<br />

t<br />

a<br />

P<br />

a<br />

t<br />

Ψ


OWC Dynamics<br />

m (t)<br />

Time domain:<br />

• Linear or non-linear turbine<br />

a<br />

q(t)<br />

V 0 dp(<br />

t)<br />

m<br />

( t)<br />

g ( t ) p(<br />

) d qexc<br />

( )<br />

2<br />

r<br />

c dt<br />

t<br />

a<br />

a<br />

a<br />

turbine flow vs<br />

memory function<br />

t<br />

pressurecurve<br />

g r<br />

( t)<br />

2<br />

m<br />

0<br />

B(<br />

a<br />

ND<br />

) cos<br />

3<br />

f<br />

t d<br />

w<br />

a<br />

N<br />

p<br />

2<br />

D<br />

2<br />

To be integrated numerically for p(t)<br />

power output<br />

:<br />

( t)<br />

P ( t)<br />

a<br />

p(<br />

t)<br />

t f<br />

f<br />

w ( ), fP(<br />

)<br />

3 5 P 2 2<br />

D aN<br />

D<br />

N


OWC Dynamics<br />

Numerical application<br />

Y<br />

Z<br />

X<br />

Pico OWC<br />

AQUADYN<br />

Brito-Melo et al. 2001<br />

Memory<br />

function<br />

(rad/s)


OWC Dynamics<br />

Numerical application<br />

p(t)<br />

P t (t)<br />

Air pressure in chamber<br />

Power<br />

Results from time-domain modelling of impulse turbine over<br />

• Turbine D = 1.5 m, N = 115 rad/s (1100 rpm)<br />

t = 120 s<br />

• Sea state H s = 3 m, T e = 11 s<br />

• Average power output from turbine 97.2 kW


OWC Dynamics<br />

Stochastic modelling<br />

• Irregular waves<br />

• Linear air-turbine<br />

• Much less time-consuming than time-domain analysis<br />

• Appropriate for optimization studies<br />

• A.F. de O. Falcão, R.J.A. Rodrigues, “Stochastic modelling of OWC wave power<br />

performance”, Applied Ocean Research, Vol. 24, pp. 59-71, 2002.<br />

• A.F. de O. Falcão, “Control of an oscillating water column wave power plant for<br />

maximum energy production”, Applied Ocean Research, Vol. 24, pp. 73-82, 2002.<br />

• A.F. de O. Falcão, "Stochastic modelling in wave power-equipment optimization:<br />

maximum energy production versus maximum profit". Ocean Engineering, Vol. 31,<br />

pp. 1407-1421, 2004.


OWC Dynamics<br />

Stochastic modelling<br />

Wave climate represented by a set of sea states<br />

• For each sea state: H s , T e , freq. of occurrence .<br />

• Incident wave is random, Gaussian, with<br />

known frequency spectrum.<br />

<strong>WAVE</strong>S<br />

OWC<br />

AIR<br />

PRESSURE<br />

TURBINE<br />

Random,<br />

Gaussian<br />

Linear system.<br />

Known hydrodynamic<br />

coefficients<br />

Random,<br />

Gaussian<br />

rms: p<br />

Known<br />

performance<br />

curves<br />

ELECTRICAL<br />

POWER OUTPUT<br />

Time-averaged<br />

GENERATOR<br />

Electrical<br />

efficiency<br />

TURBINE<br />

SHAFT<br />

POWER<br />

Time-averaged


Gaussian process (e.g. surface elevation ζ )<br />

Probability density function (pdf) :<br />

f<br />

(<br />

)<br />

2<br />

1<br />

exp<br />

2<br />

2<br />

2<br />

2<br />

S ( )d = variance<br />

spectral<br />

density<br />

= standard deviation


OWC Dynamics<br />

Stochastic model:<br />

• Linear turbine (Wells turbine)<br />

• Random Gaussian waves<br />

Pierson-Moskowitz spectrum<br />

S<br />

(<br />

)<br />

263H<br />

2<br />

s<br />

T<br />

e<br />

4<br />

5<br />

exp(<br />

1054T<br />

e<br />

4<br />

4<br />

).<br />

For linear system,<br />

2<br />

p<br />

2<br />

0<br />

S<br />

( ) (<br />

and pdf f ( p)<br />

p(<br />

t)<br />

)<br />

(<br />

1<br />

2<br />

is<br />

)<br />

randomGaussian,<br />

2<br />

p<br />

d<br />

exp<br />

where<br />

2<br />

p<br />

2<br />

2<br />

p<br />

Λ<br />

with variance<br />

KD<br />

N<br />

a<br />

B<br />

i<br />

a<br />

V<br />

c<br />

0<br />

2<br />

a<br />

C<br />

Q exc ( ) ( ) A w<br />

excitation<br />

coeff.<br />

1<br />

wave<br />

ampl.<br />

P<br />

t<br />

f<br />

3<br />

5<br />

2 N D p p<br />

( p)<br />

P ( p)<br />

dp<br />

a<br />

t<br />

exp fP<br />

dp<br />

2<br />

2 2<br />

2 N D<br />

p<br />

0<br />

2<br />

2<br />

p<br />

a


Time-averaged turbine power output :<br />

In dimensionless form :<br />

dimensionless<br />

pressure variance<br />

dimensionless timeaveraged<br />

power<br />

Wells<br />

turbine<br />

(<br />

)<br />

with relief valve<br />

(<br />

)<br />

without relief valve


Time-averaged turbine power output :<br />

In dimensionless form :<br />

dimensionless<br />

pressure variance<br />

How to control the rotational speed N for maximum <br />

dimensionless<br />

averaged power<br />

= 0 for maximum energy production


= 0 for maximum energy production<br />

For given turbine is<br />

function of<br />

For given OWC, turbine and<br />

sea state, is function of N<br />

We obtain optimal N and maximum P t .<br />

Control algorithm:<br />

• Set electrical power<br />

P<br />

e<br />

P<br />

t<br />

function ( N<br />

)


Example: Pico OWC plant with 2.3m Wells turbine<br />

Local wave climate represented by 44 sea states (44 circles)<br />

P e<br />

5<br />

1.583<br />

10 N<br />

3.16


Maximum rotational speed may be constrained by:<br />

• Centrifugal stresses in turbine and electrical generator<br />

• Mach number effects (shock waves)<br />

P e<br />

5<br />

1.583<br />

10 N<br />

3.16<br />

1500 rpm


Rated power (kW)<br />

Annual averaged net power<br />

(kW)<br />

OWC Dynamics<br />

Application of stochastic model<br />

Wells turbine size range 1.6m < D < 3.8m<br />

800<br />

300<br />

700<br />

600<br />

250<br />

200<br />

wave climate 3<br />

500<br />

150<br />

wave climate 2<br />

400<br />

300<br />

100<br />

50<br />

wave climate 1<br />

200<br />

1.5 2 2.5 3 3.5 4<br />

D (m)<br />

Plant rated power<br />

(for H s = 5m, T e =14s)<br />

0<br />

1.5 2 2.5 3 3.5 4<br />

D (m)<br />

Annual averaged<br />

net power (electrical)


This presentation can be downloaded from:<br />

http://hidrox.ist.utl.pt/doc_fct/Lancaster_pres.ppt


THANK YOU <strong>FOR</strong><br />

YOUR ATTENTION<br />

J.M.W.Turner 1775 - 1851

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!