27.01.2015 Views

Structure-Activity Relationship (SAR) of the Phenethylamines: A ...

Structure-Activity Relationship (SAR) of the Phenethylamines: A ...

Structure-Activity Relationship (SAR) of the Phenethylamines: A ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Structure</strong>-<strong>Activity</strong> <strong>Relationship</strong><br />

(<strong>SAR</strong>) <strong>of</strong> <strong>the</strong> <strong>Phenethylamines</strong>:<br />

A Focus on <strong>the</strong> Basics<br />

Rob Palmer<br />

Toxicology Associates, PLLC<br />

Rocky Mountain Poison & Drug Center<br />

University <strong>of</strong> Colorado School <strong>of</strong> Medicine<br />

Disclaimer<br />

• This is not a complete compendium <strong>of</strong> all<br />

substituted amphetamine derivatives and<br />

not all <strong>SAR</strong> twists and turns are covered<br />

• I hope to distill <strong>the</strong> essence <strong>of</strong> <strong>SAR</strong> studies<br />

into an understandable block<br />

• The goal is to provide some useful <strong>SAR</strong><br />

tools for predicting biological activity <strong>of</strong> a<br />

phenethylamine molecule<br />

• Many references are combined for a given<br />

concept<br />

What is <strong>SAR</strong><br />

• The relationship between <strong>the</strong> threedimensional<br />

structure <strong>of</strong> a molecule and<br />

its biological action.<br />

• What happens to <strong>the</strong> pharmacology <strong>of</strong> a<br />

molecule when we add to, subtract from<br />

or tweak its substituents and geometry<br />

1


Just Nine Little Carbons…<br />

2-Carbon<br />

Bridge<br />

Amine<br />

(Basic N)<br />

Aromatic<br />

Ring<br />

Phenethylamine Description<br />

• Alpha-methylphenethylamine<br />

• Amphetamine<br />

• Alpha-methylphenethylamine<br />

• 1-phenyl-2-aminopropane<br />

• Phenylisopropylamine<br />

Initial <strong>SAR</strong><br />

β <br />

α <br />

2-Phenethylamine<br />

Amphetamine<br />

• 2-Phenethylamine largely lacks CNS<br />

effects with systemic administration<br />

• Little difference in lipophilicity between <strong>the</strong><br />

two compounds<br />

• Both are capable <strong>of</strong> CNS penetration<br />

2


Initial <strong>SAR</strong><br />

2-Phenethylamine<br />

• No α-CH 3 group<br />

• Lacks central effects on<br />

systemic administration<br />

• Rapidly degraded by<br />

MAO<br />

Amphetamine<br />

• α-methyl group yields<br />

amphetamine<br />

• Has central effects<br />

• Poor MAO substrate<br />

• Stereocenter in <strong>the</strong><br />

side chain<br />

Basic Flavors <strong>of</strong> Amphetamines<br />

• Catecholamine Releasers<br />

• Serotonin Releasers<br />

• Hallucinogenic Compounds<br />

Stereochemistry Reminder<br />

• How does this work, again<br />

• R / S = D / L<br />

• Absolute Configuration<br />

• Determined by structure<br />

• d / l = + / -<br />

• Optical <strong>Activity</strong><br />

• Experimentally determined)<br />

• Absolute configuration DOES NOT predict<br />

optical activity!!!!!<br />

3


Stereochemistry <strong>of</strong> <strong>the</strong> α-Carbon<br />

• S–(+)-amphetamine is more potent<br />

“amphetamine-like” enantiomer<br />

• More on what this means in a bit<br />

• There is a 4 – 10 fold stereoselective<br />

preference depending on assay used<br />

Catecholamine Releasers:<br />

Ring Substitution<br />

ortho- meta- para-<br />

• Rats trained to distinguish 1 mg/kg<br />

(+)-AMP from saline<br />

• ED 50 for (+)-AMP = 0.42 mg/kg<br />

• ED 50 for ortho-CH 3 -AMP = 4.1 mg/kg<br />

• meta- and para- require MUCH higher<br />

doses<br />

• Recall that ortho- is <strong>the</strong> 2-position, meta- is<br />

3 and para- is 4.<br />

Catecholamine Releasers:<br />

N-Substitution<br />

R 1 R 2 Potency (%)<br />

H H 100<br />

H CH 3 200<br />

H CH 2 CH 3 50<br />

H CH 2 CH 2 CH 3 50<br />

CH 3 CH 3 20<br />

• N-Et and N-OH give nearly complete<br />

substitution in (+)-AMP trained rats<br />

• Tertiary amines are dealkylated to more<br />

potent secondary amines in vivo<br />

• Monoamine transport systems can<br />

accommodate ei<strong>the</strong>r primary or N-methyl<br />

substituted amines<br />

4


Catecholamine Releasers:<br />

Benzylic Carbon Oxidation<br />

S-(+)-Amphetamine Cathinone<br />

• Generally good retention <strong>of</strong> activity<br />

• ED 50 values are about equal for cathinone<br />

and amphetamine<br />

• Rats trained on saline vs (+)-AMP showed<br />

(+/-)-cathinone to be equipotent to (+)-AMP<br />

• More potent congeners have S- absolute<br />

configuration at <strong>the</strong> α-carbon<br />

• In (+)-AMP trained rats, S- is about<br />

double racemic potency and R- is ~30%<br />

Catecholamine Releasers:<br />

Diethylpropion<br />

Diethylpropion<br />

Ethcathione<br />

• Diethylpropion has low monoamine<br />

transporter affinity<br />

• Prodrug for ethcathinone<br />

• Ethcathinone has weak 5-HT & DA activity<br />

• NE effects are 10 – 20 fold greater<br />

• Selective NE releasing agent<br />

Catecholamine Releasers:<br />

Benzylic Carbon Oxidation<br />

Cathinone Ephedrine Norepinephrine<br />

• Adding a second stereocenter creates<br />

diastereomers<br />

Pseudoephedrine Ephedrine<br />

• R-absolute configuration has greatest<br />

affinity at adrenergic receptors<br />

5


Catecholamine Releasers:<br />

Morpholines<br />

Phenmetrazine<br />

Phendimetrazine<br />

• Reduction <strong>of</strong> benzylic ketone and<br />

cyclization into morpholine ring<br />

• Phenmetrazine and phendimetrazine<br />

• Certainly are CNS stimulants, but<br />

structurally not phenethylamines<br />

• Not fur<strong>the</strong>r addressed today<br />

Catecholamine Releasers:<br />

Side-Chain Modification<br />

α-Ethylamphetamine α-Ethylmethamphetamine<br />

• Simple methyl to ethyl change attenuates<br />

amphetamine activity<br />

• (+)-α-Ethyl homolog <strong>of</strong> AMP does not<br />

produce full substitution in (+)-AMP trained<br />

rats<br />

• Racemic α-Ethyl METH homolog gives full<br />

substitution but had only 10% <strong>of</strong> <strong>the</strong><br />

potency <strong>of</strong> AMP<br />

Catecholamine Releasers:<br />

Rigid Side Chain Compounds<br />

Aminoindan Aminotetralin Cycloheptane<br />

• 2-Aminoindan (ED 50 2.1 mg/kg) fully<br />

substitutes for (+)-AMP (0.42 mg/kg) in rats<br />

• Different investigator saw only 75% <strong>of</strong><br />

AMP response at triple <strong>the</strong> dose<br />

• Variability in tetralin reports, but is only<br />

about 12 – 30% potency <strong>of</strong> AMP<br />

• Cycloheptane derivative does not give an<br />

AMP-appropriate response<br />

6


Catecholamine Releasers:<br />

Mechanism <strong>of</strong> Action<br />

• An abbreviated (possible) mechanism<br />

• AMP (a weak base) reduces intracellular<br />

pH gradient <strong>of</strong> synaptic vesicles<br />

• Once buffering capacity is exceeded, <strong>the</strong><br />

lack <strong>of</strong> a proton gradient reduces<br />

transmitter uptake driving force<br />

• Deprotonated catecholamine may<br />

diffuse from vesicle along conc gradient<br />

• Elevated cytosolic monoamine may be<br />

released from cell by reversal <strong>of</strong> uptake<br />

pump<br />

Catecholamine Releasers:<br />

<strong>SAR</strong> Summary<br />

Amphetamine Methamphetamine<br />

• Using AMP as <strong>the</strong> model, very little<br />

structural alteration is allowed<br />

• N-CH 3 (METH) increases potency ~2-fold<br />

• S-configuration at α-carbon is preferred<br />

• Assume <strong>the</strong> primary effect <strong>of</strong> interest is<br />

drug-induced efflux <strong>of</strong> neuronal<br />

catecholamines (mostly DA)<br />

• The optimal structure is probably AMP or<br />

METH without aromatic ring substituents<br />

Serotonin Releasers<br />

• Amphetamine is a relatively weak<br />

serotonin releaser<br />

p-Chloroamphetamine<br />

• para-Substitution dramatically increases<br />

neuronal serotonin release<br />

• para-Chloroamphetamine (PCA) is <strong>the</strong><br />

classic example<br />

• para-Chloromethamphetamine received<br />

some clinical attention in <strong>the</strong> early 1970’s<br />

as an antidepressant<br />

7


Serotonin Releasers:<br />

PCA as a 5-HT Neurotoxin<br />

• PCA is a potent releaser <strong>of</strong> 5-HT from<br />

neuron terminals, but…<br />

• Small doses also cause pr<strong>of</strong>ound and<br />

long-lasting central 5-HT depletion<br />

• Loss <strong>of</strong> 5-HT neuronal markers (e.g.<br />

tryptophan hydroxylase)<br />

• Decrease in B max for 5-HT uptake site<br />

• Loss <strong>of</strong> 5-HT immunoreactivity<br />

• Used in some animal models as a 5-HT<br />

neurotoxin<br />

• Mechanism has not been fully elucidated<br />

Serotonin Releasers:<br />

Fenfluramine and PMA<br />

Fenfluramine p-Methoxyamphetamine<br />

• Fenfluramine has some similarities to<br />

PCA, but may only deplete 5-HT acutely<br />

• p-Methoxyamphetamine (PMA) has<br />

significant indirect adrenergic effects<br />

• Also an (indirect) 5-HT releaser<br />

• Isomers similar in potency in releasing<br />

labeled 5-HT from rat brain synaptosomes<br />

• Legally, PMA is usually classified as an<br />

“hallucinogenic amphetamine”<br />

Serotonin Releasers:<br />

MDA<br />

MDA<br />

• Chemical progenitor to MDMA<br />

• Clinical effects <strong>of</strong> MDA described in 1959<br />

• Racemic MDA has effects similar to<br />

hallucinogenic amphetamines<br />

• MDA use produced a need to be with and<br />

talk to o<strong>the</strong>r people as well as a feeling <strong>of</strong><br />

emotional closeness<br />

• In contrast to o<strong>the</strong>r amphetamines<br />

• In a dog model, MDA had both<br />

“amphetamine-like” and “LSD-like” effects<br />

• O<strong>the</strong>r substituted amphetamines just<br />

gave “LSD-like” effects<br />

8


Serotonin Releasers:<br />

MDA – Optical Isomers<br />

S-(+)-MDA<br />

• Behavioral scoring in mice showed LSDlike<br />

effect <strong>of</strong> racemic MDA are due totally<br />

to <strong>the</strong> R-(-) isomer<br />

• The S-(+) isomer possesses amphetamine<br />

like activity<br />

• In cats, <strong>the</strong> S-(+) isomer produces a<br />

significant pressor response blocked by<br />

• Pretreatment with reserpine (depleted<br />

endogenous NE stores)<br />

• Pretreatment with phenoxybenzamine<br />

(α-adrenergic antagonist)<br />

Serotonin Releasers:<br />

MDA – Optical Isomers<br />

S-(+)-MDA<br />

• Indirect adrenergic and 5-HT releasing<br />

actions are stereoselective for S-<br />

• In synaptosomes:<br />

• Potent releaser <strong>of</strong> 5-HT<br />

• Moderately potent 5-HT uptake inhibitor<br />

• Very potent inhibitor <strong>of</strong> NE uptake<br />

• Modest effect on inhibition <strong>of</strong> DA uptake<br />

• 2 – 3 fold S- over R- stereoselectivity<br />

• S-(+)-MDA has some amphetamine-like<br />

activity but <strong>the</strong> primary discriminative cue<br />

appears to be serotonergic<br />

Serotonin Releasers:<br />

N-Substitution<br />

R-(-)-MDMA<br />

• MDMA first syn<strong>the</strong>sized in 1912<br />

• In vitro, pharmacology is similar to MDA<br />

• R-MDMA has higher affinity at 5-HT 2<br />

• In vivo, S-MDMA is more potent<br />

• Discriminative cue (MDMA) is not blocked<br />

by ketanserin (5-HT 2 antagonist)<br />

• In drug discrimination studies, R-(-)-MDA<br />

substitutes for hallucinogenic training<br />

drugs, but R-(-)-MDMA does not<br />

• N-Methylation <strong>of</strong> MDA abolishes R-<br />

(hallucinogenic) activity, but has little effect<br />

on <strong>the</strong> S- (5-HT and catecholamine) activity<br />

9


Serotonin Releasers:<br />

N-Substitution<br />

MDEA<br />

• N-methylation has little effect on 5-HT and<br />

catecholamine effects<br />

• Range <strong>of</strong> allowable substitutions is limited<br />

• MDEA is similar to MDMA for 5-HT, NE<br />

and DA in vitro<br />

• DA effects <strong>of</strong> MDEA weaker than MDMA<br />

• N-Cyclopropyl-PCA has similar<br />

pharmacology to PCA<br />

• Probably due to N-dealkylation<br />

• N,N-Dialkylation leads to inactive<br />

compounds in vivo (N,N-Dimethyl-MDA)<br />

MBDB<br />

CAB<br />

Serotonin Releasers:<br />

Side Chain Modification<br />

• 2-Carbon “bridge” optimal for 5-HT release<br />

• Demonstrated in PCA analog studies<br />

• MDA and MDMA analogs with two α-CH 3<br />

groups are inactive in humans<br />

• A single α-Ethyl may be tolerated<br />

• MBDB & CAB (α-Ethyl MDMA & PCA)<br />

• Longer chains are inactive<br />

• An α-Et markedly attenuates DA release<br />

• Improves 5-HT selectivity, though still<br />

somewhat weaker than α-CH 3 compounds<br />

Serotonin Releasers:<br />

Aromatic Ring Substituents<br />

• Single substituent at 3- (e.g. CF3 in<br />

fenfluramine) or 4- (e.g. PCA and PMA)<br />

or at 3,4- (e.g. MDA, MDMA) gives potent<br />

5-HT releasers<br />

A B<br />

• 3-Methoxy-4-methylamphetamine (A) is a<br />

potent indirect-acting 5-HT releaser<br />

• Addition <strong>of</strong> ortho-OCH 3 (B) eliminates all<br />

effects on 5-HT, NE and DA transporters<br />

10


Serotonin Releasers:<br />

Mechanism <strong>of</strong> Action<br />

• Not just 5-HT uptake inhibitors<br />

• They also actively cause release <strong>of</strong><br />

endogenous 5-HT<br />

• Likely involves 5-HT transporter protein<br />

• Indirect action with amine transporters<br />

(e.g. MDMA-5-HT exchange) is probably<br />

also involved<br />

• Passive diffusion into vesicles and<br />

transport out <strong>of</strong> <strong>the</strong> neuron by reverse<br />

action <strong>of</strong> <strong>the</strong> uptake pump<br />

Serotonin Releasers:<br />

<strong>SAR</strong> Summary<br />

• Monosubstitution at <strong>the</strong> 4-position gives<br />

significant 5-HT activity<br />

• Halogens and OCH 3 have appreciable<br />

catecholamine releasing actions<br />

• A 3-CF 3 group (e.g. fenfluramine) gives<br />

relatively 5-HT selective agent<br />

• A 3,4-dioxole disubstitution gives agents<br />

with 5-HT and catecholamine activity (MDA)<br />

• Primary amine is most potent<br />

• Extension <strong>of</strong> α-CH 3 to α-Et improves 5-HT<br />

action by attenuating catecholamine effects<br />

• Longer chains are not allowable<br />

Hallucinogens<br />

• Called by various names –<br />

psychotomimetics, hallucinogens,<br />

psychedelics<br />

• Jaffe argued that ‘psychedelic’ was <strong>the</strong><br />

most appropriate moniker<br />

• “The feature that distinguishes <strong>the</strong><br />

psychedelic agents from o<strong>the</strong>r classes <strong>of</strong><br />

drugs is <strong>the</strong>ir capacity to induce states <strong>of</strong><br />

altered perception, thought and feeling that<br />

are not experienced o<strong>the</strong>rwise except in<br />

dreams or at times <strong>of</strong> religious exaltation.”<br />

11


Hallucinogenic <strong>Phenethylamines</strong><br />

Mescaline 3,4,5-Trimethoxyamphetamine<br />

• Mescaline was <strong>the</strong> starting point <strong>of</strong> <strong>the</strong><br />

substituted phenethylamine genre<br />

• Mescaline begat TMA in 1955<br />

• Nearly 200 derivatives have been<br />

evaluated for hallucinogenic activity<br />

• Shulgin’s PIHKAL is perhaps <strong>the</strong> most<br />

comprehensive collation <strong>of</strong> data to date<br />

Hallucinogenic <strong>Phenethylamines</strong>:<br />

N-Substitution<br />

• N-alkylation <strong>of</strong> hallucinogenic<br />

amphetamines dramatically attenuates or<br />

even abolishes hallucinogenic activity<br />

• Both receptor (5-HT 2 , 5HT 1C ) affinity and<br />

in vivo activity are diminished<br />

• N-CH 3 reduces hallucinogenic activity by<br />

about an order <strong>of</strong> magnitude<br />

• N,N-Dialkylation (even with methyl<br />

groups), completely abolishes<br />

hallucinogenic activity<br />

• An N-alkyl group larger than CH 3 or<br />

incorporation <strong>of</strong> <strong>the</strong> nitrogen into a<br />

heterocyclic ring leads to inactivity<br />

Hallucinogenic <strong>Phenethylamines</strong>:<br />

Aromatic Ring Substitution<br />

• 3,4,5-Trimethoxy pattern (e.g. mescaline)<br />

actually gives lowest potency<br />

hallucinogens<br />

• Moving 3-OCH 3 to <strong>the</strong> 2 position and/or<br />

replacing <strong>the</strong> 4-OCH 3 with a more<br />

hydrophobic group gives highly active<br />

hallucinogenic compounds<br />

• 2,4,5-trisubstituted with 2 and 5<br />

substituents as OCH 3 are most active<br />

12


Hallucinogenics based on<br />

2,5-Dimethoxyamphetamine<br />

R Trivial Name Est Dose (mg)*<br />

H 2,5-DMA 80 – 160<br />

OCH 3 TMA-2 20 – 40<br />

OCH 2 CH 3 MEM 20 – 50<br />

SCH 3 p-DOT 5 – 10<br />

NO 2 DON 3 – 4.5<br />

CH 3 DOM 3 – 10<br />

CH 2 CH 3 DOEt 2 – 6<br />

CH 2 CH 2 CH 3 DOPr 2.5 – 5<br />

Br DOB 1 – 3<br />

I DOI 1.5 – 3<br />

CF 3 DOTFM Animals Only<br />

*Data compiled from Shulgin & Shulgin (1991)<br />

Hallucinogenics based on<br />

2,5-Dimethoxyamphetamine<br />

2,5-Dimethoxyamphetamine<br />

• Are differences a result <strong>of</strong> electronics<br />

• Probably not – both alkyl and highly<br />

electronegative groups (e.g. NO 2 , CF 3 )<br />

are highly active<br />

• Greatest activity seems to be in congeners<br />

with relatively hydrophobic parasubstituent<br />

which is fairly resistant to<br />

oxidative metabolism<br />

Hallucinogenic <strong>Phenethylamines</strong>:<br />

4-Substituent Orientation<br />

A B<br />

• 4-substituent may force 5-OCH 3 into “anti”<br />

orientation<br />

• Compound A lacks “LSD-like” activity while<br />

B is as potent as <strong>the</strong> flexible analog, DOB<br />

• H-bond donor in <strong>the</strong> receptor site that<br />

needs this orientation <strong>of</strong> <strong>the</strong> O lone pair<br />

• This orientation <strong>of</strong> <strong>the</strong> OCH 3 group is<br />

required to make <strong>the</strong> aromatic system<br />

appear electronically similar to <strong>the</strong> indole<br />

nucleus <strong>of</strong> 5-HT<br />

13


Hallucinogenic <strong>Phenethylamines</strong>:<br />

4-Substituent Orientation<br />

• Optimum in <strong>the</strong> 2,5-dimethoxy-4-n-alkyl<br />

series is <strong>the</strong> n-propyl<br />

• n-butyl has some activity, but n-pentyl<br />

does not<br />

• Going from n-methyl to n-octyl results in<br />

transition from agonist to antagonist<br />

• Polar 4-substituets (OH, NH 2 , CO 2 H) have<br />

low 5-HT 2 receptor affinities<br />

Hallucinogenic <strong>Phenethylamines</strong>:<br />

4-Substituent Orientation<br />

• 3,4,5-Trisubstituted <strong>the</strong> adjacent OCH 3<br />

groups push <strong>the</strong> 4-OCH 3 to lie in a plane<br />

nearly perpendicular to <strong>the</strong> aromatic ring<br />

plane<br />

• 4-ethoxy and 4-isopropoxy are quite potent<br />

Hallucinogenic <strong>Phenethylamines</strong>:<br />

4-Substituent Orientation<br />

• 2,5-dimethoxy series, a 4-alkoxy larger than<br />

OCH 3 does not increase potency or binding<br />

at <strong>the</strong> 5-HT 2 receptor<br />

• 4-Alkoxy group lies in a conformation<br />

allowing maximal overlap <strong>of</strong> oxygen lone<br />

pairs with <strong>the</strong> π-system <strong>of</strong> <strong>the</strong> aromatic ring<br />

• The akyl group attached to <strong>the</strong> O is forced<br />

to lie in <strong>the</strong> plane <strong>of</strong> <strong>the</strong> aromatic ring<br />

• If S ra<strong>the</strong>r than O, alkyl substituent is forced<br />

out <strong>of</strong> ring plane and compounds are potent<br />

14


Hallucinogenic <strong>Phenethylamines</strong>:<br />

Ring Poly-Substitutions<br />

• 2,4- and 2,5-dimethoxyAMP are active in<br />

humans (20 – 60 mg dose)<br />

• 3,4-DimethoxyAMP is most like<br />

catecholamines, but not psychoactive<br />

• 2,4,6-trimethoxyAMP is almost as potent as<br />

2,4,5-trimethoxyAMP<br />

• 2,3,4,5-TetramethoxyAMP was reported as<br />

active in humans early on, but later study<br />

suggests this is not <strong>the</strong> case<br />

DOB<br />

2C-B<br />

Hallucinogenic <strong>Phenethylamines</strong>:<br />

Side Chain Modifications<br />

• Removal <strong>of</strong> α-CH 3 decreases potency in<br />

hallucinogenic amphetamines<br />

• Many stay within an order <strong>of</strong> magnitude<br />

<strong>of</strong> α-methylated congener<br />

• 2C-B and 2C-I are about 1/10 <strong>the</strong> potency<br />

<strong>of</strong> amphetamine counterparts (DOB & DOI)<br />

• Hallucinogen-like activity is higher for R-<br />

enantiomer (in vitro and in vivo)<br />

• Stereoselectivity <strong>of</strong> 3 – 6 fold (NOT<br />

stereoespecificity)<br />

• The α,α-Dimethyl compounds are inactive<br />

Hallucinogenic <strong>Phenethylamines</strong>:<br />

Mechanism <strong>of</strong> Action<br />

• This is tricky…<br />

• Some in vitro receptor data but difficult<br />

model to reproducibly characterize in vivo<br />

• Probably more direct postsynaptic agonist<br />

activity than <strong>the</strong> o<strong>the</strong>r amphetamines<br />

• Most important receptor seems to be <strong>the</strong><br />

5-HT 2 subtype<br />

• 5-HT 1C is probably #2<br />

• 5-HT 1A Hmmmmm……<br />

• Tryptamines and LSD do hit 5-HT 1A<br />

15


Hallucinogenic <strong>Phenethylamines</strong>:<br />

<strong>SAR</strong> Summary<br />

• Most active seem to have:<br />

• Primary amino group<br />

• 2,5 or 3,5-dimethoxy substituents<br />

• Hydrophobic group at 4-position such<br />

as unbranched alkyl, halogen larger<br />

than F or alkylthio group<br />

• The α-CH 3 gives 2 – 10 fold greater<br />

potency than non-methylated congeners<br />

• More active enantiomer is R- (levorotatory)<br />

• Disubstitution at α-carbon kills activity<br />

• Though α-cyclopropyl has some activity<br />

THANKS!!<br />

Rob Palmer<br />

RPalmer@Toxicologyassoc.com<br />

(303) 765-3800<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!