28.01.2015 Views

Math 211 Business Calculus Applications of Derivatives

Math 211 Business Calculus Applications of Derivatives

Math 211 Business Calculus Applications of Derivatives

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

– p. 1/34<br />

<strong>Math</strong> <strong>211</strong> <strong>Business</strong> <strong>Calculus</strong><br />

<strong>Applications</strong> <strong>of</strong> <strong>Derivatives</strong><br />

Pr<strong>of</strong>essor Richard Blecksmith<br />

richard@math.niu.edu<br />

Dept. <strong>of</strong> <strong>Math</strong>ematical Sciences<br />

Northern Illinois University<br />

http://math.niu.edu/∼richard/<strong>Math</strong><strong>211</strong>


– p. 2/34<br />

Asymptotes<br />

A nonvertical line with equation y = mx+b is called<br />

an asymptote <strong>of</strong> the graph <strong>of</strong> y = f(x)


– p. 2/34<br />

Asymptotes<br />

A nonvertical line with equation y = mx+b is called<br />

an asymptote <strong>of</strong> the graph <strong>of</strong> y = f(x) if the<br />

differencef(x)−(mx+b) tends to 0


– p. 2/34<br />

Asymptotes<br />

A nonvertical line with equation y = mx+b is called<br />

an asymptote <strong>of</strong> the graph <strong>of</strong> y = f(x) if the<br />

differencef(x)−(mx+b) tends to 0 asxtakes on<br />

arbitrarily large positive values


– p. 2/34<br />

Asymptotes<br />

A nonvertical line with equation y = mx+b is called<br />

an asymptote <strong>of</strong> the graph <strong>of</strong> y = f(x) if the<br />

differencef(x)−(mx+b) tends to 0 asxtakes on<br />

arbitrarily large positive values or arbitrarily large<br />

negative values.


– p. 2/34<br />

Asymptotes<br />

A nonvertical line with equation y = mx+b is called<br />

an asymptote <strong>of</strong> the graph <strong>of</strong> y = f(x) if the<br />

differencef(x)−(mx+b) tends to 0 asxtakes on<br />

arbitrarily large positive values or arbitrarily large<br />

negative values.<br />

Ifm = 0 theny = b is called a horizontal asymptote.


– p. 2/34<br />

Asymptotes<br />

A nonvertical line with equation y = mx+b is called<br />

an asymptote <strong>of</strong> the graph <strong>of</strong> y = f(x) if the<br />

differencef(x)−(mx+b) tends to 0 asxtakes on<br />

arbitrarily large positive values or arbitrarily large<br />

negative values.<br />

Ifm = 0 theny = b is called a horizontal asymptote.<br />

Otherwisey = mx+b is called a slant asymptote.


– p. 2/34<br />

Asymptotes<br />

A nonvertical line with equation y = mx+b is called<br />

an asymptote <strong>of</strong> the graph <strong>of</strong> y = f(x) if the<br />

differencef(x)−(mx+b) tends to 0 asxtakes on<br />

arbitrarily large positive values or arbitrarily large<br />

negative values.<br />

Ifm = 0 theny = b is called a horizontal asymptote.<br />

Otherwisey = mx+b is called a slant asymptote.<br />

A vertical linex = a is called a vertical asymptote


– p. 2/34<br />

Asymptotes<br />

A nonvertical line with equation y = mx+b is called<br />

an asymptote <strong>of</strong> the graph <strong>of</strong> y = f(x) if the<br />

differencef(x)−(mx+b) tends to 0 asxtakes on<br />

arbitrarily large positive values or arbitrarily large<br />

negative values.<br />

Ifm = 0 theny = b is called a horizontal asymptote.<br />

Otherwisey = mx+b is called a slant asymptote.<br />

A vertical linex = a is called a vertical asymptote if<br />

|f(x)| takes arbitrarily large values


– p. 2/34<br />

Asymptotes<br />

A nonvertical line with equation y = mx+b is called<br />

an asymptote <strong>of</strong> the graph <strong>of</strong> y = f(x) if the<br />

differencef(x)−(mx+b) tends to 0 asxtakes on<br />

arbitrarily large positive values or arbitrarily large<br />

negative values.<br />

Ifm = 0 theny = b is called a horizontal asymptote.<br />

Otherwisey = mx+b is called a slant asymptote.<br />

A vertical linex = a is called a vertical asymptote if<br />

|f(x)| takes arbitrarily large values asx → a from the<br />

right or the left.


– p. 3/34<br />

Example<br />

Lety = f(x) = x+ 1 x


Example<br />

Lety = f(x) = x+ 1 x<br />

f ′ (x) = 1− 1 x 2 = 1−x −2 – p. 3/34


Example<br />

Lety = f(x) = x+ 1 x<br />

f ′ (x) = 1− 1 x 2 = 1−x −2<br />

f ′′ (x) = 2x −3 = 2 x 3 – p. 3/34


Example<br />

Lety = f(x) = x+ 1 x<br />

f ′ (x) = 1− 1 x 2 = 1−x −2<br />

f ′′ (x) = 2x −3 = 2 x 3<br />

Since lim<br />

x→0<br />

+ f(x) – p. 3/34


– p. 3/34<br />

Example<br />

Lety = f(x) = x+ 1 x<br />

f ′ (x) = 1− 1 x 2 = 1−x −2<br />

f ′′ (x) = 2x −3 = 2 x 3<br />

Since lim<br />

x→0<br />

+<br />

f(x) = lim<br />

x→0 +x+ 1 x


Example<br />

Lety = f(x) = x+ 1 x<br />

f ′ (x) = 1− 1 x 2 = 1−x −2<br />

f ′′ (x) = 2x −3 = 2 x 3<br />

Since lim<br />

x→0<br />

+<br />

f(x) = lim<br />

x→0 +x+ 1 x = ∞ – p. 3/34


– p. 3/34<br />

Example<br />

Lety = f(x) = x+ 1 x<br />

f ′ (x) = 1− 1 x 2 = 1−x −2<br />

f ′′ (x) = 2x −3 = 2 x 3<br />

Since lim f(x) = lim<br />

1<br />

x→0<br />

+<br />

x→0 +x+ x = ∞<br />

x = 0 (they-axis) is a vertical asymptote.


– p. 3/34<br />

Example<br />

Lety = f(x) = x+ 1 x<br />

f ′ (x) = 1− 1 x 2 = 1−x −2<br />

f ′′ (x) = 2x −3 = 2 x 3<br />

Since lim f(x) = lim<br />

1<br />

x→0<br />

+<br />

x→0 +x+ x = ∞<br />

x = 0 (they-axis) is a vertical asymptote.<br />

Since lim<br />

x→∞<br />

f(x)−x


– p. 3/34<br />

Example<br />

Lety = f(x) = x+ 1 x<br />

f ′ (x) = 1− 1 x 2 = 1−x −2<br />

f ′′ (x) = 2x −3 = 2 x 3<br />

Since lim f(x) = lim<br />

1<br />

x→0<br />

+<br />

x→0 +x+ x = ∞<br />

x = 0 (they-axis) is a vertical asymptote.<br />

1<br />

Since lim f(x)−x = lim<br />

x→∞ x→∞ x


Example<br />

Lety = f(x) = x+ 1 x<br />

f ′ (x) = 1− 1 x 2 = 1−x −2<br />

f ′′ (x) = 2x −3 = 2 x 3<br />

Since lim f(x) = lim<br />

1<br />

x→0<br />

+<br />

x→0 +x+ x = ∞<br />

x = 0 (they-axis) is a vertical asymptote.<br />

1<br />

Since lim f(x)−x = lim<br />

x→∞ x→∞ x = 0 – p. 3/34


– p. 3/34<br />

Example<br />

Lety = f(x) = x+ 1 x<br />

f ′ (x) = 1− 1 x 2 = 1−x −2<br />

f ′′ (x) = 2x −3 = 2 x 3<br />

Since lim f(x) = lim<br />

1<br />

x→0<br />

+<br />

x→0 +x+ x = ∞<br />

x = 0 (they-axis) is a vertical asymptote.<br />

Since lim f(x)−x = lim<br />

x→∞ x = 0<br />

the liney = x is a slant asymptote.<br />

x→∞<br />

1


Graph <strong>of</strong> x+1/x<br />

– p. 4/34


– p. 4/34<br />

Graph <strong>of</strong> x+1/x<br />

♣<br />

(1,2)


Graph <strong>of</strong> x+1/x<br />

1<br />

lim<br />

x→0 +<br />

x = – p. 4/34<br />

♣<br />

(1,2)


Graph <strong>of</strong> x+1/x<br />

1<br />

lim<br />

x→0 +<br />

x = ∞ – p. 4/34<br />

♣<br />

(1,2)


Graph <strong>of</strong> x+1/x<br />

1<br />

lim<br />

x→0 +<br />

x = ∞ – p. 4/34<br />

♣<br />

(1,2)


– p. 4/34<br />

Graph <strong>of</strong> x+1/x<br />

1<br />

lim<br />

x→0 + x = ∞<br />

y-axis<br />

vertical asymptote<br />

♣<br />

(1,2)


Graph <strong>of</strong> x+1/x<br />

1<br />

lim<br />

x→0 + x = ∞<br />

y-axis<br />

vertical asymptote<br />

(1,2)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

♣<br />

<br />

<br />

<br />

<br />

<br />

<br />

– p. 4/34


– p. 4/34<br />

Graph <strong>of</strong> x+1/x<br />

1<br />

lim<br />

x→0 + x = ∞<br />

y-axis<br />

vertical asymptote<br />

(1,2)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

♣<br />

<br />

<br />

<br />

<br />

<br />

y = x<br />

slant asymptote


– p. 5/34<br />

Vertical Asymptotes<br />

To find vertical asymptotes


– p. 5/34<br />

Vertical Asymptotes<br />

To find vertical asymptotes<br />

look for values <strong>of</strong>xwhich make the denominator zero


– p. 5/34<br />

Vertical Asymptotes<br />

To find vertical asymptotes<br />

look for values <strong>of</strong>xwhich make the denominator zero<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x


– p. 5/34<br />

Vertical Asymptotes<br />

To find vertical asymptotes<br />

look for values <strong>of</strong>xwhich make the denominator zero<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the vertical asymptotes <strong>of</strong> f(x)


– p. 5/34<br />

Vertical Asymptotes<br />

To find vertical asymptotes<br />

look for values <strong>of</strong>xwhich make the denominator zero<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the vertical asymptotes <strong>of</strong> f(x)<br />

Solution: Factor the denominator:


– p. 5/34<br />

Vertical Asymptotes<br />

To find vertical asymptotes<br />

look for values <strong>of</strong>xwhich make the denominator zero<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the vertical asymptotes <strong>of</strong> f(x)<br />

Solution: Factor the denominator:<br />

x 3 −2x 2 −3x =


– p. 5/34<br />

Vertical Asymptotes<br />

To find vertical asymptotes<br />

look for values <strong>of</strong>xwhich make the denominator zero<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the vertical asymptotes <strong>of</strong> f(x)<br />

Solution: Factor the denominator:<br />

x 3 −2x 2 −3x = x(x 2 −2x−3) =


– p. 5/34<br />

Vertical Asymptotes<br />

To find vertical asymptotes<br />

look for values <strong>of</strong>xwhich make the denominator zero<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the vertical asymptotes <strong>of</strong> f(x)<br />

Solution: Factor the denominator:<br />

x 3 −2x 2 −3x = x(x 2 −2x−3) = x(x−3)(x+1)


– p. 5/34<br />

Vertical Asymptotes<br />

To find vertical asymptotes<br />

look for values <strong>of</strong>xwhich make the denominator zero<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the vertical asymptotes <strong>of</strong> f(x)<br />

Solution: Factor the denominator:<br />

x 3 −2x 2 −3x = x(x 2 −2x−3) = x(x−3)(x+1)<br />

So vertical asymptotes are:<br />

x = 0,


– p. 5/34<br />

Vertical Asymptotes<br />

To find vertical asymptotes<br />

look for values <strong>of</strong>xwhich make the denominator zero<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the vertical asymptotes <strong>of</strong> f(x)<br />

Solution: Factor the denominator:<br />

x 3 −2x 2 −3x = x(x 2 −2x−3) = x(x−3)(x+1)<br />

So vertical asymptotes are:<br />

x = 0,x = 3,


– p. 5/34<br />

Vertical Asymptotes<br />

To find vertical asymptotes<br />

look for values <strong>of</strong>xwhich make the denominator zero<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the vertical asymptotes <strong>of</strong> f(x)<br />

Solution: Factor the denominator:<br />

x 3 −2x 2 −3x = x(x 2 −2x−3) = x(x−3)(x+1)<br />

So vertical asymptotes are:<br />

x = 0,x = 3, x = −1


– p. 6/34<br />

Horizontal Asymptotes<br />

To find horizontal asymptotes


– p. 6/34<br />

Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞


– p. 6/34<br />

Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)


– p. 6/34<br />

Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x


– p. 6/34<br />

Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the horizontal asymptotes <strong>of</strong> f(x)


– p. 6/34<br />

Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the horizontal asymptotes <strong>of</strong> f(x)<br />

Solution: Compute the limit


Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the horizontal asymptotes <strong>of</strong> f(x)<br />

Solution: Compute the limit<br />

lim<br />

x→∞ f(x) – p. 6/34


– p. 6/34<br />

Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the horizontal asymptotes <strong>of</strong> f(x)<br />

Solution: Compute the limit<br />

5x 3 +4x−8<br />

lim f(x) = lim<br />

x→∞ x→∞x 3 −2x 2 −3x


Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the horizontal asymptotes <strong>of</strong> f(x)<br />

Solution: Compute the limit<br />

5x 3 +4x−8 1/x 3<br />

lim f(x) = lim<br />

x→∞ x→∞x 3 −2x 2 −3x 1/x 3 – p. 6/34


Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the horizontal asymptotes <strong>of</strong> f(x)<br />

Solution: Compute the limit<br />

5x 3 +4x−8 1/x 3<br />

lim f(x) = lim<br />

x→∞ x→∞x 3 −2x 2 −3x 1/x 3<br />

= lim<br />

x→∞<br />

5+4/x 2 −8/x 3<br />

1−2/x−3/x 2 – p. 6/34


– p. 6/34<br />

Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the horizontal asymptotes <strong>of</strong> f(x)<br />

Solution: Compute the limit<br />

5x 3 +4x−8 1/x 3<br />

lim f(x) = lim<br />

x→∞ x→∞x 3 −2x 2 −3x 1/x 3<br />

5+4/x 2 −8/x 3<br />

= lim<br />

x→∞ 1−2/x−3/x = 5+0−0<br />

2 1−0−0


Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the horizontal asymptotes <strong>of</strong> f(x)<br />

Solution: Compute the limit<br />

5x 3 +4x−8 1/x 3<br />

lim f(x) = lim<br />

x→∞ x→∞x 3 −2x 2 −3x 1/x 3<br />

= lim<br />

x→∞<br />

5+4/x 2 −8/x 3<br />

1−2/x−3/x 2 = 5+0−0<br />

1−0−0 = 5 – p. 6/34


– p. 6/34<br />

Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the horizontal asymptotes <strong>of</strong> f(x)<br />

Solution: Compute the limit<br />

5x 3 +4x−8 1/x 3<br />

lim f(x) = lim<br />

x→∞ x→∞x 3 −2x 2 −3x 1/x 3<br />

5+4/x 2 −8/x 3<br />

= lim<br />

x→∞ 1−2/x−3/x = 5+0−0<br />

2 1−0−0 = 5<br />

So the horizontal asymptote is:


– p. 6/34<br />

Horizontal Asymptotes<br />

To find horizontal asymptotes<br />

compute the limit asx → ∞ (or−∞)<br />

Example: Consider the function<br />

f(x) = 5x3 +4x−8<br />

x 3 −2x 2 −3x<br />

Find the horizontal asymptotes <strong>of</strong> f(x)<br />

Solution: Compute the limit<br />

5x 3 +4x−8 1/x 3<br />

lim f(x) = lim<br />

x→∞ x→∞x 3 −2x 2 −3x 1/x 3<br />

5+4/x 2 −8/x 3<br />

= lim<br />

x→∞ 1−2/x−3/x = 5+0−0<br />

2 1−0−0 = 5<br />

So the horizontal asymptote is: y = 5


– p. 7/34<br />

Computing Limits<br />

When finding the limit asx → ∞ <strong>of</strong> fractions <strong>of</strong><br />

polynomials, the rule is


Computing Limits<br />

When finding the limit asx → ∞ <strong>of</strong> fractions <strong>of</strong><br />

polynomials, the rule is<br />

Multiply the fraction by 1/xm<br />

1/x m, where – p. 7/34


– p. 7/34<br />

Computing Limits<br />

When finding the limit asx → ∞ <strong>of</strong> fractions <strong>of</strong><br />

polynomials, the rule is<br />

Multiply the fraction by 1/xm<br />

1/xm, where<br />

m is the degree <strong>of</strong> the polynomial in the denominator.


Computing Limits<br />

When finding the limit asx → ∞ <strong>of</strong> fractions <strong>of</strong><br />

polynomials, the rule is<br />

Multiply the fraction by 1/xm<br />

1/xm, where<br />

m is the degree <strong>of</strong> the polynomial in the denominator.<br />

and use the fact that for any positive integer k,<br />

lim<br />

x→∞<br />

1<br />

x k = 0 – p. 7/34


– p. 7/34<br />

Computing Limits<br />

When finding the limit asx → ∞ <strong>of</strong> fractions <strong>of</strong><br />

polynomials, the rule is<br />

Multiply the fraction by 1/xm<br />

1/xm, where<br />

m is the degree <strong>of</strong> the polynomial in the denominator.<br />

and use the fact that for any positive integer k,<br />

lim<br />

x→∞<br />

1<br />

x k = 0<br />

The same idea applies when computing limits where<br />

x → −∞.


– p. 8/34<br />

Example 1.<br />

Compute the limit


– p. 8/34<br />

Example 1.<br />

Compute the limit<br />

x 2 +8<br />

= lim<br />

x→∞ x 3 −4x


Example 1.<br />

Compute the limit<br />

x 2 +8 1/x 3<br />

= lim<br />

x→∞ x 3 −4x<br />

1/x 3 – p. 8/34


Example 1.<br />

Compute the limit<br />

x 2 +8 1/x 3<br />

= lim<br />

x→∞ x 3 −4x 1/x 3<br />

= lim<br />

x→∞<br />

1/x−8/x 3<br />

1−4/x 2 – p. 8/34


– p. 8/34<br />

Example 1.<br />

Compute the limit<br />

x 2 +8<br />

= lim<br />

x→∞ x 3 −4x<br />

1/x 3<br />

1/x 3<br />

= lim<br />

x→∞<br />

1/x−8/x 3<br />

1−4/x 2<br />

= 0−0<br />

1−0


– p. 8/34<br />

Example 1.<br />

Compute the limit<br />

x 2 +8<br />

= lim<br />

x→∞ x 3 −4x<br />

1/x 3<br />

1/x 3<br />

= lim<br />

x→∞<br />

1/x−8/x 3<br />

1−4/x 2<br />

= 0−0<br />

1−0<br />

= 0


– p. 9/34<br />

Second example<br />

This limit may end up being infinity


– p. 9/34<br />

Second example<br />

This limit may end up being infinity<br />

Example: Compute the limit


– p. 9/34<br />

Second example<br />

This limit may end up being infinity<br />

Example: Compute the limit<br />

2x 4 +x<br />

= lim<br />

x→∞ x 2 +5


Second example<br />

This limit may end up being infinity<br />

Example: Compute the limit<br />

2x 4 +x 1/x 2<br />

= lim<br />

x→∞ x 2 +5<br />

1/x 2 – p. 9/34


Second example<br />

This limit may end up being infinity<br />

Example: Compute the limit<br />

2x 4 +x 1/x 2<br />

= lim<br />

x→∞ x 2 +5 1/x 2<br />

= lim<br />

x→∞<br />

2x 2 +1/x<br />

1+5/x 2 – p. 9/34


– p. 9/34<br />

Second example<br />

This limit may end up being infinity<br />

Example: Compute the limit<br />

2x 4 +x 1/x 2<br />

= lim<br />

x→∞ x 2 +5 1/x 2<br />

2x 2 +1/x<br />

= lim<br />

x→∞ 1+5/x 2<br />

= ∞+0<br />

1+0


– p. 9/34<br />

Second example<br />

This limit may end up being infinity<br />

Example: Compute the limit<br />

2x 4 +x 1/x 2<br />

= lim<br />

x→∞ x 2 +5 1/x 2<br />

= lim<br />

x→∞<br />

2x 2 +1/x<br />

1+5/x 2<br />

= ∞+0<br />

1+0<br />

= ∞


– p. 10/34<br />

Graphs with asymptotes<br />

Sketch the graph <strong>of</strong>y = f(x) = x−2<br />

x+1


– p. 10/34<br />

Graphs with asymptotes<br />

Sketch the graph <strong>of</strong>y = f(x) = x−2<br />

x+1<br />

We need the derivatives


Graphs with asymptotes<br />

Sketch the graph <strong>of</strong>y = f(x) = x−2<br />

x+1<br />

We need the derivatives<br />

By the quotient rule<br />

f ′ (x) = (1)(x+1)−(x−2)(1)<br />

(x+1) 2 – p. 10/34


Graphs with asymptotes<br />

Sketch the graph <strong>of</strong>y = f(x) = x−2<br />

x+1<br />

We need the derivatives<br />

By the quotient rule<br />

f ′ (x) = (1)(x+1)−(x−2)(1)<br />

(x+1) 2<br />

= x+1−x+2<br />

(x+1) 2 – p. 10/34


Graphs with asymptotes<br />

Sketch the graph <strong>of</strong>y = f(x) = x−2<br />

x+1<br />

We need the derivatives<br />

By the quotient rule<br />

f ′ (x) = (1)(x+1)−(x−2)(1)<br />

(x+1) 2<br />

= x+1−x+2<br />

(x+1) 2<br />

3<br />

=<br />

(x+1) 2 – p. 10/34


Graphs with asymptotes<br />

Sketch the graph <strong>of</strong>y = f(x) = x−2<br />

x+1<br />

We need the derivatives<br />

By the quotient rule<br />

f ′ (x) = (1)(x+1)−(x−2)(1)<br />

(x+1) 2<br />

= x+1−x+2<br />

(x+1) 2<br />

=<br />

3<br />

(x+1) 2<br />

By the power rule<br />

f ′′ (x) = −6(x+1) −3 – p. 10/34


– p. 11/34<br />

Graphs continued<br />

Since the first derivative f ′ (x) =<br />

positive,<br />

3<br />

is always<br />

(x+1)<br />

2


– p. 11/34<br />

Graphs continued<br />

Since the first derivative f ′ 3<br />

(x) = is always<br />

(x+1)<br />

2<br />

positive, the function is always increasing.


Graphs continued<br />

Since the first derivative f ′ 3<br />

(x) = is always<br />

(x+1)<br />

2<br />

positive, the function is always increasing.<br />

Since the second derivative f ′′ (x) = − 6<br />

(x+1) is 3 – p. 11/34


Graphs continued<br />

Since the first derivative f ′ 3<br />

(x) = is always<br />

(x+1)<br />

2<br />

positive, the function is always increasing.<br />

Since the second derivative f ′′ (x) = − 6<br />

(x+1) is<br />

{ 3 negative ifx > −1<br />

positive ifx < −1 , – p. 11/34


Graphs continued<br />

Since the first derivative f ′ 3<br />

(x) = is always<br />

(x+1)<br />

2<br />

positive, the function is always increasing.<br />

Since the second derivative f ′′ (x) = − 6<br />

(x+1) is<br />

{ 3 negative ifx > −1<br />

positive ifx < −1 ,<br />

{ concave down if x > −1<br />

the graph is<br />

concave up if x < −1 , – p. 11/34


– p. 11/34<br />

Graphs continued<br />

Since the first derivative f ′ 3<br />

(x) = is always<br />

(x+1)<br />

2<br />

positive, the function is always increasing.<br />

Since the second derivative f ′′ (x) = − 6<br />

(x+1) is<br />

{ 3 negative ifx > −1<br />

positive ifx < −1 ,<br />

{ concave down if x > −1<br />

the graph is<br />

concave up if x < −1 ,<br />

There are no critical points and


– p. 11/34<br />

Graphs continued<br />

Since the first derivative f ′ 3<br />

(x) = is always<br />

(x+1)<br />

2<br />

positive, the function is always increasing.<br />

Since the second derivative f ′′ (x) = − 6<br />

(x+1) is<br />

{ 3 negative ifx > −1<br />

positive ifx < −1 ,<br />

{ concave down if x > −1<br />

the graph is<br />

concave up if x < −1 ,<br />

There are no critical points and no inflection points.


– p. 12/34<br />

Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1


– p. 12/34<br />

Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0


– p. 12/34<br />

Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1


Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1<br />

Note that<br />

lim<br />

x→−1 +f(x) – p. 12/34


– p. 12/34<br />

Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1<br />

x−2<br />

Note that lim<br />

x→−1 +f(x)<br />

= lim<br />

x→−1 + x+1


Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1<br />

x−2<br />

Note that lim<br />

x→−1 +f(x)<br />

= lim<br />

x→−1 + x+1 = −3<br />

0 + – p. 12/34


Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1<br />

x−2<br />

Note that lim<br />

x→−1 +f(x)<br />

= lim<br />

x→−1 + x+1 = −3<br />

0 = −∞ + – p. 12/34


– p. 12/34<br />

Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1<br />

x−2<br />

Note that lim<br />

x→−1 +f(x)<br />

= lim<br />

x→−1 + x+1 = −3<br />

0 = −∞ +<br />

To find the horizontal asymptote(s), compute the limit


– p. 12/34<br />

Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1<br />

x−2<br />

Note that lim<br />

x→−1 +f(x)<br />

= lim<br />

x→−1 + x+1 = −3<br />

0 = −∞ +<br />

To find the horizontal asymptote(s), compute the limit<br />

x−2<br />

= lim<br />

x→∞ x+1


– p. 12/34<br />

Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1<br />

x−2<br />

Note that lim<br />

x→−1 +f(x)<br />

= lim<br />

x→−1 + x+1 = −3<br />

0 = −∞ +<br />

To find the horizontal asymptote(s), compute the limit<br />

x−2 1/x<br />

= lim<br />

x→∞ x+1 1/x


– p. 12/34<br />

Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1<br />

x−2<br />

Note that lim<br />

x→−1 +f(x)<br />

= lim<br />

x→−1 + x+1 = −3<br />

0 = −∞ +<br />

To find the horizontal asymptote(s), compute the limit<br />

x−2 1/x<br />

= lim<br />

x→∞ x+1 1/x = lim 1−2/x<br />

x→∞ 1+1/x


– p. 12/34<br />

Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1<br />

x−2<br />

Note that lim<br />

x→−1 +f(x)<br />

= lim<br />

x→−1 + x+1 = −3<br />

0 = −∞ +<br />

To find the horizontal asymptote(s), compute the limit<br />

x−2 1/x<br />

= lim<br />

x→∞ x+1 1/x = lim 1−2/x<br />

x→∞ 1+1/x = 1−0<br />

1+0


Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1<br />

x−2<br />

Note that lim<br />

x→−1 +f(x)<br />

= lim<br />

x→−1 + x+1 = −3<br />

0 = −∞ +<br />

To find the horizontal asymptote(s), compute the limit<br />

x−2 1/x<br />

= lim<br />

x→∞ x+1 1/x = lim 1−2/x<br />

x→∞ 1+1/x = 1−0<br />

1+0 = 1 – p. 12/34


– p. 12/34<br />

Find the Asymptotes<br />

For y = f(x) = x−2<br />

x+1<br />

Vertical asymptotes occur when the denominator<br />

x+1 = 0<br />

or whenx = −1<br />

x−2<br />

Note that lim<br />

x→−1 +f(x)<br />

= lim<br />

x→−1 + x+1 = −3<br />

0 = −∞ +<br />

To find the horizontal asymptote(s), compute the limit<br />

= lim<br />

x→∞<br />

x−2<br />

1/x<br />

1/x = lim<br />

x→∞<br />

x+1<br />

Vertical asymptote: x = −1<br />

Horizontal asymptote: y = 1<br />

1−2/x<br />

1+1/x = 1−0<br />

1+0 = 1


Graph <strong>of</strong> (x−2)/(x+1)<br />

– p. 13/34


Graph <strong>of</strong> (x−2)/(x+1)<br />

– p. 13/34


– p. 13/34<br />

Graph <strong>of</strong> (x−2)/(x+1)<br />

x = −1


– p. 13/34<br />

Graph <strong>of</strong> (x−2)/(x+1)<br />

x = −1<br />

vertical asymptote


– p. 13/34<br />

Graph <strong>of</strong> (x−2)/(x+1)<br />

x = −1<br />

vertical asymptote<br />

y = 1


– p. 13/34<br />

Graph <strong>of</strong> (x−2)/(x+1)<br />

x = −1<br />

vertical asymptote<br />

y = 1<br />

horizontal asymptote


– p. 13/34<br />

Graph <strong>of</strong> (x−2)/(x+1)<br />

x = −1<br />

vertical asymptote<br />

y = 1<br />

horizontal asymptote


– p. 13/34<br />

Graph <strong>of</strong> (x−2)/(x+1)<br />

x = −1<br />

vertical asymptote<br />

y = 1<br />

horizontal asymptote


– p. 14/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

Three Inportant functions:<br />

• Revenue R(x)


– p. 14/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

Three Inportant functions:<br />

• Revenue R(x)<br />

• Pr<strong>of</strong>it P(x)


– p. 14/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

Three Inportant functions:<br />

• Revenue R(x)<br />

• Pr<strong>of</strong>it P(x)<br />

• Cost C(x)


– p. 14/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

Three Inportant functions:<br />

• Revenue R(x)<br />

• Pr<strong>of</strong>it P(x)<br />

• Cost C(x)<br />

Their derivatives are called


– p. 14/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

Three Inportant functions:<br />

• Revenue R(x)<br />

• Pr<strong>of</strong>it P(x)<br />

• Cost C(x)<br />

Their derivatives are called<br />

• Marginal Revenue =R ′ (x)


– p. 14/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

Three Inportant functions:<br />

• Revenue R(x)<br />

• Pr<strong>of</strong>it P(x)<br />

• Cost C(x)<br />

Their derivatives are called<br />

• Marginal Revenue =R ′ (x)<br />

• Marginal Pr<strong>of</strong>it =P ′ (x)


– p. 14/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

Three Inportant functions:<br />

• Revenue R(x)<br />

• Pr<strong>of</strong>it P(x)<br />

• Cost C(x)<br />

Their derivatives are called<br />

• Marginal Revenue =R ′ (x)<br />

• Marginal Pr<strong>of</strong>it =P ′ (x)<br />

• Marginal Cost =C ′ (x)


– p. 15/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

The goal <strong>of</strong> business management is to


– p. 15/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

The goal <strong>of</strong> business management is to<br />

• Maximize Pr<strong>of</strong>it


– p. 15/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

The goal <strong>of</strong> business management is to<br />

• Maximize Pr<strong>of</strong>it<br />

• Maximize Revenue


– p. 15/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

The goal <strong>of</strong> business management is to<br />

• Maximize Pr<strong>of</strong>it<br />

• Maximize Revenue<br />

• Minimize Cost


– p. 15/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

The goal <strong>of</strong> business management is to<br />

• Maximize Pr<strong>of</strong>it<br />

• Maximize Revenue<br />

• Minimize Cost<br />

Since maximums and minimums occur when the<br />

derivative is zero, our goal is to find values for which


– p. 15/34<br />

<strong>Business</strong> <strong>Applications</strong><br />

The goal <strong>of</strong> business management is to<br />

• Maximize Pr<strong>of</strong>it<br />

• Maximize Revenue<br />

• Minimize Cost<br />

Since maximums and minimums occur when the<br />

derivative is zero, our goal is to find values for which<br />

marginal revenue, marginal pr<strong>of</strong>it, marginal cost = 0.


– p. 16/34<br />

Maximize Revenue<br />

If the price for a product is p, the revenue (in<br />

thousands <strong>of</strong> dollars) is approximated by


– p. 16/34<br />

Maximize Revenue<br />

If the price for a product is p, the revenue (in<br />

thousands <strong>of</strong> dollars) is approximated by<br />

R = −0.05p 2 +0.98p+18


– p. 16/34<br />

Maximize Revenue<br />

If the price for a product is p, the revenue (in<br />

thousands <strong>of</strong> dollars) is approximated by<br />

R = −0.05p 2 +0.98p+18<br />

What price maximizes revenue


– p. 16/34<br />

Maximize Revenue<br />

If the price for a product is p, the revenue (in<br />

thousands <strong>of</strong> dollars) is approximated by<br />

R = −0.05p 2 +0.98p+18<br />

What price maximizes revenue<br />

Solution:


– p. 16/34<br />

Maximize Revenue<br />

If the price for a product is p, the revenue (in<br />

thousands <strong>of</strong> dollars) is approximated by<br />

R = −0.05p 2 +0.98p+18<br />

What price maximizes revenue<br />

Solution:<br />

R ′ (p) = −0.1p+0.98 = 0


– p. 16/34<br />

Maximize Revenue<br />

If the price for a product is p, the revenue (in<br />

thousands <strong>of</strong> dollars) is approximated by<br />

R = −0.05p 2 +0.98p+18<br />

What price maximizes revenue<br />

Solution:<br />

R ′ (p) = −0.1p+0.98 = 0<br />

⇐⇒ 0.1p = 0.98


– p. 16/34<br />

Maximize Revenue<br />

If the price for a product is p, the revenue (in<br />

thousands <strong>of</strong> dollars) is approximated by<br />

R = −0.05p 2 +0.98p+18<br />

What price maximizes revenue<br />

Solution:<br />

R ′ (p) = −0.1p+0.98 = 0<br />

⇐⇒ 0.1p = 0.98<br />

⇐⇒ p = 9.8


– p. 16/34<br />

Maximize Revenue<br />

If the price for a product is p, the revenue (in<br />

thousands <strong>of</strong> dollars) is approximated by<br />

R = −0.05p 2 +0.98p+18<br />

What price maximizes revenue<br />

Solution:<br />

R ′ (p) = −0.1p+0.98 = 0<br />

⇐⇒ 0.1p = 0.98<br />

⇐⇒ p = 9.8<br />

Question: How do we know thatp = 9.8 gives a<br />

maximum (and not a minimum)


– p. 16/34<br />

Maximize Revenue<br />

If the price for a product is p, the revenue (in<br />

thousands <strong>of</strong> dollars) is approximated by<br />

R = −0.05p 2 +0.98p+18<br />

What price maximizes revenue<br />

Solution:<br />

R ′ (p) = −0.1p+0.98 = 0<br />

⇐⇒ 0.1p = 0.98<br />

⇐⇒ p = 9.8<br />

Question: How do we know thatp = 9.8 gives a<br />

maximum (and not a minimum)<br />

We are not usually interested in minimizing revenue


– p. 16/34<br />

Maximize Revenue<br />

If the price for a product is p, the revenue (in<br />

thousands <strong>of</strong> dollars) is approximated by<br />

R = −0.05p 2 +0.98p+18<br />

What price maximizes revenue<br />

Solution:<br />

R ′ (p) = −0.1p+0.98 = 0<br />

⇐⇒ 0.1p = 0.98<br />

⇐⇒ p = 9.8<br />

Question: How do we know thatp = 9.8 gives a<br />

maximum (and not a minimum)<br />

We are not usually interested in minimizing revenue<br />

unless you are hoping to get government bailout<br />

money.


– p. 17/34<br />

Max versus Min<br />

R = −0.05p 2 +0.98p+18


– p. 17/34<br />

Max versus Min<br />

R = −0.05p 2 +0.98p+18<br />

R ′ (p) = −0.1p+0.98 = 0


– p. 17/34<br />

Max versus Min<br />

R = −0.05p 2 +0.98p+18<br />

R ′ (p) = −0.1p+0.98 = 0<br />

⇐⇒ p = 9.8


– p. 17/34<br />

Max versus Min<br />

R = −0.05p 2 +0.98p+18<br />

R ′ (p) = −0.1p+0.98 = 0<br />

⇐⇒ p = 9.8<br />

To tell whether this critical point is a max or a min,


– p. 17/34<br />

Max versus Min<br />

R = −0.05p 2 +0.98p+18<br />

R ′ (p) = −0.1p+0.98 = 0<br />

⇐⇒ p = 9.8<br />

To tell whether this critical point is a max or a min,<br />

Use the second derivative test


– p. 17/34<br />

Max versus Min<br />

R = −0.05p 2 +0.98p+18<br />

R ′ (p) = −0.1p+0.98 = 0<br />

⇐⇒ p = 9.8<br />

To tell whether this critical point is a max or a min,<br />

Use the second derivative test<br />

R ′′ (p) = −0.1


– p. 17/34<br />

Max versus Min<br />

R = −0.05p 2 +0.98p+18<br />

R ′ (p) = −0.1p+0.98 = 0<br />

⇐⇒ p = 9.8<br />

To tell whether this critical point is a max or a min,<br />

Use the second derivative test<br />

R ′′ (p) = −0.1<br />

And a negative second derivative implies


– p. 17/34<br />

Max versus Min<br />

R = −0.05p 2 +0.98p+18<br />

R ′ (p) = −0.1p+0.98 = 0<br />

⇐⇒ p = 9.8<br />

To tell whether this critical point is a max or a min,<br />

Use the second derivative test<br />

R ′′ (p) = −0.1<br />

And a negative second derivative implies<br />

p = 9.8 is a Maximum


– p. 18/34<br />

Maximize Revenue<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

can be approximated by


– p. 18/34<br />

Maximize Revenue<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

can be approximated by<br />

R = x 3 −21x 2 +120x+500


– p. 18/34<br />

Maximize Revenue<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

can be approximated by<br />

R = x 3 −21x 2 +120x+500<br />

What value <strong>of</strong> x maximizes revenue


– p. 18/34<br />

Maximize Revenue<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

can be approximated by<br />

R = x 3 −21x 2 +120x+500<br />

What value <strong>of</strong> x maximizes revenue<br />

Solution:


– p. 18/34<br />

Maximize Revenue<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

can be approximated by<br />

R = x 3 −21x 2 +120x+500<br />

What value <strong>of</strong> x maximizes revenue<br />

Solution:<br />

R ′ (x) = 3x 2 −42x+120


– p. 18/34<br />

Maximize Revenue<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

can be approximated by<br />

R = x 3 −21x 2 +120x+500<br />

What value <strong>of</strong> x maximizes revenue<br />

Solution:<br />

R ′ (x) = 3x 2 −42x+120<br />

= 3(x 2 −14x+40)


– p. 18/34<br />

Maximize Revenue<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

can be approximated by<br />

R = x 3 −21x 2 +120x+500<br />

What value <strong>of</strong> x maximizes revenue<br />

Solution:<br />

R ′ (x) = 3x 2 −42x+120<br />

= 3(x 2 −14x+40)<br />

= 3(x−4)(x−10)


– p. 18/34<br />

Maximize Revenue<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

can be approximated by<br />

R = x 3 −21x 2 +120x+500<br />

What value <strong>of</strong> x maximizes revenue<br />

Solution:<br />

R ′ (x) = 3x 2 −42x+120<br />

= 3(x 2 −14x+40)<br />

= 3(x−4)(x−10)<br />

The critical points are


– p. 18/34<br />

Maximize Revenue<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

can be approximated by<br />

R = x 3 −21x 2 +120x+500<br />

What value <strong>of</strong> x maximizes revenue<br />

Solution:<br />

R ′ (x) = 3x 2 −42x+120<br />

= 3(x 2 −14x+40)<br />

= 3(x−4)(x−10)<br />

The critical points are<br />

x = 4 and


– p. 18/34<br />

Maximize Revenue<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

can be approximated by<br />

R = x 3 −21x 2 +120x+500<br />

What value <strong>of</strong> x maximizes revenue<br />

Solution:<br />

R ′ (x) = 3x 2 −42x+120<br />

= 3(x 2 −14x+40)<br />

= 3(x−4)(x−10)<br />

The critical points are<br />

x = 4 andx = 10


– p. 18/34<br />

Maximize Revenue<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

can be approximated by<br />

R = x 3 −21x 2 +120x+500<br />

What value <strong>of</strong> x maximizes revenue<br />

Solution:<br />

R ′ (x) = 3x 2 −42x+120<br />

= 3(x 2 −14x+40)<br />

= 3(x−4)(x−10)<br />

The critical points are<br />

x = 4 andx = 10<br />

Question: How do we know whetherx = 4 and<br />

x = 10 gives a maximum (and not a minimum)


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x)


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x) R ′′ (x) = 6x−42


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x) R ′′ (x) = 6x−42 Concl


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x) R ′′ (x) = 6x−42 Concl<br />

4


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x) R ′′ (x) = 6x−42 Concl<br />

4 708


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x) R ′′ (x) = 6x−42 Concl<br />

4 708 24−42 = −18


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x) R ′′ (x) = 6x−42 Concl<br />

4 708 24−42 = −18 Max


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x) R ′′ (x) = 6x−42 Concl<br />

4 708 24−42 = −18 Max<br />

10


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x) R ′′ (x) = 6x−42 Concl<br />

4 708 24−42 = −18 Max<br />

10 600


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x) R ′′ (x) = 6x−42 Concl<br />

4 708 24−42 = −18 Max<br />

10 600 60−42 = 18


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x) R ′′ (x) = 6x−42 Concl<br />

4 708 24−42 = −18 Max<br />

10 600 60−42 = 18 Min


– p. 19/34<br />

Max versus Min<br />

R = x 3 −21x 2 +120x+500<br />

R ′ (x) = 3x 2 −42x+120<br />

Critical points: 4 and 10<br />

R ′′ (x) = 6x−42<br />

Use the second derivative test<br />

x R(x) R ′′ (x) = 6x−42 Concl<br />

4 708 24−42 = −18 Max<br />

10 600 60−42 = 18 Min<br />

Revenue is maximum atx = 4


– p. 20/34<br />

Maximize Pr<strong>of</strong>it<br />

As a general rule


– p. 20/34<br />

Maximize Pr<strong>of</strong>it<br />

As a general rule<br />

P(x) = R(x)−C(x)


– p. 20/34<br />

Maximize Pr<strong>of</strong>it<br />

As a general rule<br />

P(x) = R(x)−C(x)<br />

By calculus we know


– p. 20/34<br />

Maximize Pr<strong>of</strong>it<br />

As a general rule<br />

P(x) = R(x)−C(x)<br />

By calculus we know<br />

P ′ (x) = R ′ (x)−C ′ (x)


– p. 20/34<br />

Maximize Pr<strong>of</strong>it<br />

As a general rule<br />

P(x) = R(x)−C(x)<br />

By calculus we know<br />

P ′ (x) = R ′ (x)−C ′ (x)<br />

and


– p. 20/34<br />

Maximize Pr<strong>of</strong>it<br />

As a general rule<br />

P(x) = R(x)−C(x)<br />

By calculus we know<br />

P ′ (x) = R ′ (x)−C ′ (x)<br />

and<br />

P ′′ (x) = R ′′ (x)−C ′′ (x)


– p. 20/34<br />

Maximize Pr<strong>of</strong>it<br />

As a general rule<br />

P(x) = R(x)−C(x)<br />

By calculus we know<br />

P ′ (x) = R ′ (x)−C ′ (x)<br />

and<br />

P ′′ (x) = R ′′ (x)−C ′′ (x)<br />

ThusP ′ (x) = 0 if and only if


– p. 20/34<br />

Maximize Pr<strong>of</strong>it<br />

As a general rule<br />

P(x) = R(x)−C(x)<br />

By calculus we know<br />

P ′ (x) = R ′ (x)−C ′ (x)<br />

and<br />

P ′′ (x) = R ′′ (x)−C ′′ (x)<br />

ThusP ′ (x) = 0 if and only if<br />

R ′ (x) = C ′ (x)


– p. 20/34<br />

Maximize Pr<strong>of</strong>it<br />

As a general rule<br />

P(x) = R(x)−C(x)<br />

By calculus we know<br />

P ′ (x) = R ′ (x)−C ′ (x)<br />

and<br />

P ′′ (x) = R ′′ (x)−C ′′ (x)<br />

ThusP ′ (x) = 0 if and only if<br />

R ′ (x) = C ′ (x)<br />

This critical point is a maximum


– p. 20/34<br />

Maximize Pr<strong>of</strong>it<br />

As a general rule<br />

P(x) = R(x)−C(x)<br />

By calculus we know<br />

P ′ (x) = R ′ (x)−C ′ (x)<br />

and<br />

P ′′ (x) = R ′′ (x)−C ′′ (x)<br />

ThusP ′ (x) = 0 if and only if<br />

R ′ (x) = C ′ (x)<br />

This critical point is a maximum<br />

if and only ifP ′′ (x) < 0


– p. 20/34<br />

Maximize Pr<strong>of</strong>it<br />

As a general rule<br />

P(x) = R(x)−C(x)<br />

By calculus we know<br />

P ′ (x) = R ′ (x)−C ′ (x)<br />

and<br />

P ′′ (x) = R ′′ (x)−C ′′ (x)<br />

ThusP ′ (x) = 0 if and only if<br />

R ′ (x) = C ′ (x)<br />

This critical point is a maximum<br />

if and only ifP ′′ (x) < 0<br />

if and only if<br />

R ′′ (x) < C ′′ (x)


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60<br />

and the cost for producingxthousand units is<br />

approximated by


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60<br />

and the cost for producingxthousand units is<br />

approximated by<br />

C(x) = 1.5x+20


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60<br />

and the cost for producingxthousand units is<br />

approximated by<br />

C(x) = 1.5x+20<br />

What level <strong>of</strong> sales maximizes pr<strong>of</strong>it


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60<br />

and the cost for producingxthousand units is<br />

approximated by<br />

C(x) = 1.5x+20<br />

What level <strong>of</strong> sales maximizes pr<strong>of</strong>it<br />

Solution:


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60<br />

and the cost for producingxthousand units is<br />

approximated by<br />

C(x) = 1.5x+20<br />

What level <strong>of</strong> sales maximizes pr<strong>of</strong>it<br />

Solution: R ′ (x) = −0.1x+2


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60<br />

and the cost for producingxthousand units is<br />

approximated by<br />

C(x) = 1.5x+20<br />

What level <strong>of</strong> sales maximizes pr<strong>of</strong>it<br />

Solution: R ′ (x) = −0.1x+2 and C ′ (x) = 1.5


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60<br />

and the cost for producingxthousand units is<br />

approximated by<br />

C(x) = 1.5x+20<br />

What level <strong>of</strong> sales maximizes pr<strong>of</strong>it<br />

Solution: R ′ (x) = −0.1x+2 and C ′ (x) = 1.5<br />

SettingR ′ (x) = C ′ (x) gives


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60<br />

and the cost for producingxthousand units is<br />

approximated by<br />

C(x) = 1.5x+20<br />

What level <strong>of</strong> sales maximizes pr<strong>of</strong>it<br />

Solution: R ′ (x) = −0.1x+2 and C ′ (x) = 1.5<br />

SettingR ′ (x) = C ′ (x) gives<br />

−0.1x+2 = 1.5


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60<br />

and the cost for producingxthousand units is<br />

approximated by<br />

C(x) = 1.5x+20<br />

What level <strong>of</strong> sales maximizes pr<strong>of</strong>it<br />

Solution: R ′ (x) = −0.1x+2 and C ′ (x) = 1.5<br />

SettingR ′ (x) = C ′ (x) gives<br />

−0.1x+2 = 1.5 ⇐⇒ −0.1x = −.5


– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60<br />

and the cost for producingxthousand units is<br />

approximated by<br />

C(x) = 1.5x+20<br />

What level <strong>of</strong> sales maximizes pr<strong>of</strong>it<br />

Solution: R ′ (x) = −0.1x+2 and C ′ (x) = 1.5<br />

SettingR ′ (x) = C ′ (x) gives<br />

−0.1x+2 = 1.5 ⇐⇒ −0.1x = −.5 ⇐⇒ x = 5


What level <strong>of</strong> sales maximizes pr<strong>of</strong>it<br />

Solution: R ′ (x) = −0.1x+2 and C ′ (x) = 1.5<br />

SettingR ′ (x) = C ′ (x) gives<br />

−0.1x+2 = 1.5 ⇐⇒ −0.1x = −.5 ⇐⇒ x = 5<br />

This is a maximum becauseR ′′ (x) = −.1 is less than<br />

C ′′ (x) = 0<br />

– p. 21/34<br />

Maximize Pr<strong>of</strong>it Example<br />

The revenue for sellingxthousand units <strong>of</strong> a product<br />

is approximated by<br />

R(x) = −0.05x 2 +2x+60<br />

and the cost for producingxthousand units is<br />

approximated by<br />

C(x) = 1.5x+20


– p. 22/34<br />

Ticket Sales Problem<br />

• A movie multiplex sells tickets for $8.


– p. 22/34<br />

Ticket Sales Problem<br />

• A movie multiplex sells tickets for $8.<br />

• On Friday evenings, it averages 720 tickets sold.


– p. 22/34<br />

Ticket Sales Problem<br />

• A movie multiplex sells tickets for $8.<br />

• On Friday evenings, it averages 720 tickets sold.<br />

• Each patron spends an average <strong>of</strong> $2 on<br />

concessions.


– p. 22/34<br />

Ticket Sales Problem<br />

• A movie multiplex sells tickets for $8.<br />

• On Friday evenings, it averages 720 tickets sold.<br />

• Each patron spends an average <strong>of</strong> $2 on<br />

concessions.<br />

• A survey shows that for each $0.25 drop in ticket<br />

price, 20 more people will buy tickets on Friday<br />

evenings.


– p. 22/34<br />

Ticket Sales Problem<br />

• A movie multiplex sells tickets for $8.<br />

• On Friday evenings, it averages 720 tickets sold.<br />

• Each patron spends an average <strong>of</strong> $2 on<br />

concessions.<br />

• A survey shows that for each $0.25 drop in ticket<br />

price, 20 more people will buy tickets on Friday<br />

evenings.<br />

• Assuming that these 20 additional customers also<br />

average $2 in concession sales,


– p. 22/34<br />

Ticket Sales Problem<br />

• A movie multiplex sells tickets for $8.<br />

• On Friday evenings, it averages 720 tickets sold.<br />

• Each patron spends an average <strong>of</strong> $2 on<br />

concessions.<br />

• A survey shows that for each $0.25 drop in ticket<br />

price, 20 more people will buy tickets on Friday<br />

evenings.<br />

• Assuming that these 20 additional customers also<br />

average $2 in concession sales,<br />

• what ticket price will maximize revenue


– p. 23/34<br />

Ticket Sales Setup<br />

Letx=the number <strong>of</strong> 25 cent reductions in ticket<br />

price.


– p. 23/34<br />

Ticket Sales Setup<br />

Letx=the number <strong>of</strong> 25 cent reductions in ticket<br />

price.<br />

The price for a ticket isp = 8.00−0.25x


– p. 23/34<br />

Ticket Sales Setup<br />

Letx=the number <strong>of</strong> 25 cent reductions in ticket<br />

price.<br />

The price for a ticket isp = 8.00−0.25x<br />

The number <strong>of</strong> customers isN = 720+20x


– p. 23/34<br />

Ticket Sales Setup<br />

Letx=the number <strong>of</strong> 25 cent reductions in ticket<br />

price.<br />

The price for a ticket isp = 8.00−0.25x<br />

The number <strong>of</strong> customers isN = 720+20x<br />

The revenue from movie sales is<br />

pN = (8.00−0.25x)(720+20x)


– p. 23/34<br />

Ticket Sales Setup<br />

Letx=the number <strong>of</strong> 25 cent reductions in ticket<br />

price.<br />

The price for a ticket isp = 8.00−0.25x<br />

The number <strong>of</strong> customers isN = 720+20x<br />

The revenue from movie sales is<br />

pN = (8.00−0.25x)(720+20x)<br />

The revenue from concessions is<br />

2N = 2(720+20x)


– p. 23/34<br />

Ticket Sales Setup<br />

Letx=the number <strong>of</strong> 25 cent reductions in ticket<br />

price.<br />

The price for a ticket isp = 8.00−0.25x<br />

The number <strong>of</strong> customers isN = 720+20x<br />

The revenue from movie sales is<br />

pN = (8.00−0.25x)(720+20x)<br />

The revenue from concessions is<br />

2N = 2(720+20x)<br />

The total revenue is<br />

R(x) = (8.00−0.25x)(720+20x)+2(720+20x)


– p. 23/34<br />

Ticket Sales Setup<br />

Letx=the number <strong>of</strong> 25 cent reductions in ticket<br />

price.<br />

The price for a ticket isp = 8.00−0.25x<br />

The number <strong>of</strong> customers isN = 720+20x<br />

The revenue from movie sales is<br />

pN = (8.00−0.25x)(720+20x)<br />

The revenue from concessions is<br />

2N = 2(720+20x)<br />

The total revenue is<br />

R(x) = (8.00−0.25x)(720+20x)+2(720+20x)<br />

= (10−0.25x)(720+20x)


– p. 24/34<br />

Ticket Sales Solution<br />

R(x) = (10−0.25x)(720+20x)


– p. 24/34<br />

Ticket Sales Solution<br />

R(x) = (10−0.25x)(720+20x)<br />

By the product rule,


– p. 24/34<br />

Ticket Sales Solution<br />

R(x) = (10−0.25x)(720+20x)<br />

By the product rule,<br />

R ′ (x) = (−0.25)(720+20x)+(10−0.25x)(20)


Ticket Sales Solution<br />

R(x) = (10−0.25x)(720+20x)<br />

By the product rule,<br />

R ′ (x) = (−0.25)(720+20x)+(10−0.25x)(20)<br />

= − 1 4 ·720− 1 4 ·20x+10·20−(0.25)(20)x – p. 24/34


– p. 24/34<br />

Ticket Sales Solution<br />

R(x) = (10−0.25x)(720+20x)<br />

By the product rule,<br />

R ′ (x) = (−0.25)(720+20x)+(10−0.25x)(20)<br />

= − 1 4 ·720− 1 4 ·20x+10·20−(0.25)(20)x<br />

= −180−5x+200−5x


– p. 24/34<br />

Ticket Sales Solution<br />

R(x) = (10−0.25x)(720+20x)<br />

By the product rule,<br />

R ′ (x) = (−0.25)(720+20x)+(10−0.25x)(20)<br />

= − 1 4 ·720− 1 4 ·20x+10·20−(0.25)(20)x<br />

= −180−5x+200−5x<br />

= 20−10x


– p. 24/34<br />

Ticket Sales Solution<br />

R(x) = (10−0.25x)(720+20x)<br />

By the product rule,<br />

R ′ (x) = (−0.25)(720+20x)+(10−0.25x)(20)<br />

= − 1 4 ·720− 1 4 ·20x+10·20−(0.25)(20)x<br />

= −180−5x+200−5x<br />

= 20−10x<br />

So we see thatR ′ (x) = 20−10x = 0


– p. 24/34<br />

Ticket Sales Solution<br />

R(x) = (10−0.25x)(720+20x)<br />

By the product rule,<br />

R ′ (x) = (−0.25)(720+20x)+(10−0.25x)(20)<br />

= − 1 4 ·720− 1 4 ·20x+10·20−(0.25)(20)x<br />

= −180−5x+200−5x<br />

= 20−10x<br />

So we see thatR ′ (x) = 20−10x = 0<br />

if and only ifx = 2


– p. 24/34<br />

Ticket Sales Solution<br />

R(x) = (10−0.25x)(720+20x)<br />

By the product rule,<br />

R ′ (x) = (−0.25)(720+20x)+(10−0.25x)(20)<br />

= − 1 4 ·720− 1 4 ·20x+10·20−(0.25)(20)x<br />

= −180−5x+200−5x<br />

= 20−10x<br />

So we see thatR ′ (x) = 20−10x = 0<br />

if and only ifx = 2<br />

The movie multiplex should reduce the ticket price by<br />

50 cents to maximize revenue.


– p. 25/34<br />

Dog Kennel Problem<br />

The owner <strong>of</strong> a kennel has 90 feet <strong>of</strong> fencing available<br />

to enclose three pens as shown


– p. 25/34<br />

Dog Kennel Problem<br />

The owner <strong>of</strong> a kennel has 90 feet <strong>of</strong> fencing available<br />

to enclose three pens as shown


– p. 25/34<br />

Dog Kennel Problem<br />

The owner <strong>of</strong> a kennel has 90 feet <strong>of</strong> fencing available<br />

to enclose three pens as shown


– p. 25/34<br />

Dog Kennel Problem<br />

The owner <strong>of</strong> a kennel has 90 feet <strong>of</strong> fencing available<br />

to enclose three pens as shown<br />

Pen 1


– p. 25/34<br />

Dog Kennel Problem<br />

The owner <strong>of</strong> a kennel has 90 feet <strong>of</strong> fencing available<br />

to enclose three pens as shown<br />

Pen 1 Pen 2


– p. 25/34<br />

Dog Kennel Problem<br />

The owner <strong>of</strong> a kennel has 90 feet <strong>of</strong> fencing available<br />

to enclose three pens as shown<br />

Pen 1 Pen 2 Pen 3


– p. 25/34<br />

Dog Kennel Problem<br />

The owner <strong>of</strong> a kennel has 90 feet <strong>of</strong> fencing available<br />

to enclose three pens as shown<br />

Pen 1 Pen 2 Pen 3<br />

What dimensions maximize the total area <strong>of</strong> the three<br />

pens


– p. 26/34<br />

Dog Kennel Setup<br />

Letx=length <strong>of</strong> the pen andy = width


– p. 26/34<br />

Dog Kennel Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

We need 2x feet <strong>of</strong> fencing for the top and bottom


– p. 26/34<br />

Dog Kennel Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

We need 2x feet <strong>of</strong> fencing for the top and bottom<br />

and4y feet <strong>of</strong> fencing for sides (including the two red<br />

dividers)


– p. 26/34<br />

Dog Kennel Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

We need 2x feet <strong>of</strong> fencing for the top and bottom<br />

and4y feet <strong>of</strong> fencing for sides (including the two red<br />

dividers)<br />

Since only 90 feet <strong>of</strong> fencing is available,


– p. 26/34<br />

Dog Kennel Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

We need 2x feet <strong>of</strong> fencing for the top and bottom<br />

and4y feet <strong>of</strong> fencing for sides (including the two red<br />

dividers)<br />

Since only 90 feet <strong>of</strong> fencing is available,<br />

2x+4y = 90


– p. 26/34<br />

Dog Kennel Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

We need 2x feet <strong>of</strong> fencing for the top and bottom<br />

and4y feet <strong>of</strong> fencing for sides (including the two red<br />

dividers)<br />

Since only 90 feet <strong>of</strong> fencing is available,<br />

2x+4y = 90<br />

The problem is to maximize the area<br />

A = x·y


– p. 27/34<br />

Dog Kennel Solution<br />

Solve


– p. 27/34<br />

Dog Kennel Solution<br />

Solve<br />

forx:<br />

2x+4y = 90


– p. 27/34<br />

Dog Kennel Solution<br />

Solve<br />

forx:<br />

2x = 90−4y<br />

2x+4y = 90


– p. 27/34<br />

Dog Kennel Solution<br />

Solve<br />

forx:<br />

2x = 90−4y<br />

x = 45−2y<br />

2x+4y = 90


– p. 27/34<br />

Dog Kennel Solution<br />

Solve<br />

2x+4y = 90<br />

forx:<br />

2x = 90−4y<br />

x = 45−2y<br />

Subsitutex = 45−2y intoA = xy


Dog Kennel Solution<br />

Solve<br />

2x+4y = 90<br />

forx:<br />

2x = 90−4y<br />

x = 45−2y<br />

Subsitutex = 45−2y intoA = xy<br />

A = xy = (45−2y)y = 45y −2y 2 – p. 27/34


– p. 27/34<br />

Dog Kennel Solution<br />

Solve<br />

2x+4y = 90<br />

forx:<br />

2x = 90−4y<br />

x = 45−2y<br />

Subsitutex = 45−2y intoA = xy<br />

A = xy = (45−2y)y = 45y −2y 2<br />

Differentiate (with respect toy) and set to 0:


Dog Kennel Solution<br />

Solve<br />

2x+4y = 90<br />

forx:<br />

2x = 90−4y<br />

x = 45−2y<br />

Subsitutex = 45−2y intoA = xy<br />

A = xy = (45−2y)y = 45y −2y 2<br />

Differentiate (with respect toy) and set to 0:<br />

dA<br />

dy = 45−4y = 0 – p. 27/34


– p. 27/34<br />

Dog Kennel Solution<br />

Solve<br />

2x+4y = 90<br />

forx:<br />

2x = 90−4y<br />

x = 45−2y<br />

Subsitutex = 45−2y intoA = xy<br />

A = xy = (45−2y)y = 45y −2y 2<br />

Differentiate (with respect toy) and set to 0:<br />

dA<br />

dy = 45−4y = 0<br />

if and only ify = 45/4 = 11.25


– p. 27/34<br />

Dog Kennel Solution<br />

Solve<br />

2x+4y = 90<br />

forx:<br />

2x = 90−4y<br />

x = 45−2y<br />

Subsitutex = 45−2y intoA = xy<br />

A = xy = (45−2y)y = 45y −2y 2<br />

Differentiate (with respect toy) and set to 0:<br />

dA<br />

dy = 45−4y = 0<br />

if and only ify = 45/4 = 11.25<br />

x = 45−2y = 45−22.5 = 22.5


– p. 27/34<br />

Dog Kennel Solution<br />

Solve<br />

2x+4y = 90<br />

forx:<br />

2x = 90−4y<br />

x = 45−2y<br />

Subsitutex = 45−2y intoA = xy<br />

A = xy = (45−2y)y = 45y −2y 2<br />

Differentiate (with respect toy) and set to 0:<br />

dA<br />

dy = 45−4y = 0<br />

if and only ify = 45/4 = 11.25<br />

x = 45−2y = 45−22.5 = 22.5<br />

The dimensions are 11.25 by 22.5


– p. 28/34<br />

Another Fencing Problem<br />

The owner <strong>of</strong> a long building wishes to attach a<br />

rectangular fence as shown


– p. 28/34<br />

Another Fencing Problem<br />

The owner <strong>of</strong> a long building wishes to attach a<br />

rectangular fence as shown


– p. 28/34<br />

Another Fencing Problem<br />

The owner <strong>of</strong> a long building wishes to attach a<br />

rectangular fence as shown<br />

Building


– p. 28/34<br />

Another Fencing Problem<br />

The owner <strong>of</strong> a long building wishes to attach a<br />

rectangular fence as shown<br />

Building<br />

4$ y y 4$


– p. 28/34<br />

Another Fencing Problem<br />

The owner <strong>of</strong> a long building wishes to attach a<br />

rectangular fence as shown<br />

Building<br />

4$ y y 4$<br />

x<br />

5$


– p. 28/34<br />

Another Fencing Problem<br />

The owner <strong>of</strong> a long building wishes to attach a<br />

rectangular fence as shown<br />

Building<br />

4$ y y 4$<br />

The sides that make up the width cost 4$ per foot<br />

The side that makes up the length costs 5$ per foot<br />

x<br />

5$


– p. 28/34<br />

Another Fencing Problem<br />

The owner <strong>of</strong> a long building wishes to attach a<br />

rectangular fence as shown<br />

Building<br />

4$ y y 4$<br />

The sides that make up the width cost 4$ per foot<br />

The side that makes up the length costs 5$ per foot<br />

The area must be 810 square feet<br />

x<br />

5$


Another Fencing Problem<br />

The owner <strong>of</strong> a long building wishes to attach a<br />

rectangular fence as shown<br />

Building<br />

4$ y y 4$<br />

The sides that make up the width cost 4$ per foot<br />

The side that makes up the length costs 5$ per foot<br />

The area must be 810 square feet<br />

What dimensions minimize the cost<br />

x<br />

5$<br />

– p. 28/34


– p. 29/34<br />

Fencing Problem Setup<br />

Letx=length <strong>of</strong> the pen andy = width


– p. 29/34<br />

Fencing Problem Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

The two side pieces cost4y each<br />

and the one length piece costs 5x


– p. 29/34<br />

Fencing Problem Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

The two side pieces cost4y each<br />

and the one length piece costs 5x<br />

The total cost is


– p. 29/34<br />

Fencing Problem Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

The two side pieces cost4y each<br />

and the one length piece costs 5x<br />

The total cost is<br />

C = 2·4y +5x = 8y +5x


– p. 29/34<br />

Fencing Problem Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

The two side pieces cost4y each<br />

and the one length piece costs 5x<br />

The total cost is<br />

The area isA = xy<br />

C = 2·4y +5x = 8y +5x


– p. 29/34<br />

Fencing Problem Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

The two side pieces cost4y each<br />

and the one length piece costs 5x<br />

The total cost is<br />

C = 2·4y +5x = 8y +5x<br />

The area isA = xy<br />

The problem is to minimize the cost function C


– p. 29/34<br />

Fencing Problem Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

The two side pieces cost4y each<br />

and the one length piece costs 5x<br />

The total cost is<br />

C = 2·4y +5x = 8y +5x<br />

The area isA = xy<br />

The problem is to minimize the cost function C<br />

subject to the constraining equation


– p. 29/34<br />

Fencing Problem Setup<br />

Letx=length <strong>of</strong> the pen andy = width<br />

The two side pieces cost4y each<br />

and the one length piece costs 5x<br />

The total cost is<br />

C = 2·4y +5x = 8y +5x<br />

The area isA = xy<br />

The problem is to minimize the cost function C<br />

subject to the constraining equation<br />

x·y = 810


– p. 30/34<br />

Fence Solution<br />

Solve


– p. 30/34<br />

Fence Solution<br />

Solve<br />

xy = 810 fory:


– p. 30/34<br />

Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x


– p. 30/34<br />

Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x<br />

Substitutey = 810/x into the cost equation


– p. 30/34<br />

Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x<br />

Substitutey = 810/x into the cost equation<br />

C = 8y +5x


Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x<br />

Substitutey = 810/x into the cost equation<br />

C = 8y +5x = 8· 810<br />

x +5x – p. 30/34


Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x<br />

Substitutey = 810/x into the cost equation<br />

C = 8y +5x = 8· 810<br />

x<br />

+5x =<br />

6480<br />

x +5x – p. 30/34


– p. 30/34<br />

Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x<br />

Substitutey = 810/x into the cost equation<br />

C = 8y +5x = 8· 810 6480<br />

+5x =<br />

x x +5x<br />

Differentiate (with respect tox) and set to 0:


– p. 30/34<br />

Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x<br />

Substitutey = 810/x into the cost equation<br />

C = 8y +5x = 8· 810 6480<br />

+5x =<br />

x x +5x<br />

Differentiate (with respect tox) and set to 0:<br />

dC<br />

dx = −6480 +5 = 0<br />

x 2


– p. 30/34<br />

Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x<br />

Substitutey = 810/x into the cost equation<br />

C = 8y +5x = 8· 810 6480<br />

+5x =<br />

x x +5x<br />

Differentiate (with respect tox) and set to 0:<br />

dC<br />

dx = −6480 +5 = 0<br />

x 2<br />

if and only if 6480 = 5<br />

x 2


– p. 30/34<br />

Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x<br />

Substitutey = 810/x into the cost equation<br />

C = 8y +5x = 8· 810 6480<br />

+5x =<br />

x x +5x<br />

Differentiate (with respect tox) and set to 0:<br />

dC<br />

dx = −6480 +5 = 0<br />

x 2<br />

if and only if 6480 = 5<br />

x 2<br />

if and only if5x 2 = 6480


– p. 30/34<br />

Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x<br />

Substitutey = 810/x into the cost equation<br />

C = 8y +5x = 8· 810 6480<br />

+5x =<br />

x x +5x<br />

Differentiate (with respect tox) and set to 0:<br />

dC<br />

dx = −6480 +5 = 0<br />

x 2<br />

if and only if 6480 = 5<br />

x 2<br />

if and only if5x 2 = 6480<br />

if and only ifx 2 = 1296


– p. 30/34<br />

Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x<br />

Substitutey = 810/x into the cost equation<br />

C = 8y +5x = 8· 810 6480<br />

+5x =<br />

x x +5x<br />

Differentiate (with respect tox) and set to 0:<br />

dC<br />

dx = −6480 +5 = 0<br />

x 2<br />

if and only if 6480 = 5<br />

x 2<br />

if and only if5x 2 = 6480<br />

if and only ifx 2 = 1296<br />

Taking the square rootx = √ 1296 = 36


– p. 30/34<br />

Fence Solution<br />

Solve xy = 810 fory:<br />

y = 810/x<br />

Substitutey = 810/x into the cost equation<br />

C = 8y +5x = 8· 810 6480<br />

+5x =<br />

x x +5x<br />

Differentiate (with respect tox) and set to 0:<br />

dC<br />

dx = −6480 +5 = 0<br />

x 2<br />

if and only if 6480 = 5<br />

x 2<br />

if and only if5x 2 = 6480<br />

if and only ifx 2 = 1296<br />

Taking the square rootx = √ 1296 = 36<br />

andy = 810/x = 810/36 = 22.5


– p. 31/34<br />

Limit Def Revisited<br />

Recall the limit definition <strong>of</strong> derivative


– p. 31/34<br />

Limit Def Revisited<br />

Recall the limit definition <strong>of</strong> derivative<br />

f ′ f(x+h)−f(x)<br />

(x) = lim<br />

h→0 h


– p. 31/34<br />

Limit Def Revisited<br />

Recall the limit definition <strong>of</strong> derivative<br />

f ′ f(x+h)−f(x)<br />

(x) = lim<br />

h→0 h<br />

This means that ifhis small, thenf ′ (x) is a good<br />

approximation <strong>of</strong> the ratio


– p. 31/34<br />

Limit Def Revisited<br />

Recall the limit definition <strong>of</strong> derivative<br />

f ′ f(x+h)−f(x)<br />

(x) = lim<br />

h→0 h<br />

This means that ifhis small, thenf ′ (x) is a good<br />

approximation <strong>of</strong> the ratio<br />

f(x+h)−f(x)<br />

h


– p. 31/34<br />

Limit Def Revisited<br />

Recall the limit definition <strong>of</strong> derivative<br />

f ′ f(x+h)−f(x)<br />

(x) = lim<br />

h→0 h<br />

This means that ifhis small, thenf ′ (x) is a good<br />

approximation <strong>of</strong> the ratio<br />

f(x+h)−f(x)<br />

h<br />

In particular, if we leth = 1


– p. 31/34<br />

Limit Def Revisited<br />

Recall the limit definition <strong>of</strong> derivative<br />

f ′ f(x+h)−f(x)<br />

(x) = lim<br />

h→0 h<br />

This means that ifhis small, thenf ′ (x) is a good<br />

approximation <strong>of</strong> the ratio<br />

f(x+h)−f(x)<br />

h<br />

In particular, if we leth = 1 which is sort <strong>of</strong> small


– p. 31/34<br />

Limit Def Revisited<br />

Recall the limit definition <strong>of</strong> derivative<br />

f ′ f(x+h)−f(x)<br />

(x) = lim<br />

h→0 h<br />

This means that ifhis small, thenf ′ (x) is a good<br />

approximation <strong>of</strong> the ratio<br />

f(x+h)−f(x)<br />

h<br />

In particular, if we leth = 1


– p. 32/34<br />

Marginal Revenue, Pr<strong>of</strong>it, Cost<br />

Applying the statement


– p. 32/34<br />

Marginal Revenue, Pr<strong>of</strong>it, Cost<br />

Applying the statement<br />

f ′ (x) approximatesf(x+1)−f(x)


– p. 32/34<br />

Marginal Revenue, Pr<strong>of</strong>it, Cost<br />

Applying the statement<br />

f ′ (x) approximatesf(x+1)−f(x)<br />

to the functionsR(x),P(x),C(x) gives us


– p. 32/34<br />

Marginal Revenue, Pr<strong>of</strong>it, Cost<br />

Applying the statement<br />

f ′ (x) approximatesf(x+1)−f(x)<br />

to the functionsR(x),P(x),C(x) gives us<br />

• Marginal Revenue R ′ (x) approximates<br />

R(x+1)−R(x)


– p. 32/34<br />

Marginal Revenue, Pr<strong>of</strong>it, Cost<br />

Applying the statement<br />

f ′ (x) approximatesf(x+1)−f(x)<br />

to the functionsR(x),P(x),C(x) gives us<br />

• Marginal Revenue R ′ (x) approximates<br />

R(x+1)−R(x)<br />

• Marginal Pr<strong>of</strong>it P ′ (x) approximates<br />

P(x+1)−P(x)


– p. 32/34<br />

Marginal Revenue, Pr<strong>of</strong>it, Cost<br />

Applying the statement<br />

f ′ (x) approximatesf(x+1)−f(x)<br />

to the functionsR(x),P(x),C(x) gives us<br />

• Marginal Revenue R ′ (x) approximates<br />

R(x+1)−R(x)<br />

• Marginal Pr<strong>of</strong>it P ′ (x) approximates<br />

P(x+1)−P(x)<br />

• Marginal Cost C ′ (x) approximates<br />

C(x+1)−C(x)


– p. 32/34<br />

Marginal Revenue, Pr<strong>of</strong>it, Cost<br />

Applying the statement<br />

f ′ (x) approximatesf(x+1)−f(x)<br />

to the functionsR(x),P(x),C(x) gives us<br />

• Marginal Revenue R ′ (x) approximates<br />

R(x+1)−R(x)<br />

• Marginal Pr<strong>of</strong>it P ′ (x) approximates<br />

P(x+1)−P(x)<br />

• Marginal Cost C ′ (x) approximates<br />

C(x+1)−C(x)<br />

If you have producedxitems, thenC(x+1)−C(x)<br />

is the cost required to produce one more item.


Marginal Revenue, Pr<strong>of</strong>it, Cost<br />

Applying the statement<br />

f ′ (x) approximatesf(x+1)−f(x)<br />

to the functionsR(x),P(x),C(x) gives us<br />

• Marginal Revenue R ′ (x) approximates<br />

R(x+1)−R(x)<br />

• Marginal Pr<strong>of</strong>it P ′ (x) approximates<br />

P(x+1)−P(x)<br />

• Marginal Cost C ′ (x) approximates<br />

C(x+1)−C(x)<br />

If you have producedxitems, thenC(x+1)−C(x)<br />

is the cost required to produce one more item.<br />

Likewise forP(x+1)−P(x) andR(x+1)−R(x)<br />

– p. 32/34


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong>


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong><br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong><br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

and currently 50 cars are sold per week.


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong><br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

and currently 50 cars are sold per week.<br />

What is the current weekly pr<strong>of</strong>it


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong><br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

and currently 50 cars are sold per week.<br />

What is the current weekly pr<strong>of</strong>it<br />

Answer:<br />

P(50) = −0.006(50) 3 −0.2(50) 2 +900(50)−1200


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong><br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

and currently 50 cars are sold per week.<br />

What is the current weekly pr<strong>of</strong>it<br />

Answer:<br />

P(50) = −0.006(50) 3 −0.2(50) 2 +900(50)−1200<br />

= −0.006(125,000)−0.2(2500)+900(50)−1200


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong><br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

and currently 50 cars are sold per week.<br />

What is the current weekly pr<strong>of</strong>it<br />

Answer:<br />

P(50) = −0.006(50) 3 −0.2(50) 2 +900(50)−1200<br />

= −0.006(125,000)−0.2(2500)+900(50)−1200<br />

= −750−500+45000−1200


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong><br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

and currently 50 cars are sold per week.<br />

What is the current weekly pr<strong>of</strong>it<br />

Answer:<br />

P(50) = −0.006(50) 3 −0.2(50) 2 +900(50)−1200<br />

= −0.006(125,000)−0.2(2500)+900(50)−1200<br />

= −750−500+45000−1200 = 42,550<br />

What would the pr<strong>of</strong>it be if they sold one more car


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong><br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

and currently 50 cars are sold per week.<br />

What is the current weekly pr<strong>of</strong>it<br />

Answer:<br />

P(50) = −0.006(50) 3 −0.2(50) 2 +900(50)−1200<br />

= −0.006(125,000)−0.2(2500)+900(50)−1200<br />

= −750−500+45000−1200 = 42,550<br />

What would the pr<strong>of</strong>it be if they sold one more car<br />

Answer:<br />

P(51) = −0.006(51) 3 −0.2(51) 2 +900(51)−1200


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong><br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

and currently 50 cars are sold per week.<br />

What is the current weekly pr<strong>of</strong>it<br />

Answer:<br />

P(50) = −0.006(50) 3 −0.2(50) 2 +900(50)−1200<br />

= −0.006(125,000)−0.2(2500)+900(50)−1200<br />

= −750−500+45000−1200 = 42,550<br />

What would the pr<strong>of</strong>it be if they sold one more car<br />

Answer:<br />

P(51) = −0.006(51) 3 −0.2(51) 2 +900(51)−1200<br />

= −0.006(132,651)−0.2(2601)+900(51)−1200


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong><br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

and currently 50 cars are sold per week.<br />

What is the current weekly pr<strong>of</strong>it<br />

Answer:<br />

P(50) = −0.006(50) 3 −0.2(50) 2 +900(50)−1200<br />

= −0.006(125,000)−0.2(2500)+900(50)−1200<br />

= −750−500+45000−1200 = 42,550<br />

What would the pr<strong>of</strong>it be if they sold one more car<br />

Answer:<br />

P(51) = −0.006(51) 3 −0.2(51) 2 +900(51)−1200<br />

= −0.006(132,651)−0.2(2601)+900(51)−1200<br />

= −795.91−520.2+45900−1200


– p. 33/34<br />

Marginal Example<br />

Flying Corn Motors has a weekly pr<strong>of</strong>it in dollars <strong>of</strong><br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

and currently 50 cars are sold per week.<br />

What is the current weekly pr<strong>of</strong>it<br />

Answer:<br />

P(50) = −0.006(50) 3 −0.2(50) 2 +900(50)−1200<br />

= −0.006(125,000)−0.2(2500)+900(50)−1200<br />

= −750−500+45000−1200 = 42,550<br />

What would the pr<strong>of</strong>it be if they sold one more car<br />

Answer:<br />

P(51) = −0.006(51) 3 −0.2(51) 2 +900(51)−1200<br />

= −0.006(132,651)−0.2(2601)+900(51)−1200<br />

= −795.91−520.2+45900−1200 = 43,383.89


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50)


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50) = 43,383.89−42,550


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50) = 43,383.89−42,550 = 833.89


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50) = 43,383.89−42,550 = 833.89<br />

What is the marginal pr<strong>of</strong>it


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50) = 43,383.89−42,550 = 833.89<br />

What is the marginal pr<strong>of</strong>it<br />

Differentiate<br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50) = 43,383.89−42,550 = 833.89<br />

What is the marginal pr<strong>of</strong>it<br />

Differentiate<br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

P ′ (x) = −0.018x 2 −0.4x+900


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50) = 43,383.89−42,550 = 833.89<br />

What is the marginal pr<strong>of</strong>it<br />

Differentiate<br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

P ′ (x) = −0.018x 2 −0.4x+900<br />

What is the marginal pr<strong>of</strong>it whenx = 50


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50) = 43,383.89−42,550 = 833.89<br />

What is the marginal pr<strong>of</strong>it<br />

Differentiate<br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

P ′ (x) = −0.018x 2 −0.4x+900<br />

What is the marginal pr<strong>of</strong>it whenx = 50<br />

Answer:<br />

P ′ (50) = −0.018(50) 2 −0.4(50)+900


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50) = 43,383.89−42,550 = 833.89<br />

What is the marginal pr<strong>of</strong>it<br />

Differentiate<br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

P ′ (x) = −0.018x 2 −0.4x+900<br />

What is the marginal pr<strong>of</strong>it whenx = 50<br />

Answer:<br />

P ′ (50) = −0.018(50) 2 −0.4(50)+900<br />

= −0.018(2500)−0.4(50)+900


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50) = 43,383.89−42,550 = 833.89<br />

What is the marginal pr<strong>of</strong>it<br />

Differentiate<br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

P ′ (x) = −0.018x 2 −0.4x+900<br />

What is the marginal pr<strong>of</strong>it whenx = 50<br />

Answer:<br />

P ′ (50) = −0.018(50) 2 −0.4(50)+900<br />

= −0.018(2500)−0.4(50)+900 = −45−20+900


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50) = 43,383.89−42,550 = 833.89<br />

What is the marginal pr<strong>of</strong>it<br />

Differentiate<br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

P ′ (x) = −0.018x 2 −0.4x+900<br />

What is the marginal pr<strong>of</strong>it whenx = 50<br />

Answer:<br />

P ′ (50) = −0.018(50) 2 −0.4(50)+900<br />

= −0.018(2500)−0.4(50)+900 = −45−20+900<br />

= 835


– p. 34/34<br />

Marginal Example Continued<br />

The exact increase in pr<strong>of</strong>it is<br />

P(51)−P(50) = 43,383.89−42,550 = 833.89<br />

What is the marginal pr<strong>of</strong>it<br />

Differentiate<br />

P(x) = −0.006x 3 −0.2x 2 +900x−1200<br />

P ′ (x) = −0.018x 2 −0.4x+900<br />

What is the marginal pr<strong>of</strong>it whenx = 50<br />

Answer:<br />

P ′ (50) = −0.018(50) 2 −0.4(50)+900<br />

= −0.018(2500)−0.4(50)+900 = −45−20+900<br />

= 835<br />

Compare835 with actual increase in pr<strong>of</strong>it833.89

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!