27.01.2015 Views

Download/View - CPAC

Download/View - CPAC

Download/View - CPAC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Overview of<br />

SPR Real-Time Biosensor System<br />

Clement E. Furlong, Professor, Departments of Medicine<br />

(Div. Medical Genetics) & Genome Sciences<br />

AOAC, Tacoma, WA 2012


Conflict of Interest Statement<br />

Clement Furlong and Scott Soelberg hold stock<br />

in Seattle Sensor Systems, a company which<br />

manufactures a portable SPR system.


Goals for Portable SPR Biosensor System<br />

• Rapid near real time detection &<br />

identification of analytes<br />

• Semi-Automated: minimum user input<br />

required<br />

• Few or no reagents<br />

• Low procurement and operational costs.


Sensor technology can be adapted to<br />

meet various requirements<br />

Packaging and collection<br />

system can be adapted for:<br />

• Toxin detection<br />

• Real-time process monitoring<br />

• Continuous air monitoring<br />

• Continuous monitoring of water systems<br />

• General laboratory research instruments<br />

• Bio-defense monitoring<br />

• Food monitoring<br />

• Medical diagnostics<br />

• Portable environmental monitoring


The SPIRIT system<br />

(Surface Plasmon Instrumentation for the Rapid Identification of Toxins)<br />

• Compact,<br />

lightweight (lunchbox<br />

size,


Refractive Index<br />

Reflectivity<br />

Fundamentals of<br />

1<br />

0.8<br />

Surface Plasmon Resonance<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 20 40 60 80<br />

System software<br />

Ө Degrees<br />

1.3377<br />

1.3376<br />

1.3375<br />

1.3374<br />

1.3373<br />

1.3372<br />

1.3371<br />

1.337<br />

1.3369<br />

1.3368<br />

1.3367<br />

Sensorgram<br />

0 5 10<br />

Time, Min


Spreeta sensing components<br />

• Spreeta SPR components<br />

developed in collaboration<br />

with UW with TI<br />

• Miniaturized, robust, high<br />

performance devices.<br />

• Inexpensive in large quantity<br />

• Excellent manufacturing<br />

capabilities and quality<br />

control<br />

• Each sensor chip has 3<br />

independent channels<br />

Each Spreeta chip contains<br />

all of the optical<br />

components needed for<br />

sensitive SPR measurement<br />

of biomolecular interactions


Percent of 1 day wet<br />

Storage of Gold Slides<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Dextran 1<br />

Dextran 2<br />

Control<br />

0 50 100 150 200 250 300 350<br />

Time (days)<br />

Anti-Alkaline-phosphatase(AP)-antibody-coated slides were<br />

dried with a thin layer of 10 mM Tris, pH 8.0, 2.5% trehalose<br />

and 2.5% dextran. After extended storage, slides were wetted,<br />

exposed to AP and analyzed for AP activity.


SPIRIT performs 4-8 simultaneous<br />

measurements of antibody binding in<br />

triplicate<br />

Eight sensor chips<br />

Detection event<br />

Toxin<br />

Three active spots per sensor<br />

Flowcell


Examples of Assays Possible with SPR<br />

• Proteins by direct detection with or without<br />

amplification/verification<br />

-(protein toxins, industrial proteins, therapeutics)<br />

• Whole microbial cells<br />

-(F.tularensis, E. coli, Y. pestis)<br />

• Spores<br />

-(e.g., anthrax)<br />

• Viruses with or without amplification<br />

-(e.g. Norwalk, flu)<br />

• Small molecular weight analytes using displacement or<br />

competition assays<br />

-(e.g., domoic acid, cortisol, insecticides, toxic chemicals, TNT & other small<br />

organics)


Refractive index<br />

Analyte Detection and Signal Amplification<br />

1.3382<br />

1.3380<br />

1.3378<br />

1.3376<br />

1.3374<br />

1.3372<br />

1.3370<br />

1.3368<br />

0 50 100 150<br />

Time, min<br />

Signal Detection


Refractive index<br />

Analyte Detection and Signal Amplification<br />

1.3382<br />

1.3380<br />

1.3378<br />

1.3376<br />

1.3374<br />

1.3372<br />

1.3370<br />

1.3368<br />

0 50 100 150<br />

Time, min<br />

Signal Detection


Refractive index<br />

Analyte Detection and Signal Amplification<br />

1.3382<br />

1.3380<br />

1.3378<br />

1.3376<br />

1.3374<br />

1.3372<br />

1.3370<br />

1.3368<br />

0 50 100 150<br />

Time, min<br />

Signal Detection


Refractive index<br />

Analyte Detection and Signal Amplification<br />

1.3382<br />

1.3380<br />

1.3378<br />

1.3376<br />

1.3374<br />

1.3372<br />

1.3370<br />

1.3368<br />

0 50 100 150<br />

Time, min<br />

Signal Detection


Relative Refractive Index<br />

Detection of Microbes<br />

Detection and Verification of F. Tularensis (10 5 cfu/ml)<br />

1.3396<br />

Amplification/verification<br />

1.3394<br />

1.3392<br />

Detection<br />

Active channels<br />

anti-F.T #1<br />

anti-F.T #2<br />

anti-F.T. #3<br />

anti-Bot A NT #1<br />

anti-Bot A NT #2<br />

anti-Bot A NT #3<br />

1.3390<br />

Reference channels<br />

1.3388<br />

0 2 4 6 8 11 13 15 17 19 21 23<br />

Time (min)


RIU<br />

Virus Detection<br />

Norwalk VLP Detection<br />

Reference Subtracted, 0.75 mL Sample<br />

10^6 PFU/ml Norwalk VLPs<br />

Anti-Norwalk Amp<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

Norwalk<br />

Amplification<br />

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5<br />

Time (min)


Sensor response, RIU<br />

SEB binding rates, RIU/min<br />

Detection of Staphylococcal<br />

Enterotoxin B<br />

1.33525<br />

1.33520<br />

9.0E-05<br />

8.0E-05<br />

7.0E-05<br />

1.33515<br />

6.0E-05<br />

5.0E-05<br />

1.33510<br />

4.0E-05<br />

1.0E-05<br />

8.0E-06<br />

1.33505<br />

1.33500<br />

3.0E-05<br />

2.0E-05<br />

1.0E-05<br />

6.0E-06<br />

4.0E-06<br />

2.0E-06<br />

0.0E+00<br />

0 1 2 3 4<br />

1.33495<br />

0 20 40 60 80<br />

Time, min<br />

0.0E+00<br />

0 20 40 60 80 100<br />

SEB concentration, nM


RI<br />

Detection of 5 ng/mL (5 ppb; 33pM)<br />

BotNT (denatured botulinum toxin)<br />

1.3323<br />

1.33228<br />

1.33226<br />

1.33224<br />

1.33222<br />

1.3322<br />

1.33218<br />

1.33216<br />

1.33214<br />

1.33212<br />

1.3321<br />

Anti-Bot-toxin<br />

Reference<br />

Detect<br />

Amplify<br />

0 10 20 30 40<br />

Time (min)


Background-subtracted RIU<br />

Binding Rate (x10-6RIU/min)<br />

Direct Detection of Ricin A<br />

Chain (64 ppb-320 ppb)<br />

0.00009<br />

0.00007<br />

0.00005<br />

100 nM Ricin A Chain<br />

50 nM Ricin A Chain<br />

20 nM Ricin A Chain<br />

No Ricin A Chain<br />

14<br />

12<br />

10<br />

8<br />

0.00003<br />

0.00001<br />

6<br />

4<br />

2<br />

-0.00001<br />

0 200 400 600 800 1000<br />

0<br />

0 100 200 300 400<br />

Time (seconds)<br />

Ricin A Chain Concentration (nM)


Detection of Analytes in Complex Samples<br />

(e.g., saliva, plasma, urine, stools, sea water,<br />

fresh water, etc.)


Detection of 500 pM (14 ppb) SEB in urine<br />

Amplification<br />

500 pM SEB<br />

Wash<br />

(urine)<br />

From: Naimushin et al., Biosensors and Bioelectronics 17:573


Relative RIU<br />

Magnetic Nanoparticles Amplify the SPR signal<br />

Stepwise Detection of Staphylococcus<br />

enterotoxin B (SEB)<br />

10000<br />

1000<br />

50 ug/ml biotinylated<br />

anti-SEB monoclonal<br />

100 1<br />

(24 RIU)<br />

10 ng/ml SEB (13 RIU)<br />

10<br />

2<br />

3<br />

Streptavidin<br />

nanobeads (1075 RIU)<br />

Sensor<br />

~70 X<br />

Ready 1 2 3<br />

1<br />

0 10 20 30 40 50 60<br />

Time (min)


Detection of SEB in Different Matrices<br />

1 ng/ml<br />

in FCS<br />

1 ng/ml<br />

10 ng/ml<br />

Soelberg et al. Anal Chem 81: 2357 (2009)


Immuno Magnetic Bead Separation (IMS)<br />

Immuno Magnetic Bead Separation (IMS)


Immuno Magnetic Bead Separation (IMS)<br />

BChE


Detection of Small Molecules by SPR-<br />

A More Difficult Task


Competition Assay<br />

ANALYTE ATTACHED TO THE SURFACE<br />

•Small Analytes:<br />

•Estriol, Cortisol, Domoate…<br />

•Same analyte on the surface


Response<br />

NO ANALYTE PRESENT<br />

Competition Assay<br />

Time


Response<br />

Competition Assay<br />

ANALYTE PRESENT<br />

Time


Detection of Domoic Acid by<br />

Competition Assay<br />

Collaboration with Dr. Vera<br />

Trainer’s team at NOAA


Domoic Acid Concentration Curve<br />

Stevens et al. (2007) Harmful Algae 6: 166-174


Quantification of Cortisol<br />

100<br />

Detection slope (% of no cortisol sample)<br />

10<br />

1<br />

0.1<br />

1 10 100<br />

Cortisol concentration (ng/ml)


1/03 – 6/03: Airborne SPR Sensing<br />

Test Flights<br />

Variviggen instrumented with SPR sensors


MBARI AUV


Protein Nucleic Acids as Recognition<br />

Elements for DNA/RNA<br />

Very stable receptor on chip<br />

(Protein Nucleic Acid)<br />

Allows detection of target


RIU<br />

Sequential Detection of 8 Analytes<br />

200<br />

150<br />

100<br />

50<br />

Y. pestis<br />

10 6 CFU/ml<br />

Ovalbumin<br />

10 ng/ml<br />

SEB 5 ng/ml<br />

F. tularensis 5<br />

x 10 3 CFU/ml<br />

B. anthracis<br />

5 x 10 6 CFU/ml<br />

Norwalk VLPs<br />

5 x 10 9 particles/ml<br />

Ricin A<br />

chain 20<br />

ng/ml<br />

BG Spores<br />

9 x 10 4<br />

CFU/ml<br />

0<br />

-50<br />

-100<br />

0 20 40 60 80 100 120 140 160 180<br />

Time (min)


Conclusions<br />

• The portable, low cost SPIRIT (SPR) sensing<br />

system is versatile and adaptable for many<br />

different sensing applications.<br />

• The system is small enough to adapt to the<br />

NESSI platform<br />

• For additional information contact<br />

clem@uw.edu


SPIRIT Team & Sponsors<br />

• Medical Genetics /<br />

Genome Sciences<br />

Dr. Clement Furlong<br />

Scott Soelberg<br />

Joshua Probert<br />

• Electrical Engineering<br />

Dr. Sinclair Yee<br />

Tim Chinowsky<br />

Peter Kauffman<br />

Tony Mactutis<br />

• Texas Instruments:<br />

Jose Melendez<br />

Jerry Elkind<br />

Dwight Bartholomew<br />

John Quinn<br />

• Sponsors:<br />

Washington State Sea Grant<br />

Center for Process Analytical Chemistry (<strong>CPAC</strong>, UW)<br />

DOD<br />

Texas Instruments<br />

NIH/NSF

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!