28.01.2015 Views

Numerical Simulation of Three-Dimensional Viscous Flows with ...

Numerical Simulation of Three-Dimensional Viscous Flows with ...

Numerical Simulation of Three-Dimensional Viscous Flows with ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1338<br />

ISMAIL-ZADE et al.<br />

Now, let us explore the applicability <strong>of</strong> representation (18) under more restrictive boundary conditions<br />

for y. We begin <strong>with</strong> the case <strong>of</strong> more restrictive impermeability conditions <strong>with</strong> perfect slip. We show here<br />

that the scalar function ϕ in (19)–(21) can be adjusted so that the two-component potential defined by these<br />

expressions satisfy the more restrictive boundary conditions mentioned above. To do this, we need an additional<br />

condition: the velocity field must satisfy certain equations <strong>of</strong> state as well. In brief, this requirement<br />

can be substantiated as follows.<br />

Consider a sufficiently smooth vector field u satisfying the incompressibility condition (8), the impermeability<br />

condition <strong>with</strong> perfect slip, and the equation <strong>of</strong> state (7) <strong>with</strong> admissible and sufficiently smooth<br />

ρ = ρ(t, x), µ = µ(t, x), and p = p(t, x). Using the boundary conditions, we can represent the velocity field u<br />

as Fourier series:<br />

∞<br />

∞<br />

∞<br />

1 πix<br />

u 1 ( t, x 1 , x 2 , x 3 ) u ijk () t<br />

1 πjx<br />

--------- 2 πkx<br />

= ∑ ∑ ∑ sin cos---------<br />

cos---------- 3<br />

,<br />

l 1 l 2 l 3<br />

i = 0 j = 0 k = 0<br />

∞<br />

∞<br />

∞<br />

2 πix<br />

u 2 ( t, x 1 , x 2 , x 3 ) u ijk () t<br />

1 πjx<br />

--------- 2 πkx<br />

= ∑ ∑ ∑ cos sin---------<br />

cos---------- 3<br />

,<br />

l 1 l 2 l 3<br />

i = 0 j = 0 k = 0<br />

∞<br />

∞<br />

∞<br />

3 πix<br />

u 3 ( t, x 1 , x 2 , x 3 ) u ijk () t<br />

1 πjx<br />

--------- 2 πkx<br />

= ∑ ∑ ∑ cos cos---------<br />

sin---------- 3<br />

.<br />

(24)<br />

l 1 l 2 l 3<br />

i = 0 j = 0 k = 0<br />

Henceforth, the variable t is treated as a parameter. The field u can always be represented as u = curly, where<br />

the three-component potential y = (ψ 1 , ψ 2 , ψ 3 ) satisfies more restrictive boundary conditions. Using the<br />

boundary conditions, we represent the components <strong>of</strong> y as Fourier series:<br />

∞<br />

∞<br />

∞<br />

1 πix<br />

ψ 1 ( t, x 1 , x 2 , x 3 ) ψ ijk () t<br />

1 πjx<br />

--------- 2 πkx<br />

= ∑ ∑ ∑ cos sin---------<br />

sin---------- 3<br />

,<br />

l 1 l 2 l 3<br />

i = 0 j = 0 k = 0<br />

∞<br />

∞<br />

∞<br />

2 πix<br />

ψ 2 ( t, x 1 , x 2 , x 3 ) ψ ijk () t<br />

1 πjx<br />

--------- 2 πkx<br />

= ∑ ∑ ∑ sin cos---------<br />

sin---------- 3<br />

,<br />

l 1 l 2 l 3<br />

i = 0 j = 0 k = 0<br />

∞<br />

3 πix<br />

ψ 3 ( t, x 1 , x 2 , x 3 ) ψ ijk () t<br />

1 πjx<br />

--------- 2 πkx<br />

= ∑ ∑ ∑ sin sin---------<br />

cos---------- 3<br />

.<br />

l 1 l 2 l 3<br />

i = 0 j = 0 k = 0<br />

Here, the Fourier coefficients obey the following constraints:<br />

1<br />

u ijk<br />

∞<br />

∞<br />

3<br />

() t ψ ijk () t ---- πj 2<br />

ψ ijk () t -----, πk 2<br />

1<br />

– u ijk () t ψ ijk () t ----- πk 3<br />

= = – ψ ijk () t ----,<br />

πi<br />

l 2<br />

3<br />

u ijk<br />

l 3<br />

2<br />

() t ψ ijk () t ---- πi 1<br />

= – ψ ijk () t ----.<br />

πj<br />

Substituting this representation <strong>of</strong> the vector potential into the variational equation (17) and consecutively<br />

using the test vector functions w = (ω 1 , 0, 0), w = (0, ω 2 , 0), and w = (0, 0, ω 3 ) <strong>with</strong><br />

l 1<br />

l 2<br />

l 3<br />

l 1<br />

(22)<br />

(23)<br />

(25)<br />

(26)<br />

(27)<br />

πix<br />

ω 1 πjx<br />

1 --------- --------- 2 πkx<br />

= cos sin sin---------- 3<br />

, ω 2 =<br />

l 1<br />

l 2<br />

l 3<br />

πix 1 πjx<br />

--------- 2 πkx<br />

sin cos---------<br />

sin---------- 3<br />

,<br />

l 1 l 2 l 3<br />

πix<br />

ω 1 πjx<br />

3 --------- --------- 2<br />

cos πkx 3<br />

= sin sin ---------- ,<br />

l 1 l 2 l 3<br />

we obtain a system <strong>of</strong> linear equations that can be compactly written as<br />

⎛ A 11 A 12 A ⎞⎛<br />

13 ψ ( 1)<br />

⎞<br />

⎜<br />

⎟⎜<br />

⎟<br />

⎜ A 21 A 22 A 23<br />

⎟⎜<br />

ψ ( 2)<br />

⎟<br />

⎜<br />

⎟⎜<br />

⎟<br />

⎝ A 31 A 32 A 33 ⎠⎝<br />

⎠<br />

ψ ( 3)<br />

⎛<br />

⎜<br />

= ⎜<br />

⎜<br />

⎝<br />

ρ ( 1)<br />

ρ ( 2)<br />

0<br />

⎞<br />

⎟<br />

⎟.<br />

⎟<br />

⎠<br />

(28)<br />

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 41 No. 9 2001

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!