30.01.2015 Views

Transport properties of nanostructures and superlattices on single ...

Transport properties of nanostructures and superlattices on single ...

Transport properties of nanostructures and superlattices on single ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UNIVERSITEIT ANTWERPEN<br />

Faculteit Wetenschappen<br />

Departement Fysica<br />

<str<strong>on</strong>g>Transport</str<strong>on</strong>g> <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nanostructures</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>superlattices</str<strong>on</strong>g><br />

<strong>on</strong> <strong>single</strong>-layer <str<strong>on</strong>g>and</str<strong>on</strong>g> bilayer graphene<br />

<str<strong>on</strong>g>Transport</str<strong>on</strong>g>eigenschappen van<br />

nanostructuren en superroosters<br />

in één- en tweelagig grafeen<br />

Proefschrift voorgelegd tot het behalen van de graad van<br />

doctor in de wetenschappen<br />

aan de Universiteit Antwerpen te verdedigen door<br />

Michaël Barbier<br />

Promotor:<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr. F. M. Peeters Antwerpen, July, 2012


Members <str<strong>on</strong>g>of</str<strong>on</strong>g> the jury:<br />

Chairman:<br />

Promotor:<br />

Other members:<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr. G. Van Tendeloo<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr. F. M. Peeters<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr. S. Van Doorslaer<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr. B. Partoens<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr. S. M. Badalyan<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr. G. Borghs (Katholieke Universiteit Leuven)<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr. P. Vasilopoulos (C<strong>on</strong>cordia University, Canada)


C<strong>on</strong>tents<br />

Acknowledgements<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> abbreviati<strong>on</strong>s<br />

iii<br />

v<br />

1 Introducti<strong>on</strong> 1<br />

1.1 Graphene: the making <str<strong>on</strong>g>of</str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.1.1 Mechanical exfoliati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.1.2 Epitaxial graphene . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.1.3 Chemical Vapor Depositi<strong>on</strong> . . . . . . . . . . . . . . . . . . . 6<br />

1.2 Graphene nano-electr<strong>on</strong>ics . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

1.2.1 Heterostructures . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

1.2.2 Superlattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

1.3 Applicati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

1.3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

1.3.2 Graphene manometer, vacuum/pressure gauge . . . . . . . . 10<br />

1.3.3 Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

1.3.4 THz frequency amplifiers . . . . . . . . . . . . . . . . . . . . 11<br />

1.3.5 High quality displays . . . . . . . . . . . . . . . . . . . . . . . 12<br />

1.4 Motivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> my work . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

1.5 C<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this work . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

1.6 Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the thesis . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

2 Electr<strong>on</strong>ic <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene 19<br />

2.1 Electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene . . . . . . . . . . . . . . . . . . . . 19<br />

2.1.1 Tight-binding approach . . . . . . . . . . . . . . . . . . . . . 21<br />

2.1.2 Approximati<strong>on</strong> around the K point . . . . . . . . . . . . . . . 25<br />

2.1.3 C<strong>on</strong>tinuum model . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

2.1.4 Density <str<strong>on</strong>g>of</str<strong>on</strong>g> states . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

2.2 Bilayer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

2.2.1 Tight-binding approach . . . . . . . . . . . . . . . . . . . . . 31<br />

2.3 Applying a magnetic field . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

2.3.1 Classical picture: circular orbits . . . . . . . . . . . . . . . . 34<br />

2.3.2 L<str<strong>on</strong>g>and</str<strong>on</strong>g>au levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

3 Klein tunneling <str<strong>on</strong>g>of</str<strong>on</strong>g> Dirac-particles versus bos<strong>on</strong>s obeying the Klein-<br />

Gord<strong>on</strong> equati<strong>on</strong> 41<br />

3.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

3.2 Klein-Gord<strong>on</strong> equati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

3.2.1 Transfer matrix approach . . . . . . . . . . . . . . . . . . . . 42<br />

3.2.2 Transmissi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

3.2.3 Bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

3.3 Dirac particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

3.3.1 Transmissi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

i


CONTENTS<br />

3.3.2 Bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

3.4 Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass term . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

4 Single-layer graphene: extra Dirac points <str<strong>on</strong>g>and</str<strong>on</strong>g> collimati<strong>on</strong> in SLs 47<br />

4.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

4.2 Single unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />

4.3 Rectangular <str<strong>on</strong>g>superlattices</str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

4.4 Extra Dirac points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

4.4.1 Appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> extra Dirac points . . . . . . . . . . . . . . . . 51<br />

4.4.2 Analytical expressi<strong>on</strong> for the spectrum for small energies ε . 53<br />

4.4.3 Anisotropic velocity renormalizati<strong>on</strong> at the (extra) Dirac point(s). 53<br />

4.5 Collimati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

4.6 Density <str<strong>on</strong>g>of</str<strong>on</strong>g> states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

4.7 C<strong>on</strong>ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

4.8 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

5 Single-layer graphene: Kr<strong>on</strong>ig-Penney model 61<br />

5.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

5.2 Transmissi<strong>on</strong> through a δ-functi<strong>on</strong> barrier . . . . . . . . . . . . . . . 62<br />

5.2.1 C<strong>on</strong>ductance . . . . . . . . . . . . . . . . . . . . . . . . . . . 63<br />

5.3 Transmissi<strong>on</strong> through two δ-functi<strong>on</strong> barriers . . . . . . . . . . . . . 63<br />

5.4 Bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />

5.5 Kr<strong>on</strong>ig-Penney model . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

5.5.1 Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum . . . . . . . . . . . . . . . . . . . 67<br />

5.6 Extended Kr<strong>on</strong>ig-Penney model . . . . . . . . . . . . . . . . . . . . . 69<br />

5.7 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

6 Heterostructures <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>superlattices</str<strong>on</strong>g> in bilayer graphene 71<br />

6.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

6.2 Hamilt<strong>on</strong>ian, energy spectrum, <str<strong>on</strong>g>and</str<strong>on</strong>g> eigenstates . . . . . . . . . . . . 71<br />

6.3 Different types <str<strong>on</strong>g>of</str<strong>on</strong>g> heterostructures . . . . . . . . . . . . . . . . . . . 72<br />

6.4 Transmissi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

6.5 Bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

6.6 Superlattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

6.7 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

7 Bilayer graphene: Kr<strong>on</strong>ig-Penney model 81<br />

7.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

7.2 Simple model systems . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

7.2.1 Transmissi<strong>on</strong> through a δ-functi<strong>on</strong> barrier . . . . . . . . . . . 82<br />

7.2.2 Bound states <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>single</strong> δ-functi<strong>on</strong> barrier . . . . . . . . . . . 84<br />

7.2.3 Transmissi<strong>on</strong> through two δ-functi<strong>on</strong> barriers . . . . . . . . . 86<br />

7.3 Kr<strong>on</strong>ig-Penney model . . . . . . . . . . . . . . . . . . . . . . . . . . 88<br />

7.4 Extended Kr<strong>on</strong>ig-Penney model . . . . . . . . . . . . . . . . . . . . . 93<br />

ii


CONTENTS<br />

7.5 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br />

8 Snake states <str<strong>on</strong>g>and</str<strong>on</strong>g> Klein tunneling in a graphene Hall bar with a<br />

pn-juncti<strong>on</strong> 97<br />

8.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97<br />

8.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97<br />

8.2.1 L<str<strong>on</strong>g>and</str<strong>on</strong>g>auer-Büttiker theory . . . . . . . . . . . . . . . . . . . . 98<br />

8.2.2 Transmissi<strong>on</strong> matrix . . . . . . . . . . . . . . . . . . . . . . . 100<br />

8.2.3 Symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the system . . . . . . . . . . . . . . . . . . . . . 102<br />

8.3 Results <str<strong>on</strong>g>and</str<strong>on</strong>g> discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

8.4 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

9 C<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> outlook 107<br />

9.1 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

9.2 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

10 C<strong>on</strong>clusies en toekomstperspectief 111<br />

10.1 Samenvatting van deze thesis . . . . . . . . . . . . . . . . . . . . . . 111<br />

10.2 Toekomstperspectief . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

Appendix 113<br />

A Single-layer graphene 115<br />

A.1 Crossing points for unequal barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> well widths . . . . . . . . . . 115<br />

B Bilayer graphene 117<br />

B.1 Eigenvalues <str<strong>on</strong>g>and</str<strong>on</strong>g> eigenstates . . . . . . . . . . . . . . . . . . . . . . . 117<br />

B.2 KP model: transfer matrix . . . . . . . . . . . . . . . . . . . . . . . 118<br />

B.3 KP model: 2 × 2 Hamilt<strong>on</strong>ian . . . . . . . . . . . . . . . . . . . . . . 119<br />

B.4 Current density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119<br />

Bibliography 120<br />

Curriculum Vitae 127<br />

iii


Acknowledgements<br />

I wish to express my gratitude to my promotor Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. François Peeters for his<br />

guidance during the last five years. Next, I have to thank Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Bart Partoens,<br />

for his help with my most silly—yet most difficult to answer—questi<strong>on</strong>s during my<br />

time here. Further to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Bart Soree <str<strong>on</strong>g>and</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Wim Magnus for explaining the<br />

difference between ‘realistic’ <str<strong>on</strong>g>and</str<strong>on</strong>g> ‘useful’ models versus ‘toy’ models. Many thanks<br />

also go to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Algirdas Matulis (for his advices <str<strong>on</strong>g>and</str<strong>on</strong>g> for sharing his philosophical<br />

ideas), <str<strong>on</strong>g>and</str<strong>on</strong>g> to my valuable co-authors Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Panagiotis Vasilopoulos, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Joao<br />

Milt<strong>on</strong> Pereira Jr., <str<strong>on</strong>g>and</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Gyorgy Papp. Furthermore, I like to thank my<br />

colleagues dr. Massoud Ramezani Masir, Andrey Kapra, <str<strong>on</strong>g>and</str<strong>on</strong>g> Mohammad Zarenia<br />

for their enthusiasm in helping me out with scientific <str<strong>on</strong>g>and</str<strong>on</strong>g> other problems. I like<br />

to thank dr. Lucian Covaci for introducing me to GPU programming. I also want<br />

to thank my <str<strong>on</strong>g>of</str<strong>on</strong>g>fice mates, dr. Bin Li, Edith Euan, <str<strong>on</strong>g>and</str<strong>on</strong>g> my other colleagues in<br />

the c<strong>on</strong>densed matter theory (CMT) group, for the nice envir<strong>on</strong>ment to work. I<br />

want to thank my brother Nicolas Barbier for putting a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> effort in correcting<br />

this thesis. Last but not least, I wish to thank my girlfriend Birgit for having the<br />

necessary patience with my moods during the time I was writing my thesis.<br />

This work was supported by IMEC, the Flemish Science Foundati<strong>on</strong> FWO-vl,<br />

the Belgian Science Policy IAP, the Brazilian council for research CNPq,<br />

the NSERC Grant No. OGP0121756, <str<strong>on</strong>g>and</str<strong>on</strong>g> the ESF-EuroGRAPHENE project<br />

CONGRAN.<br />

v


List <str<strong>on</strong>g>of</str<strong>on</strong>g> abbreviati<strong>on</strong>s<br />

1D <strong>on</strong>e-dimensi<strong>on</strong>al.<br />

2D two-dimensi<strong>on</strong>al.<br />

2DEG two-dimensi<strong>on</strong>al electr<strong>on</strong> gas.<br />

AFM atomic force microscopy.<br />

BZ Brillouin z<strong>on</strong>e.<br />

CVD chemical vapor depositi<strong>on</strong>.<br />

DOS density <str<strong>on</strong>g>of</str<strong>on</strong>g> states.<br />

HOPG highly oriented pyrolytic graphite.<br />

KP Kr<strong>on</strong>ig-Penney.<br />

LCAO linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atomic orbitals.<br />

LCD liquid crystal display.<br />

LL L<str<strong>on</strong>g>and</str<strong>on</strong>g>au level.<br />

QHE quantum Hall effect.<br />

SL superlattice.<br />

TB tight-binding.<br />

vii


1<br />

Introducti<strong>on</strong><br />

The story <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene begins with graphite, a material known for its use in pencils.<br />

Graphite c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> stacked layers <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> atoms. In the layers, the carb<strong>on</strong><br />

atoms are arranged in a hexag<strong>on</strong>al lattice <str<strong>on</strong>g>and</str<strong>on</strong>g> are fixed at their positi<strong>on</strong>s by str<strong>on</strong>g<br />

covalent b<strong>on</strong>ds between them. Unlike the atoms in such a layer, the atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

adjanct layers are <strong>on</strong>ly weakly bound by a van der Waals force. Such a <strong>single</strong> layer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

graphite is called graphene (Boehm et al., 1994). Nowadays it is comm<strong>on</strong> language<br />

to speak <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>single</strong>-layer, bilayer, trilayer, . . . , multi-layer graphene. Therefore it<br />

might be more appropriate to state that graphene is a few layers <str<strong>on</strong>g>of</str<strong>on</strong>g> graphite, with<br />

the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> layers being small such that the <str<strong>on</strong>g>properties</str<strong>on</strong>g> are clearly different from<br />

bulk graphite. In this work I will limit myself to <strong>single</strong>-layer graphene (the “real”<br />

graphene) <str<strong>on</strong>g>and</str<strong>on</strong>g> bilayer graphene.<br />

Figure 1.1: Graphene can be seen as the building block <str<strong>on</strong>g>of</str<strong>on</strong>g> the other carb<strong>on</strong> allotropes,<br />

fullerenes, nanotubes <str<strong>on</strong>g>and</str<strong>on</strong>g> graphite. Taken from (Castro Neto et al., 2006).<br />

Am<strong>on</strong>g pure carb<strong>on</strong> materials such as diam<strong>on</strong>d, graphite, nanotubes <str<strong>on</strong>g>and</str<strong>on</strong>g> fullerenes,<br />

graphene can be c<strong>on</strong>sidered the building block for the latter three, see Fig. 1.1, being<br />

studied since a l<strong>on</strong>g time. Theoretical work <strong>on</strong> graphene was d<strong>on</strong>e—mostly with<br />

the purpose to study the other allotropes—since 1947 starting with Wallace’s b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

structure calculati<strong>on</strong> (Wallace, 1947). The peculiar L<str<strong>on</strong>g>and</str<strong>on</strong>g>au levels (LLs) were also<br />

known (McClure, 1956, 1957), as well as the relativistic H<str<strong>on</strong>g>of</str<strong>on</strong>g>stadter butterfly (Ram-<br />

1


CHAPTER 1.<br />

INTRODUCTION<br />

mal, 1985). The possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> a relativistic analog with graphene as a c<strong>on</strong>densed<br />

matter system was investigated around the ’80s (Semen<str<strong>on</strong>g>of</str<strong>on</strong>g>f, 1984; DiVincenzo <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mele, 1984; Haldane, 1988). The discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> nanotubes (Iijima, 1991)<br />

boosted the theoretical research c<strong>on</strong>cerning graphene again. In these early days<br />

there were also a few experimental papers <strong>on</strong> graphene, free st<str<strong>on</strong>g>and</str<strong>on</strong>g>ing (in soluti<strong>on</strong>)<br />

graphene (Boehm et al., 1962), as well as epitaxial graphene, mostly grown <strong>on</strong> metals<br />

(Bommel et al., 1975; L<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 1992; Itoh et al., 1991), <str<strong>on</strong>g>and</str<strong>on</strong>g> by intercalati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graphite (Shioyama, 2001). But it was not before the year 2004, advocated by<br />

people such as Andrey Geim <str<strong>on</strong>g>and</str<strong>on</strong>g> Walter de Heer, that this material reached its<br />

breakthrough in popularity. The reas<strong>on</strong> for this is that at that time two published<br />

scientific papers stated that they were able not <strong>on</strong>ly to fabricate graphene but they<br />

also could access its electr<strong>on</strong>ic <str<strong>on</strong>g>properties</str<strong>on</strong>g> by being able to c<strong>on</strong>tact graphene flakes<br />

(Berger et al., 2004; Novoselov et al., 2004). This brought graphene <strong>on</strong> the same<br />

level as carb<strong>on</strong> nanotubes, whose electr<strong>on</strong>ic transport <str<strong>on</strong>g>properties</str<strong>on</strong>g> were already c<strong>on</strong>sidered<br />

outst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing. It also allowed researchers to investigate the <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

charge carriers, which act in certain approximati<strong>on</strong>s as a two-dimensi<strong>on</strong>al electr<strong>on</strong><br />

gas (2DEG) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic massless fermi<strong>on</strong>s. We end this short note<br />

<strong>on</strong> history by menti<strong>on</strong>ing that this resulted in the Nobel prize in physics being<br />

awarded to Andre Geim <str<strong>on</strong>g>and</str<strong>on</strong>g> Kosteya Novelosov in 2010 for their work d<strong>on</strong>e in<br />

this field. We will now briefly go through some <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene’s peculiar <str<strong>on</strong>g>properties</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> their advantages, first for <strong>single</strong>-layer graphene <str<strong>on</strong>g>and</str<strong>on</strong>g> afterwards for bilayer<br />

graphene. For in-depth reviews see, for example, Castro Neto et al. (2009); Abergel<br />

et al. (2010); Peres (2009); Young <str<strong>on</strong>g>and</str<strong>on</strong>g> Kim (2011); Das Sarma et al. (2011); Cooper<br />

et al. (2012), we like to menti<strong>on</strong> also the website ‘Graphene Times’ 1 where recent<br />

news <strong>on</strong> graphene research can be found.<br />

Figure 1.2: STM image (100 × 100 nm) showing the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a graphene isl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

structure <strong>on</strong> a Platinum surface; the image was obtained at room temperature after<br />

annealing ethylene over Pt (111) at 1230 K (adapted from Ref. (L<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 1992)).<br />

Apart from being the thinnest layer <str<strong>on</strong>g>of</str<strong>on</strong>g> graphite, <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore a perfect twodimensi<strong>on</strong>al<br />

(2D) crystal, <strong>single</strong>-layer graphene has a plethora <str<strong>on</strong>g>of</str<strong>on</strong>g> interesting prop-<br />

1 URL: http://graphenetimes.com<br />

2


1.1. GRAPHENE: THE MAKING OF<br />

erties. Starting from its mechanical robustness, making it <strong>on</strong> the micro-scale a<br />

very str<strong>on</strong>g material (Lee et al., 2008), <str<strong>on</strong>g>and</str<strong>on</strong>g> nearly impenetrable for gas molecules<br />

(Leenaerts et al., 2008), it furtermore has appealing electr<strong>on</strong>ic <str<strong>on</strong>g>properties</str<strong>on</strong>g> useful<br />

for micro-electr<strong>on</strong>ic applicati<strong>on</strong>s, such as ballistic transport over distances l<strong>on</strong>ger<br />

than a micr<strong>on</strong>, large mobility <str<strong>on</strong>g>of</str<strong>on</strong>g> its charge carriers, a gapless electr<strong>on</strong>ic spectrum,<br />

no backscattering <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s as is the case in carb<strong>on</strong> nanotubes, <str<strong>on</strong>g>and</str<strong>on</strong>g> compared<br />

to the latter, graphene’s 2D nature makes it easier to electrically c<strong>on</strong>tact (large<br />

c<strong>on</strong>tact regi<strong>on</strong> possible), which is very important for possible device applicati<strong>on</strong>s.<br />

Moreover, from a fundamental point <str<strong>on</strong>g>of</str<strong>on</strong>g> view graphene is interesting to study because<br />

its electr<strong>on</strong>s behave as a 2D gas <str<strong>on</strong>g>of</str<strong>on</strong>g> massless relativistic fermi<strong>on</strong>s. Although<br />

the latter behavior is approximate <str<strong>on</strong>g>and</str<strong>on</strong>g> valid <strong>on</strong>ly for low energy charge carriers,<br />

allowing quite some fundamental theories to be tested. As examples we menti<strong>on</strong><br />

the Klein paradox, Zitterbewegung, etc. Al<strong>on</strong>g the same line we find a quantum<br />

Hall effect (QHE), which is at odds with the normal 2DEG, originating from the<br />

different LL arrangement <str<strong>on</strong>g>and</str<strong>on</strong>g> probably experimentally the clearest characteristic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the relativistic behavior (Zhang et al., 2005).<br />

Bilayer graphene also received a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> attenti<strong>on</strong>, for which there are multiple<br />

reas<strong>on</strong>s. First, although the electr<strong>on</strong>ic structure is n<strong>on</strong>linear, it is still gapless <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

completely different from any other 2DEG system. Next, researchers were able to<br />

open a gap <str<strong>on</strong>g>and</str<strong>on</strong>g> even tune it by applying a bias between the two layers (McCann,<br />

2006; Castro et al., 2007). This is in c<strong>on</strong>trast to <strong>single</strong>-layer graphene where opening<br />

a b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap is rather difficult by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> the Klein paradox. Because the opening<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap is essential for the realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> digital transistors, in order to realize<br />

a large enough <strong>on</strong>/<str<strong>on</strong>g>of</str<strong>on</strong>g>f ratio. Furthermore, the low energy quasi-particles in bilayer<br />

graphene as well as in graphene are chiral particles, but with a different Berry<br />

phase factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 2π instead <str<strong>on</strong>g>of</str<strong>on</strong>g> π.<br />

Next we will give a short overview <strong>on</strong> the fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene.<br />

1.1 Graphene: the making <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Three very popular ways to create graphene are (1) mechanical exfoliati<strong>on</strong> (also<br />

called mechanical cleavage) <str<strong>on</strong>g>of</str<strong>on</strong>g> highly oriented pyrolytic graphite (HOPG), (2) the<br />

growing <str<strong>on</strong>g>of</str<strong>on</strong>g> epitaxial graphene from SiC crystals, <str<strong>on</strong>g>and</str<strong>on</strong>g> (3) the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>single</strong>-layer<br />

graphene by chemical vapor depositi<strong>on</strong> (CVD) <str<strong>on</strong>g>of</str<strong>on</strong>g>, for example, CH 4 molecules <strong>on</strong><br />

active Ni or Cu. We will briefly review each <str<strong>on</strong>g>of</str<strong>on</strong>g> these three techniques.<br />

1.1.1 Mechanical exfoliati<strong>on</strong><br />

For this type <str<strong>on</strong>g>of</str<strong>on</strong>g> technique <strong>on</strong>e starts with a thin graphite sample, preferably HOPG.<br />

By rubbing this sample against a substrate <strong>on</strong>e obtains graphene. Between these<br />

flakes there will occasi<strong>on</strong>ally be some <strong>single</strong>-layer microscopic parts. The latter just<br />

have to be localized, a difficult task that is explained in the following paragraph.<br />

As an intermediate step <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g>ten uses the “scotch-tape trick” before rubbing <strong>on</strong> a<br />

substrate. This means that <strong>on</strong>e first puts the graphite sample <strong>on</strong> a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> adhesive<br />

3


CHAPTER 1.<br />

INTRODUCTION<br />

tape. By folding the tape repeatedly <strong>on</strong>e splits the flake into many thinner flakes.<br />

This increases the chance to find <strong>single</strong>-layer regi<strong>on</strong>s <strong>on</strong> the substrate. In Fig. 1.3<br />

some steps <str<strong>on</strong>g>of</str<strong>on</strong>g> the process are shown.<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

Figure 1.3: (a) Using an adhesive tape to put some graphite flakes <strong>on</strong> the SiO 2<br />

wafer. (b) Graphene residuals <strong>on</strong> the wafer viewed with an optical microscope. (c)<br />

AFM picture <str<strong>on</strong>g>of</str<strong>on</strong>g> a graphene flake. Taken from Peres (2009). (d) Graphene stuck<br />

<strong>on</strong> a lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> golden wires. (b,d) were taken from Geim <str<strong>on</strong>g>and</str<strong>on</strong>g> MacD<strong>on</strong>ald (2007).<br />

Having obtained the graphene residuals <strong>on</strong> the substrate it is necessary to find<br />

some nice, sufficiently large, <strong>single</strong>-layer graphene regi<strong>on</strong>s am<strong>on</strong>g them. This can<br />

be accomplished by using a SiO 2 substrate with a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 300nm. When<br />

visualizing this using an optical microscope, the interference between the layers<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the graphene sample makes that different thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> layers give rise to a<br />

different reflecti<strong>on</strong> intensity (the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the 300nm <str<strong>on</strong>g>and</str<strong>on</strong>g> its influence is still<br />

under debate), thereby looking different under the microscope. From this, <strong>on</strong>e can<br />

guess which regi<strong>on</strong>s are likely to c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>single</strong>-layer graphene. Finally <strong>on</strong>e verifies<br />

whether the guess from the optical microscope observati<strong>on</strong> was correct with more<br />

accurate techniques such as atomic force microscopy (AFM), Raman spectroscopy,<br />

etc.<br />

Although easy to implement <str<strong>on</strong>g>and</str<strong>on</strong>g> using rather inexpensive equipment, mechanical<br />

exfoliati<strong>on</strong> is a technique that is impossible to use for mass producti<strong>on</strong>, unlike<br />

the other two techniques we will describe below. Also the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples <strong>on</strong>e<br />

is able to obtain is limited, typically up to millimeter size, see Fig. 1.3(c).<br />

4


1.1. GRAPHENE: THE MAKING OF<br />

1.1.2 Epitaxial graphene<br />

(a)<br />

(c)<br />

(d)<br />

(b)<br />

Figure 1.4: The c<strong>on</strong>finement c<strong>on</strong>trolled sublimati<strong>on</strong> method applied by the group <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

W. de Heer to obtain epitaxial graphene layers. (a) Drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> the SiC sample with<br />

graphene layers grown <strong>on</strong> the silic<strong>on</strong> side <str<strong>on</strong>g>and</str<strong>on</strong>g> the carb<strong>on</strong> side, giving rise to few<br />

layer graphene (FLG) <str<strong>on</strong>g>and</str<strong>on</strong>g> multi-layer epitaxial graphene (MEG), respectively. (b)<br />

The sublimed Si gas is c<strong>on</strong>fined in a graphite enclosure so that growth occurs in near<br />

thermodynamic equilibrium. Growth rate is c<strong>on</strong>trolled by the enclosure aperture<br />

(leak), <str<strong>on</strong>g>and</str<strong>on</strong>g> the background gas pressure. (c) Photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the inducti<strong>on</strong> furnace.<br />

Taken from de Heer et al. (2011). (d) High Resoluti<strong>on</strong> Transmissi<strong>on</strong> Electr<strong>on</strong><br />

Microscopy images <str<strong>on</strong>g>of</str<strong>on</strong>g> SiC with three layers <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene grown <strong>on</strong> top. In the<br />

schematical inset red <str<strong>on</strong>g>and</str<strong>on</strong>g> blue dots st<str<strong>on</strong>g>and</str<strong>on</strong>g> for Si-atoms <str<strong>on</strong>g>and</str<strong>on</strong>g> C-atoms, respectively.<br />

Distances between the layers are given at the right side <str<strong>on</strong>g>of</str<strong>on</strong>g> the picture. Taken from<br />

Norimatsu <str<strong>on</strong>g>and</str<strong>on</strong>g> Kusunoki (2009).<br />

Epitaxial layers <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene have been grown by the group <str<strong>on</strong>g>of</str<strong>on</strong>g> de Heer using<br />

the c<strong>on</strong>finement c<strong>on</strong>trolled sublimati<strong>on</strong> method (de Heer et al., 2011), see Fig. 1.4.<br />

With this method <strong>on</strong>e heats the SiC sample inside a vacuum to high temperatures<br />

(around 1600K). At these temperatures, the Si atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface layers evaporate.<br />

Doing so, Si-gas is formed above the sample. Regulating the pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

gas, allows to slowly sublimate the Silic<strong>on</strong> atoms <str<strong>on</strong>g>and</str<strong>on</strong>g> thereby grow graphene layer<br />

by layer <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample. After cooling down <strong>on</strong>e is left with SiC with a few<br />

layers <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> it. There are two different surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> SiC samples<br />

up<strong>on</strong> which <strong>on</strong>e can grow graphene: the silic<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the carb<strong>on</strong> terminated side.<br />

The carb<strong>on</strong> terminated side allows slow <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore more accurate growth<br />

than the silic<strong>on</strong> terminated <strong>on</strong>e. On the downside, the carb<strong>on</strong> layers grown <strong>on</strong> this<br />

side are more c<strong>on</strong>nected (i.e. more str<strong>on</strong>gly bound) to the substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> heavily<br />

doped by it.<br />

On the silic<strong>on</strong> terminated side the growth is fast <str<strong>on</strong>g>and</str<strong>on</strong>g> less accurate. But as <strong>on</strong>e<br />

starts growing more layers, <strong>on</strong> this side, the layers do not influence each other that<br />

5


CHAPTER 1.<br />

INTRODUCTION<br />

much due to rotati<strong>on</strong>al disorder between them. This makes that the electr<strong>on</strong>ic<br />

<str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> these multi-layered samples can resemble the <strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>single</strong>-layer<br />

sample.<br />

Using this method it has already been shown that samples <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

centimeter can be obtained.<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

Figure 1.5: (a) Schematical representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CVD. (b) Large graphene <strong>single</strong>crystals<br />

(isl<str<strong>on</strong>g>and</str<strong>on</strong>g>s). (c) Samsung’s CVD set-up, a Cu roll serves as a substrate for<br />

the graphene layer. (d) Multiple large c<strong>on</strong>tinuous graphene layers deposited <strong>on</strong> a<br />

polymer substrate, obtained by Samsung’s method. Taken from Bae et al. (2010).<br />

1.1.3 Chemical Vapor Depositi<strong>on</strong><br />

Unexpectedly nice results were obtained by growing graphene by CVD <str<strong>on</strong>g>of</str<strong>on</strong>g> CH 4<br />

molecules <strong>on</strong>to a copper substrate. The drawing in Fig. 1.5(a) shows the idea<br />

behind this method: methane molecules are brought in c<strong>on</strong>tact with the copper<br />

surface <str<strong>on</strong>g>and</str<strong>on</strong>g> can react with it, decomposing in two H 2 molecules <str<strong>on</strong>g>and</str<strong>on</strong>g> a C-atom,<br />

where the latter will stick to the copper surface. The carb<strong>on</strong> atom is <strong>on</strong>ly weakly<br />

bound by the surface <str<strong>on</strong>g>and</str<strong>on</strong>g> can easily move around, eventually it finds other carb<strong>on</strong><br />

atoms <str<strong>on</strong>g>and</str<strong>on</strong>g> attaches itself to them via covalent b<strong>on</strong>ds. Since the growth can start at<br />

several points at the same time, large graphene isl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, see Fig. 1.5(b)), will have<br />

to merge to a <strong>single</strong> graphene layer, during this process grain boundaries form. The<br />

origin <str<strong>on</strong>g>of</str<strong>on</strong>g> this growth mode is that with Cu as a reactive substrate <strong>on</strong>ly a <strong>single</strong><br />

6


1.2. GRAPHENE NANO-ELECTRONICS<br />

layer <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> atoms is formed. After the Cu surface is covered the growth stops<br />

automatically (under specific growing c<strong>on</strong>diti<strong>on</strong>s).<br />

This technique is already used by Samsung to fabricate huge <strong>single</strong>-layer samples<br />

(order <str<strong>on</strong>g>of</str<strong>on</strong>g> a meter in size), see Figs. 1.5(c,d). These samples were not perfect though,<br />

but c<strong>on</strong>tained a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> defects <str<strong>on</strong>g>and</str<strong>on</strong>g> grain boundaries leading to lower mobility. They<br />

obtained an average oriental coherence (no mismatch in the lattice orientati<strong>on</strong>) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a few hundred micr<strong>on</strong>. Moreover depositi<strong>on</strong> <strong>on</strong> different substrates using a “roll to<br />

roll” technique was shown.<br />

1.2 Graphene nano-electr<strong>on</strong>ics<br />

The previous secti<strong>on</strong> showed the existence <str<strong>on</strong>g>and</str<strong>on</strong>g> fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene samples.<br />

Here it is shown that electr<strong>on</strong>ic nano-structures based <strong>on</strong> graphene, in particular<br />

graphene heterostructures <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>superlattices</str<strong>on</strong>g>, which are studied in this work, are<br />

feasible.<br />

1.2.1 Heterostructures<br />

A heterostructure is a system c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple regi<strong>on</strong>s with different electr<strong>on</strong>ic<br />

structure. The electr<strong>on</strong>ic structure is determined to a large extend by the shape<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ductance <str<strong>on</strong>g>and</str<strong>on</strong>g> valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the material. Therefore, we<br />

must be able to change the b<str<strong>on</strong>g>and</str<strong>on</strong>g>-structure locally. In graphene this can be d<strong>on</strong>e<br />

in several ways. Firstly, <strong>on</strong>e can induce charge carriers in graphene by bringing<br />

charges nearby the sample, which can for example be d<strong>on</strong>e by putting a metallic<br />

gate <strong>on</strong> top or underneath the graphene sample. In Fig. 1.6 an expermental setup<br />

is shown <str<strong>on</strong>g>of</str<strong>on</strong>g> a device where charge carriers are induced by metallic gates, the<br />

electrostatic potential in panel (b) shows that the carriers in the middle regi<strong>on</strong> are<br />

holes (p-type) while in the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample they are electr<strong>on</strong>s (n-type), hence<br />

this device is an npn-juncti<strong>on</strong>. Sec<strong>on</strong>dly, <strong>on</strong>e can introduce a gap in graphene’s<br />

gapless spectrum, which can be d<strong>on</strong>e by chemical doping <str<strong>on</strong>g>of</str<strong>on</strong>g> the graphene sample<br />

or putting it <strong>on</strong> a substrate like Bor<strong>on</strong> Nitride.<br />

1.2.2 Superlattices<br />

From the point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ics, it is very useful to be able to alter the<br />

electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a material. A classical <str<strong>on</strong>g>and</str<strong>on</strong>g> well known approach is to apply<br />

a periodic potential structure (superlattice (SL)) <strong>on</strong> the material whose b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

structure <strong>on</strong>e wants to alter (Smith <str<strong>on</strong>g>and</str<strong>on</strong>g> Mailhiot, 1990). This can be d<strong>on</strong>e by<br />

periodically in space changing some external influence <strong>on</strong> the sample, for example,<br />

by applying a periodically fluctuating electro-magnetic potential, by alternating<br />

regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> different doping <str<strong>on</strong>g>of</str<strong>on</strong>g> the material, or by topographically changing the<br />

graphene sheet by, e.g. strain. In this work we will use mainly <strong>on</strong>e-dimensi<strong>on</strong>al<br />

electric SLs.<br />

The most versatile <str<strong>on</strong>g>and</str<strong>on</strong>g> neatest way to produce such a periodic structure from<br />

the theorists’ point <str<strong>on</strong>g>of</str<strong>on</strong>g> view seems to be repeating the previous npn-juncti<strong>on</strong> to<br />

7


CHAPTER 1.<br />

INTRODUCTION<br />

Figure 1.6: A working npn-juncti<strong>on</strong> based <strong>on</strong> graphene: (a) Schematic view <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

device. (b) The Electrostatic potential pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile U(x) al<strong>on</strong>g the cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (a).<br />

The <strong>on</strong>e-dimensi<strong>on</strong>al barrier (npn) structure generated by the voltages applied to<br />

the back gate <str<strong>on</strong>g>and</str<strong>on</strong>g> the top gate. (c) Optical image <str<strong>on</strong>g>of</str<strong>on</strong>g> the device. The graphene<br />

flake is indicated by the dashed line. Picture taken from Huard et al. (2007).<br />

several <strong>on</strong>es, by using more top gates. There are other experimentally more feasible<br />

or interesting ways though; to give an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> the opti<strong>on</strong>s, I will briefly menti<strong>on</strong><br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> them here. These are certainly not all nor necessarily the best methods.<br />

i) Doping the graphene sheet can be d<strong>on</strong>e by electr<strong>on</strong> beam induced depositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> atoms (Meyer et al., 2008), e.g., carb<strong>on</strong> atoms, <strong>on</strong>to the surface. This<br />

technique allows accurate doping <str<strong>on</strong>g>of</str<strong>on</strong>g> the graphene layer <str<strong>on</strong>g>and</str<strong>on</strong>g> can therefore be<br />

used to make small patterns. In Fig. 1.7(a) dot-patterns are shown.<br />

ii) Making a periodic pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> nano-holes in a graphene sheet changes the b<str<strong>on</strong>g>and</str<strong>on</strong>g>structure<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> allows the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a b<str<strong>on</strong>g>and</str<strong>on</strong>g>gap. The nano-holes can be created<br />

by, e.g. nano-imprinting the graphene layer (Liang et al., 2012), see Fig. 1.7(b).<br />

iii) Hydrogenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene into graphane introduces a large b<str<strong>on</strong>g>and</str<strong>on</strong>g>gap. Spacially<br />

dependent hydrogenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene allows for periodic structures to<br />

be generated (see Fig. 1.7(c)) <str<strong>on</strong>g>and</str<strong>on</strong>g> the b<str<strong>on</strong>g>and</str<strong>on</strong>g>structure to be tuned. In Balog<br />

et al. (2010); Sun et al. (2011) the possibility to make these patterns is shown.<br />

iv) Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate: a lattice mismatch between the graphene lattice<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the substrate lattice can lead to rotati<strong>on</strong>-dependent Moiré patterns (Xue<br />

et al., 2011). These patterns corresp<strong>on</strong>d to effective periodic potentials (<str<strong>on</strong>g>superlattices</str<strong>on</strong>g>)<br />

(Yankowitz et al., 2012).<br />

8


1.2. GRAPHENE NANO-ELECTRONICS<br />

(a)<br />

(c)<br />

(b)<br />

Figure 1.7: (a) TEM image <str<strong>on</strong>g>of</str<strong>on</strong>g> a freest<str<strong>on</strong>g>and</str<strong>on</strong>g>ing graphene membrane spanning a 1.3<br />

µm hole in a grid. By electr<strong>on</strong> beam induced depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> atoms, a pattern<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nano-dots is put at the down-right area <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene. The scale bar corresp<strong>on</strong>ds<br />

to 100 nm; the inset shows a zoom <str<strong>on</strong>g>of</str<strong>on</strong>g> a similar pattern; the distance between the<br />

dots is 5 nm. Taken from Liang et al. (2012). (b) SEM image <str<strong>on</strong>g>of</str<strong>on</strong>g> a pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoholes<br />

in graphene created by a nano-imprinting technique applied to a graphene<br />

layer. Taken from Meyer et al. (2008). (c) SL formed by periodical hydrogenati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graphene; the scale bar equals 50 µm, the upper part shows an optical image<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the sample, <str<strong>on</strong>g>and</str<strong>on</strong>g> the lower <strong>on</strong>e shows the fluorescent resp<strong>on</strong>se, showing where<br />

graphane is located. Adapted from Sun et al. (2011).<br />

9


CHAPTER 1.<br />

INTRODUCTION<br />

1.3 Applicati<strong>on</strong>s<br />

Since graphene hasn’t been around for a l<strong>on</strong>g time yet, proposals for applicati<strong>on</strong>s<br />

are scarce, yet there are some, <str<strong>on</strong>g>of</str<strong>on</strong>g> which a subset depends <strong>on</strong> the unique <str<strong>on</strong>g>properties</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this material. We will menti<strong>on</strong> a few examples here.<br />

1.3.1 Sensors<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the first prototypes <str<strong>on</strong>g>of</str<strong>on</strong>g> a working applicati<strong>on</strong> using graphene as a base material<br />

is a graphene gas molecule sensor (Schedin et al., 2007). The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

<strong>single</strong> gas molecule attached to the graphene surface was experimentally measured<br />

by looking at the changes in the Hall resistance ρ xy <str<strong>on</strong>g>of</str<strong>on</strong>g> a graphene Hall bar, see<br />

Fig. 1.8(a). Graphene is a good c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate for this type <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements because:<br />

(i) it has an excellent surface to mass ratio (as a 2D material), <str<strong>on</strong>g>and</str<strong>on</strong>g> (ii) graphene<br />

screens charges close to it very well, feeling the proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules. The measured<br />

accuracy opened the gate to the manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial sensitive gas<br />

sensors.<br />

(a)<br />

Figure 1.8: (a) Gas molecule sensor measurements showing that <strong>single</strong> molecule<br />

detecti<strong>on</strong> with a graphene layer is possible in principle. Taken from Schedin et al.<br />

(2007).<br />

1.3.2 Graphene manometer, vacuum/pressure gauge<br />

Another possible applicati<strong>on</strong>, in line with the gas sensors, is using graphene as a<br />

tiny membrane for a micro-manometer. Because graphene is thin, rigid <str<strong>on</strong>g>and</str<strong>on</strong>g> impermeable<br />

it can h<str<strong>on</strong>g>and</str<strong>on</strong>g>le very low <str<strong>on</strong>g>and</str<strong>on</strong>g> high pressures without leaking. The strain<br />

induced by the pressure <strong>on</strong> the graphene membrane influences its electr<strong>on</strong>ic <str<strong>on</strong>g>properties</str<strong>on</strong>g>.<br />

Measuring the pressure can be d<strong>on</strong>e by looking at the transport characteristics<br />

just as in the graphene gas molecule sensor. Because such a device could be made<br />

very small it allows almost n<strong>on</strong>-invasive pressure measurements within small compartments.<br />

10


1.3. APPLICATIONS<br />

1.3.3 Coating<br />

Thin layers <str<strong>on</strong>g>of</str<strong>on</strong>g> graphite already served well as impermeable coatings. It is used in,<br />

e.g., plastic beer <str<strong>on</strong>g>and</str<strong>on</strong>g> cola bottles to keep the carb<strong>on</strong> acid from escaping rapidly,<br />

which would render your drink tasteless in a few days. Taking a <strong>single</strong> layer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carb<strong>on</strong> showed that this property still holds true (Bunch et al., 2008; Leenaerts<br />

et al., 2008). Coating metals with graphene has another benefit, rising from the<br />

inertness <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene to molecules. Oxidati<strong>on</strong>, for example, can be reduced to a<br />

large extent by adding a layer <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface (Prasai et al.,<br />

2012; Chen et al., 2011), while it does not alter the c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the metal, see<br />

Fig. 1.9.<br />

(a)<br />

(b)<br />

Figure 1.9: (a) Left panel: annealed for 4 hours at 200C in air. Right panel: before<br />

annealing. One can see that the samples at the top panels, which have a graphene<br />

layer <strong>on</strong> top, are almost resistent against oxidati<strong>on</strong>. (b) A similar experiment with<br />

a coin. Taken from Chen et al. (2011).<br />

1.3.4 THz frequency amplifiers<br />

A lot <str<strong>on</strong>g>of</str<strong>on</strong>g> effort has been put in realizing a graphene Field Effect Transistor (FET),<br />

see (Schwierz, 2010) for a review. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the main driving forces was the high quality<br />

ballistic transport in graphene, which would allow chips working with such devices<br />

to be scaled down in size without any heating problems. The two-dimensi<strong>on</strong>al<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene further allows a large c<strong>on</strong>tact regi<strong>on</strong>, which reduces problems<br />

with c<strong>on</strong>tact-resistance that plagues carb<strong>on</strong> nanotubes (CNTs). For digital transistors<br />

though, the realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ideal chip bumped into the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

insufficient <strong>on</strong>/<str<strong>on</strong>g>of</str<strong>on</strong>g>f ratio so far (due to the Klein tunneling). A low <strong>on</strong>/<str<strong>on</strong>g>of</str<strong>on</strong>g>f ratio is<br />

less important for high frequency applicati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> prototypes <str<strong>on</strong>g>of</str<strong>on</strong>g> analog amplifiers<br />

(Wu et al., 2011; Liao et al., 2010, 2011), frequency multipliers (Wang et al., 2009),<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> transmitters (Lin et al., 2010) working in such frequency ranges were fabricated.<br />

Graphene is an excellent material for this type <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its l<strong>on</strong>g decoherence length.<br />

11


CHAPTER 1.<br />

INTRODUCTION<br />

(a)<br />

(b)<br />

Figure 1.10: (a) A graphene analog transistor from IBM with 40 nm gate length.<br />

(b) The cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the transistor in (a) is shown to be 155 GHz when<br />

operated at room temperature. Taken from (Wu et al., 2011).<br />

ends the current page <str<strong>on</strong>g>and</str<strong>on</strong>g> causes all figures <str<strong>on</strong>g>and</str<strong>on</strong>g> tables that have so far appeare<br />

1.3.5 High quality displays<br />

It has been shown that graphene can be used as a very thin transparent c<strong>on</strong>ducting<br />

film (for a review see B<strong>on</strong>accorso et al. (2010)). Transparent c<strong>on</strong>ducting films are<br />

used in many applicati<strong>on</strong>s such as solar cells, (Organic) Light Emitting Diodes<br />

((O)LEDs), <str<strong>on</strong>g>and</str<strong>on</strong>g> liquid crystal displays (LCDs). Graphene is highly transparent in<br />

the visual spectrum, see Fig. 1.11(a,b), <str<strong>on</strong>g>and</str<strong>on</strong>g> has low resistance.<br />

We briefly describe here the use <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene in LCDs. An LCD works as follows<br />

(see Fig. 1.11): between two electrodes some liquid crystals are c<strong>on</strong>tained, these<br />

change the polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any light passing by. Polarizati<strong>on</strong> filters are placed<br />

before <str<strong>on</strong>g>and</str<strong>on</strong>g> after the electrodes, allowing <strong>on</strong>ly free passage <str<strong>on</strong>g>of</str<strong>on</strong>g> light with the correct<br />

polarizati<strong>on</strong>. By applying some voltage over the electrodes the crystals can be<br />

aligned <str<strong>on</strong>g>and</str<strong>on</strong>g> their effect <strong>on</strong> the polarizati<strong>on</strong> will be uniform, all light can pass the<br />

polarizati<strong>on</strong> filter. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> when the voltage is <str<strong>on</strong>g>of</str<strong>on</strong>g>f, the liquid crystals<br />

are not aligned resulting in a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om polarizati<strong>on</strong>, reducing the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> emitted<br />

light. The light has to pass the fr<strong>on</strong>t electrode which has to be transparent.<br />

At this moment most <str<strong>on</strong>g>of</str<strong>on</strong>g> such films are made from Indium-based (Indium Tin<br />

Oxide) materials. But these have some less good <str<strong>on</strong>g>properties</str<strong>on</strong>g> such as being expensive,<br />

brittle, <str<strong>on</strong>g>and</str<strong>on</strong>g> toxic. Hence it is interesting that less expensive, recyclable, n<strong>on</strong>-toxic<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> rigid graphene can replace these films.<br />

This resulted in the fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bendable (unlike Indium Tin Oxide screens)<br />

LCDs, touch screens (by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> the excellent screening <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene),<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> pure organic light emitting diodes (Bae et al., 2010), see Figs. 1.11(c,d,e).<br />

12


1.3. APPLICATIONS<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

Figure 1.11: (a) Transparancy measurements <strong>on</strong> graphene which show that a<br />

graphene layer is highly transparent. (b) Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmittance through<br />

different transparent c<strong>on</strong>ductive materials in the visual spectrum. (c) Principle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a simple liquid crystal display based <strong>on</strong> graphene. (d) Samsung’s assembled<br />

graphene/polymer touch panel showing outst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing flexibility. (e) Samsung’s prototype<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a working graphene-based touch-screen panel. Taken from (Bae et al.,<br />

2010) <str<strong>on</strong>g>and</str<strong>on</strong>g> (B<strong>on</strong>accorso et al., 2010).<br />

13


CHAPTER 1.<br />

INTRODUCTION<br />

1.4 Motivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> my work<br />

Here, I give my motivati<strong>on</strong>s for the work I did in this thesis.<br />

The experimental realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene opened the gate for the investigati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many fundamental <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a relativistic 2DEG. In this thesis I focused <strong>on</strong><br />

the following issues:<br />

i) How essential is the Fermi-character <str<strong>on</strong>g>of</str<strong>on</strong>g> the carriers in graphene for the Klein<br />

paradox<br />

ii) Is the gapless <str<strong>on</strong>g>and</str<strong>on</strong>g> linear spectrum sufficient to observe Klein tunneling<br />

iii) How does it depend <strong>on</strong> the spectrum, when we go from a linear spectrum<br />

(<strong>single</strong>-layer graphene) to the parabolic spectrum that is present in bilayer<br />

graphene<br />

iv) How does the Klein tunneling translate itself in the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a superlattice<br />

applied to graphene Is the Klein paradox still visible in these spectra<br />

v) What is the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> a mass term<br />

vi) Why are there so-called extra Dirac points, how do they influence the transport<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers in these systems. What about their occurrence in bilayer<br />

graphene<br />

vii) How useful are exact solvable models as the Kr<strong>on</strong>ig-Penney model<br />

viii) Do topological states, occurring at interfaces where the bias flips in biased<br />

bilayer graphene, extend their influence in <str<strong>on</strong>g>superlattices</str<strong>on</strong>g> How far can we<br />

separate the interfaces while maintaining this influence What is the influence<br />

<strong>on</strong> the transport <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers in such a system<br />

ix) What is the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> a pn-juncti<strong>on</strong> <strong>on</strong> the transport <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a graphene<br />

Hall bar<br />

1.5 C<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this work<br />

Here, I give my c<strong>on</strong>tributi<strong>on</strong>s to the research <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene <str<strong>on</strong>g>and</str<strong>on</strong>g> bilayer graphene.<br />

For both massive <str<strong>on</strong>g>and</str<strong>on</strong>g> massless Dirac fermi<strong>on</strong>s the moti<strong>on</strong> in <strong>on</strong>e dimensi<strong>on</strong> in<br />

the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>on</strong>e-dimensi<strong>on</strong>al SL was previously studied in the literature, see<br />

14


1.5. CONTRIBUTIONS OF THIS WORK<br />

e.g. McKellar <str<strong>on</strong>g>and</str<strong>on</strong>g> Stephens<strong>on</strong> (1987b). We extended this for both massless <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

massive Dirac fermi<strong>on</strong>s moving in two dimensi<strong>on</strong>s (Barbier, 2007; Barbier et al.,<br />

2008), <str<strong>on</strong>g>and</str<strong>on</strong>g> obtained an expressi<strong>on</strong> for the dispersi<strong>on</strong> relati<strong>on</strong> as a transcendental<br />

equati<strong>on</strong>. Subsequently, a similar study was realized by Park et al. (2008a), but<br />

in their work the focus was <strong>on</strong> the anisotropic renormalisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac c<strong>on</strong>e<br />

in the low energy range, while in our work we studied the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the pseudospin<br />

<strong>on</strong>to the spectrum (by comparing the results with Klein-Gord<strong>on</strong> particles).<br />

For zero mass we obtained a linear spectrum al<strong>on</strong>g the directi<strong>on</strong> perpendicular<br />

to the barriers, corresp<strong>on</strong>ding to the Klein paradox. Further, al<strong>on</strong>g the directi<strong>on</strong><br />

parallel to the barriers the spectrum is n<strong>on</strong>linear <str<strong>on</strong>g>and</str<strong>on</strong>g> an effective mass can be<br />

defined. A comparis<strong>on</strong> with zero-spin relativistic bos<strong>on</strong>s (obeying the Klein-Gord<strong>on</strong><br />

equati<strong>on</strong>) was made. It was found that although the free spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> both the Dirac<br />

equati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the Klein-Gord<strong>on</strong> equati<strong>on</strong> are c<strong>on</strong>e-like, under the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a superlattice, the resulting spectra are very different. We performed a similar<br />

calculati<strong>on</strong> for bilayer graphene (Barbier et al., 2009b), which also has a gapless<br />

spectrum. But a perpendicular electric field, i.e., a gate potential, induces a gap.<br />

Therefore, when we impose a SL, we modulate (1) the gap (characterized by the<br />

potential difference between the two carb<strong>on</strong> layers <str<strong>on</strong>g>of</str<strong>on</strong>g> bilayer graphene), <str<strong>on</strong>g>and</str<strong>on</strong>g> (2)<br />

the (average) potential <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong> layers. This results in two types <str<strong>on</strong>g>of</str<strong>on</strong>g> barriers.<br />

The type (1) barriers allow <strong>on</strong>ly st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard tunneling through the gap, resembling<br />

the tunneling through a barrier in a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG <str<strong>on</strong>g>and</str<strong>on</strong>g> resulting in a gapped<br />

spectrum for a SL made <str<strong>on</strong>g>of</str<strong>on</strong>g> such barriers. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> barriers <str<strong>on</strong>g>of</str<strong>on</strong>g> type (2)<br />

result in res<strong>on</strong>ances in the transmissi<strong>on</strong> under the potential barrier height, but <strong>on</strong>ly<br />

for a n<strong>on</strong>zero momentum k y , giving rise to a richer spectrum.<br />

In Park et al. (2008a, 2009a) the authors found that the spectrum for Dirac<br />

particles in <strong>single</strong>-layer graphene can be tuned by the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL such<br />

that the carriers are collimated in the directi<strong>on</strong> perpendicular to the barriers, with a<br />

quasi-dispersi<strong>on</strong>less spectrum in the directi<strong>on</strong> parallel to the barriers. Using tightbinding<br />

calculati<strong>on</strong>s Ho et al. (2009) observed another feature <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum in the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a SL. The Dirac c<strong>on</strong>e splits <str<strong>on</strong>g>and</str<strong>on</strong>g> new touching points (i.e., Dirac points)<br />

at the Fermi-level appeared resulting in more valleys. We characterized these two<br />

phenomena (Barbier et al., 2010a) <str<strong>on</strong>g>and</str<strong>on</strong>g> found that the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> extra<br />

Dirac points is preceded by a flattening <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial Dirac c<strong>on</strong>e, in the directi<strong>on</strong><br />

parallel to the barriers, close to the K-point. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> asymmetric SLs, the<br />

extra Dirac points d<strong>on</strong>’t originate at the Fermi-level, but instead shift up or down<br />

in energy. Further we found that also for higher b<str<strong>on</strong>g>and</str<strong>on</strong>g>s extra crossing points occur.<br />

In our study: 1) we present an analytical formula for the spatial arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

extra Dirac points <str<strong>on</strong>g>and</str<strong>on</strong>g> the other crossing points in the spectrum both for symmetric<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> asymmetric rectangular SLs, 2) we obtain the velocity renormalizati<strong>on</strong> in these<br />

points, 3) their influence <strong>on</strong> the density <str<strong>on</strong>g>of</str<strong>on</strong>g> states (DOS), <str<strong>on</strong>g>and</str<strong>on</strong>g> 4) c<strong>on</strong>ductance. In<br />

a recent experimental work (Yankowitz et al., 2012) similar findings were found<br />

for graphene under the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a hexag<strong>on</strong>al superlattice (induced by the<br />

substrate). We performed part <str<strong>on</strong>g>of</str<strong>on</strong>g> the latter calculati<strong>on</strong> also for bilayer graphene<br />

(Barbier et al., 2010c) but in this case the quantitative investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing<br />

points turned out to be rather complex.<br />

15


CHAPTER 1.<br />

INTRODUCTION<br />

As limiting cases for the SL we investigated the Kr<strong>on</strong>ig-Penney (KP) model—<br />

where the barriers are δ-functi<strong>on</strong>s—<str<strong>on</strong>g>and</str<strong>on</strong>g> an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this model to the <strong>on</strong>e with<br />

<strong>on</strong>e barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e well in the unit cell. We found that the dispersi<strong>on</strong> relati<strong>on</strong><br />

derived for these models is found to be periodic in the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the barriers<br />

P = ∫ L<br />

0 V (x)dx/v F for both <strong>single</strong>-layer graphene (Barbier et al., 2009a) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

bilayer graphene (Barbier et al., 2010b). For the former KP model we found that,<br />

for large k y , <str<strong>on</strong>g>and</str<strong>on</strong>g> P = (1/2 + n)π, with n an integer, the spectrum becomes flat.<br />

While for the latter extended KP model we found that, in <strong>single</strong>-layer graphene,<br />

for values P = (1/2 + n)π, with n an integer, the Dirac point is changed into a<br />

Dirac line, i.e. the line al<strong>on</strong>g the k y axis with k x = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> E = 0 is part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

spectrum.<br />

Bilayer graphene is c<strong>on</strong>sidered an important side-kick <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the possibility to easily open a gap by applying a bias perpendicular to the graphene<br />

plane. Moreover, the potential difference between the layers can be locally switched,<br />

resulting in topological states emerging at such an interface (Martin et al., 2008;<br />

Martinez et al., 2009). The b<str<strong>on</strong>g>and</str<strong>on</strong>g>s corresp<strong>on</strong>ding to these states bridge the b<str<strong>on</strong>g>and</str<strong>on</strong>g>gap,<br />

while far from the interface the spectra <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the interface are gapped.<br />

We investigated a SL c<strong>on</strong>stituted <str<strong>on</strong>g>of</str<strong>on</strong>g> such interfaces al<strong>on</strong>g <strong>on</strong>e directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> found<br />

that these states give rise to the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> Dirac-like c<strong>on</strong>es in the<br />

spectrum, where the c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> touch each other, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

expected gapped spectrum (Barbier et al., 2010c).<br />

For <strong>single</strong>-layer graphene a pn-juncti<strong>on</strong> is an interesting system since it exhibits<br />

Klein tunneling as well as the analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> a negative refracti<strong>on</strong> index. Moreover the<br />

phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> “snake states” al<strong>on</strong>g the pn-interface has been predicted (Carmier<br />

et al., 2011; Williams <str<strong>on</strong>g>and</str<strong>on</strong>g> Marcus, 2011). We investigated a Hall bar made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

graphene with a pn-juncti<strong>on</strong> al<strong>on</strong>g <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its axes in the ballistic regime using the<br />

billiard model (Barbier et al., 2012). We found that introducing a pn-juncti<strong>on</strong>—<br />

dividing the Hall bar geometry in two regi<strong>on</strong>s—leads to two distinct regimes exhibiting<br />

very different physics: 1) both regi<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g> n-type <str<strong>on</strong>g>and</str<strong>on</strong>g> 2) <strong>on</strong>e regi<strong>on</strong> is<br />

n-type <str<strong>on</strong>g>and</str<strong>on</strong>g> the other p-type. The calculated Hall (R H ) <str<strong>on</strong>g>and</str<strong>on</strong>g> bend (R B ) resistance<br />

exhibit specific characteristics in both regimes. In regime (1) a ‘Hall plateau’—an<br />

enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> the resistance—appears for R H . On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, in regime (2),<br />

we found a negative R H , which approaches zero for large B. The bend resistance<br />

is highly asymmetric in regime (2) <str<strong>on</strong>g>and</str<strong>on</strong>g> the resistance increases with increasing<br />

magnetic field B in <strong>on</strong>e directi<strong>on</strong> while it reduces to zero in the other directi<strong>on</strong>.<br />

1.6 Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the thesis<br />

The organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this thesis is as follows: Chapter 2 presents an introducti<strong>on</strong> to<br />

the electr<strong>on</strong>ic <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene. The focus will be <strong>on</strong> the needed background<br />

for the calculati<strong>on</strong>s that are performed in later chapters. In particular we c<strong>on</strong>sider<br />

the tight-binding calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>ic spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene, the c<strong>on</strong>tinuum<br />

approximati<strong>on</strong>, Klein tunneling, <str<strong>on</strong>g>and</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g>au levels appearing under the applicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a perpendicular magnetic field.<br />

16


1.6. ORGANIZATION OF THE THESIS<br />

Chapters 3, 4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5 are devoted to <strong>single</strong>-layer graphene, while Chapters 5 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

6 c<strong>on</strong>cern bilayer graphene.<br />

In Chapter 3 we c<strong>on</strong>trast the tunneling <str<strong>on</strong>g>of</str<strong>on</strong>g> Dirac particles in <strong>single</strong>-layer graphene<br />

with the <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> bos<strong>on</strong>s obeying the Klein-Gord<strong>on</strong> equati<strong>on</strong>. In particular we look<br />

at the Klein tunneling through a square barrier.<br />

In Chapter 4 we apply a rectangular SL potential <strong>on</strong>to <strong>single</strong>-layer graphene<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> investigate how the b<str<strong>on</strong>g>and</str<strong>on</strong>g>structure is tuned by it. More specifically we look at<br />

two phenomena that can be observed by adapting the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL. On<br />

the <strong>on</strong>e h<str<strong>on</strong>g>and</str<strong>on</strong>g> we have the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> extra Dirac points in the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> bare<br />

graphene, due to the splitting <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac c<strong>on</strong>e. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> the spectrum<br />

can be tuned such that the electr<strong>on</strong>s are prohibited to travel in all directi<strong>on</strong>s but<br />

<strong>on</strong>e, i.e., uni-directi<strong>on</strong>al moti<strong>on</strong>. The c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> these two phenomena for<br />

transportati<strong>on</strong> are shown.<br />

In Chapter 5 we c<strong>on</strong>sider a limiting case for the SL potential, namely the Kr<strong>on</strong>ig-<br />

Penney (KP) model. In this model the square barriers <str<strong>on</strong>g>of</str<strong>on</strong>g> the previous chapter are<br />

replaced by δ-functi<strong>on</strong> barriers. The simplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential gives rise to a<br />

spectrum that is periodic in the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the δ-functi<strong>on</strong> barriers. Further we<br />

extend the unit cell <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL to the <strong>on</strong>e with two δ-functi<strong>on</strong> barriers, <strong>on</strong>e up <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>on</strong>e down. For the latter extended KP model we find that the Dirac point becomes<br />

a Dirac line, for certain parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL.<br />

Chapter 6 is devoted to SLs applied <strong>on</strong>to bilayer graphene. We extend the<br />

emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> extra Dirac points for <strong>single</strong>-layer, as discussed in Chapter 2, to bilayer<br />

graphene, where we show that similar additi<strong>on</strong>al Dirac points can be found for<br />

bilayer graphene. We also show that various possibilities for the SL c<strong>on</strong>figurati<strong>on</strong><br />

are possible.<br />

In Chapter 7 we perform an analysis similar to the <strong>on</strong>e in Chapter 5 but for<br />

bilayer graphene. We find that we can extend the results for the <strong>single</strong>-layer to a<br />

great extent to the bilayer case. The periodicity in the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the δ-functi<strong>on</strong><br />

barriers is retained. In bilayer we do not find any Dirac line in the spectrum.<br />

In Chapter 8 a Hall bar measurement is simulated (we calculate the Hall (R H )<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> bend (R B ) resistance) for a graphene Hall bar structure c<strong>on</strong>taining a pnjuncti<strong>on</strong><br />

in the ballistic regime using the billiard model.<br />

Finally we c<strong>on</strong>clude with a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the thesis in Chapter 9.<br />

17


2<br />

Electr<strong>on</strong>ic <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene<br />

2.1 Electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene<br />

The electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a system is determined by the Schrödinger equati<strong>on</strong>.<br />

For a time-independent Hamilt<strong>on</strong>ian H it suffices to solve the time-independent<br />

Schrödinger equati<strong>on</strong> HΨ n = E n Ψ n , resulting in eigen energies E n <str<strong>on</strong>g>and</str<strong>on</strong>g> eigen<br />

states Ψ n . Obtaining the electr<strong>on</strong>ic structure thus means finding the eigen energies<br />

E n <str<strong>on</strong>g>and</str<strong>on</strong>g> eigen states Ψ n for the system. We start with describing the electr<strong>on</strong>ic<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>single</strong>-layer graphene, afterwards we will extend this calculati<strong>on</strong> to<br />

bilayer graphene.<br />

In order to find the electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene, we will first describe what<br />

graphene is made <str<strong>on</strong>g>of</str<strong>on</strong>g>. The hexag<strong>on</strong>al lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> atoms.<br />

Each <str<strong>on</strong>g>of</str<strong>on</strong>g> these carb<strong>on</strong> atoms has six electr<strong>on</strong>s ordered in 1s 2 , 2s 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2p 2 orbitals.<br />

The orbitals <str<strong>on</strong>g>of</str<strong>on</strong>g> different carb<strong>on</strong> atoms can make b<strong>on</strong>ds, lowering their total energy,<br />

resulting in valence electr<strong>on</strong>s. In order to form a hexag<strong>on</strong>al lattice three directi<strong>on</strong>al<br />

σ-b<strong>on</strong>ds are necessary, this is satisfied by sp 2 hybridizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2s 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> two <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 2p 2 orbitals (as illustrated in Fig. 2.1). This results in three 2sp 2 orbitals lying<br />

in the plane <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e 2p z orbital perpendicular to this plane. The former three<br />

will form σ-b<strong>on</strong>ds between the carb<strong>on</strong> atoms <str<strong>on</strong>g>and</str<strong>on</strong>g> the latter 2p z orbital will form<br />

π-b<strong>on</strong>ds between them. If we look at the energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the different b<strong>on</strong>ds,<br />

we see that the b<str<strong>on</strong>g>and</str<strong>on</strong>g>s originating from the σ-b<strong>on</strong>ds are much lower than the <strong>on</strong>es<br />

from the π-b<strong>on</strong>ds. Also, the π-orbitals are, in c<strong>on</strong>trast to the σ-orbitals, half-filled<br />

such that the energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s cross the Fermi-level. Furthermore, the π-b<strong>on</strong>d is a<br />

rather weak b<strong>on</strong>d, compared to the σ-b<strong>on</strong>ds, <str<strong>on</strong>g>and</str<strong>on</strong>g> these electr<strong>on</strong>s can easily move<br />

around. Therefore, the π-electr<strong>on</strong>s are important for the electr<strong>on</strong>ic behavior near<br />

the Fermi-level, where c<strong>on</strong>ducti<strong>on</strong> or transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s will take place.<br />

As we are interested in this regime, we will further <strong>on</strong> c<strong>on</strong>centrate <strong>on</strong>ly <strong>on</strong> the<br />

π-orbitals <str<strong>on</strong>g>and</str<strong>on</strong>g> neglect the other <strong>on</strong>es.<br />

As for the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the graphene lattice, we observe that graphene has a<br />

triangular Bravais lattice with two atoms in each unit cell, <str<strong>on</strong>g>and</str<strong>on</strong>g> the latter will be<br />

denoted as the A <str<strong>on</strong>g>and</str<strong>on</strong>g> B atoms, see Fig. 2.3(a). The unit cell atoms have the<br />

19


CHAPTER 2.<br />

ELECTRONIC PROPERTIES OF GRAPHENE<br />

Figure 2.1: The 2s, 2p x , <str<strong>on</strong>g>and</str<strong>on</strong>g> 2p y atomic orbitals hybridize to three sp 2 orbitals<br />

having trig<strong>on</strong>al symmetry in the xy-plane, these will form σ-b<strong>on</strong>ds in the plane with<br />

the other carb<strong>on</strong> atoms. The blue-colored egg-shapes represent the probability |ψ| 2<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the atomic orbital wave functi<strong>on</strong>.<br />

Figure 2.2: Two sp 2 orbitals making a σ-b<strong>on</strong>d in the xy-plane, while the 2p z forms<br />

a π-b<strong>on</strong>d with the other 2p z <str<strong>on</strong>g>of</str<strong>on</strong>g> the other carb<strong>on</strong> atom.<br />

20


2.1. ELECTRONIC STRUCTURE OF GRAPHENE<br />

following lattice basis:<br />

a 1 = a 2<br />

(√<br />

3 3<br />

)<br />

, a2 = a 2<br />

(√<br />

3 −3<br />

)<br />

, (2.1)<br />

with the inter-atomic distance a = 0.142nm. The reciprocal lattice in k-space has<br />

lattice vectors:<br />

b 1 =<br />

2π<br />

3 √ ( √ )<br />

3 3 , b2 = 2π<br />

3a<br />

3 √ ( √ )<br />

3 − 3 . (2.2)<br />

3a<br />

The reciprocal lattice has a trig<strong>on</strong>al structure <str<strong>on</strong>g>and</str<strong>on</strong>g> a hexag<strong>on</strong>al Brillouin z<strong>on</strong>e (BZ),<br />

as shown in Fig. 2.3(b). In the first BZ we marked three points <str<strong>on</strong>g>of</str<strong>on</strong>g> high symmetry,<br />

the Γ, M <str<strong>on</strong>g>and</str<strong>on</strong>g> K points. The K points will be shown to be <str<strong>on</strong>g>of</str<strong>on</strong>g> particular importance<br />

further <strong>on</strong>, as the energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum cross the Fermi-level there. Remark<br />

that because <str<strong>on</strong>g>of</str<strong>on</strong>g> the threefold symmetry, there are <strong>on</strong>ly two independent K points,<br />

which we will call the K <str<strong>on</strong>g>and</str<strong>on</strong>g> K ′ point.<br />

Figure 2.3: (a) Graphene Bravais lattice existing <str<strong>on</strong>g>of</str<strong>on</strong>g> A <str<strong>on</strong>g>and</str<strong>on</strong>g> B atoms, basis vectors<br />

are a j <str<strong>on</strong>g>and</str<strong>on</strong>g> translati<strong>on</strong> vectors between the A <str<strong>on</strong>g>and</str<strong>on</strong>g> B atoms are indicated by δ j .<br />

(b) The reciprocal lattice with the hexag<strong>on</strong>al BZ shown in green <str<strong>on</strong>g>and</str<strong>on</strong>g> the unit cell<br />

shown in blue. Two independent K points exist, the so-called K <str<strong>on</strong>g>and</str<strong>on</strong>g> K ′ point.<br />

To describe the electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene, we will use the tight-binding<br />

(TB) approximati<strong>on</strong>, following the approach <str<strong>on</strong>g>of</str<strong>on</strong>g> Wallace (Wallace, 1947). Next, we<br />

will employ the c<strong>on</strong>tinuum approximati<strong>on</strong> to the obtained TB Hamilt<strong>on</strong>ian. From<br />

this we arrive at the Dirac-Weyl Hamilt<strong>on</strong>ian, which is the <strong>on</strong>e we will mainly use<br />

throughout this work.<br />

2.1.1 Tight-binding approach<br />

In the TB approximati<strong>on</strong> <strong>on</strong>e assumes that the electr<strong>on</strong>s are str<strong>on</strong>gly bound to the<br />

atoms <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore the wave functi<strong>on</strong> can be written as a linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atomic orbitals (LCAO) φ j , this is the so-called LCAO approximati<strong>on</strong>.<br />

Ψ(x) = ∑ j<br />

c j φ j (x), (2.3)<br />

21


CHAPTER 2.<br />

ELECTRONIC PROPERTIES OF GRAPHENE<br />

where the sum in j runs over all orbitals in the crystal. Assuming that <strong>on</strong>ly the<br />

2p z orbitals are important, <strong>on</strong>ly <strong>on</strong>e orbital wave functi<strong>on</strong> must be c<strong>on</strong>sidered per<br />

atom. Further, for a periodic structure like the hexag<strong>on</strong>al lattice the soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the total wave functi<strong>on</strong> is a Bloch functi<strong>on</strong>. In this case the unit cell c<strong>on</strong>tains two<br />

atoms, A <str<strong>on</strong>g>and</str<strong>on</strong>g> B. We end up with the wave functi<strong>on</strong>s:<br />

where<br />

Ψ k (x) = c A ψ A (x, k) + c B ψ B (x, k), (2.4)<br />

ψ j (x, k) = 1 √<br />

Nc<br />

∑N c<br />

n=1<br />

e ik·Xn φ j (x − X n ), (2.5)<br />

are the TB Bloch functi<strong>on</strong>s in the A <str<strong>on</strong>g>and</str<strong>on</strong>g> B atoms, with N c the number <str<strong>on</strong>g>of</str<strong>on</strong>g> unit<br />

cells in the crystal, <str<strong>on</strong>g>and</str<strong>on</strong>g> k the Bloch wave vector. The coefficients c i are obtained<br />

by minimizing the expectati<strong>on</strong> value for the energy<br />

< E >=<br />

∫<br />

dxΨ<br />

∗<br />

k<br />

(x)HΨ k (x)<br />

∫<br />

dxΨ<br />

∗<br />

k<br />

(x)Ψ k (x)<br />

=<br />

∑<br />

i,j c∗ i c jH ij<br />

∑i,j c∗ i c jS ij<br />

, (2.6)<br />

where the transfer matrix H <str<strong>on</strong>g>and</str<strong>on</strong>g> overlap matrix S are defined as<br />

∫<br />

H ij = dxψi ∗ (x, k)Hψ j (x, k), (2.7)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

∫<br />

S ij =<br />

dxψ ∗ i (x, k)ψ j (x, k). (2.8)<br />

Minimizing the energy in the coefficients leads to<br />

∀i : ∑ j<br />

H ij c j = E ∑ j<br />

S ij c j . (2.9)<br />

This system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s can be written as a general eigenvalue equati<strong>on</strong> Hc =<br />

ESc, where c is the column vector <str<strong>on</strong>g>of</str<strong>on</strong>g> the coefficients c j . Explicitly we obtain<br />

( ) ( ) ( ) ( )<br />

HAA H AB cA SAA S<br />

= E<br />

AB cA<br />

. (2.10)<br />

H BB c B S BB c B<br />

H BA<br />

S BA<br />

Now we will specify the comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> these matrices.<br />

Transfer matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> overlap matrix<br />

The transfer matrix can be calculated as follows<br />

∫<br />

H ij = dxψi ∗ (x, k)Hψ j (x, k)<br />

= 1 ∫ (<br />

Nc<br />

) (<br />

)<br />

∑<br />

∑N c<br />

dx e −ik·X n ′ φ i (x − X ′<br />

N<br />

n) H e ik·Xn φ j (x − X n )<br />

c<br />

= 1 ∑N c<br />

N c<br />

n ′ =1<br />

∑N c<br />

n ′ =1 n=1<br />

e ik·(Xn−X n ′ ) ∫<br />

n=1<br />

dxφ i (x − X ′ n)Hφ j (x − X n ).<br />

(2.11)<br />

22


2.1. ELECTRONIC STRUCTURE OF GRAPHENE<br />

The overlap matrix is calculated in a similar manner:<br />

∫<br />

S ij = dxψi ∗ (x, k)ψ j (x, k)<br />

= 1 ∑N c<br />

N c<br />

∑N c<br />

n ′ =1 n=1<br />

e ik·(Xn−X n ′ ) ∫<br />

dxφ i (x − X ′ n)φ j (x − X n ).<br />

(2.12)<br />

For graphene we will assume that <strong>on</strong>ly nearest neighbors interact, therefore the<br />

integrals in Eqs. (2.11) <str<strong>on</strong>g>and</str<strong>on</strong>g> (2.12) are <strong>on</strong>ly n<strong>on</strong>-zero for X n − X n ′ = δ 1,2,3 , where<br />

the δ j are the vectors c<strong>on</strong>necting a B atom to its neighboring A atoms; they are<br />

given by δ 1 = (0, a), δ 2 = ( √ 3a/2, −a/2), δ 3 = (− √ 3a/2, −a/2).<br />

H AB = H ∗ BA = t ( e −ik·δ3 + e −ik·δ3 + e −ik·δ3) = tf(k) (2.13)<br />

H AA = H BB = ɛ 0 , (2.14)<br />

with the transfer between two neighboring atoms t = ∫ dxφ A (x)Hφ B (x), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ɛ 0 = ∫ dxφ A (x)Hφ A (x) the <strong>on</strong>-site energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the atoms. In the same manner the<br />

overlap matrix has the elements<br />

S AB = S ∗ AB = sf(k), S AA = S BB = 1, (2.15)<br />

with s = 〈φ A |φ B 〉 the overlap between two neighboring atoms. The equati<strong>on</strong> that<br />

we obtain is<br />

( ) ( ) ( ) ( )<br />

ɛ0 tf(k) cA<br />

1 sf(k) cA<br />

tf ∗ = E<br />

(k) ɛ 0 c B sf ∗ . (2.16)<br />

(k) 1 c B<br />

This eigenvalue equati<strong>on</strong> has soluti<strong>on</strong>s <strong>on</strong>ly when the energy satisfies det[H−ES] =<br />

0 <str<strong>on</strong>g>and</str<strong>on</strong>g> results in<br />

E ± (k) = ɛ 0 ± t|f(k)|<br />

1 ± s|f(k)| , (2.17)<br />

with<br />

|f(k)| = ∣ ∣ e<br />

−ik·δ 1<br />

+ e −ik·δ2 + e −ik·δ3 (√ )<br />

3<br />

= |2e −iaky/2 cos<br />

2 ak x + e iaky |<br />

(√ ) (√ )<br />

( )<br />

= √ 1 + 4 cos<br />

2 3<br />

3 3<br />

2 ak x + 4 cos<br />

2 ak x cos<br />

2 ak y .<br />

(2.18)<br />

The (emperical) parameters t ≈ 3.15 eV <str<strong>on</strong>g>and</str<strong>on</strong>g> s ≈ 0.38 eV are determined by<br />

comparing the obtained spectra from Density Functi<strong>on</strong>al Theory calculati<strong>on</strong>s with<br />

the spectra from experiment, we used the values used by Partoens <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters<br />

(2006), <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently the spectrum is now specified. Since we are not interested<br />

in the absolute energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum we can shift the energy by choosing ɛ 0 = 0.<br />

23


CHAPTER 2.<br />

ELECTRONIC PROPERTIES OF GRAPHENE<br />

Further, because the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the overlap s is small for small |k − K|, we can<br />

neglect it when we are interested <strong>on</strong>ly in this regi<strong>on</strong>, resulting in a more appealing<br />

symmetric form for the spectrum<br />

E ± (k) = ±t|f(k)|, (2.19)<br />

which is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used.<br />

In Fig. 2.7 this spectrum is shown <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e can see that the K <str<strong>on</strong>g>and</str<strong>on</strong>g> K ′ points<br />

have zero energy (f(K) = f(K ′ ) = 0), further, the spectrum close to these points<br />

looks c<strong>on</strong>e-shaped. Further <strong>on</strong> we will see that indeed we can approximate the<br />

spectrum close to the K points by c<strong>on</strong>es. Since there are as many electr<strong>on</strong>s in the<br />

π-orbitals as lattice sites, the b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are half-filled. This is because each π-orbital<br />

can c<strong>on</strong>tain two electr<strong>on</strong>s with opposite spin. Therefore the Fermi energy crosses<br />

the K(K ′ ) points in the undoped case.<br />

Figure 2.4: (a) The TB spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene, the BZ is shown as the hexag<strong>on</strong>.<br />

Taken from Beenakker (2008).<br />

Adding a mass term<br />

In the case the two atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> the lattice are not equivalent, then the diag<strong>on</strong>al matrix<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the TB Hamilt<strong>on</strong>ian will not be equal<br />

H AA = ɛ A ≠ H BB = ɛ B . (2.20)<br />

Introducing ɛ 0 = (ɛ A + ɛ B )/2 <str<strong>on</strong>g>and</str<strong>on</strong>g> m = (ɛ A − ɛ B )/2 the Hamilt<strong>on</strong>ian can be written<br />

( )<br />

ɛ0 tf(k)<br />

H =<br />

tf ∗ + mσ<br />

(k) ɛ z (2.21)<br />

0<br />

24


2.1. ELECTRONIC STRUCTURE OF GRAPHENE<br />

with corresp<strong>on</strong>ding spectrum<br />

E ± (k) = ɛ 0 ± √ t 2 |f(k)| 2 + m 2 , (2.22)<br />

In the following we investigate under which symmetry operati<strong>on</strong>s the above<br />

Hamilt<strong>on</strong>ian, with the overlap s ≈ 0, is invariant.<br />

Spatial inversi<strong>on</strong> P<br />

Spatial inversi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lattice (x, y) → (−x, −y) takes A atoms into B atoms In<br />

momentum space this means<br />

( ) ( ) ( )<br />

cA (k) cA (−k) cB (−k)<br />

P = σ<br />

c B (k) x =<br />

, (2.23)<br />

c B (−k) c A (−k)<br />

where we let the Pauli matrix σ x operate in pseudo-spin (sublattice) space. Therefore,<br />

the Hamilt<strong>on</strong>ian is invariant under this transformati<strong>on</strong>. If the mass term is<br />

included though, this symmetry is broken <str<strong>on</strong>g>and</str<strong>on</strong>g> the mass term flips under the parity<br />

transformati<strong>on</strong>.<br />

Time-reversal symmetry<br />

Time reversal t → −t changes the signs <str<strong>on</strong>g>of</str<strong>on</strong>g> spin <str<strong>on</strong>g>and</str<strong>on</strong>g> momentum. In momentum<br />

space we obtain<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

c A,↑ (k) c A,↑ (−k) c A,↓ (−k)<br />

T ⎜c A,↓ (k)<br />

⎟<br />

⎝c B,↑ (k) ⎠ = iτ ⎜c A,↓ (−k)<br />

⎟<br />

y ⎝c B,↑ (−k) ⎠ = ⎜−c A,↑ (−k)<br />

⎟<br />

⎝ c B,↓ (−k) ⎠ , (2.24)<br />

c B,↓ (k) c B,↓ (−k) −c B,↑ (−k)<br />

where τ y operates in spin space. The Hamilt<strong>on</strong>ian is invariant under this symmetry.<br />

A mass term does not break this symmetry, but an applied magnetic field does.<br />

Particle hole symmetry<br />

If the relati<strong>on</strong><br />

σ y H ∗ (k)σ y = H(−k) (2.25)<br />

holds then Eσ y c ∗ = σ y H ∗ (k)c ∗ = σ y H ∗ (k)σ y σ y c ∗ = −H(k)σ y c ∗ , <str<strong>on</strong>g>and</str<strong>on</strong>g> thus if c<br />

is an eigenstate with eigenvalue E then σ y c ∗ is also an eigenstate with eigenvalue<br />

−E. Hence the spectrum is symmetric around E = 0. The Hamilt<strong>on</strong>ian fulfills this<br />

relati<strong>on</strong>, even when a mass term is present.<br />

2.1.2 Approximati<strong>on</strong> around the K point<br />

We are particularly interested in the low energy regi<strong>on</strong> (i.e., E < 1 eV) around the<br />

Fermi-level, as low energy excitati<strong>on</strong>s are important for the transport <str<strong>on</strong>g>properties</str<strong>on</strong>g> we<br />

want to investigate. As the energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s in the spectrum touch the Fermi-energy<br />

25


CHAPTER 2.<br />

ELECTRONIC PROPERTIES OF GRAPHENE<br />

<strong>on</strong>ly in the K(K ′ ) points, we approximate the Hamilt<strong>on</strong>ian around these points.<br />

Exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ing f(k) into a Taylor series around K(K ′ ) = ( τ4π/3 √ 3a 0 ) , with τ = 1<br />

for the K point <str<strong>on</strong>g>and</str<strong>on</strong>g> τ = −1 for the K ′ point, <str<strong>on</strong>g>and</str<strong>on</strong>g> k . = K + q gives (up to first<br />

order)<br />

f(k) ≈ f(K) + ∂f(k) ∣ ∣∣∣K<br />

q x + ∂f(k) ∣ ∣∣∣K<br />

q y , (2.26)<br />

∂k x ∂k y<br />

where<br />

∣<br />

∂f(k) ∣∣∣K<br />

= − √ (√<br />

3<br />

3ae −iaky/2 sin<br />

∂k x<br />

∣ ∣∣∣K<br />

= ia[−e −iaky/2 cos<br />

∂f(k)<br />

∂k y<br />

2 ak x<br />

)<br />

(√<br />

3<br />

2 ak x<br />

) ∣∣∣∣K<br />

= −τ3a/2, (2.27)<br />

+ e iaky ]<br />

∣ = i3a/2, (2.28)<br />

K<br />

resulting in<br />

f(k) = 3a 2 (−τk x + ik y ). (2.29)<br />

This leads to the Hamilt<strong>on</strong>ian<br />

(<br />

H τ = v F <br />

0 −τk x + ik y<br />

−τk x − ik y 0<br />

)<br />

, (2.30)<br />

.<br />

where we introduced the Fermi-velocity v F =<br />

3at<br />

2<br />

≈ 106 m/s. The corresp<strong>on</strong>ding<br />

spectrum E α (k) = αt|f(k)|, with α = ±1 the b<str<strong>on</strong>g>and</str<strong>on</strong>g>-index, has a c<strong>on</strong>e-like shape<br />

√<br />

E α (k) = αv F kx 2 + ky. 2 (2.31)<br />

The latter Hamilt<strong>on</strong>ian is nothing else than the Dirac-Weyl Hamilt<strong>on</strong>ian, which<br />

describes relativistic massless fermi<strong>on</strong>s moving in two dimensi<strong>on</strong>s. In the next<br />

secti<strong>on</strong> we will further discuss this analogy.<br />

It is important to remember that we are <strong>on</strong>ly describing the coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Bloch expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the TB wave functi<strong>on</strong>s exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed around the K <str<strong>on</strong>g>and</str<strong>on</strong>g> the K ′<br />

point. The total wave functi<strong>on</strong> is described by a linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (2.5)<br />

with the coefficients c A (k), c B (k) with k close to the K point <str<strong>on</strong>g>and</str<strong>on</strong>g> with coefficients<br />

c A ′(k), c B ′(k) where k is close to the K ′ point. The coefficients c A (k), c B (k)<br />

(c A ′(k), c B ′(k)) are governed by our TB Hamilt<strong>on</strong>ian for τ = +(−). This leads to<br />

26


2.1. ELECTRONIC STRUCTURE OF GRAPHENE<br />

the wave functi<strong>on</strong><br />

ψ(x, k) = c A (k)<br />

+ c B (k)<br />

1<br />

√<br />

Nc<br />

+ c A ′(k)<br />

+ c B ′(k)<br />

1<br />

√<br />

Nc<br />

∑N c<br />

1<br />

n<br />

∑N c<br />

e iK·X A<br />

φ A (x − X n )<br />

n<br />

∑N c<br />

√<br />

Nc<br />

n<br />

1 ∑N c<br />

√<br />

Nc<br />

n<br />

e iK·Xn φ B (x − X n )<br />

e iK′·X n<br />

φ A (x − X n )<br />

e iK′·X n<br />

φ B (x − X n ).<br />

(2.32)<br />

The coefficients c(k) = ( c A c B c A ′ c B ′)<br />

can also be described by the 4 × 4<br />

Hamilt<strong>on</strong>ian<br />

( )<br />

−kx σ<br />

H = v F x + ik y σ y 0<br />

, (2.33)<br />

0 k x σ x + ik y σ y<br />

with σ x , <str<strong>on</strong>g>and</str<strong>on</strong>g> σ y Pauli matrices. Further, the wave functi<strong>on</strong>s are double-degenerate<br />

in the spin-space (not the pseudo-spin) <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s. Including the spin results<br />

in an 8 × 8 Hamilt<strong>on</strong>ian.<br />

Trig<strong>on</strong>al warping<br />

From the spectrum it is clear that the c<strong>on</strong>ical symmetry in the vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac<br />

points must break down if k−K becomes large. The two important approximati<strong>on</strong>s<br />

which made the c<strong>on</strong>ical spectrum possible are: (1) <strong>on</strong>ly nearest neighbors are<br />

c<strong>on</strong>sidered <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) <strong>on</strong>ly terms linear in k are taken into account. According to<br />

Wallace (Wallace, 1947) the spectrum including next nearest neighbors is given by<br />

E α (k) = αt √ 3 + |f(k)| − t ′ f(k) (2.34)<br />

where the transfer integral between next nearest neighbors is given by t ′ , <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

α = ±1. If we exp<str<strong>on</strong>g>and</str<strong>on</strong>g> up to sec<strong>on</strong>d order in k → k − K, the spectrum becomes<br />

[ 9t<br />

E α (k) = 3t ′ ′ a 2<br />

]<br />

+ αv F |k| − + α 3ta2<br />

4 8 sin(3θ k) |k| 2 , (2.35)<br />

with θ k = arctan(k y /k x ). From here we can see that t ′ breaks particle-hole symmetry<br />

(due to the first term), while t breaks the angular (c<strong>on</strong>ical) symmetry (due to<br />

the term in θ k ). Due to the factor 3 before θ k the spectrum has threefold symmetry.<br />

27


CHAPTER 2.<br />

ELECTRONIC PROPERTIES OF GRAPHENE<br />

2.1.3 C<strong>on</strong>tinuum model<br />

By taking an inverse Fourier transform <str<strong>on</strong>g>of</str<strong>on</strong>g> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong> Hc = Ec with<br />

Hamilt<strong>on</strong>ian from Eq. (2.30) <strong>on</strong>e ends up with the Hamilt<strong>on</strong>ian 1 :<br />

(<br />

)<br />

0 τ∂<br />

H τ = −iv F <br />

x − i∂ y<br />

. (2.36)<br />

τ∂ x + i∂ y 0<br />

This can be verified easily by applying the Fourier transform F given by<br />

∫<br />

F (k) = F(f(x)) = dxe −ik·x f(x), (2.37)<br />

to the Hamilt<strong>on</strong>ian in x space <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (2.36). Using the property for the Fourier<br />

transform <str<strong>on</strong>g>of</str<strong>on</strong>g> the partial derivative<br />

F(∂ x,y f(k)) = −ik x,y<br />

∫<br />

dxe ik·x f(x) = −ik x,y F(f(x)), (2.38)<br />

<strong>on</strong>e obtains again the Hamilt<strong>on</strong>ian <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (2.30) in k space (up<strong>on</strong> a factor i which<br />

can be added in the wave functi<strong>on</strong>), meaning the two are equivalent. Written as a<br />

4 × 4 Hamilt<strong>on</strong>ian, Eq. (2.36) is the Dirac-Weyl Hamilt<strong>on</strong>ian<br />

H =<br />

( )<br />

vF ˆp · σ 0<br />

0 −v F ˆp · σ ∗ ≡<br />

(<br />

vF ˆp · σ 0<br />

0 −v F ˆp · σ<br />

)<br />

, (2.39)<br />

with ˆp = (ˆp x , ˆp y ) the momentum operator <str<strong>on</strong>g>and</str<strong>on</strong>g> σ = (σ x , σ y ) the vector <str<strong>on</strong>g>of</str<strong>on</strong>g> the two<br />

first Pauli matrices, while the equivalence sign means that the Hamilt<strong>on</strong>ian is the<br />

same up<strong>on</strong> a uniform transformati<strong>on</strong>.<br />

Single-valley approximati<strong>on</strong><br />

As seen before in Eq. (2.30), the two Hamilt<strong>on</strong>ians H τ with τ = ±1 for the K<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> K ′ point both c<strong>on</strong>tribute to the total Hamilt<strong>on</strong>ian <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. But if<br />

there is no interacti<strong>on</strong> between the K <str<strong>on</strong>g>and</str<strong>on</strong>g> K ′ points, we may restrict ourselves to<br />

<strong>on</strong>ly <strong>on</strong>e point, for example the K point. The latter approximati<strong>on</strong> we call the<br />

<strong>single</strong>-valley approximati<strong>on</strong>. From now <strong>on</strong> we will mainly use this <strong>single</strong>-valley<br />

approximati<strong>on</strong>. When we later <strong>on</strong> study the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s in electrostatic<br />

potentials V (x, y), we have to assume that these potentials are smooth <strong>on</strong> the<br />

length a <str<strong>on</strong>g>of</str<strong>on</strong>g> the lattice c<strong>on</strong>stant in order to allow the <strong>single</strong>-valley approximati<strong>on</strong><br />

to be valid. For such potentials V (x), the Fourier transform V (k) is n<strong>on</strong>zero <strong>on</strong>ly<br />

for small |k| ≪ 1/a. This can be seen from the definiti<strong>on</strong> V (x) = ∫ dxV (k)e ik·x ,<br />

because V (x + an) = V (x) implies ∫ dxV (k)e ik·an = 0, with n a unit vector.<br />

therefore, V (k) must be zero except when k · an ≪ 2π. In other words the Fourier<br />

transform V (k) is n<strong>on</strong>zero <strong>on</strong>ly for small |k| ≪ 1/a meaning that there is no<br />

scattering between K <str<strong>on</strong>g>and</str<strong>on</strong>g> K ′ states because |K − K ′ | is <str<strong>on</strong>g>of</str<strong>on</strong>g> order 1/a.<br />

1 (<br />

In the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this thesis we will <str<strong>on</strong>g>of</str<strong>on</strong>g>ten write the Hamilt<strong>on</strong>ian in the K-point as H = v 0 π<br />

†<br />

)<br />

F π 0<br />

with π = p x + ip y.<br />

28


2.1. ELECTRONIC STRUCTURE OF GRAPHENE<br />

In this work we <str<strong>on</strong>g>of</str<strong>on</strong>g>ten make use <str<strong>on</strong>g>of</str<strong>on</strong>g> stepwise or even δ-functi<strong>on</strong> type potentials,<br />

which are not at all c<strong>on</strong>form with the assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> smoothness <strong>on</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

lattice c<strong>on</strong>stant. For these types <str<strong>on</strong>g>of</str<strong>on</strong>g> potentials we will assume that they are smooth<br />

<strong>on</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the lattice c<strong>on</strong>stant, but at the same time they are sharp <strong>on</strong> the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fermi wave vector k F = |E|/v F , such that they can be modeled by<br />

the corresp<strong>on</strong>ding sharp stepwise or δ-functi<strong>on</strong> type potentials.<br />

Chirality or helicity<br />

In <strong>on</strong>e valley we can define a pseudo-helicity (or chirality) operator Λ τ = τ p·σ<br />

H τ<br />

v F |p|<br />

|p|<br />

=<br />

, which commutes with the Hamilt<strong>on</strong>ian, therefore <strong>on</strong>e can find a comm<strong>on</strong><br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> eigenstates, where chirality is a c<strong>on</strong>served quantity. Since the eigen energies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> H τ are ατv F |p| (with α = ±1 the b<str<strong>on</strong>g>and</str<strong>on</strong>g> index), those <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ τ are ατ. This means<br />

that for a given τ, flipping the b<str<strong>on</strong>g>and</str<strong>on</strong>g> index α → −α forces p → −p.<br />

Klein tunneling<br />

Klein tunneling is the unimpeded tunneling <str<strong>on</strong>g>of</str<strong>on</strong>g> a relativistic electr<strong>on</strong> through a<br />

<strong>on</strong>e-dimensi<strong>on</strong>al (1D) barrier for perpendicular incidence. In graphene it can be<br />

seen as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> chirality c<strong>on</strong>servati<strong>on</strong> when a smooth (thus allowing <strong>single</strong><br />

valley approximati<strong>on</strong>) electrostatic 1D potential V (x) is added to the Hamilt<strong>on</strong>ian.<br />

Suppose an electr<strong>on</strong> travels in the positive x-directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> thus k y = 0. The velocity<br />

operator is given by the Heisenberg equati<strong>on</strong> v x ∼ −i[x, H]/ = σ x <str<strong>on</strong>g>and</str<strong>on</strong>g> the change<br />

in velocity is dv x /dt = −i[σ x , H]/ = 2σ z k y . For k y being zero, the electr<strong>on</strong><br />

velocity is a c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore backscattering is not possible.<br />

Effective mass<br />

As a small note, I want to menti<strong>on</strong> that the c<strong>on</strong>tinuum approximati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

called (or assumed to include) the effective mass approximati<strong>on</strong>. This is a very<br />

c<strong>on</strong>fusing name in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene, where we have “massless” quasi-particles.<br />

This naming c<strong>on</strong>venti<strong>on</strong> derives from the fact that in most materials <strong>on</strong>e usually<br />

approximates the spectrum in the Γ point (i.e., the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the BZ), instead<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the K point. In the former point the Taylor expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum does<br />

not c<strong>on</strong>tain the linear term because <str<strong>on</strong>g>of</str<strong>on</strong>g> the symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the reciprocal lattice, but<br />

instead the b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are approximated by parabolas<br />

E n (k) = E n (Γ) + 1 2<br />

∑<br />

i,j=x,y(,z)<br />

Applying k j −→ −i∂ j <str<strong>on</strong>g>and</str<strong>on</strong>g> defining an effective mass<br />

∂E n (k)<br />

∂k i ∂k j<br />

∣<br />

∣∣k=Γ<br />

(k i − Γ i )(k j − Γ j ). (2.40)<br />

2<br />

2m n<br />

= ∂E n(k)<br />

∂k i ∂k j<br />

∣<br />

∣∣k=Γ<br />

, (2.41)<br />

<strong>on</strong>e obtains a new Schrödinger equati<strong>on</strong> with the effective mass replacing the normal<br />

<strong>on</strong>e (leading to the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG descripti<strong>on</strong>). In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene <strong>on</strong>e should<br />

29


CHAPTER 2.<br />

ELECTRONIC PROPERTIES OF GRAPHENE<br />

not try to think <str<strong>on</strong>g>of</str<strong>on</strong>g> an effective mass (tensor) as we do not even keep the sec<strong>on</strong>d<br />

order in k. Further, an effective Dirac equati<strong>on</strong> instead <str<strong>on</strong>g>of</str<strong>on</strong>g> a Schrödinger equati<strong>on</strong><br />

is obtained <str<strong>on</strong>g>and</str<strong>on</strong>g> if we speak about a mass term we are referring to the <strong>on</strong>e in the<br />

Dirac-like equati<strong>on</strong>.<br />

2.1.4 Density <str<strong>on</strong>g>of</str<strong>on</strong>g> states<br />

If there are many eigenstates for an electr<strong>on</strong> to occupy, these are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten looked up<strong>on</strong><br />

as a c<strong>on</strong>tinuum <str<strong>on</strong>g>of</str<strong>on</strong>g> states. In our previous descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene for example<br />

we did obtain a c<strong>on</strong>tinuous spectrum (where k was allowed to be any value in<br />

the Brillouin z<strong>on</strong>e). The density <str<strong>on</strong>g>of</str<strong>on</strong>g> states (DOS) describes how these states are<br />

distributed in energy. In 2D it is calculated from the spectrum by<br />

ρ(E)/A = ∑ ∫ dk<br />

4π 2 δ(E − E n(k)), (2.42)<br />

n<br />

where n is the b<str<strong>on</strong>g>and</str<strong>on</strong>g> index <str<strong>on</strong>g>and</str<strong>on</strong>g> E n (k) the nth energy b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum. Except<br />

that knowing this quantity is educative, it is also <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental interest as it is<br />

more easily measured than the spectrum itself. In graphene the DOS was found<br />

analytically from Eq. (2.31) by (Hobs<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Nierenberg, 1953). Per unit cell surface<br />

A c it is given by (Castro et al., 2007)<br />

ρ(E)/A c = 4 |E| 1<br />

√<br />

π 2 |t 2 F(π/2, √ Z 1 /Z 0 ), (2.43)<br />

| Z0<br />

where F( π 2<br />

, x) is the complete elliptic integral <str<strong>on</strong>g>of</str<strong>on</strong>g> the first kind <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Z 0 = A, <str<strong>on</strong>g>and</str<strong>on</strong>g> Z 1 = B, |E| < t, (2.44)<br />

Z 0 = B, <str<strong>on</strong>g>and</str<strong>on</strong>g> Z 1 = A, t < |E| < 3t, (2.45)<br />

with A = (1 + |E/t|) 2 − [(E/t) 2 − 1] 2 /4, Z 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> B = 4|E/t|. This DOS is shown in<br />

Fig. 2.5.<br />

If <strong>on</strong>e approximates the spectrum in the K point by the Dirac c<strong>on</strong>e, then the<br />

DOS becomes linear in the energy<br />

ρ(E)/A c =<br />

4|E|<br />

2π 2 vF<br />

2 , (2.46)<br />

where the factor four results from the valley plus spin degeneracy. This approximate<br />

DOS is shown as the solid black line in Fig. 2.5. For E/t smaller than 0.5 the<br />

results from the approximate spectrum <str<strong>on</strong>g>and</str<strong>on</strong>g> the TB spectrum are almost the same.<br />

Therefore, the linear spectrum can be safely used for energies up to 1 eV ≪ t =<br />

3.15 eV.<br />

Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the observati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> calculati<strong>on</strong>s made for <strong>single</strong>-layer graphene can<br />

easily be extended to bilayer graphene, which we do in the following secti<strong>on</strong>.<br />

30


2.2. BILAYER GRAPHENE<br />

DOS (τF /L × e 2 /h)<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-3 -2 -1 0 1 2 3<br />

E F /t<br />

Figure 2.5: The DOS for the TB spectrum (dashed curve) <str<strong>on</strong>g>and</str<strong>on</strong>g> its c<strong>on</strong>e approximati<strong>on</strong><br />

(solid curve).<br />

2.2 Bilayer graphene<br />

In bilayer graphene the lattice c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two <strong>single</strong> layers stacked up<strong>on</strong> each other<br />

but shifted such that the A atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e layer are c<strong>on</strong>nected to the B ′ atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

other layer, as shown in Fig. 2.6. In this figure <strong>on</strong>e can also see that the triangular<br />

Bravais lattice remains, as well as the reciprocal lattice <str<strong>on</strong>g>and</str<strong>on</strong>g> the hexag<strong>on</strong>al BZ.<br />

The derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>ic structure is similar to the <strong>on</strong>e for <strong>single</strong>-layer<br />

graphene. Moreover, we will use many <str<strong>on</strong>g>of</str<strong>on</strong>g> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculati<strong>on</strong>s for <strong>single</strong>layer<br />

graphene.<br />

2.2.1 Tight-binding approach<br />

To obtain the bilayer tight-binding Hamilt<strong>on</strong>ian we first observe that there are now<br />

four instead <str<strong>on</strong>g>of</str<strong>on</strong>g> two atoms in each unit cell, the atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> the extra (lower) layer<br />

we will refer to as the A ′ <str<strong>on</strong>g>and</str<strong>on</strong>g> B ′ atoms. Between the layers we assume there is<br />

an energy transfer c<strong>on</strong>necting the A <str<strong>on</strong>g>and</str<strong>on</strong>g> B ′ atoms with corresp<strong>on</strong>ding parameter<br />

.<br />

γ 1 = t⊥ . We will use t ⊥ ≈ 0.39 eV, which is small compared to the coupling<br />

t ≈ 3.15 eV between the neighboring atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> the same layer. This means that<br />

there are now four orbital wave functi<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently the TB Hamilt<strong>on</strong>ian is<br />

a 4 × 4 matrix. Without the transfer between the A <str<strong>on</strong>g>and</str<strong>on</strong>g> the B ′ atoms, this matrix<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two <strong>single</strong>-layer Hamilt<strong>on</strong>ians <strong>on</strong> the diag<strong>on</strong>al. Adding this transfer<br />

gives rise to n<strong>on</strong>zero elements H AB ′ = HB ∗ ′ A = t ⊥. Putting the overlap to zero<br />

31


CHAPTER 2.<br />

ELECTRONIC PROPERTIES OF GRAPHENE<br />

Figure 2.6: (a) Bilayer graphene Bravais lattice c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> two layers <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene<br />

stacked up<strong>on</strong> each other, such that the A atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> the upper layer are <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

B ′ atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> the lower layer, while the A ′ <str<strong>on</strong>g>and</str<strong>on</strong>g> B atoms have no such c<strong>on</strong>necti<strong>on</strong>.<br />

The basis vectors are similar to <strong>single</strong>-layer graphene a j . (b) The reciprocal lattice<br />

is the same as the <strong>on</strong>e for <strong>single</strong>-layer graphene. The hexag<strong>on</strong>al Brillouin z<strong>on</strong>e is<br />

shown in green <str<strong>on</strong>g>and</str<strong>on</strong>g> the unit cell is shown in blue, two independent K points exist,<br />

the so-called K <str<strong>on</strong>g>and</str<strong>on</strong>g> K ′ point.<br />

(S = 1 4 ) as before, we obtain<br />

⎛<br />

⎞ ⎛<br />

0 tf(k) 0 t ⊥<br />

⎜tf ∗ (k) 0 0 0<br />

⎟ ⎜<br />

⎝ 0 0 0 tf(k) ⎠ ⎝<br />

t ⊥ 0 tf ∗ (k) 0<br />

with corresp<strong>on</strong>ding spectrum<br />

E ± s<br />

c A<br />

c B<br />

c ′ A<br />

c ′ B<br />

⎞ ⎛<br />

⎟<br />

⎠ = E ⎜<br />

⎝<br />

c A<br />

c B<br />

c ′ A<br />

c ′ B<br />

⎞<br />

⎟<br />

⎠ (2.47)<br />

= ±s t ⊥<br />

2 + st √<br />

⊥ 1 + 4|f(k)|2 , (2.48)<br />

2<br />

where s = ±1 determines whether the energy-b<str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>ds to a valence b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(s = −1) or a c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> (s = 1), <str<strong>on</strong>g>and</str<strong>on</strong>g> the ± sign is positive for the outer<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> negative for the inner b<str<strong>on</strong>g>and</str<strong>on</strong>g>s, the latter touches at the K point. In<br />

bilayer graphene there is an extra degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom as the <strong>on</strong>-site energy can be<br />

different between both layers. This can be included by adding an extra potential<br />

term <strong>on</strong> the diag<strong>on</strong>al <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hamilt<strong>on</strong>ian<br />

( )<br />

∆12 0<br />

H −→ H +<br />

, (2.49)<br />

0 −∆1 2<br />

with corresp<strong>on</strong>ding spectrum<br />

32<br />

E ± s<br />

[<br />

√<br />

] 1/2<br />

= s ∆ 2 + |f(k)| 2 + t2 ⊥<br />

2 ± 4∆ 2 |f(k)| 2 + |f(k)| 2 t 2 ⊥ + t2 ⊥ /4 , (2.50)


2.2. BILAYER GRAPHENE<br />

Figure 2.7: (a) Drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum for bilayer graphene in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the K points,<br />

for ∆ = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) for ∆ = 0.8t ⊥ . (c) Spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> bilayer graphene, red curves<br />

are for unbiased bilayer, blue curves are for biased (∆ = 200 meV) bilayer, green<br />

dash-dotted curves are for bilayer graphene within the two-b<str<strong>on</strong>g>and</str<strong>on</strong>g> approximati<strong>on</strong>.<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a gap where the c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> otherwise touch is realized.<br />

Using the approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energies close to the K(K ′ ) point <str<strong>on</strong>g>and</str<strong>on</strong>g> taking the<br />

c<strong>on</strong>tinuum limit (in a manner analogous to the <strong>single</strong>-layer case) leads to the Hamilt<strong>on</strong>ian<br />

⎛<br />

⎞<br />

∆ v F (τp x + ip y ) 0 t ⊥<br />

H τ = ⎜v F (τp x − ip y ) ∆ 0 0<br />

⎟<br />

⎝ 0 0 −∆ v F (τp x + ip y ) ⎠ , (2.51)<br />

t ⊥ 0 v F (τp x − ip y ) −∆<br />

with p x,y = −i∂ x,y , <str<strong>on</strong>g>and</str<strong>on</strong>g> τ equals 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> −1 for the K <str<strong>on</strong>g>and</str<strong>on</strong>g> K ′ point, respectively.<br />

In the <strong>single</strong>-valley approximati<strong>on</strong> <strong>on</strong>e can write<br />

⎛<br />

⎞<br />

∆ v F π 0 t ⊥<br />

H τ=+1 = ⎜v F π † ∆ 0 0<br />

⎟<br />

⎝ 0 0 −∆ v F π⎠ , (2.52)<br />

t ⊥ 0 v F π † −∆<br />

with π = p x + ip y . The latter Hamilt<strong>on</strong>ian will be used further in this work. Often<br />

in the literature another Hamilt<strong>on</strong>ian is used to describe bilayer graphene, the socalled<br />

two-b<str<strong>on</strong>g>and</str<strong>on</strong>g> approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the former <strong>on</strong>e. This Hamilt<strong>on</strong>ian is valid in the<br />

low energy range (|E| ≪ t ⊥ /4) <str<strong>on</strong>g>and</str<strong>on</strong>g> is given by<br />

(<br />

H = − v2 F 0 π<br />

† 2 ) [ ( )]<br />

t ⊥ π 2 + τ∆ σ z − 2v2 F π † π 0<br />

0<br />

t 2 0 ππ † (2.53)<br />

⊥<br />

with σ z = ( 1 0<br />

0 −1<br />

)<br />

. The last term can be neglected in the case that ∆ ≪ t⊥ ,<br />

which is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten assumed to be fulfilled. This 2 × 2 Hamilt<strong>on</strong>ian can be obtained<br />

33


CHAPTER 2.<br />

ELECTRONIC PROPERTIES OF GRAPHENE<br />

from the 4 × 4 Hamilt<strong>on</strong>ian as follows (McCann <str<strong>on</strong>g>and</str<strong>on</strong>g> Fal’ko, 2006). For the twob<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

model <strong>on</strong>ly the two lowest b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are retained, <str<strong>on</strong>g>and</str<strong>on</strong>g> these b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are correct<br />

for low energy. First we apply a uniform transformati<strong>on</strong> ( ψ A ψ B ψ A ′ ψ B ′)<br />

( ) →<br />

ψA ′ ψ B ψ A ψ B ′ , after which the Hamilt<strong>on</strong>ian becomes<br />

⎛<br />

⎞<br />

−∆ 0 0 v F π<br />

( )<br />

H = ⎜ 0 ∆ v F π † 0<br />

⎟<br />

⎝ 0 v F π ∆ t ⊥<br />

⎠ = H1 V<br />

V † . (2.54)<br />

H 2<br />

v F π † 0 t ⊥ −∆<br />

This Hamilt<strong>on</strong>ian is block-diag<strong>on</strong>al for k = 0, <str<strong>on</strong>g>and</str<strong>on</strong>g> the large comp<strong>on</strong>ents ψ A ′, ψ B<br />

(bel<strong>on</strong>ging to the low-energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s) are c<strong>on</strong>nected to the small comp<strong>on</strong>ents ψ A , ψ B ′<br />

(bel<strong>on</strong>ging to the high-energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s) through the momentum operators. The<br />

low-energy states can be described by an effective 2 × 2 Hamilt<strong>on</strong>ian ˜H in the<br />

comp<strong>on</strong>ent-space ˜ψ = (ψ A ′, ψ B ) To find the effective Hamilt<strong>on</strong>ian c<strong>on</strong>sider the<br />

identity<br />

det (H − E) = det[H 1 − V (H 2 − E) −1 V † − E] det(H 2 − E). (2.55)<br />

Since t ⊥ ≫ E we assume H 2 − E ≈ H 2 which results in<br />

det (H − E) ≈ det[H 1 − V H −1<br />

2 V † − E] det(H 2 ). (2.56)<br />

Because det(H 2 ) is a c<strong>on</strong>stant, an approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the low-energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s is obtained<br />

by diag<strong>on</strong>alizing the effective Hamilt<strong>on</strong>ian ˜H = H 1 − V H2 −1 V † . This yields:<br />

(<br />

˜H = −<br />

v2 F 0 π<br />

† 2 )<br />

t 2 ⊥ + ∆2 π 2 0<br />

[<br />

+ ∆ σ z −<br />

( )]<br />

2v2 F π † π 0<br />

t 2 ⊥ + ∆2 0 ππ † . (2.57)<br />

If ∆ 2 ≪ t 2 ⊥<br />

, <strong>on</strong>e arrives at the two-b<str<strong>on</strong>g>and</str<strong>on</strong>g> Hamilt<strong>on</strong>ian menti<strong>on</strong>ed above.<br />

2.3 Applying a magnetic field<br />

Here we will investigate the c<strong>on</strong>sequences <strong>on</strong> the electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene<br />

when a magnetic field is applied. First we look at the classical case.<br />

2.3.1 Classical picture: circular orbits<br />

Classically, an electr<strong>on</strong> (with mass m e ) under the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> a magnetic field<br />

obeys the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

∂p<br />

∂t = −e∂x × B, (2.58)<br />

∂t<br />

with p = m e v, i.e., the electr<strong>on</strong> moves al<strong>on</strong>g a circular orbit, the cyclotr<strong>on</strong> orbit<br />

with radius r c = p/eB <str<strong>on</strong>g>and</str<strong>on</strong>g> frequency ω c = v/r c . In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene<br />

the particles are massless. Therefore, <strong>on</strong>e can define an effective cyclotr<strong>on</strong> mass<br />

34


2.3. APPLYING A MAGNETIC FIELD<br />

(Novoselov et al., 2005) m c = p/v F = |E F |/vF 2 , which leads to r c = |E F |/ev F B<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ω c = v F /r c = eB/|E F |.<br />

Quantum mechanically the possible ‘orbits’ are quantized <str<strong>on</strong>g>and</str<strong>on</strong>g> we obtain the<br />

so-called LLs. Quasi-classically we can still try to define a cyclotr<strong>on</strong> radius <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

frequency.<br />

2.3.2 L<str<strong>on</strong>g>and</str<strong>on</strong>g>au levels<br />

Further <strong>on</strong> we will derive the LLs <str<strong>on</strong>g>of</str<strong>on</strong>g> a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG, <strong>single</strong>-layer, <str<strong>on</strong>g>and</str<strong>on</strong>g> bilayer<br />

graphene. The results can be summarized as follows:<br />

The LLs in the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG, obeying the Schrödinger equati<strong>on</strong> with an<br />

effective mass, are given by<br />

E n = ω c (n + 1/2), (2.59)<br />

√<br />

with ω c = /(mlB 2 ) ∝ B <str<strong>on</strong>g>and</str<strong>on</strong>g> l <br />

B =<br />

eB<br />

the magnetic length.<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>single</strong>-layer graphene we obtain (McClure, 1956)<br />

√<br />

E n = ± 2evF 2 Bn = ±ω √<br />

D√ n ∝ B n, (2.60)<br />

with the cyclotr<strong>on</strong> frequency ω D given by<br />

ω D = √ 2v F /l B , with l B =<br />

√<br />

<br />

eB<br />

the magnetic length. (2.61)<br />

In both cases the index n = 0, 1, 2, . . . Notice that for <strong>single</strong>-layer graphene the LLs<br />

depend <strong>on</strong> energy as the root <str<strong>on</strong>g>of</str<strong>on</strong>g> the index n, in c<strong>on</strong>trast to the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG<br />

whose LLs are equally spaced. Furthermore, in this case there is a LL at zero<br />

energy.<br />

In bilayer graphene in the four-b<str<strong>on</strong>g>and</str<strong>on</strong>g> approximati<strong>on</strong> the LLs are, for zero bias<br />

(∆ = 0), given by (Pereira et al., 2007)<br />

ε n = sgn(n) √<br />

2<br />

√t ′2 + 2(2|n| + 1) ± √ (t ′2 − 2) 2 8|n|, (2.62)<br />

with the dimensi<strong>on</strong>less coupling t ′ = t ⊥ l B /v<br />

√ F depending <strong>on</strong> the magnetic field<br />

<br />

strength through the magnetic length l B =<br />

eB<br />

. This results in LLs that are<br />

equally spaced for energies close to zero, while being spaced as the root <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

index n further away from zero-energy, that is, c<strong>on</strong>verging to the LLs for a <strong>single</strong><br />

layer. In the two-b<str<strong>on</strong>g>and</str<strong>on</strong>g> approximati<strong>on</strong> we see that this reduces to (McCann <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Fal’ko, 2006)<br />

E n = ±ω B sgn(n) √ |n|(|n| − 1), (2.63)<br />

with ω B = √ 2v 2 F /(t ⊥l B ). This approximati<strong>on</strong> leaves us with LLs that are nearly<br />

equally spaced in energy, similar to the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG, but with an extra LL at<br />

zero-energy.<br />

35


CHAPTER 2.<br />

ELECTRONIC PROPERTIES OF GRAPHENE<br />

See also Fig. 2.8, where the DOS corresp<strong>on</strong>ding to the LLs is plotted. In this plot<br />

we assumed a lorentzian broadening <str<strong>on</strong>g>of</str<strong>on</strong>g> the levels given by (Γ/π) [(E − E n ) + Γ 2 ] −1<br />

with a broadening factor Γ = 0.07 ω c , where ω c has to be replaced by ω D (ω B ) in<br />

the case <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>single</strong>-layer(bilayer) graphene.<br />

Figure 2.8: DOS corresp<strong>on</strong>ding to the broadened L<str<strong>on</strong>g>and</str<strong>on</strong>g>au Levels for (a) <strong>single</strong>layer<br />

graphene, (b) the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG, (c) bilayer graphene (in the two-b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

approximati<strong>on</strong>).<br />

Let us start with the derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the LLs in a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG, due to an<br />

applied perpendicular magnetic field.<br />

St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG: Schrödinger case<br />

The Hamilt<strong>on</strong>ian is given by<br />

Ĥ =<br />

(ˆp + eA)2<br />

2m , such that B = Be z = ∇ × A. (2.64)<br />

Taking the L<str<strong>on</strong>g>and</str<strong>on</strong>g>au gauge A = (0, Bˆx, 0), the Hamilt<strong>on</strong>ian becomes<br />

36<br />

Ĥ = 1 2<br />

[ˆp<br />

2m x + (ˆp y + eBˆx) 2] . (2.65)


2.3. APPLYING A MAGNETIC FIELD<br />

Since [ˆp y , Ĥ] = 0, the momentum in the y-directi<strong>on</strong> is a c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> p y =<br />

k y , <str<strong>on</strong>g>and</str<strong>on</strong>g> the Hamilt<strong>on</strong>ian becomes similar to the shifted harm<strong>on</strong>ic oscillator<br />

Ĥ = 1 2<br />

[ˆp<br />

2m x + (k y + eBˆx) 2] = ˆp2 x<br />

2m + 1 ( ) 2 ky<br />

2 mω2 c<br />

eB + ˆx , (2.66)<br />

where ω c = eB/m. Introducing the dimensi<strong>on</strong>less variable ˆX = ˆxl B − ky<br />

eB , ˆP =<br />

−i∂ X , <str<strong>on</strong>g>and</str<strong>on</strong>g> ε = ml 2 B E/2 = E/(ω c ) with the magnetic length l B = √ /eB, the<br />

Schrödinger equati<strong>on</strong> becomes<br />

1<br />

2 ( ˆP 2 + ˆX 2 )ψ = εψ. (2.67)<br />

Writing the left h<str<strong>on</strong>g>and</str<strong>on</strong>g> side as the square <str<strong>on</strong>g>of</str<strong>on</strong>g> an operator ( ˆP 2 + ˆX 2 ) = ( ˆP + i ˆX)( ˆP −<br />

i ˆX) + i[ ˆP , ˆX], defining a = ( ˆP − i ˆX)/ √ 2, <str<strong>on</strong>g>and</str<strong>on</strong>g> using i[ ˆP , ˆX] = 1, <strong>on</strong>e obtains<br />

Ĥ = ω c (a † a + 1/2) = ω c (aa † − 1/2), (2.68)<br />

where we notice that [a, a † ] = 1. Because N . = a † a commutes with the Hamilt<strong>on</strong>ian<br />

Ĥ, there exists a comm<strong>on</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> eigen states |n〉. Hence if N|n〉 = n|n〉, it<br />

follows that Na † |n〉 = a † aa † |n〉 = a † (N + 1)|n〉 = (n + 1)|n〉, therefore a † |n〉 =<br />

√ n + 1|n+1〉. In an analogous way it can be shown that a|n〉 =<br />

√ n|n−1〉, hence the<br />

eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> N are discrete numbers n. Because 〈N〉 = 〈n|N|n〉 = 〈n|a † a|n〉 ≥ 0,<br />

the lower bound <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenvalues must be finite. This is possible <strong>on</strong>ly if n includes<br />

0 such that a|0〉 = 0, c<strong>on</strong>sequently, n ∈ N. The eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĥ = ω c(N + 1/2)<br />

are therefore E n = ω c (n + 1/2). The eigenstates <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hamilt<strong>on</strong>ian can be found<br />

by determining the ground state. In positi<strong>on</strong> space we have ψ 0 (x) = 〈X|0〉 from<br />

a|0〉 = 0:<br />

0 = 〈X|a|0〉 = −i(X + ∂ X )ψ 0 (X), (2.69)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> solving this differential equati<strong>on</strong> we obtain ψ 0 (X) = π (−1/4) exp(−X 2 /2).<br />

Higher energy states are determined by recursively applying the ladder operator<br />

(n + 1) −1/2 a † |n〉 = |n + 1〉. This leads to the Hermite polynomials.<br />

Single-layer graphene<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>single</strong>-layer graphene with a perpendicular applied magnetic field,<br />

the Hamilt<strong>on</strong>ian is<br />

( ) (<br />

)<br />

0 (ˆp + eA)<br />

†<br />

0 ˆp<br />

Ĥ = v F = v x − i(ˆp y + eBˆx)<br />

ˆp + eA 0<br />

F ,<br />

ˆp x + i(ˆp y + eBˆx) 0<br />

(2.70)<br />

where the vector potential is defined by B = Be z = ∇ × A. Like in the n<strong>on</strong>relativistic<br />

case we make the equati<strong>on</strong> dimensi<strong>on</strong>less by introducing ˆX = ˆxl B − ky<br />

eB ,<br />

ˆP = −i∂ X :<br />

Ĥψ = √ 1 ( 0 ˆP − i ˆX<br />

2 ˆP + i ˆX 0<br />

)<br />

ψ =<br />

( ) 0 a<br />

a † ψ =<br />

0<br />

El B<br />

√<br />

2vF<br />

ψ = εψ. (2.71)<br />

37


CHAPTER 2.<br />

ELECTRONIC PROPERTIES OF GRAPHENE<br />

After taking the square <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hamilt<strong>on</strong>ian the equati<strong>on</strong> becomes diag<strong>on</strong>al:<br />

( )<br />

Ĥ 2 aa<br />

†<br />

0<br />

ψ =<br />

0 a † ψ = ε 2 ψ. (2.72)<br />

a<br />

The equati<strong>on</strong> for the lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> the spinor is the eigenvalue equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

operator N = a † a for the 2DEG, while the upper part corresp<strong>on</strong>ds to aa † = N + 1.<br />

Denoting the eigenstates ψ n = (u n , v n ) T , <strong>on</strong>e obtains<br />

(N + 1)u m = (m + 1)u m ,<br />

Nv n = nv n ,<br />

(2.73)<br />

with n ∈ N <str<strong>on</strong>g>and</str<strong>on</strong>g> n = m + 1 the square <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenvalues, hence ε n = s √ n. From<br />

the original Hamilt<strong>on</strong>ian <strong>on</strong>e derives √ n − 1|n − 1〉 = au n = ε n v n = s|ε n ||n〉.<br />

Therefore the eigenstates are defined as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong>s for the 2DEG<br />

ψ n =<br />

(<br />

un<br />

)<br />

=<br />

v n<br />

(<br />

|n − 1〉<br />

s|n〉<br />

)<br />

, (2.74)<br />

where if n = 0 then |n − 1〉 = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> the sign s = +1. The eigenvalues are<br />

E n = √ 2v F<br />

√<br />

l B<br />

ε n = sω D n, with the cyclotr<strong>on</strong> frequency defined by ωD = √ 2v F<br />

l B<br />

.<br />

Bilayer graphene<br />

The bilayer graphene Hamilt<strong>on</strong>ian in the two-b<str<strong>on</strong>g>and</str<strong>on</strong>g> approximati<strong>on</strong> is<br />

( ) (<br />

)<br />

0 (π<br />

Ĥ = v † ) 2<br />

0 [ˆp<br />

F<br />

π 2 = v x − i(ˆp y + eBˆx)] 2<br />

0 F<br />

[ˆp x + i(ˆp y + eBˆx)] 2 0<br />

(2.75)<br />

where the vector potential is defined by B = Be z = ∇×A. In dimensi<strong>on</strong>less units<br />

with ˆX = ˆxl B − ky<br />

eB , ˆP = −i∂X <strong>on</strong>e obtains<br />

Ĥψ = √ 1 (<br />

0 ( ˆP − i ˆX) ) ( )<br />

2 0 a<br />

2<br />

2 ( ˆP + i ˆX) 2 ψ =<br />

0<br />

(a † ) 2 ψ =<br />

El B<br />

√ ψ = εψ.<br />

0 2vF<br />

(2.76)<br />

Taking the square <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hamilt<strong>on</strong>ian diag<strong>on</strong>alizes the equati<strong>on</strong>:<br />

(<br />

)<br />

Ĥ 2 a<br />

ψ =<br />

2 a †2 0<br />

ψ = ε 2 ψ. (2.77)<br />

0 a †2 a 2<br />

Writing both operators <strong>on</strong> the diag<strong>on</strong>al as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the number operator <strong>on</strong>e<br />

obtains<br />

a 2 a †2 = a(a † a + 1)a † = (aa † ) 2 + aa † = ( ˆN + 1) 2 + ( ˆN + 1)<br />

= ( ˆN + 1)( ˆN + 2),<br />

a †2 a 2 = a † (aa † − 1)a = ˆN( ˆN − 1).<br />

(2.78)<br />

38


2.3. APPLYING A MAGNETIC FIELD<br />

Since ˆN commutes with operators which are polynomials in ˆN, the eigenstates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the upper <str<strong>on</strong>g>and</str<strong>on</strong>g> lower part are given by |n〉. Denoting the eigenstates ψ n = (u n , v n ) T ,<br />

<strong>on</strong>e obtains<br />

( ˆN + 1)( ˆN + 2)u m = (m + 1)(m + 2)u m ,<br />

ˆN( ˆN<br />

(2.79)<br />

− 1)v n = n(n − 1)v n ,<br />

with n ∈ N <str<strong>on</strong>g>and</str<strong>on</strong>g> n = m + 2 the square <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenvalues, hence ε n = s √ n(n − 1),<br />

with s = ±1. From the original Hamilt<strong>on</strong>ian <strong>on</strong>e finds √ n(n − 1)|n − 2〉 = a 2 u n =<br />

εv n = s|ε||n〉. Therefore the eigenstates are defined as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong>s<br />

for the 2DEG<br />

ψ n =<br />

(<br />

un<br />

)<br />

=<br />

v n<br />

( |n − 2〉<br />

s|n〉<br />

)<br />

. (2.80)<br />

If n = 0, 1 then |n − 1〉 = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> |n − 2〉 = 0. The sign s = +1, hence the zeroth LL<br />

is twice degenerate, for n = 0, 1. The eigenvalues are E n = √ 2v F<br />

√<br />

l B<br />

ε n = sω B n,<br />

with the the cyclotr<strong>on</strong> frequency defined by ω B =<br />

√<br />

2v<br />

2<br />

F<br />

l B t ⊥<br />

.<br />

39


3<br />

Klein tunneling <str<strong>on</strong>g>of</str<strong>on</strong>g> Dirac-particles versus<br />

bos<strong>on</strong>s obeying the Klein-Gord<strong>on</strong> equati<strong>on</strong><br />

3.1 Introducti<strong>on</strong><br />

The behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers in wide <strong>single</strong>-layer graphene sheets is that <str<strong>on</strong>g>of</str<strong>on</strong>g> chiral,<br />

“relativistic” massless particles with a “light speed” equal to the Fermi velocity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the crystal (v F ≈ c/300) <str<strong>on</strong>g>and</str<strong>on</strong>g> a gapless linear dispersi<strong>on</strong> close to the K <str<strong>on</strong>g>and</str<strong>on</strong>g> K ′<br />

points. The absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a gap <str<strong>on</strong>g>and</str<strong>on</strong>g> the chiral nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>ic states, in both<br />

<strong>single</strong>-layer <str<strong>on</strong>g>and</str<strong>on</strong>g> bilayer graphene, is at the root <str<strong>on</strong>g>of</str<strong>on</strong>g> phenomena such as the Klein<br />

tunneling which is the perfect transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carriers, up<strong>on</strong> normal incidence,<br />

through a potential barrier. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> chirality in the electr<strong>on</strong>ic <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

massless fermi<strong>on</strong>s can be assessed or further appreciated by c<strong>on</strong>trasting the behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chiral, massless fermi<strong>on</strong>s with that <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-chiral, massless zero-spin bos<strong>on</strong>s.<br />

The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> introducing a gap in the spectrum, introducing a mass term, is<br />

also <str<strong>on</strong>g>of</str<strong>on</strong>g> interest.<br />

In this chapter we study the transmissi<strong>on</strong> through a <strong>on</strong>e-dimensi<strong>on</strong>al potential<br />

barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> the bound states there<str<strong>on</strong>g>of</str<strong>on</strong>g>. In Sec. 3.2 we investigate the tunneling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> zero-spin particles (bos<strong>on</strong>s) through a <strong>single</strong> barrier using the Klein-Gord<strong>on</strong><br />

equati<strong>on</strong>, while in Sec. 3.3 we use the Dirac equati<strong>on</strong>. In Sec. 3.4 we look at the<br />

influence <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>zero mass term. Finally, in Sec. 3.5 we summarize the results.<br />

3.2 Klein-Gord<strong>on</strong> equati<strong>on</strong><br />

We first calculate the transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zero-spin bos<strong>on</strong>s through a <strong>single</strong> barrier <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

height V <str<strong>on</strong>g>and</str<strong>on</strong>g> width L, shown in Fig. 3.1, using the Klein-Gord<strong>on</strong> equati<strong>on</strong> in two<br />

dimensi<strong>on</strong>s:<br />

∇ 2 ψ(x, y) = − 1 [<br />

(E − V (x)) 2<br />

2 vF<br />

2 − m 2 vF<br />

4 ]<br />

ψ(x, y), (3.1)<br />

1 The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter were published as:<br />

M. Barbier, F. M. Peeters, P. Vasilopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> J. M. Pereira Jr, Phys. Rev. B 77, 115446 (2008).<br />

41


CHAPTER 3. KLEIN TUNNELING OF DIRAC-PARTICLES VERSUS<br />

BOSONS OBEYING THE KLEIN-GORDON EQUATION<br />

Figure 3.1: 1D potential barrier V (x) <str<strong>on</strong>g>of</str<strong>on</strong>g> height V <str<strong>on</strong>g>and</str<strong>on</strong>g> width L.<br />

where we use the Fermi-velocity v F ≈ c/300 instead <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> light c.<br />

Since the Hamilt<strong>on</strong>ian H commutes with p y we look for soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the form<br />

ψ(x, y) = ψ(x)e ikyy . This results in the equati<strong>on</strong><br />

∇ 2 ψ(x) = − [ (ε − u(x)) 2 − k 2 y − µ 2] ψ(x, y), (3.2)<br />

where we used the dimensi<strong>on</strong>less variables ε = EL/v F , u(x) = V (x)L/v F , k y =<br />

k y L, µ = mv F L/, <str<strong>on</strong>g>and</str<strong>on</strong>g> x = x/L, which scale with the barrier length L. The<br />

resulting equati<strong>on</strong> for ψ(x)<br />

√<br />

within a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant potential V (x) is solved by<br />

ψ(x) = e ±iλx with λ = (ε − u(x)) 2 − ky 2 − µ 2 . To find the soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave<br />

functi<strong>on</strong> for stepwise potential pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles, such as the square barrier c<strong>on</strong>sidered here,<br />

we make use <str<strong>on</strong>g>of</str<strong>on</strong>g> the transfer matrix approach.<br />

3.2.1 Transfer matrix approach<br />

The wave functi<strong>on</strong> in the jth regi<strong>on</strong> ψ j (x) <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stant potential V j is given by<br />

a superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenstates given by ψ lj = e −iλjx <str<strong>on</strong>g>and</str<strong>on</strong>g> ψ rj = e iλjx ,<br />

ψ j (x) = A j ψ rj + B j ψ lj . (3.3)<br />

From the c<strong>on</strong>tinuity <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> current density <strong>on</strong>e finds that the soluti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

their derivatives should be c<strong>on</strong>tinuous at the interfaces. This boundary c<strong>on</strong>diti<strong>on</strong><br />

results in the transfer matrix N j relating the coefficients A j <str<strong>on</strong>g>and</str<strong>on</strong>g> B j <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong> j<br />

with those <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong> j + 1 as follows:<br />

( ) ( )<br />

Aj<br />

Aj+1<br />

= N<br />

B j+1 . (3.4)<br />

j B j+1<br />

By employing the transfer matrix at each potential step we obtain, after n steps,<br />

the relati<strong>on</strong><br />

( )<br />

A0<br />

n∏<br />

( )<br />

An<br />

= N<br />

B j . (3.5)<br />

0 B n<br />

j=1<br />

The transfer matrix is given by N = ∏ n<br />

j=1 N j.<br />

3.2.2 Transmissi<strong>on</strong><br />

To describe transmissi<strong>on</strong> we assume the following: In the regi<strong>on</strong> to the left <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the barrier we assume A 0 = 1, <str<strong>on</strong>g>and</str<strong>on</strong>g> denote by B 0 = r the reflecti<strong>on</strong> amplitude.<br />

42


3.3. DIRAC PARTICLES<br />

Likewise, to the right <str<strong>on</strong>g>of</str<strong>on</strong>g> the nth barrier we have B n = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> denote by A n = t the<br />

transmissi<strong>on</strong> amplitude. The transmissi<strong>on</strong> probability T can be expressed as the<br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmitted current density j x over the incident <strong>on</strong>e. This results in<br />

T = (λ ′ /λ)|t| 2 , with λ ′ /λ the ratio between the wave vector λ ′ to the right <str<strong>on</strong>g>and</str<strong>on</strong>g> λ<br />

to the left <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier. If the potential to the right <str<strong>on</strong>g>and</str<strong>on</strong>g> left <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier is the<br />

same we have λ ′ = λ. For a <strong>single</strong> barrier the transmissi<strong>on</strong> amplitude is given by<br />

T = |t| 2 = |N 11 | −1 , with N ij the elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the transfer matrix N .<br />

This results in the transmissi<strong>on</strong> given by<br />

T (E, k y ) =<br />

[<br />

1 +<br />

( λ<br />

2<br />

0 − λ 2 b<br />

2λ 0 λ b<br />

) 2<br />

sin 2 (λ b L)<br />

] −1<br />

, (3.6)<br />

where (λ 0 )λ b is the wave vector (outside)inside the barrier. If λ b becomes imaginary,<br />

then λ b is replaced by i|λ b | <str<strong>on</strong>g>and</str<strong>on</strong>g> sin(λ b L) by i sinh(λ b L) in this equati<strong>on</strong>.<br />

Notice that in c<strong>on</strong>trast to the n<strong>on</strong>-relativistic case, λ b depends <strong>on</strong> k y . The result<br />

for the n<strong>on</strong>-relativistic case is obtained by inserting k y = 0, λ 0 = [2mE/ 2 ] 1/2 , <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

λ b = [2m(E − V )/ 2 ] 1/2 in Eq. (3.6).<br />

From Eq. (3.6) we find that when λ b = nπ/L, a res<strong>on</strong>ance in the transmissi<strong>on</strong><br />

occurs, that is, T = 1. For these values <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave vector λ b bound states are<br />

available in the barrier, <str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong>s can tunnel via these states through the<br />

barrier. The transmissi<strong>on</strong> is plotted in Fig. 3.2(b), where we see that several<br />

res<strong>on</strong>ances occur for res<strong>on</strong>ances below the barrier heigth, where traditi<strong>on</strong>ally no<br />

transmissi<strong>on</strong> is expected.<br />

3.2.3 Bound states<br />

For k 2 y + µ 2 > ε 2 the wave functi<strong>on</strong> outside the barrier (well) becomes an exp<strong>on</strong>entially<br />

decaying functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> x, ψ(x) ∝ exp{±|λ 0 |x} with |λ 0 | = [k 2 y + µ 2 − ε 2 ] 1/2 .<br />

Localized states form near the barrier boundaries (Pereira Jr et al., 2006); however,<br />

they are propagating freely al<strong>on</strong>g the y-directi<strong>on</strong>. The spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> these bound<br />

states can be found by setting the element N 11 <str<strong>on</strong>g>of</str<strong>on</strong>g> the transfer matrix equal to zero.<br />

In Fig. 3.2(b) these bound states are shown, as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> k y , by the solid blue<br />

curves. If <strong>on</strong>e would zoom in <strong>on</strong> the these curves, <strong>on</strong>e would notice that at certain<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> k y , they have an infinitely steep slope. This would imply that the velocity<br />

v(k y ) ∝ ∂ε/∂k y becomes infinite which is impossible. This anomaly should<br />

be dedicated to the ill-defined interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>single</strong>-particle Klein-Gord<strong>on</strong><br />

equati<strong>on</strong>.<br />

3.3 Dirac particles<br />

We describe the electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> an infinitely large, flat graphene flake by<br />

the nearest-neighbor TB model <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sider wave vectors close to the K point.<br />

The relevant Hamilt<strong>on</strong>ian in the c<strong>on</strong>tinuum approximati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>single</strong>-valley<br />

approximati<strong>on</strong> is H = v F σ·ˆp+V 1+mv 2 F σ z, with ˆp the momentum operator, V the<br />

43


CHAPTER 3. KLEIN TUNNELING OF DIRAC-PARTICLES VERSUS<br />

BOSONS OBEYING THE KLEIN-GORDON EQUATION<br />

potential, 1 the 2 × 2 unit matrix, σ i (i = x, y, z) the Pauli-matrices, σ = (σ x , σ y ),<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> v F ≈ 10 6 m/s the Fermi velocity. Explicitly, H is given by<br />

(<br />

)<br />

V + mv<br />

H =<br />

F 2 −iv F (∂ x − i∂ y )<br />

−iv F (∂ x + i∂ y ) V − mvF<br />

2 . (3.7)<br />

In the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a 1D rectangular potential V (x), such as the <strong>on</strong>e shown in<br />

Fig. 3.1, the equati<strong>on</strong> (H − E)ψ = 0 yields (right- <str<strong>on</strong>g>and</str<strong>on</strong>g> left-travelling) plane wave<br />

soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the form ψ l,r (x)e ikyy with<br />

ψ r (x) =<br />

( ) ε + µ<br />

e iλx , ψ<br />

λ + ik l (x) =<br />

y<br />

( ) ε + µ<br />

e −iλx , (3.8)<br />

−λ + ik y<br />

here λ = [(ε − u(x)) 2 − ky 2 − µ 2 ] 1/2 is the x comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave vector, ε =<br />

EL/v F , u(x) = V (x)L/v F , <str<strong>on</strong>g>and</str<strong>on</strong>g> µ = mv F L/. Like in the bos<strong>on</strong>ic case we used<br />

dimensi<strong>on</strong>less parameters ε, u(x) <str<strong>on</strong>g>and</str<strong>on</strong>g> µ which scale with the characteristic length<br />

L <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential barrier structure. C<strong>on</strong>trary to the Klein-Gord<strong>on</strong> equati<strong>on</strong>, the<br />

soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong> are spinors.<br />

Neglecting the mass term <strong>on</strong>e rewrites Eq. (3.8) in the simpler form<br />

ψ r (x) =<br />

( 1<br />

se iφ )<br />

e iλx , ψ l (x) =<br />

( 1<br />

−se −iφ )<br />

e −iλx , (3.9)<br />

with λ = [(ε − u(x)) 2 − k 2 y] 1/2 , tan φ = k y /λ, <str<strong>on</strong>g>and</str<strong>on</strong>g> s = sgn(ε − u(x)).<br />

3.3.1 Transmissi<strong>on</strong><br />

Similar to the bos<strong>on</strong>ic case we can calculate the transmissi<strong>on</strong> probability. Since for<br />

<strong>single</strong>-layer graphene the current density is given by j x = v F ψ † σ x ψ, the derivative<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> is allowed to be disc<strong>on</strong>tinuous. Therefore the transfer matrix<br />

N is a 2 × 2 matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> the transmissi<strong>on</strong> is given by T = (λ ′ ε/λε ′ )|t| 2 , with λ(λ ′ )<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ε(ε ′ ) the wave vector <str<strong>on</strong>g>and</str<strong>on</strong>g> the energy ε − u(x) to the left(right) <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier.<br />

For a <strong>single</strong> barrier the transmissi<strong>on</strong> amplitude is given by T = |t| 2 = |N 11 | −1 , with<br />

N ij the elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the transfer matrix N . Explicitly, t can be written as<br />

1/t = cos(λ b L) − iQ sin(λ b L),<br />

Q = (ε 0 ε b − k 2 y − µ 2 )/λ 0 λ b ;<br />

(3.10)<br />

the indices 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> b refer, respectively, to the regi<strong>on</strong> outside <str<strong>on</strong>g>and</str<strong>on</strong>g> inside the barrier<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ε b = ε−u. A c<strong>on</strong>tour plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> for µ = 0 is shown in Fig. 3.2(a).<br />

We clearly see: 1) T = 1 for k y = 0, which is the well-known Klein tunneling, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2)<br />

str<strong>on</strong>g res<strong>on</strong>ances when λ b L = nπ, which describe hole scattering above a potential<br />

well.<br />

3.3.2 Bound states<br />

For k 2 y + µ 2 0 > ε 2 the wave functi<strong>on</strong> outside the barrier (well) becomes an exp<strong>on</strong>entially<br />

decaying functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> x, ψ(x) ∝ exp{±|k x |x} with |k x | = [k 2 y + µ 2 0 − ε 2 ] 1/2 .<br />

44


3.4. INFLUENCE OF THE MASS TERM<br />

Figure 3.2: C<strong>on</strong>tour plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> through a <strong>single</strong> barrier with µ = 0<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> u b = 10 for (a) Dirac fermi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) bos<strong>on</strong>s governed by the Klein-Gord<strong>on</strong><br />

equati<strong>on</strong>.<br />

Localized states form near the barrier boundaries (Pereira Jr et al., 2006); however,<br />

they are propagating freely al<strong>on</strong>g the y-directi<strong>on</strong>. The spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> these bound<br />

states can be found by setting the determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> the transfer matrix equal to zero.<br />

For a <strong>single</strong> potential barrier (well) it is given by the soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the transcendental<br />

equati<strong>on</strong><br />

|λ 0 |λ b cos(λ b L) + (k 2 y + µ 0 µ b − ε(ε − u)) sin(λ b L) = 0. (3.11)<br />

In Fig. 3.2(a) these bound states are shown, as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> k y , by the solid blue<br />

curves.<br />

3.4 Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass term<br />

For a <strong>on</strong>e-dimensi<strong>on</strong>al potential pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass term µ in the Diracor<br />

Klein-Gord<strong>on</strong> equati<strong>on</strong> is equivalent to the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the transversal momentum<br />

k y .<br />

In the Klein-Gord<strong>on</strong> equati<strong>on</strong> this is evident from the form <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (3.2). To see<br />

how this comes about in the Dirac equati<strong>on</strong> c<strong>on</strong>sider the terms M = µ <str<strong>on</strong>g>and</str<strong>on</strong>g> Y = k y<br />

in the 2D Dirac equati<strong>on</strong><br />

H = −iσ x ∂ x + Y σ y + Mσ z + V (x)1. (3.12)<br />

Applying the uniform transformati<strong>on</strong> U x (φ/2) = e −i φ 2 σx , which commutes with σ x<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 1 but not with σ y,z , we obtain<br />

H ′ = U x HU † x = −iσ x ∂ x + e iσxφ/2 [Y σ y + Mσ z ]e −iσxφ/2 + V (x)1, (3.13)<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the property U j σ i = σ i U −1<br />

j<br />

if i ≠ j we can rewrite<br />

e iσxφ/2 [Y σ y +Mσ z ]e −iσxφ/2 = [M cos φ−Y sin φ]σ z +[Y cos φ+M sin φ]σ y . (3.14)<br />

45


CHAPTER 3. KLEIN TUNNELING OF DIRAC-PARTICLES VERSUS<br />

BOSONS OBEYING THE KLEIN-GORDON EQUATION<br />

Hence we can define new effective mass <str<strong>on</strong>g>and</str<strong>on</strong>g> effective k y terms<br />

{<br />

M ∗ = M cos φ − Y sin φ,<br />

Y ∗ = M sin φ + Y cos φ.<br />

(3.15)<br />

In matrix notati<strong>on</strong> this becomes<br />

( ) M<br />

∗<br />

Y ∗ =<br />

( cos φ − sin φ<br />

sin φ cos φ<br />

) ( M<br />

Y<br />

)<br />

. (3.16)<br />

From this transformati<strong>on</strong> we can see that we can make M ∗ = 0 if defining the<br />

rotati<strong>on</strong> angle φ from M/Y = tan φ <str<strong>on</strong>g>and</str<strong>on</strong>g> Y ∗ = 0 if Y/M = − tan φ. This allows<br />

us to simplify the Hamilt<strong>on</strong>ian. We can then solve H ′ ψ ′ = Eψ ′ for this simplified<br />

Hamilt<strong>on</strong>ian <str<strong>on</strong>g>and</str<strong>on</strong>g> afterwards transform back to the original Y <str<strong>on</strong>g>and</str<strong>on</strong>g> M terms by the<br />

inverse transformati<strong>on</strong><br />

( ) ( ) ( )<br />

M cos φ sin φ M<br />

∗<br />

=<br />

Y − sin φ cos φ Y ∗ . (3.17)<br />

Therefore, it is sufficient to solve the <strong>on</strong>e-dimensi<strong>on</strong>al massive Dirac equati<strong>on</strong>. For<br />

that equati<strong>on</strong> Klein tunneling through a potential barrier is <strong>on</strong>ly possible if the<br />

incident energy E <str<strong>on</strong>g>and</str<strong>on</strong>g> the height <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier V are such that mv 2 F < E <<br />

V − mv 2 F , hence a n<strong>on</strong>-zero k y reduces the Klein tunneling effect.<br />

3.5 Summary<br />

Summarizing we find that a linear spectrum is not sufficient to have Klein tunneling.<br />

This we can see from the transmissi<strong>on</strong> for massless bos<strong>on</strong>s obeying the Klein-<br />

Gord<strong>on</strong> equati<strong>on</strong>; although it has several res<strong>on</strong>ances for energies well under the<br />

barrier height, the transmissi<strong>on</strong> is not perfect (not exactly equal to <strong>on</strong>e for all<br />

energies) for k y = 0. Bound states can be obtained for a barrier from both the<br />

Dirac equati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the Klein-Gord<strong>on</strong> equati<strong>on</strong>. These bound states occur because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the available hole states inside the barrier, while no propagating states are found<br />

outside the barrier. The bound states obtained for the Klein-Gord<strong>on</strong> equati<strong>on</strong> have<br />

no well-defined velocity v y . This is caused by problems with the <strong>single</strong> particle<br />

interpretati<strong>on</strong> owing to the Klein-Gord<strong>on</strong> equati<strong>on</strong>. Therefore, the results obtained<br />

from the Klein-Gord<strong>on</strong> equati<strong>on</strong> must be interpreted carefully, we did not pursue<br />

further al<strong>on</strong>g this line. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> a mass-term for the Dirac equati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the Klein-Gord<strong>on</strong> equati<strong>on</strong> with an applied <strong>on</strong>e-dimensi<strong>on</strong>al electrostatic potential<br />

can be incorporated as an effective k y momentum. Because a mass term reduces<br />

the Klein tunneling, a n<strong>on</strong>zero k y does likewise.<br />

46


4<br />

Single-layer graphene: extra Dirac points<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> collimati<strong>on</strong> in SLs<br />

4.1 Introducti<strong>on</strong><br />

One can alter the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> materials by applying a periodic potential<br />

(superlattice) <strong>on</strong> it. Here we look at the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> a 1D periodic potential<br />

applied to <strong>single</strong>-layer graphene. To investigate the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s, it is<br />

especially clarifying to have a look at the spectrum or b<str<strong>on</strong>g>and</str<strong>on</strong>g>structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the system.<br />

In this chapter we look to two phenomena in particular, which can both be seen<br />

as being a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> altering the b<str<strong>on</strong>g>and</str<strong>on</strong>g>structure. On the <strong>on</strong>e h<str<strong>on</strong>g>and</str<strong>on</strong>g> we have<br />

the splitting <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>single</strong> Dirac c<strong>on</strong>e (at the K or K ′ point) into multiple c<strong>on</strong>eshaped<br />

valleys. Thereby, in additi<strong>on</strong> to the original <strong>on</strong>e, extra touching points at<br />

the Fermi-level appear. We will refer to this phenomen<strong>on</strong> as the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> extra<br />

Dirac points (Ho et al., 2009; Bliokh et al., 2009). Those extra Dirac points are<br />

interesting because <str<strong>on</strong>g>of</str<strong>on</strong>g> their accompanying zero modes (Sun et al., 2010), but also<br />

for their influence <strong>on</strong> many physical <str<strong>on</strong>g>properties</str<strong>on</strong>g>, such as the density <str<strong>on</strong>g>of</str<strong>on</strong>g> states (Ho<br />

et al., 2009), the c<strong>on</strong>ductivity (Barbier et al., 2010a; Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhu, 2010) <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g>au levels up<strong>on</strong> applying a magnetic field (Park et al., 2009b; Sun et al., 2010).<br />

Here we will mostly study their influence <strong>on</strong> the c<strong>on</strong>ductivity <str<strong>on</strong>g>and</str<strong>on</strong>g> the DOS. On the<br />

other h<str<strong>on</strong>g>and</str<strong>on</strong>g> we have the collimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s by the SL structure. By collimati<strong>on</strong><br />

we mean the restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s to a <strong>single</strong> or a few directi<strong>on</strong>s.<br />

This collimati<strong>on</strong> is in particular known to be <str<strong>on</strong>g>of</str<strong>on</strong>g> value in optical systems but also<br />

has applicati<strong>on</strong>s in electr<strong>on</strong>ic systems. Both these phenomena are c<strong>on</strong>nected in the<br />

sense that the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL suitable for new Dirac points to emerge are<br />

the same as the <strong>on</strong>es needed to have collimati<strong>on</strong> in the electr<strong>on</strong> movement. This<br />

fact will be pointed out for the rectangular SL.<br />

This chapter is organized as follows. We start in Sec. 4.2 by investigating the<br />

transmissi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> bound states <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>single</strong> unit cell <str<strong>on</strong>g>of</str<strong>on</strong>g> a square SL, using the methods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the previous chapter. In Sec. 4.3 the model to solve the SL system is explained<br />

1 The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter were published as:<br />

M. Barbier, P. Vasilopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. Peeters, Phys. Rev. B 81, 075438 (2010), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

M. Barbier, P. Vasilopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. Peeters, Phil. Trans. R. Soc. A 368, 5499 (2010).<br />

47


CHAPTER 4. SINGLE-LAYER GRAPHENE: EXTRA DIRAC POINTS AND<br />

COLLIMATION IN SLS<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> we obtain its dispersi<strong>on</strong> relati<strong>on</strong>. In Sec. 4.4 we investigate the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

extra Dirac points, approximate the implicit dispersi<strong>on</strong> relati<strong>on</strong> for small energies,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> take a closer look at the group velocity near the extra Dirac points. Sec. 4.5<br />

is dedicated to the phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> collimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac electr<strong>on</strong>s. Further we<br />

investigate the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the features <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum <strong>on</strong> the DOS (in Sec. 4.6)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ductivity (in Sec. 4.7). A summary <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>cluding remarks are given in<br />

Sec. 4.8.<br />

4.2 Single unit cell<br />

Before we study SLs, let us make the c<strong>on</strong>necti<strong>on</strong> with Ch. 3 by c<strong>on</strong>sidering the<br />

transmissi<strong>on</strong> through, <str<strong>on</strong>g>and</str<strong>on</strong>g> bound states <str<strong>on</strong>g>of</str<strong>on</strong>g>, a <strong>single</strong> unit cell <str<strong>on</strong>g>of</str<strong>on</strong>g> a square SL. The<br />

Figure 4.1: (a) A <strong>single</strong> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> a potential well next to a potential barrier. The<br />

potential barrier(well) has height V b (V w ) <str<strong>on</strong>g>and</str<strong>on</strong>g> width W b (W w ). (b) A superlattice<br />

potential with a unit cell as in (a).<br />

potential structure under c<strong>on</strong>siderati<strong>on</strong> is that <str<strong>on</strong>g>of</str<strong>on</strong>g> a potential barrier next to a<br />

potential well but with average potential equal to zero, as described by Arovas<br />

et al. (2010). This is the unit cell (shown in Fig. 4.1(a)) <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL we will use<br />

in Sec. 4.4 where extra Dirac points will be found. In Fig. 4.2(a) the Dirac<br />

c<strong>on</strong>e outside the barrier is shown as a gray area (<strong>on</strong>ly the part in positive k y is<br />

shown, because the spectrum is symmetric in k y ), inside this regi<strong>on</strong> there are no<br />

bound states. Superimposed are gray lines corresp<strong>on</strong>ding to the edges <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac<br />

c<strong>on</strong>es inside the well <str<strong>on</strong>g>and</str<strong>on</strong>g> barrier that divide the (E, k y ) plane into four regi<strong>on</strong>s.<br />

Regi<strong>on</strong> I corresp<strong>on</strong>ds to propagating states inside both the barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> well while<br />

regi<strong>on</strong> II (III) corresp<strong>on</strong>ds to propagating states inside the well (barrier) <strong>on</strong>ly. In<br />

regi<strong>on</strong> IV no propagating modes are possible, neither in the barrier nor in the well.<br />

Figure 4.2(b) shows that the bound states <str<strong>on</strong>g>of</str<strong>on</strong>g> this structure are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>single</strong> barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> those <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>single</strong> well. Anticrossings take place where<br />

the b<str<strong>on</strong>g>and</str<strong>on</strong>g>s otherwise would cross. The resulting spectrum is clearly a precursor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a SL shown in Fig. 4.3.<br />

48


4.3. RECTANGULAR SUPERLATTICES<br />

(a)<br />

10<br />

II<br />

(b)<br />

10<br />

EL/vF<br />

0<br />

I<br />

IV<br />

EL/vF<br />

0<br />

-10<br />

III<br />

-10<br />

0 10 20<br />

k y L<br />

0 10 20<br />

k y L<br />

Figure 4.2: (a) Four different regi<strong>on</strong>s for a <strong>single</strong> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 4.1(b) with u b = 24,<br />

u w = 16, W b = 0.4 <str<strong>on</strong>g>and</str<strong>on</strong>g> W w = 0.6. (b) Bound states for a <strong>single</strong> barrier (dashed<br />

blue curves) <str<strong>on</strong>g>and</str<strong>on</strong>g> well (dashed red curves) <str<strong>on</strong>g>and</str<strong>on</strong>g> the combined barrier-well unit (black<br />

curves).<br />

4.3 Rectangular <str<strong>on</strong>g>superlattices</str<strong>on</strong>g><br />

Now we turn to the system <str<strong>on</strong>g>of</str<strong>on</strong>g> a 1D SL. From an analytical point <str<strong>on</strong>g>of</str<strong>on</strong>g> view it is<br />

attractive to c<strong>on</strong>sider a rectangular SL with its corresp<strong>on</strong>ding periodic potential<br />

given by<br />

V (x) = V 0<br />

∞ ∑<br />

j=−∞<br />

[Θ(x − jL) − Θ(x − jL − W b )], (4.1)<br />

with Θ(x) the step functi<strong>on</strong>. The soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> corresp<strong>on</strong>ds to a<br />

Bloch functi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> satisfies the periodicity c<strong>on</strong>diti<strong>on</strong> ψ(L) = ψ(0) exp(ik x ), with<br />

k x the Bloch phase. Using this relati<strong>on</strong> together with the transfer matrix for a<br />

<strong>single</strong> unit ψ(L) = Mψ(0) leads to the c<strong>on</strong>diti<strong>on</strong><br />

This results in the transcendental equati<strong>on</strong><br />

det[M − exp(ik x )] = 0. (4.2)<br />

cos k x = cos λ w W w cos λ b W b − Q sin λ w W w sin λ b W b , (4.3)<br />

from which we obtain the energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. In Eq. (4.3) we used the<br />

following notati<strong>on</strong>:<br />

ε w = ε + uW b , ε b = ε − uW w , u = V 0 L/v F , W b,w → W b,w /L,<br />

λ b,w = [ε 2 b,w − k 2 y − µ 2 b,w] 1/2 , Q = (ε w ε b − k 2 y − µ b µ w )/λ w λ b .<br />

4.4 Extra Dirac points<br />

In the previous secti<strong>on</strong> we derived the dispersi<strong>on</strong> relati<strong>on</strong> for the SL system. Now<br />

we will use this expressi<strong>on</strong> to investigate the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> extra Dirac points.<br />

49


CHAPTER 4. SINGLE-LAYER GRAPHENE: EXTRA DIRAC POINTS AND<br />

COLLIMATION IN SLS<br />

EL/vF<br />

k y L<br />

Figure 4.3: Projecti<strong>on</strong> <strong>on</strong> the (E, k y ) plane <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a SL with unit cell<br />

equal to the <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 4.2.<br />

From Eq. (4.3) it can be seen that the dispersi<strong>on</strong> relati<strong>on</strong> possesses the symmetry<br />

property ε → −ε for W b ↔ W w . The asymmetric spectrum is not unexpected<br />

because the symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential around the Fermi level is lost for W b ≠ 1/2.<br />

When studying the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> extra Dirac points it is c<strong>on</strong>venient to c<strong>on</strong>sider the<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> a symmetric potential separate from the asymmetric <strong>on</strong>e. First we c<strong>on</strong>sider<br />

the symmetric <strong>on</strong>e. For W b = 1/2 we have<br />

cos k x = cos λ w<br />

2 cos λ b<br />

2 − G sin λ w<br />

2 sin λ b<br />

2 , (4.4)<br />

where ε w = ε + u/2 <str<strong>on</strong>g>and</str<strong>on</strong>g> ε b = ε − u/2. For this interesting case, the potential<br />

possesses particle-hole symmetry <str<strong>on</strong>g>and</str<strong>on</strong>g> the extra Dirac points originate at the Fermi<br />

level; we will show their arrangement, in k space, in Sec. 4.4.1.<br />

Figure 4.4: The spectrum resulting from Eq. (4.3) is plotted for (a) equal barrier<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> well widths, i.e., for W w = W b = 1/2, <str<strong>on</strong>g>and</str<strong>on</strong>g> u = 10π, (b) unequal barrier<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> well widths, W w = 0.6 <str<strong>on</strong>g>and</str<strong>on</strong>g> W b = 0.4, <str<strong>on</strong>g>and</str<strong>on</strong>g> u = 6π. (c) C<strong>on</strong>tourplot <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (a).<br />

50<br />

In Fig. 4.4(a) the spectrum resulting from Eq. (4.4) for equal barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> well


4.4. EXTRA DIRAC POINTS<br />

widths, i.e., for W w = W b = 1/2, is plotted for u = 10π. As can be seen, the<br />

spectrum is symmetric about the Fermi level; there are two extra Dirac points<br />

<strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the main Dirac point, <str<strong>on</strong>g>and</str<strong>on</strong>g> their velocities are renormalized. The<br />

anisotropic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the new Dirac c<strong>on</strong>es is more clear in the projecti<strong>on</strong> <strong>on</strong> the<br />

(k x , k y )-plane <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> shown in Fig. 4.4(c). Further details about<br />

the renormalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocities are given in Sec. 4.4.3.<br />

For unequal barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> well widths the spectrum is shown in Fig. 4.4(b) for<br />

W b = 1 − W w = 0.4 <str<strong>on</strong>g>and</str<strong>on</strong>g> u = 6π. The spectrum is no l<strong>on</strong>ger symmetric around the<br />

Fermi level, the two extra Dirac points are shifted in energy relative to the main<br />

point, <str<strong>on</strong>g>and</str<strong>on</strong>g> their velocities are renormalized. The locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the extra Dirac points<br />

is investigated in next secti<strong>on</strong>.<br />

4.4.1 Appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> extra Dirac points<br />

In order to find the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac points we assume k x = 0, ε = 0, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

W b = W w = 1/2 in Eq. (4.4). Eq. (4.4) then becomes<br />

1 = cos 2 λ/2 + [ (u 2 /4 + k 2 y)/(u 2 /4 − k 2 y) ] sin 2 λ/2, (4.5)<br />

which has soluti<strong>on</strong>s for u 2 /4 − ky 2 = u 2 /4 + ky 2 or sin 2 λ/2 = 0. For the first<br />

possibility k y = 0 is the <strong>on</strong>ly soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>ds to the usual Dirac point.<br />

The sec<strong>on</strong>d possibility leads to λ/2 = jπ with j ≠ 0, because λ = 0 makes the<br />

denominator u 2 /4 − ky 2 = λ 2 vanish <str<strong>on</strong>g>and</str<strong>on</strong>g> does not lead to a soluti<strong>on</strong>. For λ/2 = jπ<br />

we have<br />

√ √<br />

u<br />

2<br />

(<br />

k y,j± = ±<br />

4 − V0<br />

) 2 ( 2jπ<br />

) 2, 4j2 π 2 = ±<br />

− (4.6)<br />

2v F L<br />

where we reinserted the dimensi<strong>on</strong>s after the sec<strong>on</strong>d equality sign. As such, Eq. (4.6)<br />

describes the spatial arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> the extra Dirac points al<strong>on</strong>g the k y axis. Also,<br />

it clearly shows how many points we have at particular values <str<strong>on</strong>g>of</str<strong>on</strong>g> u, namely 2 × (u<br />

mod 4π), <str<strong>on</strong>g>and</str<strong>on</strong>g> where they are located in k space. Each time u becomes a multiple<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 4π a new pair <str<strong>on</strong>g>of</str<strong>on</strong>g> Dirac points is generated for k y = 0. The c<strong>on</strong>diti<strong>on</strong> j ≠ 0 gives<br />

us a threshold value <str<strong>on</strong>g>of</str<strong>on</strong>g> u = 4π for the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> the first pair. The integer j<br />

denotes the jth extra Dirac point, so the outer extra Dirac points have j = 1 as<br />

they are generated first.<br />

In Fig. 4.5(a) we show slices <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL spectrum al<strong>on</strong>g k y for k x = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

u = 6π. The solid red, dash-dotted green, <str<strong>on</strong>g>and</str<strong>on</strong>g> dashed blue curves corresp<strong>on</strong>d<br />

to barrier widths W b = 0.5, 0.6, <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.7 respectively. The thin black line is the<br />

curve <strong>on</strong> which the extra Dirac points, <strong>on</strong> the left <str<strong>on</strong>g>of</str<strong>on</strong>g> the main <strong>on</strong>e at k y = 0, are<br />

located for various W b . In Fig. 4.5(b) we show slices <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum al<strong>on</strong>g k y for<br />

k x = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> W b = W w = 1/2. The solid red, dot-dot-dashed black, dashed green,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> dash-dotted blue curves are for different values <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier height such that<br />

u/2 = 2π, 3π, 4π, <str<strong>on</strong>g>and</str<strong>on</strong>g> 6π respectively. For values <str<strong>on</strong>g>of</str<strong>on</strong>g> u/2 that are multiples <str<strong>on</strong>g>of</str<strong>on</strong>g> 2π,<br />

new Dirac points are generated. Interestingly, if new extra points are to arise, the<br />

dispersi<strong>on</strong> becomes almost flat al<strong>on</strong>g the k y axis at the Dirac point, i.e., collimati<strong>on</strong><br />

occurs. We will revisit to this issue in Sec. 4.4.3.<br />

51


CHAPTER 4. SINGLE-LAYER GRAPHENE: EXTRA DIRAC POINTS AND<br />

COLLIMATION IN SLS<br />

(a)<br />

(b)<br />

EL/vF<br />

EL/vF<br />

k y L/π<br />

k y L/π<br />

Figure 4.5: Slices <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL spectrum al<strong>on</strong>g k y with k x = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> u = 6π. (a) The<br />

solid red, dash-dotted green, <str<strong>on</strong>g>and</str<strong>on</strong>g> dashed blue curves corresp<strong>on</strong>d to barrier widths<br />

W b = 0.5, 0.6, <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.7 respectively. The thin black line is the curve <strong>on</strong> which the<br />

extra Dirac point, to the left <str<strong>on</strong>g>of</str<strong>on</strong>g> the main <strong>on</strong>e at k y = 0, is located for various W b .<br />

Only the new points to the left <str<strong>on</strong>g>of</str<strong>on</strong>g> the main <strong>on</strong>e are shown. (b) As in (a) for fixed<br />

W b = 0.5. The solid red, dot-dot-dashed black, dashed green, <str<strong>on</strong>g>and</str<strong>on</strong>g> dash-dotted blue<br />

curves are for different values <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier height such that u/2 = 2π, 3π, 4π, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

6π, respectively.<br />

Unequal well <str<strong>on</strong>g>and</str<strong>on</strong>g> barrier widths. We return to the more general case <str<strong>on</strong>g>of</str<strong>on</strong>g> unequal<br />

well <str<strong>on</strong>g>and</str<strong>on</strong>g> barrier widths for which W b ≠ 1/2. It is more difficult to locate<br />

the extra Dirac points which no l<strong>on</strong>ger occur at the Fermi level as seen from the<br />

green <str<strong>on</strong>g>and</str<strong>on</strong>g> blue curves in Fig. 4.5(a) showing slices <str<strong>on</strong>g>of</str<strong>on</strong>g> spectra from Eq. (4.3) for<br />

k x = 0. By means <str<strong>on</strong>g>of</str<strong>on</strong>g> the symmetry ε → −ε for W b ↔ W w , we know the complementary<br />

plots for W b → 1 − W b . As can be seen, the extra Dirac points shift<br />

mainly down (up) in energy as W b increases (decreases). Their amount is equal<br />

to 2 × (u mod π/W b W w ). To find their coordinates (ε, k x = 0, k y ) we assume<br />

sin(λ w W w )=sin(λ b W b ) = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> cos(λ w W w ) = cos(λ b W b ) = ±1 1 . This gives (see<br />

App. A.1)<br />

ε j,m = u ( )<br />

2 (1 − 2W b) + π2 j<br />

2<br />

(j + 2m)2<br />

2u Ww<br />

2 −<br />

Wb<br />

2 ,<br />

[<br />

(4.7)<br />

k yj,m = ± (ε j,m + uW b ) 2 − (jπ/W w ) 2] 1/2<br />

,<br />

where j <str<strong>on</strong>g>and</str<strong>on</strong>g> m are integers. This method also shows higher <str<strong>on</strong>g>and</str<strong>on</strong>g> lower crossing<br />

points if m ≠ 0. In Fig. 4.5(a) the extra Dirac points <strong>on</strong> the left, obtained with<br />

this method, are indicated by open circles <str<strong>on</strong>g>and</str<strong>on</strong>g> the thin black curve shows their<br />

trajectory in (E, k y ) space as the width W b varies. For a particular u there is<br />

a minimal width W b (<str<strong>on</strong>g>and</str<strong>on</strong>g> a corresp<strong>on</strong>ding maximal width W b → 1 − W b ) below<br />

1 The implicit functi<strong>on</strong> theorem cannot be applied if the gradient (Jacobian) <str<strong>on</strong>g>of</str<strong>on</strong>g> the dispersi<strong>on</strong><br />

relati<strong>on</strong> is zero. This occurs because <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing <str<strong>on</strong>g>of</str<strong>on</strong>g> the b<str<strong>on</strong>g>and</str<strong>on</strong>g>s at these points: from the form<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the derivatives, too l<strong>on</strong>g to write down, we can see that they are both zero if sin(λW w) =<br />

sin(ΛW b ) = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> cos(λW w) = cos(ΛW b ).<br />

52


4.4. EXTRA DIRAC POINTS<br />

(above) which the various extra Dirac points disappear. In Fig. 4.5(a) the “Dirac<br />

c<strong>on</strong>es” at these crossing points for m = 0 are not <strong>on</strong>ly reshaped with a renormalized<br />

anisotropic velocity but, as shown by the blue dashed curve, the “extra Dirac point”<br />

is not at a local minimum (maximum) <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> (valence) b<str<strong>on</strong>g>and</str<strong>on</strong>g>.<br />

4.4.2 Analytical expressi<strong>on</strong> for the spectrum for small energies<br />

ε<br />

As the purpose is to have a closer look at the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the extra Dirac points<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> we cannot prohibit k y from being large, we exp<str<strong>on</strong>g>and</str<strong>on</strong>g> Eq. (4.4) for small energies,<br />

up to sec<strong>on</strong>d order in ε, <str<strong>on</strong>g>and</str<strong>on</strong>g> obtain the following explicit dispersi<strong>on</strong> relati<strong>on</strong>:<br />

ε ± = ±<br />

[<br />

4|a 2 | 2 [ k 2 y sin 2 (a/2) + a 2 sin 2 (k x /2) ]<br />

k 4 ya sin a + a 2 u 4 /16 − 2k 2 yu 2 sin 2 (a/2)<br />

] 1/2<br />

, (4.8)<br />

with a = [u 2 /4 − k 2 y] 1/2 .<br />

If we <strong>on</strong>ly need the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum near the K point (for small k x<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> k y ), it suffices to make an expansi<strong>on</strong> for small ε <str<strong>on</strong>g>and</str<strong>on</strong>g> k y in Eq. (4.4), up to<br />

third order in products <str<strong>on</strong>g>of</str<strong>on</strong>g> ε <str<strong>on</strong>g>and</str<strong>on</strong>g> k y since this is the first order with an energy<br />

dependence. The result is<br />

2 cos k x − 2 + ε 2 − k 2 y sin 2 (u/4)/(u/4) 2 = 0. (4.9)<br />

We then solve this equati<strong>on</strong> for the energy ε <str<strong>on</strong>g>and</str<strong>on</strong>g> obtain<br />

ε ≈ ± [ 4 sin 2 k x /2 + k 2 y sin 2 (u/4)/(u/4) 2] 1/2<br />

. (4.10)<br />

In Fig. 4.6(a) we show ε from Eq. (4.8) <str<strong>on</strong>g>and</str<strong>on</strong>g> compare it with the exact dispersi<strong>on</strong><br />

relati<strong>on</strong>, for k x = 0, following from Eq. (4.4). The expansi<strong>on</strong> Eq. (4.8) is a rather<br />

good approximati<strong>on</strong> for low energies near the extra Dirac points; accordingly, we<br />

will use Eq. (4.8) to further assess their behavior.<br />

4.4.3 Anisotropic velocity renormalizati<strong>on</strong> at the (extra) Dirac<br />

point(s).<br />

The spectrum in the low-energy range c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> valleys: <strong>on</strong>e near<br />

the main Dirac point <str<strong>on</strong>g>and</str<strong>on</strong>g> the other near the extra Dirac points. Near the original<br />

Dirac point the spectrum is almost linear, perpendicular to the barriers, <str<strong>on</strong>g>and</str<strong>on</strong>g> flat<br />

parallel to them, whereas near the extra Dirac points the situati<strong>on</strong> can be reversed<br />

depending <strong>on</strong> the height <str<strong>on</strong>g>of</str<strong>on</strong>g> the barriers.<br />

Group velocity al<strong>on</strong>g the x-axis at the Dirac point. To compare with the collimati<strong>on</strong><br />

found by Park (Park et al., 2009a), we notice that in Fig. 4.5(b), for the solid<br />

red, dashed green, <str<strong>on</strong>g>and</str<strong>on</strong>g> dash-dotted blue curves, corresp<strong>on</strong>ding to barrier heights<br />

that are multiples <str<strong>on</strong>g>of</str<strong>on</strong>g> 4π, the dispersi<strong>on</strong> becomes more flat for small k y . From<br />

53


CHAPTER 4. SINGLE-LAYER GRAPHENE: EXTRA DIRAC POINTS AND<br />

COLLIMATION IN SLS<br />

(a)<br />

(b)<br />

EL/vF<br />

EL/vF<br />

k y L/π<br />

k y L/π<br />

Figure 4.6: The projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL spectrum <strong>on</strong>to the (E, k y )-plane with u = 10π.<br />

The lowest c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are colored in cyan, red, <str<strong>on</strong>g>and</str<strong>on</strong>g> green for, the exact<br />

spectrum, <str<strong>on</strong>g>and</str<strong>on</strong>g> the approximati<strong>on</strong>s there<str<strong>on</strong>g>of</str<strong>on</strong>g> given by (c) Eq. (4.8), <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) Eq. (4.10),<br />

respectively. The approximate spectra are delimited by the dashed curves.<br />

Eq. (4.8) we could already expect that, to order k 2 y, the k y dependency disappears<br />

for these values <str<strong>on</strong>g>of</str<strong>on</strong>g> u. Further, if we exp<str<strong>on</strong>g>and</str<strong>on</strong>g> Eq. (4.8) in powers <str<strong>on</strong>g>of</str<strong>on</strong>g> k y we obtain<br />

ε = sin(u/4)/(u/4) k y − (2/u 5 ) [ u 3 cos (u/4)<br />

+4u 2 sin(u/4) − 128 sin 3 (u/4) ] k 3 y + O(k 5 y),<br />

(4.11)<br />

which is linear in k y , for small k y , <str<strong>on</strong>g>and</str<strong>on</strong>g> the velocity becomes<br />

v y /v F = ∂ε/∂k y ≈ sin(u/4)/(u/4). (4.12)<br />

In Fig. 4.7 the velocities <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac point, in the x <str<strong>on</strong>g>and</str<strong>on</strong>g> y directi<strong>on</strong>s, are given by<br />

the j = 0 curves. For u/2 = 2jπ we have<br />

ε ≈ ±k 3 y/8 j 2 π 2 + O(k 5 y), (4.13)<br />

which is cubic in k y for small k y . If j <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently u become larger, the<br />

dispersi<strong>on</strong> gets flatter.<br />

Group velocity al<strong>on</strong>g the y-axis at the extra Dirac points. The dispersi<strong>on</strong> relati<strong>on</strong><br />

Eq. (4.8) for the k y values <str<strong>on</strong>g>of</str<strong>on</strong>g> the extra Dirac points, determined by k yj,± = ±[u 2 /4−<br />

(2jπ) 2 ] 1/2 , gives us an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> how dispersi<strong>on</strong>less the spectrum near these points is<br />

al<strong>on</strong>g the x directi<strong>on</strong>. If k yj,± exists, Eq. (4.8) becomes<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the partial derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> ε with respect to k x is<br />

54<br />

ε ≈ 32 π 2 j 2 sin(|k x |/2)/u 2 , (4.14)<br />

v x /v F = ∂ε/∂k x ≈ sign(k x )16 π 2 j 2 cos(k x /2)/u 2 . (4.15)


4.4. EXTRA DIRAC POINTS<br />

This means that for smaller j (the most distant extra Dirac points) the group<br />

velocity al<strong>on</strong>g the x-directi<strong>on</strong> is str<strong>on</strong>gly suppressed. Further, as u > 4jπ must<br />

hold in order for k y,j± to be real, |v x | is smaller than 1 (≡ v F ) at k x = 0. Only for<br />

the special values u = 4jπ, for which new Dirac points appear, we have |v jx | = 1.<br />

Meanwhile the dispersi<strong>on</strong> in the k y directi<strong>on</strong> is also <str<strong>on</strong>g>of</str<strong>on</strong>g> interest. First, let us<br />

take k x = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> exp<str<strong>on</strong>g>and</str<strong>on</strong>g> the dispersi<strong>on</strong> relati<strong>on</strong> Eq. (4.8) for k y − k yj,± ≪ 1. To<br />

first order in this difference we obtain<br />

This gives the velocity v y at the extra Dirac points<br />

ε ≈ ±[4k y<br />

2<br />

j,± /u2 ](k y − k yj,± ). (4.16)<br />

v y<br />

v F<br />

= ∂ε/∂k y ≈ 4k y<br />

2<br />

j,± /u2 = 4 [ u 2 /4 − 4j 2 π 2] /u 2 . (4.17)<br />

2<br />

Since the coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> the extra Dirac points should be real, k y j,±<br />

is positive <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

smaller than u 2 /4 <str<strong>on</strong>g>and</str<strong>on</strong>g> we have v y < 1 (the outer Dirac points, for j = 1, show the<br />

largest v y ). This entails that both v x <str<strong>on</strong>g>and</str<strong>on</strong>g> v y are renormalized at the new Dirac<br />

points according to:<br />

v jx /v F = (4jπ/u) 2 ,<br />

v jy /v F = 1 − v jx /v F .<br />

(4.18)<br />

A plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocities <str<strong>on</strong>g>of</str<strong>on</strong>g> the extra Dirac points, in the x <str<strong>on</strong>g>and</str<strong>on</strong>g> y directi<strong>on</strong>s, given<br />

by Eq. (4.18), is shown in Fig. 4.7. As seen, for the extra Dirac points, v jx , shown<br />

by the dashed red curves, starts from v F <str<strong>on</strong>g>and</str<strong>on</strong>g> decreases to zero with increasing u<br />

while v jy (dash-dotted blue curves), starts from zero <str<strong>on</strong>g>and</str<strong>on</strong>g> approaches v F slowly for<br />

large u.<br />

Figure 4.7: Velocities v 0x <str<strong>on</strong>g>and</str<strong>on</strong>g> v 0y (dash-dot-dotted red <str<strong>on</strong>g>and</str<strong>on</strong>g> solid blue curves,<br />

respectively), versus u at the original Dirac point <str<strong>on</strong>g>and</str<strong>on</strong>g> v jx <str<strong>on</strong>g>and</str<strong>on</strong>g> v jy (dashed red <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dash-dotted blue curves, respectively), given by Eqs (4.15) <str<strong>on</strong>g>and</str<strong>on</strong>g> (4.17), versus u at<br />

the extra Dirac points j = 1, 2, 3.<br />

55


CHAPTER 4. SINGLE-LAYER GRAPHENE: EXTRA DIRAC POINTS AND<br />

COLLIMATION IN SLS<br />

4.5 Collimati<strong>on</strong><br />

In a 1D SL it was found that the spectrum can be altered anisotropically (Park<br />

et al., 2008a; Bliokh et al., 2009). Moreover, this anisotropy can be made very<br />

large such that for a broad regi<strong>on</strong> in k space the spectrum is dispersi<strong>on</strong>less in <strong>on</strong>e<br />

directi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus electr<strong>on</strong>s are collimated al<strong>on</strong>g the other directi<strong>on</strong> (Park et al.,<br />

2009a).<br />

We start by describing the collimati<strong>on</strong> as d<strong>on</strong>e by (Park et al., 2009a); subsequently<br />

we find the c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL for which a collimati<strong>on</strong><br />

appears. It turns out that they are the same as those needed to create a pair <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extra Dirac points.<br />

Figure 4.8: The lowest c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene near the K<br />

point (a,b) in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> SL potential <str<strong>on</strong>g>and</str<strong>on</strong>g> (c,d) in its presence with u = 4π.<br />

(a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) are c<strong>on</strong>tour plots <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> with a c<strong>on</strong>tour step <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5<br />

v F /L. (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show slices al<strong>on</strong>g c<strong>on</strong>stant k y L = 0, 0.2, 0.4π.<br />

56<br />

Following Park et al. (2009a), the c<strong>on</strong>diti<strong>on</strong> for collimati<strong>on</strong> to occur is ∫ BZ eisŝα(x) =


4.6. DENSITY OF STATES<br />

0, where the functi<strong>on</strong> α(x) = 2 ∫ x<br />

0 u(x′ )dx ′ embodies the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential,<br />

s = sign(ε) <str<strong>on</strong>g>and</str<strong>on</strong>g> ŝ = sign(k x ). For a symmetric rectangular lattice this corresp<strong>on</strong>ds<br />

to u/4 = nπ. The spectrum for the lowest energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s is then given by Park<br />

et al. (2008b)<br />

ε ≈ ± [ k 2 x + |f l | 2 k 2 y] 1/2<br />

+ πl/L, (4.19)<br />

with f l being the coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fourier expansi<strong>on</strong> e iα(x) = ∑ ∞<br />

l=−∞ f le i2πlx/L .<br />

The coefficients f l depend <strong>on</strong> the potential pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile V (x), with |f l | < 1. For a<br />

symmetric SL <str<strong>on</strong>g>of</str<strong>on</strong>g> square barriers we have f l = u sin(lπ/2 − u/2)/(l 2 u 2 − u 2 /4). The<br />

inequality |f l | < 1 implies a group velocity in the y directi<strong>on</strong> v y < v F which can<br />

be seen from Eq. (4.19).<br />

In Figs. 4.8(b,d) we show the dispersi<strong>on</strong> relati<strong>on</strong> E versus k x for u = 4π at<br />

c<strong>on</strong>stant k y . As can be seen, when a SL is present in most <str<strong>on</strong>g>of</str<strong>on</strong>g> the Brillouin z<strong>on</strong>e<br />

the spectrum, partially shown in (c), is nearly independent <str<strong>on</strong>g>of</str<strong>on</strong>g> k y . That is, we have<br />

collimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> beam al<strong>on</strong>g the SL axis. The c<strong>on</strong>diti<strong>on</strong> u = V 0 L/v F =<br />

4nπ shows that altering the period <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL or the potential height <str<strong>on</strong>g>of</str<strong>on</strong>g> the barriers<br />

is sufficient to produce collimati<strong>on</strong>. This makes a SL a versatile tool for tuning the<br />

spectrum. Comparing with Figs. 4.8(a,b), we see that the c<strong>on</strong>e-shaped spectrum<br />

for u = 0 is transformed into a wedge-shaped spectrum (Park et al., 2009a).<br />

We will now compare the spectrum by Park et al. (2009a) with the approximate<br />

spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (4.8). In order to do this, we exp<str<strong>on</strong>g>and</str<strong>on</strong>g> Eq. (4.8) for small k; this<br />

leads to<br />

ε ≈ ± [ kx 2 + ky 2 sin 2 (u/4)/(u/4) 2] 1/2<br />

. (4.20)<br />

This spectrum has the form <str<strong>on</strong>g>of</str<strong>on</strong>g> an anisotropic c<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>ds to that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Eq. (4.19) for l = 0 (higher l corresp<strong>on</strong>d to higher energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s).<br />

4.6 Density <str<strong>on</strong>g>of</str<strong>on</strong>g> states<br />

At zero temperature the DOS D(E) is given by<br />

D(E) = ∑ δ(E − E nk ), (4.21)<br />

n,k<br />

with E the energy. We show the DOS in Fig. 4.9, for W b = 0.5 (solid red curve)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> W b = 0.4 (dashed blue curve), as well as the DOS for graphene without any<br />

SL potential (dash-dotted black curve); the latter is given by D(ε) = εD 0 /2π, with<br />

D 0 = L/v F the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> states per unit area, L being the period <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL.<br />

The DOS shows an oscillating behavior. The dips in it are located at the crossing<br />

points in the energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s for k y = 0 (ε = nπ), while the peaks marked by a star<br />

are ascribed to the saddle points between the crossing points for k x = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> to the<br />

minima <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s at the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the BZ, k x = ±π, marked by a cross.<br />

For W b = 0.4 ≠ W w the DOS (dashed blue curve) does not vanish at ε = 0 nor is<br />

it symmetric around this energy.<br />

57


CHAPTER 4. SINGLE-LAYER GRAPHENE: EXTRA DIRAC POINTS AND<br />

COLLIMATION IN SLS<br />

DOS (τF /L × e 2 /h)<br />

EL/v F<br />

Figure 4.9: The DOS, for u = 6π, <str<strong>on</strong>g>and</str<strong>on</strong>g> W b = 0.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.4 is shown by the solid<br />

red <str<strong>on</strong>g>and</str<strong>on</strong>g> dashed blue curve, respectively. Stars <str<strong>on</strong>g>and</str<strong>on</strong>g> crosses placed near the peaks<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the solid red curve (for negative energies) are ascribed to saddle points in the<br />

spectrum, for k x = 0, <str<strong>on</strong>g>and</str<strong>on</strong>g> to minima for k x = π, respectively. The DOS without a<br />

SL potential is shown by the dash-dotted black curve.<br />

4.7 C<strong>on</strong>ductivity<br />

The diffusive dc c<strong>on</strong>ductivity σ µν for the SL system can be readily calculated from<br />

the spectrum if we assume a nearly c<strong>on</strong>stant relaxati<strong>on</strong> time τ(E F ) ≡ τ F . It is<br />

given by (Charb<strong>on</strong>neau et al., 1982)<br />

σ µν (E F ) = e2 βτ F<br />

A<br />

∑<br />

v nµ v nν f nk (1 − f nk ), (4.22)<br />

n,k<br />

with A the area <str<strong>on</strong>g>of</str<strong>on</strong>g> the system, n the energy b<str<strong>on</strong>g>and</str<strong>on</strong>g> index, µ, ν = x, y, <str<strong>on</strong>g>and</str<strong>on</strong>g> f nk =<br />

1/[exp(β(E F − E nk )) + 1] the equilibrium Fermi-Dirac distributi<strong>on</strong> functi<strong>on</strong>; E F is<br />

the Fermi-energy <str<strong>on</strong>g>and</str<strong>on</strong>g> β = 1/k B T .<br />

In Figs. 4.10(a,b) we show, respectively, σ xx <str<strong>on</strong>g>and</str<strong>on</strong>g> σ yy for a SL with u = 6π, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the temperature dependency is given by β = v F /k B T L = 20 (in dimensi<strong>on</strong>less<br />

units). The solid red <str<strong>on</strong>g>and</str<strong>on</strong>g> dashed blue curves corresp<strong>on</strong>d to W b = 0.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> W b =<br />

0.4, respectively. The dash-dotted black curve shows the c<strong>on</strong>ductivity at zero<br />

temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a SL potential, σ xx = σ yy = ε F σ 0 /4π, with<br />

ε F = E F L/v F <str<strong>on</strong>g>and</str<strong>on</strong>g> σ 0 = e 2 /. Notice that σ xx is an oscillating functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Fermi level <str<strong>on</strong>g>and</str<strong>on</strong>g> recovers a quasi-linear behavior similar to that in graphene without<br />

a SL potential when ε F is well above the barrier height, as shown in the inset, i.e.,<br />

with the x axis displaced over the potential height or well depth, i.e., u/2 = 3π.<br />

On the average, σ yy increases with ε F <str<strong>on</strong>g>and</str<strong>on</strong>g> approaches the result without a SL for<br />

large energies.<br />

The oscillati<strong>on</strong>s in both σ xx <str<strong>on</strong>g>and</str<strong>on</strong>g> σ yy result from the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fermi-level<br />

through the different SL minib<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Notice that for W b = 0.4 the c<strong>on</strong>ductivities<br />

are asymmetric with respect to electr<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hole c<strong>on</strong>ducti<strong>on</strong>. In both cases, W b =<br />

58


4.7. CONDUCTIVITY<br />

(a)<br />

(b)<br />

vF τF σ0/L<br />

vF τF σ0/L<br />

(c)<br />

E F L/v F<br />

(d)<br />

E F L/v F<br />

vF τF σ0/L<br />

vF τF σ0/L<br />

E F L/v F<br />

E F L/v F<br />

Figure 4.10: (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) show the c<strong>on</strong>ductivities σ xx <str<strong>on</strong>g>and</str<strong>on</strong>g> σ yy versus Fermi energy<br />

for a SL with u = 6π. The solid red <str<strong>on</strong>g>and</str<strong>on</strong>g> dashed blue curves are for W b = 0.5<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> W b = 0.4 (W w = 1 − W b ), respectively. The dash-dotted black curves show<br />

the c<strong>on</strong>ductivities in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL potential, σ xx = σ yy = ε F σ 0 /4π. The<br />

inset in (a) shows the zoomed-out c<strong>on</strong>ductivity σ xx , for W b = 0.5, <str<strong>on</strong>g>and</str<strong>on</strong>g> the dashed<br />

lines are the c<strong>on</strong>ductivities <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a SL but with a c<strong>on</strong>stant<br />

n<strong>on</strong>-zero potential applied, −V 0 /2 <str<strong>on</strong>g>and</str<strong>on</strong>g> +V 0 /2, so that E F is displaced by V 0 /2<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> u/2 = 3π. The inset in (b) is a zoom <strong>on</strong> σ yy for small energies. (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d)<br />

show σ xx <str<strong>on</strong>g>and</str<strong>on</strong>g> σ yy , for W b = W w = 0.5 for different potential heights, such that<br />

u = 4π, 4.5π, 6π, 7.5π, <str<strong>on</strong>g>and</str<strong>on</strong>g> low energies.<br />

W w = 0.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> W b = 0.4, σ xx shows dips at ε F = nπ, where energy b<str<strong>on</strong>g>and</str<strong>on</strong>g> crossings<br />

occur in the spectrum for k y = 0. In the former case the DOS has dips occurring<br />

at the same energy values that are dominated by the same crossings. In the latter<br />

case we see that, unlike the DOS, σ xx is almost unaffected by the extra Dirac points<br />

for low energies since the spectrum is almost flat near these points. Similarly, for<br />

W b = 0.4 we see that the minimum in σ yy is located at ε F ≈ 1, that is, the energy<br />

value for which the two extra Dirac points occur in the spectrum.<br />

In Figs. 4.10(c,d) we show σ xx <str<strong>on</strong>g>and</str<strong>on</strong>g> σ yy , respectively, for a SL with W b =<br />

W w = 0.5, for different potential heights, such that u = 0, 4π, 4.5π, 6π, 7.5π, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

β = v F /k B T L = 20. Notice that the c<strong>on</strong>ductivity σ yy in the low-energy range<br />

(ε F < 1) is lower than in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a SL potential while its slope increases as<br />

the potential barriers become higher. This is due to the extra Dirac points that<br />

59


CHAPTER 4. SINGLE-LAYER GRAPHENE: EXTRA DIRAC POINTS AND<br />

COLLIMATION IN SLS<br />

appear for larger potential heights, near which the velocity is larger al<strong>on</strong>g the y<br />

axis. Notice that for ε F < 1 we have σ xx > σ yy as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the inequality v x > v y<br />

near the Dirac point.<br />

4.8 C<strong>on</strong>clusi<strong>on</strong>s<br />

We investigated the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> zero modes, touching points at the Fermi level<br />

(extra Dirac points) in the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>single</strong>-layer graphene in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

1D SL. The system was described by a Dirac-type Hamilt<strong>on</strong>ian, <str<strong>on</strong>g>and</str<strong>on</strong>g> the SL barriers<br />

were square.<br />

In the general case <str<strong>on</strong>g>of</str<strong>on</strong>g> unequal well <str<strong>on</strong>g>and</str<strong>on</strong>g> barrier widths, there is no particle-hole<br />

symmetry <str<strong>on</strong>g>and</str<strong>on</strong>g> the extra Dirac points are no l<strong>on</strong>ger located at the Fermi-level.<br />

We obtained an analytical expressi<strong>on</strong> for the positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing points in the<br />

spectrum. The extra “Dirac c<strong>on</strong>es” that appear at the various crossing points are<br />

reshaped, i.e., they are no l<strong>on</strong>ger circular symmetric <str<strong>on</strong>g>and</str<strong>on</strong>g> the slope is renormalized.<br />

For fixed height <str<strong>on</strong>g>of</str<strong>on</strong>g> the barriers, we found lower <str<strong>on</strong>g>and</str<strong>on</strong>g> upper bounds for the barrier<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> well widths for the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> these extra Dirac c<strong>on</strong>es.<br />

For a SL with equal well <str<strong>on</strong>g>and</str<strong>on</strong>g> barrier widths we complemented the investigati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Park et al. (2009b) <str<strong>on</strong>g>and</str<strong>on</strong>g> Brey <str<strong>on</strong>g>and</str<strong>on</strong>g> Fertig (2009), which numerically dem<strong>on</strong>strated<br />

the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> extra Dirac points (zero modes). In doing so we found a simple<br />

analytical expressi<strong>on</strong> for the spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these points in k space as well<br />

as a threshold value <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential strength for their appearance. Further, we<br />

approximated the dispersi<strong>on</strong> relati<strong>on</strong> for energies close to the Fermi energy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

found an explicit expressi<strong>on</strong> for the k space behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the extra Dirac points at<br />

the Fermi level. Using this expressi<strong>on</strong> we showed how the group velocities at the<br />

various extra Dirac points are renormalized in the x <str<strong>on</strong>g>and</str<strong>on</strong>g> y directi<strong>on</strong>s. We also<br />

quantified how dispersi<strong>on</strong>less the spectrum is in the neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> a Dirac point<br />

al<strong>on</strong>g the y directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> new points at which the c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the valence b<str<strong>on</strong>g>and</str<strong>on</strong>g>s touch each other.<br />

Finally, we numerically obtained the DOS, which exhibits an interesting oscillatory<br />

behavior <str<strong>on</strong>g>and</str<strong>on</strong>g> is reflected in the c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. We found that<br />

the dips in the DOS, for symmetric SLs, are located at the touching points in the<br />

spectrum for k = 0, i.e., for ε = nπ. For asymmetric SLs these dips persist but<br />

extra dips due to the extra Dirac points arise. The c<strong>on</strong>ductivity σ xx was found to<br />

have dips at the same values for ε F as the DOS, while the main features <str<strong>on</strong>g>of</str<strong>on</strong>g> σ yy in<br />

the low-energy range are due to the spectrum near the extra Dirac points.<br />

60


5<br />

Single-layer graphene: Kr<strong>on</strong>ig-Penney<br />

model<br />

5.1 Introducti<strong>on</strong><br />

In this chapter we describe how the electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> massless Dirac fermi<strong>on</strong>s<br />

in <strong>single</strong>-layer graphene is modified by a periodic potential <str<strong>on</strong>g>of</str<strong>on</strong>g> δ-functi<strong>on</strong> barriers<br />

(Dominguez-Adame, 1989; McKellar <str<strong>on</strong>g>and</str<strong>on</strong>g> Stephens<strong>on</strong>, 1987a), <str<strong>on</strong>g>of</str<strong>on</strong>g>ten referred to as<br />

Dirac comb or Dirac Kr<strong>on</strong>ig-Penney (KP) model. We can achieve this model by<br />

c<strong>on</strong>sidering the square barriers <str<strong>on</strong>g>of</str<strong>on</strong>g> the previous chapters to be very thin <str<strong>on</strong>g>and</str<strong>on</strong>g> high<br />

at the same time.<br />

This model can not <strong>on</strong>ly be used to simplify some <str<strong>on</strong>g>of</str<strong>on</strong>g> previously obtained results<br />

for the spectrum, but is also interesting in itself as a Dirac KP model in two dimensi<strong>on</strong>s.<br />

Although the model may appear a bit unrealistic, since a relatively smooth<br />

potential is needed to describe the carrier dynamics using the Dirac equati<strong>on</strong>, its<br />

simplicity is attractive <str<strong>on</strong>g>and</str<strong>on</strong>g> elucidates certain symmetry <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum.<br />

Furthermore <strong>on</strong>e can realize the model by using a potential that is smooth <strong>on</strong> the<br />

scale <str<strong>on</strong>g>of</str<strong>on</strong>g> the atomic distance while remaining immediate compared to the typical<br />

electr<strong>on</strong> wavelength.<br />

This chapter is organized as follows. In Sec. 5.2 we look at the tunneling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an electr<strong>on</strong> through a <strong>single</strong> δ-functi<strong>on</strong> barrier. In Sec. 5.3 we extend this to two<br />

such barriers in the same or opposite directi<strong>on</strong>. In Sec. 5.4 we study the bound<br />

states <str<strong>on</strong>g>of</str<strong>on</strong>g> a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> δ-functi<strong>on</strong> barriers. In Sec. 5.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> Sec. 5.6 we c<strong>on</strong>sider the<br />

Dirac Kr<strong>on</strong>ig-Penney model <str<strong>on</strong>g>and</str<strong>on</strong>g> its extensi<strong>on</strong> to a superlattice with two δ-functi<strong>on</strong><br />

barriers in its unit cell, <str<strong>on</strong>g>and</str<strong>on</strong>g> study in detail the dispersi<strong>on</strong> relati<strong>on</strong>. Finally, we give<br />

a summary <str<strong>on</strong>g>and</str<strong>on</strong>g> make c<strong>on</strong>cluding remarks in Sec. 5.7.<br />

1 The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter were published as:<br />

M. Barbier, P. Vasilopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. Peeters, Phys. Rev. B 80, 205415 (2009).<br />

61


CHAPTER 5.<br />

SINGLE-LAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

5.2 Transmissi<strong>on</strong> through a δ-functi<strong>on</strong> barrier<br />

We describe the electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> an infinitely large flat graphene flake in<br />

<strong>single</strong>-valley approximati<strong>on</strong> by the zero-mass Dirac equati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sider soluti<strong>on</strong>s<br />

with energy <str<strong>on</strong>g>and</str<strong>on</strong>g> wave vector near the K point. The Hamilt<strong>on</strong>ian is H = v F σ·p+1V<br />

with p the momentum operator <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 the 2×2 unit matrix. In the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a 1D<br />

potential V (x) the equati<strong>on</strong> (H−E)ψ = 0 yields soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the form ψ r(l) (x)e ikyy<br />

where<br />

( )<br />

( )<br />

1<br />

1<br />

ψ r (x) =<br />

se iφ e iλx , ψ l (x) =<br />

−se −iφ e −iλx , (5.1)<br />

with tan φ = k y /λ, s = sign(ε − u(x)), λ = [(ε − u(x)) 2 − ky] 2 1/2 , ε = E/v F ,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> u(x) = V (x)/v F ; ε <str<strong>on</strong>g>and</str<strong>on</strong>g> u(x) are in units <str<strong>on</strong>g>of</str<strong>on</strong>g> inverse length. As usual, we<br />

approximate a δ-functi<strong>on</strong> barrier with a very thin <str<strong>on</strong>g>and</str<strong>on</strong>g> very high barrier, <str<strong>on</strong>g>of</str<strong>on</strong>g> width<br />

W (→ 0) <str<strong>on</strong>g>and</str<strong>on</strong>g> height V 0 (→ ∞), but keep c<strong>on</strong>stant the dimensi<strong>on</strong>less product P =<br />

W V 0 /v F , which we call its strength. Referring to Eq. (5.1) <str<strong>on</strong>g>and</str<strong>on</strong>g> Fig. 5.1, the<br />

y<br />

x<br />

Figure 5.1: (a) A 1D potential barrier <str<strong>on</strong>g>of</str<strong>on</strong>g> height V 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> width W . (b) Wave vector<br />

k = (k x , k y ) geometry for an electr<strong>on</strong>, with energy 0 < E < V 0 , impinging <strong>on</strong> a<br />

square potential barrier (gray area).<br />

wave functi<strong>on</strong> in each <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong>s (1)-(3) can be written as a superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the eigenstates <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (5.1) ψ n (x) = G n M n (x)A n , n = 1, 2, 3, with coefficients<br />

A = (A, B) T <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

( )<br />

( )<br />

1 1<br />

e<br />

iλx<br />

0<br />

G =<br />

se iφ −se −iφ , M(x) =<br />

0 e −iλx . (5.2)<br />

Matching the wave functi<strong>on</strong> at the interfaces x = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> x = W gives the transfer<br />

matrix N = G −1 SG in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the matrix S that relates the wave functi<strong>on</strong> in fr<strong>on</strong>t<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier to the <strong>on</strong>e after it in the manner ψ 1 (0) = Sψ 3 (0+). The result is<br />

( )<br />

S = G 2 M −1<br />

cos P i sin P<br />

2 (W )G−1 2 =<br />

. (5.3)<br />

i sin P cos P<br />

We notice that S is a periodic functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P <str<strong>on</strong>g>and</str<strong>on</strong>g> that S = ±1 for P = nπ. This is<br />

a special situati<strong>on</strong> in which the two pseudo-spin comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong><br />

do not mix. Later <strong>on</strong> we will see that this periodicity appears in the transmissi<strong>on</strong><br />

through a δ-functi<strong>on</strong> barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> in the dispersi<strong>on</strong> relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the KP model.<br />

62


5.3. TRANSMISSION THROUGH TWO δ-FUNCTION BARRIERS<br />

With the elements <str<strong>on</strong>g>of</str<strong>on</strong>g> N denoted by N ij , the transmissi<strong>on</strong> is T = |t| 2 = 1/|N 11 | 2 .<br />

The explicit result is<br />

T = 1/[1 + sin 2 P tan 2 φ] , (5.4)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> coincides with the formula for transmissi<strong>on</strong> as found in Katsnels<strong>on</strong> et al. (2006),<br />

in the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> δ-functi<strong>on</strong> barriers. Obviously, T <str<strong>on</strong>g>and</str<strong>on</strong>g> R = 1−T are periodic functi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P , that is, X(P + nπ, φ) = X(P, φ) for n integer <str<strong>on</strong>g>and</str<strong>on</strong>g> X = T, R. In additi<strong>on</strong>,<br />

from Eq. (5.4) we derive that T (P, φ) has the following <str<strong>on</strong>g>properties</str<strong>on</strong>g>:<br />

1) T (P, φ) = T (π − P, φ) = T (π + P, φ),<br />

2) T (nπ, φ) = 1 ,<br />

3) T (π/2, φ) = cos 2 φ ,<br />

4) T (P, φ = 0) = 1, T ≈ 1 for φ ≈ 0 ↔ k y ≪ k x ,<br />

5) T (P, ±π/2) = 0, T ≈ 0 for φ ≈ ±π/2 ↔ k y ≫ k x . (5.5)<br />

These results are very different from those <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-relativistic case where T is a<br />

decreasing functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P. A c<strong>on</strong>tour plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> is shown in Fig. 5.2(a).<br />

This figure shows the symmetry <str<strong>on</strong>g>properties</str<strong>on</strong>g> T (P, φ) = T (P, −φ), <str<strong>on</strong>g>and</str<strong>on</strong>g> T (π − P, φ) =<br />

T (P, φ).<br />

5.2.1 C<strong>on</strong>ductance<br />

The two-terminal c<strong>on</strong>ductance is G = G 0<br />

∫ π/2<br />

−π/2 T (P, φ) cos φ dφ, with G 0 = 2E F L y e 2 /(v F h 2 )<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> L y the width <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. Using Eq. (5.4) for T (P, φ) the resulting G is periodic<br />

in P <str<strong>on</strong>g>and</str<strong>on</strong>g> given by<br />

G/G 0 = 2 [ 1 − artanh(cos P ) sin P tan P ] / cos 2 P . (5.6)<br />

G is shown for <strong>on</strong>e period in Fig. 5.2(b); its minimum value is 4/3 <str<strong>on</strong>g>and</str<strong>on</strong>g> its maximum<br />

value 2.<br />

5.3 Transmissi<strong>on</strong> through two δ-functi<strong>on</strong> barriers<br />

We c<strong>on</strong>sider two barriers separated by a distance L characterized by the potential<br />

V (x, y)/v F = P 1 δ(x) + P 2 δ(x − L), with strengths P 1,2 , <str<strong>on</strong>g>and</str<strong>on</strong>g> introduce the dimensi<strong>on</strong>less<br />

variables ε → εL, k y → k y L, u 0 → u 0 L, <str<strong>on</strong>g>and</str<strong>on</strong>g> x → x/L. Due to space<br />

limitati<strong>on</strong>s we treat <strong>on</strong>ly the cases <str<strong>on</strong>g>of</str<strong>on</strong>g> parallel <str<strong>on</strong>g>and</str<strong>on</strong>g> antiparallel δ-functi<strong>on</strong> barriers<br />

with the same strength |P 1 | = |P 2 |.<br />

Parallel δ-functi<strong>on</strong> barriers. This is a model system for a res<strong>on</strong>ant tunneling<br />

structure (Katsnels<strong>on</strong> et al., 2006; Pereira Jr et al., 2007) <str<strong>on</strong>g>and</str<strong>on</strong>g> also for a Fabry-<br />

Perot interferometer whose res<strong>on</strong>ances were recently investigated experimentally<br />

(Cho <str<strong>on</strong>g>and</str<strong>on</strong>g> Fuhrer, 2011). The transmissi<strong>on</strong> is given by<br />

T = [ 1 + tan 2 φ(cos k x sin 2P − 2s sin k x sin 2 P/ cos φ) 2] −1<br />

, (5.7)<br />

63


CHAPTER 5.<br />

SINGLE-LAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

1<br />

1<br />

1<br />

0.75<br />

0.75<br />

0.75<br />

P/π<br />

0.5<br />

0.5<br />

P/π<br />

0.5<br />

0.25<br />

0.25<br />

0.25<br />

0<br />

−90 0 90<br />

φ (DEG)<br />

0<br />

0<br />

0 1 2<br />

G (G 0<br />

EF Ly<br />

¯hvF )<br />

Figure 5.2: Left: Transmissi<strong>on</strong> T through a δ-functi<strong>on</strong> barrier versus its strength<br />

P <str<strong>on</strong>g>and</str<strong>on</strong>g> the angle <str<strong>on</strong>g>of</str<strong>on</strong>g> incidence φ (tan φ = k y /k x ). Only <strong>on</strong>e period is shown. Right:<br />

C<strong>on</strong>ductance G/G 0 versus P .<br />

with s = sign(ε). The <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> T (P, φ, k x ) are identical to those for a <strong>single</strong><br />

barrier except for property 3) <str<strong>on</strong>g>and</str<strong>on</strong>g> property 1), which must be replaced by<br />

T (P, φ, k x ) = T (P + nπ, φ, k x ). In Fig. 5.3(a) we show T (P, φ, k x ) through two<br />

barriers with P = π/10.<br />

Antiparallel δ-functi<strong>on</strong> barriers. We now c<strong>on</strong>sider two parallel δ-functi<strong>on</strong>s but<br />

with opposite sign, P = P 1 = −P 2 . The result for the transmissi<strong>on</strong> is<br />

T = [ cos 2 k x + sin 2 k x (1 − sin 2 φ cos 2P ) 2 / cos 4 φ ] −1<br />

. (5.8)<br />

In Fig. 5.3(b) we show the transmissi<strong>on</strong> through two opposite barriers for P = π/10.<br />

The symmetry <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> T (P, φ, k x ) for a <strong>single</strong> barrier again hold, except for<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> T (π/2, φ, k x ), see property 3). In additi<strong>on</strong>, we now have T (P, φ, k x ) =<br />

T (P, φ, −k x ).<br />

The periodicity in the transmissi<strong>on</strong> is also present in the c<strong>on</strong>ductance G. We<br />

show G in Fig. 5.4(a) for parallel <str<strong>on</strong>g>and</str<strong>on</strong>g> in Fig. 5.4(b) for antiparallel δ-functi<strong>on</strong><br />

barriers.<br />

5.4 Bound states<br />

For a <strong>single</strong> δ-functi<strong>on</strong> barrier the bound state is given by<br />

√<br />

ε = sgn(sin P ) ky 2 + µ 2 0 cos P, (5.9)<br />

which is similar to the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a Dirac particle with its mass corresp<strong>on</strong>ding<br />

to µ 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> a reduced group velocity v y ; the result is shown in Fig. 5.5 as the green<br />

64


5.5. KRONIG-PENNEY MODEL<br />

1<br />

1<br />

1.5<br />

0.75<br />

1.5<br />

0.75<br />

kxL/π<br />

1<br />

0.5<br />

kxL/π<br />

1<br />

0.5<br />

0.5<br />

0.25<br />

0.5<br />

0.25<br />

−90 0 90<br />

0<br />

−90 0 90<br />

0<br />

φ (DEG)<br />

φ (DEG)<br />

Figure 5.3: (a) Transmissi<strong>on</strong> through two parallel δ-functi<strong>on</strong> barriers, as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the wave vector comp<strong>on</strong>ent k x <str<strong>on</strong>g>and</str<strong>on</strong>g> angle <str<strong>on</strong>g>of</str<strong>on</strong>g> incidence φ, for P = π/10. The<br />

yellow solid curve shows the c<strong>on</strong>tour with a transmissi<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.75 for P = π/2.<br />

(b) As in (a) for two antiparallel δ-functi<strong>on</strong> barriers.<br />

curve. Comparing with the <strong>single</strong>-barrier case we notice that due to the periodicity<br />

in P , the δ-functi<strong>on</strong> barrier can act as a barrier or as a well depending <strong>on</strong> the value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P .<br />

For two δ-functi<strong>on</strong> barriers there are two important cases: the parallel <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

anti-parallel case. For parallel barriers <strong>on</strong>e finds an implicit equati<strong>on</strong> for the energy<br />

|λ ′ cos P + ε sin P | = |e −λ′√ ky 2 + µ 2 0 sin P |, (5.10)<br />

where λ ′ = |λ 0 |, while for anti-parallel barriers <strong>on</strong>e obtains<br />

(k 2 y + µ 2 ) sin 2 P = λ ′2 /(1 − e −2λ′ ). (5.11)<br />

For two (anti-)parallel δ-functi<strong>on</strong> barriers we have, for each fixed k y <str<strong>on</strong>g>and</str<strong>on</strong>g> P , two<br />

energy values ±ε, <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore two bound states. In both cases, for P √= nπ the<br />

spectrum is simplified to the <strong>on</strong>e in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> any potential ε = ± ky 2 + µ 2 0 .<br />

In Fig. 5.5 the bound states for double (anti-)parallel δ-functi<strong>on</strong> barriers are shown,<br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> k y L, by the blue (red) curves. For anti-parallel barriers we see that<br />

there is a symmetry around E = 0, which is absent when the barriers are parallel.<br />

5.5 Kr<strong>on</strong>ig-Penney model<br />

For an infinite number <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic square barriers, <strong>on</strong>e can tune the system into<br />

a self-collimating material (Park et al., 2009a). For special values <str<strong>on</strong>g>of</str<strong>on</strong>g> V 0 , W , <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

L it was found in Park et al. (2009a) that the dispersi<strong>on</strong> relati<strong>on</strong> near the K<br />

point is almost linear in k x <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>stant al<strong>on</strong>g k y . The system thus behaves as<br />

65


CHAPTER 5.<br />

SINGLE-LAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

Figure 5.4: (a) C<strong>on</strong>ductance G(G 0 ) versus ε for several strengths P through two<br />

parallel δ-functi<strong>on</strong> barriers. (b) As in (a) for two antiparallel barriers.<br />

a 1D metal. We look for similar results using δ-functi<strong>on</strong> barriers. Within the<br />

KP model we replace the square barriers by δ-functi<strong>on</strong> barriers, characterized by<br />

V (x, y)/v F = ∑ ∞<br />

j=−∞<br />

P δ(x−jL). The resulting wave functi<strong>on</strong> is a Bloch functi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the transfer matrix N pertinent to these barriers leads to ψ(1) = e ikx ψ(0)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> A 1 = N A 2 , with k x the Bloch wave vector. From these c<strong>on</strong>diti<strong>on</strong>s we can<br />

extract the relati<strong>on</strong> e −ikx M(1)A 2 = N A 2 , with M(x) given by Eq. (5.3). Setting<br />

the determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> the coefficients in A 2 = (A, B) T equal to zero <str<strong>on</strong>g>and</str<strong>on</strong>g> using the<br />

transfer matrix for a δ-functi<strong>on</strong> barrier leads to (λ = [ε 2 − ky] 2 1/2 )<br />

cos k x = cos P cos λ + (ε/λ) sin λ sin P . (5.12)<br />

The soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (5.12) gives the dispersi<strong>on</strong>, which is periodic in P , <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

spectrum is shown in Fig. 5.6 for P = π/2. Further, Eq. (5.12) is mapped, for k y =<br />

0, directly <strong>on</strong>to the dispersi<strong>on</strong> for strictly 1D fermi<strong>on</strong>s (McKellar <str<strong>on</strong>g>and</str<strong>on</strong>g> Stephens<strong>on</strong>,<br />

1987b), <str<strong>on</strong>g>and</str<strong>on</strong>g> gives the spectrum<br />

66<br />

ε = P ± k x + 2nπ , (5.13)


5.5. KRONIG-PENNEY MODEL<br />

2<br />

1<br />

EL/¯hvF<br />

0<br />

−1<br />

−2<br />

−2.5 0 2.5<br />

k y L<br />

Figure 5.5: Spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the bound states for a <strong>single</strong> (shown as the green curve)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> double (anti-)parallel (shown as the blue(red) curves) δ-functi<strong>on</strong> barriers. the<br />

mass term µ = 0.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> the barrier strength P = 0.4π. The hyperbola show the<br />

regi<strong>on</strong> where propagating states outside the barrier are available.<br />

with n an integer.<br />

Eq. (5.12) c<strong>on</strong>trasts very sharply with the dispersi<strong>on</strong> for 2D electr<strong>on</strong>s with<br />

a parabolic spectrum in a 1D KP potential which, with λ ′ = [2µε − k 2 y] 1/2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

µ = mv F L/, reads<br />

cos k x = cos λ ′ + (µP/λ ′ ) sin λ ′ ; (5.14)<br />

the resulting dispersi<strong>on</strong> relati<strong>on</strong> is not periodic in P .<br />

5.5.1 Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum<br />

Since the dispersi<strong>on</strong> relati<strong>on</strong> is periodic in P , with period 2π, it is sufficient to<br />

study it <strong>on</strong>ly for 0 ≤ P ≤ 2π. For particular values <str<strong>on</strong>g>of</str<strong>on</strong>g> P we find:<br />

1) P = 2π → ε = ±[k 2 y + (k x + 2nπ) 2 ] 1/2 ,<br />

2) P = π → ε = ±[k 2 y + (k x + (2n + 1)π) 2 ] 1/2 ,<br />

3) P = π/2(3π/2) → cos k x = +(−)ε sin λ/λ . (5.15)<br />

In limiting cases we are able to obtain explicit expressi<strong>on</strong>s for E = E(k x , k y ).<br />

We exp<str<strong>on</strong>g>and</str<strong>on</strong>g> the dispersi<strong>on</strong> relati<strong>on</strong> for small k y <str<strong>on</strong>g>and</str<strong>on</strong>g> ε − P . The resulting quadratic<br />

equati<strong>on</strong> for ε is solved by<br />

ε ± ≈ P ± [ 4 sin 2 (k x /2) + (k 2 y/P 2 ) sin 2 P ] 1/2<br />

. (5.16)<br />

For small k x we can replace the term 4 sin 2 (k x /2) by k 2 x. Notice that for k x = 0 we<br />

find ε ± ≈ P ± k y sin P/P , which is a linear spectrum with a reduced velocity. For<br />

67


CHAPTER 5.<br />

SINGLE-LAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

Figure 5.6: (a): Energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s, near the Fermi level, close to the K point in<br />

the KP model, for P = π/2. The valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> touches the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> at<br />

ε = P = π/2. For large k y the valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> becomes flat. (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> (c): Projecti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the valence <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s, respectively, <strong>on</strong>to the (k x , k y ) plane.<br />

k y = 0, we have ε ± = P ± 2 sin(|k x |/2), which is linear for small k x but possesses<br />

a typical b<str<strong>on</strong>g>and</str<strong>on</strong>g> shape for large k x ≈ π. For small k x > k y sin P/P we have<br />

(<br />

ε ± ≈ P ± 2kx 2 + ky 2 sin 2 P/P 2)/ 2|k x | . (5.17)<br />

For P ≫ 1, ε is highly anisotropic <str<strong>on</strong>g>and</str<strong>on</strong>g> nearly flat relative to k y .<br />

Relati<strong>on</strong> to the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a square superlattice. We now look whether we<br />

can find an energy spectrum similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> Park et al. (2009a) pertinent to<br />

square barriers, with height V 0 = 720 meV, <str<strong>on</strong>g>and</str<strong>on</strong>g> width w = 5 nm, <str<strong>on</strong>g>and</str<strong>on</strong>g> unit-cell<br />

length L = 10 nm. In our units these values corresp<strong>on</strong>d to P = V 0 W/v F = 2π<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> lead to ε = ±[ky 2 + (k x + 2nπ) 2 ] 1/2 . Since the Fermi-level in these units<br />

is ε F = 2π = P , we look for the spectrum near the value ε = [ky 2 + (±|k x | +<br />

2π) 2 ] 1/2 . Although these b<str<strong>on</strong>g>and</str<strong>on</strong>g>s seem to fullfil our dem<str<strong>on</strong>g>and</str<strong>on</strong>g>s because the dispersi<strong>on</strong><br />

looks rather flat in the k y directi<strong>on</strong>, the c<strong>on</strong>cern is that we would obtain the same<br />

dispersi<strong>on</strong> for P → 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> ε F → 2π. This can be obtained by folding the c<strong>on</strong>e-like<br />

dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene <str<strong>on</strong>g>and</str<strong>on</strong>g> results simply from working in the reduced-z<strong>on</strong>e scheme.<br />

C<strong>on</strong>sequently, no new fundamental physics should be attached to it. Further,<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> this corresp<strong>on</strong>dence we expected <str<strong>on</strong>g>and</str<strong>on</strong>g> found that for square barriers<br />

with P = 2πn, the situati<strong>on</strong> is more favorable for the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> collimati<strong>on</strong>. It<br />

follows that the collimati<strong>on</strong> effect is also obtainable for barriers that are lower than<br />

the unusually high <strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> Park et al. (2009a) if <strong>on</strong>e uses l<strong>on</strong>ger unit cell periods.<br />

68


5.6. EXTENDED KRONIG-PENNEY MODEL<br />

5.6 Extended Kr<strong>on</strong>ig-Penney model<br />

The square barriers are replaced by alternating-in-sign δ-functi<strong>on</strong> barriers. The<br />

unit cell <str<strong>on</strong>g>of</str<strong>on</strong>g> the periodic potential c<strong>on</strong>tains <strong>on</strong>e such barrier up, at x = 0, followed<br />

by a barrier down, at x = 1/2. The resulting transfer matrix leads to<br />

cos k x = cos λ − (2k 2 y/λ 2 ) sin 2 (λ/2) sin 2 P , (5.18)<br />

where tan φ = k y /λ. From Eq. (5.18) we deduce that the dispersi<strong>on</strong> is periodic in<br />

P , with period π, <str<strong>on</strong>g>and</str<strong>on</strong>g> has the following <str<strong>on</strong>g>properties</str<strong>on</strong>g>:<br />

1) it is invariant for ε → −ε <str<strong>on</strong>g>and</str<strong>on</strong>g> P → π − P ,<br />

2) P = nπ → ε = ±[k 2 y + (k x + 2nπ) 2 ] 1/2 ,<br />

3) P = π/2 → (ε, k x , k y ) = (0, 0, k y ). (5.19)<br />

In Fig. 5.7(a) we show the spectrum for P = π/2. As seen, it is almost independent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> k y for small energies, while in the k x directi<strong>on</strong> the b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are linear; this is<br />

an advantageous situati<strong>on</strong> for self-collimati<strong>on</strong>. For k y = 0 we obtain the linear<br />

Figure 5.7: (a) C<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> valence b<str<strong>on</strong>g>and</str<strong>on</strong>g>s, near the K point, in the extended<br />

KP model, for P = π/2. The b<str<strong>on</strong>g>and</str<strong>on</strong>g>s form a “cross” in the (E, k x ) plane <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

Dirac point has become a Dirac line. The dispersi<strong>on</strong> is nearly independent <str<strong>on</strong>g>of</str<strong>on</strong>g> k y .<br />

(b) As in (a) for P = π/4.<br />

spectrum<br />

ε = ±|k x | + 2nπ , (5.20)<br />

with the Dirac point at ε = 0. We can also find an explicit expressi<strong>on</strong> for k x ≈ 0.<br />

Solving Eq. (5.18) gives<br />

ε ± = ±|k y cos P | . (5.21)<br />

Therefore, the group velocity v y ∝ ∂ε/∂k y becomes small if P ≈ π/2 + nπ.<br />

Fig. 5.7(b) shows the energy spectrum for P = π/4: the Dirac c<strong>on</strong>e becomes<br />

anisotropic as the spectrum flattens in the k y directi<strong>on</strong>.<br />

69


CHAPTER 5.<br />

SINGLE-LAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

We now c<strong>on</strong>sider the case where k x <str<strong>on</strong>g>and</str<strong>on</strong>g> k y are n<strong>on</strong>zero. If ε ≪ 1 then the rhs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (5.18) can be exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed as a power series <str<strong>on</strong>g>of</str<strong>on</strong>g> ε. This leads to a quadratic<br />

equati<strong>on</strong> for ε with soluti<strong>on</strong>s<br />

[<br />

cosh k y − cos k x − f<br />

ε ≈ ±|k y |<br />

(k y /2) cos 2 P sinh k y + f<br />

] 1/2<br />

P =π/2<br />

−−−−→ ±|k y | sin(|k x |/2)/ sinh(|k y |/2) , (5.22)<br />

where f = 2 sin 2 P sinh 2 (k y /2). For k y = 0 we find the result ε ± = ±2 sin(|k x |/2),<br />

which is linear for small k x .<br />

5.7 C<strong>on</strong>clusi<strong>on</strong>s<br />

In summary, we studied the transmissi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ductance <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s, with energy<br />

linear in wave vector, through <strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> two δ-functi<strong>on</strong> barriers <str<strong>on</strong>g>and</str<strong>on</strong>g> the energy<br />

spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a KP SL. For very high (V 0 → ∞) <str<strong>on</strong>g>and</str<strong>on</strong>g> very thin (W → 0) barriers we<br />

showed that they are periodic functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> their strength P = W V 0 /v F , where v F<br />

is the Fermi velocity. Further, we showed that a KP SL has an energy spectrum<br />

that is a periodic functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P , which is in sharp c<strong>on</strong>trast with that obtained from<br />

the Schrödinger equati<strong>on</strong>. An important c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> that is collimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

incident electr<strong>on</strong> beam (Park et al., 2009a), which here occurs for P = 2πn with n<br />

an integer. We also obtained various explicit but approximate dispersi<strong>on</strong> relati<strong>on</strong>s,<br />

e.g., for small wave vectors k = (k x , k y ).<br />

70


6<br />

Heterostructures <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>superlattices</str<strong>on</strong>g> in<br />

bilayer graphene<br />

6.1 Introducti<strong>on</strong><br />

In bilayer graphene (Partoens <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, 2006) a gap can be introduced by applying<br />

a bias between the two layers or by doping <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> them such that a potential<br />

difference results between the layers (Ohta et al., 2006; Castro et al., 2007; McCann,<br />

2006). Changing the bias in the latter manner can open <str<strong>on</strong>g>and</str<strong>on</strong>g> close the gap dynamically,<br />

which is interesting for transistor applicati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> gives us more opti<strong>on</strong>s<br />

to create <str<strong>on</strong>g>nanostructures</str<strong>on</strong>g>. In this chapter we investigate the transport <str<strong>on</strong>g>properties</str<strong>on</strong>g><br />

through various simple heterostructures in bilayer graphene. A particularly interesting<br />

heterostructure results from flipping the sign <str<strong>on</strong>g>of</str<strong>on</strong>g> the bias locally. These sign<br />

flips <str<strong>on</strong>g>of</str<strong>on</strong>g> the bias introduce bound states al<strong>on</strong>g the interfaces (Martin et al., 2008;<br />

Martinez et al., 2009). These bound states break the time reversal symmetry <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

are distinct for the two K <str<strong>on</strong>g>and</str<strong>on</strong>g> K ′ valleys; this opens up perspectives for valley-filter<br />

devices (San-Jose et al., 2009).<br />

This Chapter is organized as follows. Sec. 6.2 briefly shows the basic formalism.<br />

In Sec. 6.3 various types <str<strong>on</strong>g>of</str<strong>on</strong>g> potential pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles are characterized. In Sec. 6.4 results for<br />

the transmissi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ductance through a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> barriers are presented,<br />

while Sec. 6.5 c<strong>on</strong>cerns the bound states <str<strong>on</strong>g>of</str<strong>on</strong>g> such barriers. Sec. 6.6 shows results for<br />

the dispersi<strong>on</strong> relati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the density <str<strong>on</strong>g>of</str<strong>on</strong>g> states in SLs in bilayer graphene. Finally,<br />

a summary <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>cluding remarks are given in Sec. 6.7.<br />

6.2 Hamilt<strong>on</strong>ian, energy spectrum, <str<strong>on</strong>g>and</str<strong>on</strong>g> eigenstates<br />

Bilayer graphene c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two AB-stacked m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene. Each m<strong>on</strong>olayer<br />

has two independent atoms A <str<strong>on</strong>g>and</str<strong>on</strong>g> B in its unit cell. The relevant Hamil-<br />

1 The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter were published as:<br />

M. Barbier, P. Vasilopoulos, F. M. Peeters, <str<strong>on</strong>g>and</str<strong>on</strong>g> J. M. Pereira Jr, Phys. Rev. B 79, 155402 (2009),<br />

M. Barbier, P. Vasilopoulos, F. M. Peeters, <str<strong>on</strong>g>and</str<strong>on</strong>g> J. M. Pereira Jr, AIP C<strong>on</strong>ference Proceedings<br />

1199, pp. 547–548 (2010), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

M. Barbier, P. Vasilopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. Peeters, Phil. Trans. R. Soc. A 368, 5499 (2010).<br />

71


CHAPTER 6. HETEROSTRUCTURES AND SUPERLATTICES IN<br />

BILAYER GRAPHENE<br />

t<strong>on</strong>ian, obtained by a nearest-neighbour, tight-binding approximati<strong>on</strong> near the K<br />

point <str<strong>on</strong>g>and</str<strong>on</strong>g> the eigenstates ψ read<br />

⎛<br />

⎞ ⎛ ⎞<br />

V 1 v F π t ⊥ 0<br />

ψ A<br />

H = ⎜v F π † V 1 0 0<br />

⎟<br />

⎝ t ⊥ 0 V 2 v F π † ⎠ , ψ = ⎜ ψ B<br />

⎟<br />

⎝ψ B ′ ⎠ . (6.1)<br />

0 0 v F π V 2 ψ A ′<br />

Here π = (p x +ip y ), p x,y = −i∂ x,y is the momentum operator, v F = 10 6 m/s is the<br />

Fermi velocity in <strong>single</strong>-layer graphene, V 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> V 2 are the potentials <strong>on</strong> layers 1 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

2, respectively, <str<strong>on</strong>g>and</str<strong>on</strong>g> t ⊥ describes the coupling between these layers. For spatially<br />

independent t ⊥ , V 1 , <str<strong>on</strong>g>and</str<strong>on</strong>g> V 2 , the spectrum c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> four b<str<strong>on</strong>g>and</str<strong>on</strong>g>s given by<br />

[<br />

1/2<br />

ε ′ +<br />

± = ɛ 2 kt ± t′√ 4k 2 δ 2 /t ′2 + k 2 + t /4] ′2 ,<br />

′<br />

[<br />

] 1/2<br />

(6.2)<br />

= − ɛ 2 kt ± t′√ 4k 2 δ 2 /t ′2 + k 2 + t ′2 /4 . ′<br />

ε ′ −<br />

±<br />

Here ɛ 2 kt = ′ k2 +δ 2 +t ′2 /2, ∆ = (V 1 −V 2 ), δ = ∆/2v F , ε = E/v F <str<strong>on</strong>g>and</str<strong>on</strong>g> t ′ = t ⊥ /v F .<br />

Soluti<strong>on</strong>s for this Hamilt<strong>on</strong>ian are four-vectors ψ <str<strong>on</strong>g>and</str<strong>on</strong>g> for 1D potentials we can write<br />

ψ(x, y) = ψ(x) exp(ik y y). If the potentials V 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> V 2 do not vary in space, these<br />

soluti<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g> the form<br />

⎛<br />

Ψ ± (x) =<br />

⎜<br />

⎝<br />

⎞<br />

1<br />

f ±<br />

h ±<br />

g ± h ±<br />

⎟<br />

⎠ e±iλx+ikyy , (6.3)<br />

with f ± = [−ik y ± λ]/[ε ′ − δ], h ± = [(ε ′ − δ) 2 − k 2 y − λ 2 ]/[t ⊥ (ε ′ − δ)], <str<strong>on</strong>g>and</str<strong>on</strong>g> g ± =<br />

[ik y ± λ]/[ε ′ + δ]; the wave vector λ is given by<br />

λ ± =<br />

We will write λ + = α <str<strong>on</strong>g>and</str<strong>on</strong>g> λ − = β.<br />

[<br />

√<br />

1/2<br />

ε ′2 + δ 2 − k 2 y ± 4ε ′2 δ 2 + t 2 ⊥ (ε′2 − δ )] 2 . (6.4)<br />

6.3 Different types <str<strong>on</strong>g>of</str<strong>on</strong>g> heterostructures<br />

It was shown before that using a 1D biasing, indicated in Fig. 6.1(a,b,c) by 2∆,<br />

<strong>on</strong>e can create three types <str<strong>on</strong>g>of</str<strong>on</strong>g> heterostructures in graphene (Dragoman et al., 2010).<br />

A fourth type, where the energy gap is spatially kept c<strong>on</strong>stant but the bias periodically<br />

changes sign al<strong>on</strong>g the interfaces, can be introduced (see Fig. 6.1(d)). We<br />

characterize these heterostructures as follows:<br />

1) Type I: The gate bias applied in the barrier regi<strong>on</strong>s is larger than in the well<br />

regi<strong>on</strong>s.<br />

2) Type II: The gaps, not necessarily equal, are shifted in energy but they have<br />

72


6.4. TRANSMISSION<br />

Type I<br />

Type II<br />

2D<br />

w<br />

E c,b<br />

E c,w<br />

E v,b<br />

E v,w<br />

2D<br />

b<br />

2D<br />

w<br />

E c,b<br />

E c,w<br />

E v,b<br />

E v,w<br />

2D<br />

b<br />

Type III<br />

Type IV<br />

E c,b<br />

E c,w<br />

2D<br />

w<br />

E v,b<br />

2D<br />

E v,w<br />

b<br />

2D<br />

w<br />

2D<br />

b<br />

E c<br />

E v<br />

Figure 6.1: Four different types <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g> alignments in bilayer graphene.<br />

E c,b , E c,w , E v,c , <str<strong>on</strong>g>and</str<strong>on</strong>g> E v,b denote the energies <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> valence<br />

(v) b<str<strong>on</strong>g>and</str<strong>on</strong>g>s in the barrier (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> well (w) regi<strong>on</strong>s. The corresp<strong>on</strong>ding gap is, respectively,<br />

2∆ b <str<strong>on</strong>g>and</str<strong>on</strong>g> 2∆ w .<br />

an overlap as shown.<br />

3) Type III: The gaps, not necessarily equal, are shifted in energy <str<strong>on</strong>g>and</str<strong>on</strong>g> have no<br />

overlap.<br />

4) Type IV: The bias changes sign between successive barriers <str<strong>on</strong>g>and</str<strong>on</strong>g> wells but its<br />

magnitude remains c<strong>on</strong>stant.<br />

Type IV structures have been shown to localize the wave functi<strong>on</strong> at the interfaces<br />

(Martin et al., 2008; Martinez et al., 2009). To underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such interfaces we will separately investigate structures with such a <strong>single</strong> interface<br />

embedded by an anti-symmetric potential in this chapter.<br />

6.4 Transmissi<strong>on</strong><br />

To describe the transmissi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> bound states <str<strong>on</strong>g>of</str<strong>on</strong>g> some simple structures we notice<br />

that in the energy regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interest, i.e., for |E| < t ⊥ , the eigenstates that are<br />

propagating are the <strong>on</strong>es with λ = α. Accordingly, from now <strong>on</strong> we will assume<br />

that β is complex. In this way we can simply use the transfer-matrix approach <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ch. 3, with now the transfer matrix a 4×4 matrix, in the transmissi<strong>on</strong> calculati<strong>on</strong>s.<br />

73


CHAPTER 6. HETEROSTRUCTURES AND SUPERLATTICES IN<br />

BILAYER GRAPHENE<br />

(b)<br />

Figure 6.2: (a) C<strong>on</strong>tour plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> for the potential <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 4.1(a) in<br />

bilayer graphene with W b = W w = 40 nm, V b = −V w = 100 meV <str<strong>on</strong>g>and</str<strong>on</strong>g> zero bias.<br />

Bound states are indicated by the red curves. (b) Projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum <strong>on</strong>to<br />

the (E, k y )-plane for a SL whose unit is the potential structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 4.1(b). Blue<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> red curves show, respectively, the k x = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> k x = π/L results which delimit<br />

the energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s (green colored regi<strong>on</strong>s). Compare with Fig. 4.3 <str<strong>on</strong>g>of</str<strong>on</strong>g> Ch. 4.<br />

This leads to the relati<strong>on</strong><br />

⎛ ⎞ ⎛ ⎞<br />

t 1<br />

⎜ 0<br />

⎟<br />

⎝e d<br />

⎠ = N ⎜ r<br />

⎟<br />

⎝ 0 ⎠ . (6.5)<br />

0 e g<br />

This leads to a system <str<strong>on</strong>g>of</str<strong>on</strong>g> linear equati<strong>on</strong>s that can be written in matrix form<br />

⎛ ⎞ ⎛<br />

⎞ ⎛ ⎞<br />

1 N 11 0 N 13 0 t<br />

⎜0<br />

⎟<br />

⎝0⎠ = ⎜N 21 −1 N 23 0<br />

⎟ ⎜ r<br />

⎟<br />

⎝N 31 0 N 33 0 ⎠ ⎝e d<br />

⎠ , (6.6)<br />

0 N 41 0 N 43 −1 e g<br />

with N ij the coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> the transfer matrix N . The transmissi<strong>on</strong> amplitude t<br />

is given by t = [N 11 − N 13 N 31 /N 33 ] −1 . The transmissi<strong>on</strong> probability is given by<br />

T = |t| 2 .<br />

For a <strong>single</strong> barrier the transmissi<strong>on</strong> in bilayer graphene is given by a complicated<br />

expressi<strong>on</strong>. Therefore, we will first look at a few limiting cases. First we<br />

assume a zero bias ∆ = 0 that corresp<strong>on</strong>ds to a particular case <str<strong>on</strong>g>of</str<strong>on</strong>g> type III heterostructures.<br />

In this case we slightly change the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave vectors: for<br />

∆ = 0 we assume α(β) = [ε 2 + (−)εt ⊥ − k 2 y] 1/2 . If we restrict the moti<strong>on</strong> al<strong>on</strong>g the<br />

x axis, by taking k y = 0, <str<strong>on</strong>g>and</str<strong>on</strong>g> assume a bias ∆ = 0, then the transmissi<strong>on</strong> T = |t| 2<br />

74


6.4. TRANSMISSION<br />

Figure 6.3: C<strong>on</strong>tour plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> through a <strong>single</strong> barrier in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(b), for width W b = 50 nm, <str<strong>on</strong>g>and</str<strong>on</strong>g> through double barriers in (c), (d), (e), <str<strong>on</strong>g>and</str<strong>on</strong>g> (f) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

equal widths W b = 20 nm that are separated by W w = 20 nm. Other parameters<br />

are as follows: (a) ∆ b = 100 meV, V b = 0 meV. (b) ∆ b = 20 meV, V b = 50 meV.<br />

(c) Type I : V b = V w = 0 meV, ∆ w = 20 meV, <str<strong>on</strong>g>and</str<strong>on</strong>g> ∆ b = 100 meV. (d) Type II :<br />

V b = −V w = 20 meV, ∆ w = ∆ = 50 meV, (e) Type III : V b = −V w = 50 meV,<br />

∆ w = ∆ b = 20 meV. (f) Type IV : V b = V w = 0 meV, ∆ b = −∆ w = 100 meV.<br />

is given via<br />

1/t = e iα0D [cos(α b D) − iQ sin(α b D)],<br />

Q = 1 (<br />

αb ε 0<br />

+ α )<br />

0ε b<br />

.<br />

2 α 0 ε b α b ε 0<br />

(6.7)<br />

This expressi<strong>on</strong> depends <strong>on</strong>ly <strong>on</strong> the propagating wave vector α (β for E < 0), as<br />

propagating <str<strong>on</strong>g>and</str<strong>on</strong>g> localized states are decoupled in this approximati<strong>on</strong>. This also<br />

means that <strong>on</strong>e does not find any res<strong>on</strong>ances in the transmissi<strong>on</strong> for energies in the<br />

barrier regi<strong>on</strong>, i.e., for 0 < ε < u. Due to the coupling for n<strong>on</strong>zero k y with the<br />

localized states, res<strong>on</strong>ances in the transmissi<strong>on</strong> will occur (see Fig. 6.2). We can<br />

easily generalize this expressi<strong>on</strong> to account for the double barrier case under the<br />

same assumpti<strong>on</strong>s. With an inter-barrier distance W w , <strong>on</strong>e obtains the transmissi<strong>on</strong><br />

75


CHAPTER 6. HETEROSTRUCTURES AND SUPERLATTICES IN<br />

BILAYER GRAPHENE<br />

Figure 6.4: Two-terminal c<strong>on</strong>ductance <str<strong>on</strong>g>of</str<strong>on</strong>g> four equally spaced barriers vs energy for<br />

W b = W w = 10 nm <str<strong>on</strong>g>and</str<strong>on</strong>g> different SL types I-IV. The solid red curve (type I) is for<br />

∆ b = 50 meV, ∆ w = 20 meV, <str<strong>on</strong>g>and</str<strong>on</strong>g> V w = V b = 0. The blue dashed curve (type II)<br />

is for ∆ b = ∆ w = 50 meV <str<strong>on</strong>g>and</str<strong>on</strong>g> V b = −V w = 20 meV. The green dotted curve (type<br />

III) is for ∆ b = ∆ w = 20 meV <str<strong>on</strong>g>and</str<strong>on</strong>g> V b = −V w = 50 meV. The black dash-dotted<br />

curve (type IV) is for ∆ b = −∆ w = 50 meV <str<strong>on</strong>g>and</str<strong>on</strong>g> V w = V b = 0.<br />

(Barbier et al., 2009b) T d = |t d | 2 from<br />

t d = ei2α0(Ww+2Wb) |t| 2 e i2φt<br />

1 − |r| 2 , (6.8)<br />

e i2φr i2α0Ww<br />

e<br />

with r = |r|e iφr , <str<strong>on</strong>g>and</str<strong>on</strong>g> t = |t|e iφt , corresp<strong>on</strong>ding to the <strong>single</strong> barrier transmissi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> reflecti<strong>on</strong> amplitudes. In this case we do have res<strong>on</strong>ances due to the well states;<br />

they occur for e i2φr e i2α0Ww = 1. As φ r is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> W w , <strong>on</strong>e obtains more<br />

res<strong>on</strong>ances by increasing W w .<br />

For the general case we obtained numerical results for the transmissi<strong>on</strong> through<br />

various types <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>single</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> double barrier structures; they are shown in Fig. 6.3.<br />

The different types <str<strong>on</strong>g>of</str<strong>on</strong>g> structures clearly lead to different behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the tunneling<br />

res<strong>on</strong>ances.<br />

An interesting structure to study is the fourth type <str<strong>on</strong>g>of</str<strong>on</strong>g> SLs shown in Fig. 6.1(d).<br />

To investigate the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the localized states (Martin et al., 2008; Martinez<br />

et al., 2009) <strong>on</strong> the transport <str<strong>on</strong>g>properties</str<strong>on</strong>g>, we embed the anti-symmetric potential<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile in a structure with unbiased layers.<br />

C<strong>on</strong>ductance At zero temperature, G can be calculated from the transmissi<strong>on</strong><br />

using Eq. (13) with G 0 = (4e 2 L y /2πh) (E 2 F + t ⊥E F ) 1/2 /v F for bilayer graphene<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> L y the width <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample. The angle <str<strong>on</strong>g>of</str<strong>on</strong>g> incidence φ is given by tan φ = k y /α<br />

with α the wave vector outside the barrier. Fig. 6.4 shows G for the four SL types.<br />

Notice the clear differences in 1) the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ductance <str<strong>on</strong>g>and</str<strong>on</strong>g> 2) the number<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the oscillati<strong>on</strong>s.<br />

76


6.5. BOUND STATES<br />

6.5 Bound states<br />

0.5<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

(a)<br />

E / t t<br />

0.0<br />

(b)<br />

0.2<br />

0<br />

-0.5<br />

-1.0 -0.5 0.0 0.5 1.0<br />

k y<br />

hv F<br />

/ t t<br />

Figure 6.5: (a) Bound states <str<strong>on</strong>g>of</str<strong>on</strong>g> the anti-symmetric potential pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (type IV) with<br />

bias ∆ w = −∆ b = 200 meV. (b) C<strong>on</strong>tour plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> through a 20 nm<br />

wide barrier c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> two regi<strong>on</strong>s with opposite biases ∆ = ±100 meV.<br />

To describe bound states we assume that there are no propagating states, i.e.,<br />

α <str<strong>on</strong>g>and</str<strong>on</strong>g> β are imaginary or complex (the latter case can be solved separately), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>on</strong>ly the eigenstates with exp<strong>on</strong>entially decaying behavior are n<strong>on</strong>zero, leading to<br />

the relati<strong>on</strong><br />

⎛ ⎞ ⎛ ⎞<br />

f d 0<br />

⎜ 0<br />

⎟<br />

⎝e d<br />

⎠ = N ⎜f g<br />

⎟<br />

⎝ 0 ⎠ . (6.9)<br />

0 e g<br />

From this relati<strong>on</strong> we can derive the dispersi<strong>on</strong> relati<strong>on</strong> for the bound states.<br />

To study the localized states for the anti-symmetric potential pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (Martin<br />

et al., 2008; Martinez et al., 2009) we use a sharp kink pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (step functi<strong>on</strong>). The<br />

spectrum found by the method above is shown in Fig. 6.5(a). We see that there<br />

are two bound states, both with negative group velocity v y ∝ ∂ε/∂k y , as found<br />

previously by Martin et al. (2008). Unlike Martinez et al. (2009); Martin et al.<br />

(2008), we did not observe flat bound states for ε = ±∆ for k y → ∓∞. We believe<br />

that the flat b<str<strong>on</strong>g>and</str<strong>on</strong>g>s obtained in those works are due to numerical errors. For zero<br />

energy we find the soluti<strong>on</strong><br />

k y = ± 1 2 [∆2 + (∆ 4 + 2∆ 2 t 2 ⊥) 1/2 ] 1/2<br />

≈ ± √ ∆t ⊥ /2 3/4 , ∆ ≪ t ⊥ ;<br />

(6.10)<br />

the approximati<strong>on</strong> <strong>on</strong> the sec<strong>on</strong>d line leads to the expressi<strong>on</strong> found by (Martin<br />

et al., 2008).<br />

77


CHAPTER 6. HETEROSTRUCTURES AND SUPERLATTICES IN<br />

BILAYER GRAPHENE<br />

6.6 Superlattices<br />

The heterostructures above (see Fig. 6.1) can be used to create four different types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> SLs (Dragoman et al., 2010). We will especially focus <strong>on</strong> type IV <str<strong>on</strong>g>and</str<strong>on</strong>g> type III<br />

SLs in certain limiting cases.<br />

Figure 6.6: Lowest c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> highest valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum for a<br />

square SL with period L = 20 nm <str<strong>on</strong>g>and</str<strong>on</strong>g> W b = W w = 10 nm. (a) Type I : ∆ b = 100<br />

meV <str<strong>on</strong>g>and</str<strong>on</strong>g> ∆ w = 0. (b) Type II : As in (a) for ∆ b = ∆ w = 50 meV, <str<strong>on</strong>g>and</str<strong>on</strong>g> V b = −V w =<br />

25 meV. (c) Type III : V b = −V w = 25 meV, <str<strong>on</strong>g>and</str<strong>on</strong>g> ∆ b = ∆ w = 0. (d) Type III :<br />

V b = −V w = 50 meV <str<strong>on</strong>g>and</str<strong>on</strong>g> ∆ b = ∆ w = 0. (e) Type IV : Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum for a<br />

square SL with average potential V b = V w = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> ∆ b = −∆ w = 100 meV. The<br />

c<strong>on</strong>tours are for the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> show that the dispersi<strong>on</strong> is almost flat<br />

in the x directi<strong>on</strong>.<br />

For a type I SL we see in Fig. 6.6(a) that the c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the bilayer structure are qualitatively similar to those in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a uniform<br />

bias. Type II structures maintain this gap, see Fig. 6.6(b), as there is a range in<br />

energy for which there is a gap in the SL potential in the barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> well regi<strong>on</strong>s.<br />

In type III structures we have two interesting features that can close the gap. First<br />

we see in Fig. 6.2(b) that for zero bias, similar to <strong>single</strong>-layer graphene, extra Dirac<br />

points appear for k x = 0. In the case where W b = W w = L/2 = W , k x = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

E = 0, the k y values where extra Dirac points occur are given by the following<br />

transcendental equati<strong>on</strong><br />

78<br />

[cos(αW ) cos(βW ) − 1] + α2 + β 2 − 4ky 2<br />

sin(αW ) sin(βW ) = 0. (6.11)<br />

2αβ


6.6. SUPERLATTICES<br />

Comparing Fig. 6.2(b) <str<strong>on</strong>g>and</str<strong>on</strong>g> Fig. 4.3 we remark that, as opposed to the <strong>single</strong>-layer<br />

case, for bilayer graphene the b<str<strong>on</strong>g>and</str<strong>on</strong>g>s in the barrier regi<strong>on</strong> are not <strong>on</strong>ly flat in the x<br />

directi<strong>on</strong> for large k y values but also for small k y . The latter corresp<strong>on</strong>ds to the zero<br />

transmissi<strong>on</strong> value inside the barrier regi<strong>on</strong> for tunneling through a <strong>single</strong> unbiased<br />

barrier in bilayer graphene. Sec<strong>on</strong>dly, if there are no extra Dirac points (small<br />

parameter uL) for certain SL parameters, the gap closes at two points at the Fermilevel<br />

for k y = 0. We will investigate the latter a bit more in the extended Kr<strong>on</strong>ig-<br />

Penney model. Periodically changing the sign <str<strong>on</strong>g>of</str<strong>on</strong>g> the bias (type IV) introduces a<br />

splitting <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge neutrality point al<strong>on</strong>g the k y axis; this agrees with what<br />

was found by (Martin et al., 2008). We illustrate that in Fig. 6.6(e) for a SL with<br />

∆ b = −∆ w = 100 meV. We also see that the two valleys in the spectrum are<br />

rather flat in the x directi<strong>on</strong>. Up<strong>on</strong> increasing the parameter ∆L, the two touching<br />

points shift to larger ±k y <str<strong>on</strong>g>and</str<strong>on</strong>g> the valleys become flatter in the x directi<strong>on</strong>. For all<br />

four types <str<strong>on</strong>g>of</str<strong>on</strong>g> SLs the spectrum is anisotropic <str<strong>on</strong>g>and</str<strong>on</strong>g> results in very different velocities<br />

al<strong>on</strong>g the x <str<strong>on</strong>g>and</str<strong>on</strong>g> y directi<strong>on</strong>s.<br />

Extended Kr<strong>on</strong>ig-Penney model. To underst<str<strong>on</strong>g>and</str<strong>on</strong>g> which SL parameters lead to<br />

the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a gap, we look at the KP limit <str<strong>on</strong>g>of</str<strong>on</strong>g> type III SLs for zero bias (Barbier<br />

et al., 2010b). We also choose the extended KP model to ensure spectra symmetric<br />

with respect to the zero-energy value, such that the zero-energy soluti<strong>on</strong>s can be<br />

traced down more easily. If the latter zero modes exist, there is no gap. To simplify<br />

the calculati<strong>on</strong>s we restrict the spectrum to that for k y = 0. This assumpti<strong>on</strong> is<br />

certainly not valid if the parameter uL is large, because in that case we expect<br />

extra Dirac points (not in the KP limit) to appear that will close the gap. The<br />

spectrum for k y = 0 is determined by the transcendental equati<strong>on</strong>s<br />

cos k x L = cos αL cos 2 P + D α sin 2 P, (6.12a)<br />

cos k x L = cos βL cos 2 P + D β sin 2 P, (6.12b)<br />

with D λ = [ (λ 2 + ε 2 ) cos λL − λ 2 + ε 2] /4λ 2 ε 2 , <str<strong>on</strong>g>and</str<strong>on</strong>g> λ = α, β. To see whether<br />

there is a gap in the spectrum we look for a soluti<strong>on</strong> with ε = 0 in the dispersi<strong>on</strong><br />

relati<strong>on</strong>s. This gives two values for k x where zero energy soluti<strong>on</strong>s occur:<br />

k x,0 = ± arccos[1 − (L 2 /8) sin 2 P ]/L, (6.13)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the crossing points are at (ε, k x , k y ) = (0, ±k x,0 , 0). If the k x,0 value is not<br />

real, then there is no soluti<strong>on</strong> at zero energy <str<strong>on</strong>g>and</str<strong>on</strong>g> a gap arises in the spectrum.<br />

From Eq. (6.12a) we see that for sin 2 P > 16/L 2 a b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap arises.<br />

C<strong>on</strong>ductivity. In bilayer graphene the diffusive dc c<strong>on</strong>ductivity, given by<br />

Eq. (4.22), takes the form<br />

[<br />

σ µµ (ε F )/σ 0 = (kF 3 /4πε 2 F ) 1 ± δ/2(kF 2 δ + 1/4) 1/2] 2<br />

, (6.14)<br />

with k F = [ε 2 F + ∆2 ∓ (ε 2 F δ − ∆2 ) 1/2 ] 1/2 , δ = 1 + 4∆ 2 , <str<strong>on</strong>g>and</str<strong>on</strong>g> σ 0 = e 2 τ F t ⊥ / 2 .<br />

In Fig. 6.7(a,b) the c<strong>on</strong>ductivities σ xx in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> σ yy in (b) for bilayer graphene<br />

are shown for the various types <str<strong>on</strong>g>of</str<strong>on</strong>g> SLs defined. Notice that for type IV SLs the<br />

c<strong>on</strong>ductivities σ xx <str<strong>on</strong>g>and</str<strong>on</strong>g> σ yy differ substantially due to the anisotropy in the spectrum.<br />

79


CHAPTER 6. HETEROSTRUCTURES AND SUPERLATTICES IN<br />

BILAYER GRAPHENE<br />

Figure 6.7: C<strong>on</strong>ductivities, σ xx in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> σ yy in (b), versus Fermi energy for<br />

the four types <str<strong>on</strong>g>of</str<strong>on</strong>g> SLs with L = 20 nm <str<strong>on</strong>g>and</str<strong>on</strong>g> W b = W w = 10 nm, at temperature<br />

T = 45K; σ 0 = e 2 τ F t ⊥ / 2 . Type I : ∆ b = 50 meV, ∆ w = 25 meV <str<strong>on</strong>g>and</str<strong>on</strong>g> V b = V w = 0.<br />

Type II : ∆ b = ∆ w = 25 meV <str<strong>on</strong>g>and</str<strong>on</strong>g> V b = −V w = 50 meV. Type III : ∆ b = ∆ w = 50<br />

meV <str<strong>on</strong>g>and</str<strong>on</strong>g> V b = −V w = 25 meV. Type IV : ∆ b = −∆ w = 100 meV <str<strong>on</strong>g>and</str<strong>on</strong>g> V b = V w = 0.<br />

6.7 C<strong>on</strong>clusi<strong>on</strong>s<br />

In this chapter we c<strong>on</strong>sidered transport in bilayer graphene through different types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heterostructures, where we distinguished between four types <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g> alignments.<br />

We also c<strong>on</strong>nected the bound states in an anti-symmetric potential (type IV) with<br />

the transmissi<strong>on</strong> through such a potential barrier. Furthermore, we investigated<br />

the same four types <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g> alignments in SLs. The differences between the four<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> SLs are reflected not <strong>on</strong>ly in the spectrum but also in the c<strong>on</strong>ductivities<br />

parallel <str<strong>on</strong>g>and</str<strong>on</strong>g> perpendicular to the SL directi<strong>on</strong>. For type III SLs, which have a zero<br />

bias, we found a feature in the spectrum similar to the extra Dirac points found for<br />

<strong>single</strong>-layer graphene. Also, for not too large strengths <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL barriers, we found<br />

that the valence <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>duncti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s touch at points in k space with k y = 0<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>zero k y . Type IV SLs tend to split the K(K ′ ) valley into two valleys.<br />

80


7<br />

Bilayer graphene: Kr<strong>on</strong>ig-Penney model<br />

7.1 Introducti<strong>on</strong><br />

Here we will extend the study <strong>on</strong> the KP model <str<strong>on</strong>g>of</str<strong>on</strong>g> Ch. 5, which was applied <strong>on</strong><br />

<strong>single</strong>-layer graphene, to bilayer graphene. This means we will study the spectrum,<br />

the transmissi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>ductance <str<strong>on</strong>g>of</str<strong>on</strong>g> bilayer graphene through an array <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potential barriers using a simple model: the KP model, i.e., a <strong>on</strong>e-dimensi<strong>on</strong>al<br />

periodic successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> δ-functi<strong>on</strong> barriers <strong>on</strong> bilayer graphene. Surprisingly, we find<br />

that for bilayer graphene similar, but different, <str<strong>on</strong>g>properties</str<strong>on</strong>g> are found as functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the δ-functi<strong>on</strong> potential barriers. On the <strong>on</strong>e h<str<strong>on</strong>g>and</str<strong>on</strong>g> we find<br />

that the transmissi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> energy spectrum are periodic in the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the δ-<br />

functi<strong>on</strong> barriers, similar to the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the KP model in <strong>single</strong>-layer graphene.<br />

On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, due to the different electr<strong>on</strong>ic spectra close to the Dirac point,<br />

i.e., linear for graphene <str<strong>on</strong>g>and</str<strong>on</strong>g> quadratic for bilayer graphene, we find very different<br />

transmissi<strong>on</strong> probabilities through a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> barriers <str<strong>on</strong>g>and</str<strong>on</strong>g> very different<br />

energy spectra, for a superlattice <str<strong>on</strong>g>of</str<strong>on</strong>g> δ-functi<strong>on</strong> barriers, between <strong>single</strong>-layer <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

bilayer graphene.<br />

This chapter is organized as follows. In Sec. 7.2 we give results for the transmissi<strong>on</strong>,<br />

bound states <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ductance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e or two δ-functi<strong>on</strong> barriers. In Sec. 7.3<br />

we present the spectrum for the KP model <str<strong>on</strong>g>and</str<strong>on</strong>g> in Sec. 7.4 that for an extended<br />

KP model by c<strong>on</strong>sidering two δ-functi<strong>on</strong> barriers with opposite strength in the unit<br />

cell. Finally, in Sec. 7.5 we give a summary <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>cluding remarks.<br />

7.2 Simple model systems<br />

Like in Ch. 5 we start with the investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simple systems c<strong>on</strong>taining <strong>on</strong>e or<br />

two δ-functi<strong>on</strong> barriers.<br />

1 The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter were published as:<br />

M. Barbier, P. Vasilopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. Peeters, Phys. Rev. B 82, 235408 (2010).<br />

81


CHAPTER 7.<br />

BILAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

7.2.1 Transmissi<strong>on</strong> through a δ-functi<strong>on</strong> barrier<br />

We assume |E − V | < t ⊥ outside the barrier in order to we obtain <strong>on</strong>e pair <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

localized <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e pair <str<strong>on</strong>g>of</str<strong>on</strong>g> traveling eigenstates in the well regi<strong>on</strong>s characterized by<br />

wave vectors α <str<strong>on</strong>g>and</str<strong>on</strong>g> β, where α is real <str<strong>on</strong>g>and</str<strong>on</strong>g> β imaginary, see App. B.1. C<strong>on</strong>sider an<br />

incident wave with wave vector α from the left (normalized to unity); part <str<strong>on</strong>g>of</str<strong>on</strong>g> it will<br />

be reflected with amplitude r, <str<strong>on</strong>g>and</str<strong>on</strong>g> part <str<strong>on</strong>g>of</str<strong>on</strong>g> it will be transmitted with amplitude<br />

t. The transmissi<strong>on</strong> is therefore T = |t| 2 . Also, there are growing <str<strong>on</strong>g>and</str<strong>on</strong>g> decaying<br />

evanescent states near the barrier, with coefficients e g <str<strong>on</strong>g>and</str<strong>on</strong>g> e d , respectively. The<br />

relati<strong>on</strong> between the coefficients can be written in the form<br />

⎛ ⎞ ⎛ ⎞<br />

t 1<br />

N ⎜ 0<br />

⎟<br />

⎝e d<br />

⎠ = ⎜ r<br />

⎟<br />

⎝ 0 ⎠ . (7.1)<br />

0 e g<br />

This leads to a system <str<strong>on</strong>g>of</str<strong>on</strong>g> linear equati<strong>on</strong>s that can be written in matrix form<br />

⎛ ⎞ ⎛<br />

⎞ ⎛ ⎞<br />

1 N 11 0 N 13 0 t<br />

⎜0<br />

⎟<br />

⎝0⎠ = ⎜N 21 −1 N 23 0<br />

⎟ ⎜ r<br />

⎟<br />

⎝N 31 0 N 33 0 ⎠ ⎝e d<br />

⎠ , (7.2)<br />

0 N 41 0 N 43 −1 e g<br />

with N ij the coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> the transfer matrix N . Denoting the matrix in Eq. (7.2)<br />

by Q, we can evaluate the coefficients from<br />

( t r ed e g<br />

) T<br />

= Q<br />

−1 ( 1 0 0 0 ) T<br />

.<br />

As a result, to obtain the transmissi<strong>on</strong> amplitude t it is sufficient to find the matrix<br />

element (Q −1 ) 11 = [N 11 − N 13 N 31 /N 33 ] −1 .<br />

We model a δ-functi<strong>on</strong> barrier as the limiting case <str<strong>on</strong>g>of</str<strong>on</strong>g> a square barrier, with<br />

height V <str<strong>on</strong>g>and</str<strong>on</strong>g> width W b shown in Fig. 7.1, represented by V (x) = V Θ(x)Θ(W b −x).<br />

The transfer matrix N for this δ-functi<strong>on</strong> barrier is calculated in App. B.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

b<br />

Figure 7.1: Schematics <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential V(x) <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>single</strong> square barrier.<br />

limits V → ∞ <str<strong>on</strong>g>and</str<strong>on</strong>g> W b → 0 are taken such that P = V W b /v F is kept c<strong>on</strong>stant.<br />

82


7.2. SIMPLE MODEL SYSTEMS<br />

The transmissi<strong>on</strong> T = |t| 2 for α real <str<strong>on</strong>g>and</str<strong>on</strong>g> β imaginary is obtained from the<br />

inverse amplitude,<br />

1<br />

t = cos P + iµ sin P + (α − β)2 ky<br />

2 sin 2 P<br />

4αβε 2 cos P + iν sin P , (7.3)<br />

where µ = (ε + 1/2)/α <str<strong>on</strong>g>and</str<strong>on</strong>g> ν = (ε − 1/2)/β. C<strong>on</strong>tour plots <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> T<br />

are shown in Figs. 7.2(a,b) for strengths P = 0.25π <str<strong>on</strong>g>and</str<strong>on</strong>g> P = 0.75π, respectively.<br />

The transmissi<strong>on</strong> remains invariant under the transformati<strong>on</strong>s:<br />

1) P → P + nπ,<br />

2) k y → −k y . (7.4)<br />

The first property is in c<strong>on</strong>trast with what is obtained in Katsnels<strong>on</strong> et al. (2006).<br />

In that work it was found, by using the 2 × 2 Hamilt<strong>on</strong>ian, that the transmissi<strong>on</strong><br />

T should be zero for k y ≈ 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> E < V 0 , while we can see here that for certain<br />

strengths P = nπ there is perfect transmissi<strong>on</strong>. The last property is due to the fact<br />

that k y <strong>on</strong>ly appears squared in the expressi<strong>on</strong> for the transmissi<strong>on</strong>. Notice that in<br />

c<strong>on</strong>trast to <strong>single</strong>-layer graphene the transmissi<strong>on</strong> for ε ≈ 0 is practically zero. The<br />

c<strong>on</strong>e for n<strong>on</strong>zero transmissi<strong>on</strong> shifts to ε = 1/2(1 − cos P ) with increasing P until<br />

P = π. An area with T = 0 appears when α is imaginary, i.e., for ε 2 + ε − ky 2 < 0<br />

(as no propagating states are available in this area, we expect bound states to<br />

appear). From Figs. 7.2(a,b) it is apparent that the transmissi<strong>on</strong> in the forward<br />

directi<strong>on</strong>, i.e., for k y ≈ 0, is in general smaller than 1; accordingly, there is no Klein<br />

tunneling. However, for P = nπ, with n an integer, the barrier becomes perfectly<br />

transparent.<br />

For P = nπ we have V = v F (nπ/W b ). If the electr<strong>on</strong> wave vector is k =<br />

nπ/W b its energy equals the height <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently there<br />

is a quasi-bound state <str<strong>on</strong>g>and</str<strong>on</strong>g> thus a res<strong>on</strong>ance (Matulis <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, 2008). The c<strong>on</strong>diti<strong>on</strong><br />

<strong>on</strong> the wave vector implies W b = nλ/2 where λ is the wavelength. This is<br />

the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard c<strong>on</strong>diti<strong>on</strong> for Fabry-Perot res<strong>on</strong>ances. Notice though that the invariance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> under the change P → P + nπ is not equivalent to the<br />

Fabry-Perot res<strong>on</strong>ance c<strong>on</strong>diti<strong>on</strong>.<br />

From the transmissi<strong>on</strong> we can calculate the c<strong>on</strong>ductance G given, at zero temperature,<br />

by<br />

G/G 0 =<br />

∫ π/2<br />

−π/2<br />

T (E, φ) cos φdφ, (7.5)<br />

where G 0 = (4e 2 /2πh)[E 2 F + t ⊥E F ] 1/2 /v F ; the angle <str<strong>on</strong>g>of</str<strong>on</strong>g> incidence φ is determined<br />

by tan φ = k y /α. It is not possible to obtain the c<strong>on</strong>ductance analytically, therefore<br />

we evaluate this integral numerically.<br />

The c<strong>on</strong>ductance is a periodic functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P (since the transmissi<strong>on</strong> is) with<br />

period π. Fig. 7.3 shows a c<strong>on</strong>tour plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ductance for <strong>on</strong>e period. As<br />

can be observed, the c<strong>on</strong>ductance has a sharp minimum at ε = 1/2(1 − cos P ):<br />

this is due to the c<strong>on</strong>e feature in the transmissi<strong>on</strong> which shifts to higher energies<br />

with increasing P . Such a sharp minimum was not present in the c<strong>on</strong>ductance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

83


CHAPTER 7.<br />

BILAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

Figure 7.2: C<strong>on</strong>tour plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> for P = 0.25π in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> P = 0.75π<br />

in (b). In (b) the bound state, shown by the red curve, is at positive energy.<br />

The white area shows the part where α is imaginary. The probability distributi<strong>on</strong><br />

|ψ(x)| 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> the bound state is plotted in (c) for various values <str<strong>on</strong>g>of</str<strong>on</strong>g> k y <str<strong>on</strong>g>and</str<strong>on</strong>g> in (d) for<br />

different values <str<strong>on</strong>g>of</str<strong>on</strong>g> P .<br />

<strong>single</strong>-layer graphene when the same δ-functi<strong>on</strong> potential barrier was applied, see<br />

Ch. 5.<br />

7.2.2 Bound states <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>single</strong> δ-functi<strong>on</strong> barrier<br />

The bound states here are states that are localized in the x directi<strong>on</strong> close to the<br />

barrier but are free to move al<strong>on</strong>g the barrier, i.e., in the y directi<strong>on</strong>. Such bound<br />

states are characterized by the fact that the wave functi<strong>on</strong> decreases exp<strong>on</strong>entially<br />

in the x directi<strong>on</strong>, i.e., the wave vectors α <str<strong>on</strong>g>and</str<strong>on</strong>g> β are imaginary. This leads to<br />

⎛ ⎞ ⎛ ⎞<br />

e g1 0<br />

⎜ 0<br />

⎟<br />

⎝e g2<br />

⎠ = N ⎜e d1<br />

⎟<br />

⎝ 0 ⎠ , (7.6)<br />

0 e d2<br />

which we can write as<br />

⎛ ⎞ ⎛ ⎞<br />

0 e d1<br />

⎜0<br />

⎟<br />

⎝0⎠ = Q ⎜e g1<br />

⎟<br />

⎝e d2<br />

⎠ , (7.7)<br />

0 e g2<br />

84


7.2. SIMPLE MODEL SYSTEMS<br />

Figure 7.3: (a) C<strong>on</strong>tour plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ductance G. (b) Slices <str<strong>on</strong>g>of</str<strong>on</strong>g> G al<strong>on</strong>g c<strong>on</strong>stant<br />

P .<br />

where the matrix Q is the same as in Eq. (7.2). In order for this homogeneous<br />

algebraic set <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s to have a n<strong>on</strong>trivial soluti<strong>on</strong>, the determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> Q must<br />

be zero. This gives rise to a transcendental equati<strong>on</strong> for the dispersi<strong>on</strong> relati<strong>on</strong>:<br />

which can be written explicitly as<br />

det Q = N 11 N 33 − N 13 N 31 = 0, (7.8)<br />

[cos P + iµ sin P ][cos P + iν sin P ] + (α − β)2 k 2 y<br />

4αβε 2 sin 2 P = 0. (7.9)<br />

This expressi<strong>on</strong> is invariant under the transformati<strong>on</strong>s<br />

1) P → P + nπ,<br />

2) k y → −k y ,<br />

3) (ε, P ) → (−ε, π − P ) . (7.10)<br />

Furthermore, there is <strong>on</strong>e bound state for k y > 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> π/2 < P < π. For P < π/2<br />

we can infer that there is also a <strong>single</strong> bound state for negative energies from the<br />

third property above. From this transcendental formula <strong>on</strong>e can obtain the soluti<strong>on</strong><br />

for the energy ε as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> k y numerically. We show the bound state by the<br />

solid red curve in Fig. 7.2(b). This state is bound to the potential in the x directi<strong>on</strong><br />

but moves as a free particle in the y directi<strong>on</strong>. We have two such states, <strong>on</strong>e that<br />

moves al<strong>on</strong>g the +y directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e al<strong>on</strong>g the −y directi<strong>on</strong>. The numerical<br />

soluti<strong>on</strong> approximates the curve ε = cos P [−1/2 + (1/4 + ky) 2 1/2 ]. If <strong>on</strong>e uses<br />

the 2 × 2 Hamilt<strong>on</strong>ian <strong>on</strong>e obtains the dispersi<strong>on</strong> relati<strong>on</strong> given in Appendix B.3.<br />

By solving this equati<strong>on</strong> <strong>on</strong>e finds for each value <str<strong>on</strong>g>of</str<strong>on</strong>g> P two bound states: <strong>on</strong>e for<br />

positive <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e for negative k y . Moreover, for positive P these b<str<strong>on</strong>g>and</str<strong>on</strong>g>s have a<br />

hole-like behavior <str<strong>on</strong>g>and</str<strong>on</strong>g> for negative P an electr<strong>on</strong>-like behavior. Only for small P<br />

do these results coincide with those from the 4 × 4 Hamilt<strong>on</strong>ian.<br />

The wave functi<strong>on</strong> ψ(x) <str<strong>on</strong>g>of</str<strong>on</strong>g> such a bound state is characterized by the coefficients<br />

e g1 , e g2 <strong>on</strong> the left, <str<strong>on</strong>g>and</str<strong>on</strong>g> e d1 <str<strong>on</strong>g>and</str<strong>on</strong>g> e d2 <strong>on</strong> the right side <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier. We can<br />

85


CHAPTER 7.<br />

BILAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

obtain these coefficients by using Eq. (7.7), by assuming e g1 = 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> afterwards<br />

normalizing the total probability to unity in dimensi<strong>on</strong>less units. The wave functi<strong>on</strong><br />

ψ(x) to the left <str<strong>on</strong>g>and</str<strong>on</strong>g> right <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier can be determined from these coefficients.<br />

In Figs. 7.2(c,d) we show the probability distributi<strong>on</strong> |ψ(x)| 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> a bound state for<br />

a <strong>single</strong> δ-functi<strong>on</strong> barrier: in (c) we show it for several k y values <str<strong>on</strong>g>and</str<strong>on</strong>g> in (d) for<br />

different values <str<strong>on</strong>g>of</str<strong>on</strong>g> P . One can see that the bound state is localized around the<br />

barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> is less smeared out with increasing k y . Notice that the bound state<br />

is more str<strong>on</strong>gly c<strong>on</strong>fined for P = π/2 <str<strong>on</strong>g>and</str<strong>on</strong>g> that |ψ(x)| 2 is invariant under the<br />

transformati<strong>on</strong> P → π − P .<br />

7.2.3 Transmissi<strong>on</strong> through two δ-functi<strong>on</strong> barriers<br />

We c<strong>on</strong>sider a system <str<strong>on</strong>g>of</str<strong>on</strong>g> two barriers, separated by a distance L, with strengths P 1<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> P 2 , respectively, as shown schematically in Fig. 7.4. We have L → Lt ⊥ /v F ≡<br />

0.59261L/nm which for L = 10 nm, v F = 10 6 m/s, <str<strong>on</strong>g>and</str<strong>on</strong>g> t ⊥ = 0.39 eV equals 5.9261<br />

in dimensi<strong>on</strong>less units. The wave functi<strong>on</strong>s in the different regi<strong>on</strong>s are related as<br />

follows:<br />

Figure 7.4: A system <str<strong>on</strong>g>of</str<strong>on</strong>g> two δ-functi<strong>on</strong> barriers with strengths P 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> P 2 placed a<br />

distance L apart.<br />

ψ 1 (0) = S 1 ψ 2 (0), ψ 2 (0) = S ′ ψ 2 (L),<br />

ψ 2 (1) = S 2 ψ 3 (L), ψ 1 (0) = S 1 S ′ S 2 ψ 3 (L), (7.11)<br />

where S ′ = GM(1)G −1 represents a shift from x = 0 to x = L <str<strong>on</strong>g>and</str<strong>on</strong>g> the matrices<br />

S 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> S 2 are equal to the matrix N ′ <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (B.10) with P = P 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> P = P 2 ,<br />

respectively. Using the transfer matrix N = G −1 S 1 S ′ S 2 GM(L) we obtain the<br />

transmissi<strong>on</strong> T = |t| 2 .<br />

In Fig. 7.5 the transmissi<strong>on</strong> T (ε, k y ) is shown for parallel (a), (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> antiparallel<br />

(b), (c) δ-functi<strong>on</strong> barriers with equal strength, i.e., for |P 1 | = |P 2 |, that<br />

are separated by L = 10 nm, with P = 0.25π in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> P = 0.5π in (b). For<br />

P = π/2, the transmissi<strong>on</strong> amplitude t for parallel barriers equals −t for antiparallel<br />

<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> the transmissi<strong>on</strong> T is the same, as is the formula for the bound<br />

states. Hence panel (b) is the same for parallel <str<strong>on</strong>g>and</str<strong>on</strong>g> anti-parallel barriers. The<br />

c<strong>on</strong>tour plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> has a very particular structure that is very different<br />

from the <strong>single</strong>-barrier case. There are two bound states for each sign <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

k y , which are shown in panel (d) for parallel <str<strong>on</strong>g>and</str<strong>on</strong>g> panel (e) for anti-parallel barriers.<br />

For anti-parallel barriers these states have mirror-symmetry with respect to<br />

86


7.2. SIMPLE MODEL SYSTEMS<br />

Figure 7.5: Panels (a), (b), <str<strong>on</strong>g>and</str<strong>on</strong>g> (c): c<strong>on</strong>tour plots <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> through<br />

two δ-functi<strong>on</strong> barriers <str<strong>on</strong>g>of</str<strong>on</strong>g> equal strength P = |P 1 | = |P 2 | separated by a distance<br />

L = 10 nm. For parallel barriers we took P = 0.25π in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> P = 0.5π in (b).<br />

For anti-parallel barriers results are given for P = 0.5π in (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> P = 0.25π in<br />

(c). The solid red curves in the white background regi<strong>on</strong> is the spectrum for the<br />

bound states. Panels (d) <str<strong>on</strong>g>and</str<strong>on</strong>g> (e) show the dispersi<strong>on</strong> relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bound states<br />

for various strengths |P | for parallel <str<strong>on</strong>g>and</str<strong>on</strong>g> anti-parallel barriers, respectively. The<br />

thin black curves delimit the regi<strong>on</strong> where bound states are possible.<br />

ε = 0 but for parallel barriers this symmetry is absent. For parallel barriers the<br />

change P → π − P will flip the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the bound state. The spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the bound states extends into the low-energy transmissi<strong>on</strong> regi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> gives rise to<br />

a pr<strong>on</strong>ounced res<strong>on</strong>ance. Notice that for certain P values (see Figs. 7.5(a,d)) the<br />

energy dispersi<strong>on</strong> for the bound state has a camelback shape for small k y , indicating<br />

free propagating states al<strong>on</strong>g the y directi<strong>on</strong> with velocity opposite to that<br />

for larger k y values. C<strong>on</strong>trasting Fig. 7.2(b) with Figs. 7.5(d,e), we see that the<br />

free-particle-like spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 7.2(b) for the bound states <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>single</strong> δ-functi<strong>on</strong><br />

barrier is str<strong>on</strong>gly modified when two δ-functi<strong>on</strong> barriers are present.<br />

From the transfer matrix we derive that the transmissi<strong>on</strong> is invariant under the<br />

change P → P + nπ <str<strong>on</strong>g>and</str<strong>on</strong>g> k y → −k y for parallel barriers, which was also the case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>single</strong> barrier, cf. Eq. (7.10). In additi<strong>on</strong>, it is also invariant, for anti-parallel<br />

barriers, under the change<br />

P → π − P. (7.12)<br />

The c<strong>on</strong>ductance G is calculated numerically as in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>single</strong> barrier.<br />

We show it for (anti-)parallel δ-functi<strong>on</strong> barriers <str<strong>on</strong>g>of</str<strong>on</strong>g> equal strength in Fig. 7.6.<br />

The symmetry G(P + nπ) = G(P ) <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>single</strong>-barrier c<strong>on</strong>ductance holds here as<br />

87


CHAPTER 7.<br />

BILAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

well. Further, we see that for anti-parallel barriers G has the additi<strong>on</strong>al symmetry<br />

G(P ) = G(π − P ), as the transmissi<strong>on</strong> does.<br />

Figure 7.6: C<strong>on</strong>tour plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ductance <str<strong>on</strong>g>of</str<strong>on</strong>g> two δ-functi<strong>on</strong> barriers with strength<br />

|P 2 | = |P 1 | = P <str<strong>on</strong>g>and</str<strong>on</strong>g> inter-barrier distance L = 10 nm. Panel (a) is for parallel<br />

barriers <str<strong>on</strong>g>and</str<strong>on</strong>g> panel (c) for anti-parallel barriers. Panels (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show the c<strong>on</strong>ductance,<br />

al<strong>on</strong>g c<strong>on</strong>stant P , extracted from panels (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (c), respectively.<br />

7.3 Kr<strong>on</strong>ig-Penney model<br />

We c<strong>on</strong>sider an infinite sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> equidistant δ-functi<strong>on</strong> potential barriers, i.e., a<br />

SL, with potential<br />

V (x) = P ∑ n<br />

δ(x − nL). (7.13)<br />

As this potential is periodic the wave functi<strong>on</strong> should be a Bloch functi<strong>on</strong>. Further,<br />

we know how to relate the coefficients A 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> before the barrier<br />

with those (A 3 ) after it, see Appendix B.2. The result is<br />

ψ(L) = e ikxL ψ(0), A 1 = N A 3 , (7.14)<br />

with k x the Bloch wave vector. From these boundary c<strong>on</strong>diti<strong>on</strong>s we can extract<br />

the relati<strong>on</strong><br />

e −ikxL M(L)A 3 = N A 3 , (7.15)<br />

88


7.3. KRONIG-PENNEY MODEL<br />

with the matrix M(x) given by Eq. (B.4). The determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> the coefficients in<br />

Eq. (7.15) must be zero, i.e.,<br />

det[e −ikxL M(L) − N ] = 0. (7.16)<br />

If k y = 0, which corresp<strong>on</strong>ds to the pure 1D case, <strong>on</strong>e can easily obtain the<br />

dispersi<strong>on</strong> relati<strong>on</strong> because the first two <str<strong>on</strong>g>and</str<strong>on</strong>g> the last two comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave<br />

functi<strong>on</strong> decouple. Two transcendental equati<strong>on</strong>s are found:<br />

cos k x L = cos αL cos P + 1 ( α<br />

2 ε α)<br />

+ ε sin αL sin P, (7.17a)<br />

cos k x L = cos βL cos P + 1 ( β<br />

2 ε + ε )<br />

sin βL sin P. (7.17b)<br />

β<br />

Since β is imaginary for 0 < E < t ⊥ , we can write Eq. (7.17b) as<br />

cos k x L = cosh |β|L cos P − |β|2 + ε 2<br />

sinh |β|L sin P, (7.18)<br />

2|β|ε<br />

which makes it easier to compare with the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the KP model obtained<br />

from the 2 × 2 Hamilt<strong>on</strong>ian. The latter is given by the two relati<strong>on</strong>s<br />

cos k x L = cos κL + (P/2κ) sin κL, (7.19a)<br />

cos k x L = cosh κL − (P/2κ) sinh κL, (7.19b)<br />

with κ = √ ε. This dispersi<strong>on</strong> relati<strong>on</strong>, which has the same form as the <strong>on</strong>e for<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard electr<strong>on</strong>s, is not periodic in P <str<strong>on</strong>g>and</str<strong>on</strong>g> the difference with that <str<strong>on</strong>g>of</str<strong>on</strong>g> the fourb<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Hamilt<strong>on</strong>ian is due to the fact that the former is not valid for high potential<br />

barriers. One can also c<strong>on</strong>trast the dispersi<strong>on</strong> relati<strong>on</strong>s (Eq. (7.17) <str<strong>on</strong>g>and</str<strong>on</strong>g> Eq. (7.19))<br />

with the corresp<strong>on</strong>ding <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>single</strong>-layer graphene (see Ch. 5)<br />

cos k x L = cos λL cos P + sin λL sin P, (7.20)<br />

where λ = E/(v F ). This dispersi<strong>on</strong> relati<strong>on</strong> is also periodic in P .<br />

In Fig. 7.7 we plot slices <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy spectrum for k y = 0. There is a qualitative<br />

difference between the four-b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the two-b<str<strong>on</strong>g>and</str<strong>on</strong>g> approximati<strong>on</strong> for P = π.<br />

Only when P is small does the difference between the two 1D dispersi<strong>on</strong> relati<strong>on</strong>s<br />

become small. Therefore, we will no l<strong>on</strong>ger present results from the 2 × 2 Hamilt<strong>on</strong>ian<br />

though it has been used frequently due to its simplicity. The present results<br />

indicate that <strong>on</strong>e should be very careful when using the 2×2 Hamilt<strong>on</strong>ian in bilayer<br />

graphene.<br />

Notice that for P = 0.25π the electr<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hole b<str<strong>on</strong>g>and</str<strong>on</strong>g>s overlap <str<strong>on</strong>g>and</str<strong>on</strong>g> cross each<br />

other close to |k y | ≈ 0.5(π/L). That is, this is the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a semi-metal.<br />

These crossing points move to the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the BZ for P = π resulting in a zero-gap<br />

semic<strong>on</strong>ductor. At the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the BZ the spectrum is parabolic for low energies.<br />

For k y ≠ 0, the dispersi<strong>on</strong> relati<strong>on</strong> can be written explicitly in the form<br />

cos 2k x L + C 1 cos k x L + C 0 /2 = 0, (7.21)<br />

89


CHAPTER 7.<br />

BILAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

Figure 7.7: Slices <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a KP SL with L = 10 nm al<strong>on</strong>g k x , for<br />

k y = 0, with P = 0.25π in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> P = π in (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d). The results in<br />

(a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) are obtained from the four-b<str<strong>on</strong>g>and</str<strong>on</strong>g> Hamilt<strong>on</strong>ian <str<strong>on</strong>g>and</str<strong>on</strong>g> those in (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d)<br />

from the two-b<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e. The solid <str<strong>on</strong>g>and</str<strong>on</strong>g> dashed curves originate, respectively, from<br />

Eq. (7.17a) <str<strong>on</strong>g>and</str<strong>on</strong>g> Eq. (7.19a), <str<strong>on</strong>g>and</str<strong>on</strong>g> Eq. (7.17b) <str<strong>on</strong>g>and</str<strong>on</strong>g> Eq. (7.19b).<br />

where<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

C 1 = −2(cos αL + cos βL) cos P − (d α + d β ) sin P, (7.22)<br />

C 0 = (2 + k 2 y/ε 2 ) + (2 − k 2 y/ε 2 ) cos αL cos βL<br />

+[(ε 2 − ky) 2 2 + ε 2 (2ε 2 − 1)] sin αL sin βL/2αβε 2<br />

{<br />

− ky/ε 2 2 − (2 + ky/ε 2 2 ) cos αL cos βL<br />

+ [ 2ε 2 − 1/2 − ky 2 + ky/ε 4 2] }<br />

sin αL sin βL/αβ cos 2P<br />

+ [d α cos βL + d β cos αL] sin 2P, (7.23)<br />

with d α = (2ε + 1) sin αL/α <str<strong>on</strong>g>and</str<strong>on</strong>g> d β = (2ε − 1) sin βL/β. The wave vectors α =<br />

[ε 2 + ε − k 2 y] 1/2 <str<strong>on</strong>g>and</str<strong>on</strong>g> β = [ε 2 − ε − k 2 y] 1/2 are pure real or imaginary. If β becomes<br />

imaginary, the dispersi<strong>on</strong> relati<strong>on</strong> is still real (β → i|β| <str<strong>on</strong>g>and</str<strong>on</strong>g> sin βL → i sinh |β|L).<br />

Further, if α becomes imaginary, that is for α → i|α|, the dispersi<strong>on</strong> relati<strong>on</strong> is<br />

real. The dispersi<strong>on</strong> relati<strong>on</strong> has the following invariance <str<strong>on</strong>g>properties</str<strong>on</strong>g>:<br />

90<br />

1) E(k x , k y , P ) = E(k x , k y , P + 2nπ), (7.24a)<br />

2) E(k x , k y , P ) = −E(π/L − k x , k y , π − P ), (7.24b)<br />

3) E(k x , k y , P ) = E(k x , −k y , P ). (7.24c)


7.3. KRONIG-PENNEY MODEL<br />

In Fig. 7.8 we show the lowest c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> highest valence b<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy<br />

Figure 7.8: SL Spectrum for L = 10 nm, the lowest c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> highest valence<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> for P = 0.25π in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> P = 0.5π in (b), are shown.<br />

spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the KP model for P = 0.25π in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> P = 0.5π in (b). The former<br />

has two touching points that can also be viewed as overlapping c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

valence b<str<strong>on</strong>g>and</str<strong>on</strong>g>s as in a semi-metal, <str<strong>on</strong>g>and</str<strong>on</strong>g> the latter exhibits an energy gap. In Fig. 7.9<br />

slices <str<strong>on</strong>g>of</str<strong>on</strong>g> Figs. 7.8(a,b) are plotted for k y = 0. The spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> bilayer graphene has<br />

a <strong>single</strong> touching point at the origin. When the strength P is small, this point shifts<br />

away from zero energy al<strong>on</strong>g the k x axis with k y = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> splits into two points. It<br />

is interesting to know when <str<strong>on</strong>g>and</str<strong>on</strong>g> where these touching points emerge. To find out<br />

we observe that at the crossing point both relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (7.17) should be fulfilled.<br />

If these two relati<strong>on</strong>s are subtracted we obtain the transcendental equati<strong>on</strong><br />

0 = (cos αL − cos βL) cos P + (1/2) (d α − d β ) sin P, (7.25)<br />

where d α = (2ε + 1) sin αL/α <str<strong>on</strong>g>and</str<strong>on</strong>g> d β = (2ε − 1) sin βL/β. We can solve Eq. (7.25)<br />

numerically for the energy ε. For small P <str<strong>on</strong>g>and</str<strong>on</strong>g> small L this energy can be approximated<br />

by ε = P/L. Afterwards we can put this soluti<strong>on</strong> back into <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

dispersi<strong>on</strong> relati<strong>on</strong>s to obtain k x .<br />

In Figs. 7.9(a,b) we show slices al<strong>on</strong>g the k x axis for k y = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> al<strong>on</strong>g the k y<br />

axis for the k x value <str<strong>on</strong>g>of</str<strong>on</strong>g> a touching point, k x,0 . We see that as the touching points<br />

move away from the K point, the cross secti<strong>on</strong>s show a more linear behavior in<br />

the k y directi<strong>on</strong>. The positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the touching points is plotted in Figs. 7.9(c) as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P . The dash-dotted blue curve corresp<strong>on</strong>ds to the value <str<strong>on</strong>g>of</str<strong>on</strong>g> k x,0 (right y<br />

axis), while the energy value <str<strong>on</strong>g>of</str<strong>on</strong>g> the touching point is given by the black solid curve.<br />

This touching point moves to the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the BZ for P = P c ≈ 0.425π. At this<br />

point a gap opens (the energies <str<strong>on</strong>g>of</str<strong>on</strong>g> the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bottom<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> are shown by the lower purple <str<strong>on</strong>g>and</str<strong>on</strong>g> upper red solid curve,<br />

respectively) <str<strong>on</strong>g>and</str<strong>on</strong>g> increases with P . Because <str<strong>on</strong>g>of</str<strong>on</strong>g> property 2) in Eq. (7.24) we plot<br />

the results <strong>on</strong>ly for P < π/2. We draw attenti<strong>on</strong> to the fact that the dispersi<strong>on</strong><br />

relati<strong>on</strong> differs to a large extent for large P from the <strong>on</strong>e that results from the 2×2<br />

Hamilt<strong>on</strong>ian given in Appendix B.3. This is already apparent from the fact that<br />

the dispersi<strong>on</strong> relati<strong>on</strong> does not exhibit any <str<strong>on</strong>g>of</str<strong>on</strong>g> the periodic in P behaviors given<br />

by Eq. (7.24a) <str<strong>on</strong>g>and</str<strong>on</strong>g> Eq. (7.24b).<br />

91


CHAPTER 7.<br />

BILAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

Figure 7.9: SL spectrum for L = 10 nm. The dashed blue, solid red, <str<strong>on</strong>g>and</str<strong>on</strong>g> dashdotted<br />

purple curves are, respectively, for strengths P = 0.1π, P = 0.25π, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

P = 0.5π. (a) shows the spectrum versus k x for k y = 0 while (b) shows it versus k y<br />

for k x at the value where the b<str<strong>on</strong>g>and</str<strong>on</strong>g>s cross. The positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the touching points <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy gap are shown in (c) as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P . The dash-dotted<br />

blue curve <str<strong>on</strong>g>and</str<strong>on</strong>g> the solid black curve show k x,0 <str<strong>on</strong>g>and</str<strong>on</strong>g> the energy value <str<strong>on</strong>g>of</str<strong>on</strong>g> the touching<br />

points, respectively. For P > P c a gap appears; the energies <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

minimum <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> maximum are shown by the red <str<strong>on</strong>g>and</str<strong>on</strong>g> purple solid<br />

curve, respectively.<br />

An important questi<strong>on</strong> is whether the above periodicities in P still remain<br />

approximately valid outside the range <str<strong>on</strong>g>of</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> the KP model. To assess this,<br />

we briefly look at a square-barrier SL with barriers <str<strong>on</strong>g>of</str<strong>on</strong>g> finite width W b <str<strong>on</strong>g>and</str<strong>on</strong>g> compare<br />

the spectra with those <str<strong>on</strong>g>of</str<strong>on</strong>g> the KP model. We assume the height <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier to<br />

be V/v F = P/W b , so that V W b /v F = P . We use a SL period <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 nm <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

width W b = 0.05L = 2.5 nm. For P = π/2 the corresp<strong>on</strong>ding height is V ≈ t ⊥ .<br />

To fit in the c<strong>on</strong>tinuum model we require that the potential barriers be smooth<br />

over the carb<strong>on</strong>-carb<strong>on</strong> distance which is a ≈ 0.14 nm. In Fig. 7.10 we show the<br />

spectra for the KP model <str<strong>on</strong>g>and</str<strong>on</strong>g> this SL. Comparing (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b), we see that for<br />

small P the difference between both models is rather small. If we take P = π/2<br />

though, the difference becomes large, especially for the first c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> valence<br />

minib<str<strong>on</strong>g>and</str<strong>on</strong>g>s, as shown in panels (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d). The latter energy b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are flat for<br />

large k y in the KP model, while they diverge from the horiz<strong>on</strong>tal line (E=0) for<br />

a finite barrier width. From panel (f), which shows the discrepancy <str<strong>on</strong>g>of</str<strong>on</strong>g> the SL<br />

minib<str<strong>on</strong>g>and</str<strong>on</strong>g>s between the exact <strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> those obtained from the KP model, we see<br />

that the spectra with P = 0.2π are closer to the KP model than those for P = π/2.<br />

92


7.4. EXTENDED KRONIG-PENNEY MODEL<br />

Fig. 7.10(e) dem<strong>on</strong>strates that the periodicity <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum in P within the KP<br />

model, i.e., its invariance under the change P → P + 2nπ, is present <strong>on</strong>ly as a<br />

rough approximati<strong>on</strong> away from the KP limit.<br />

Figure 7.10: Spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a SL with L = 50 nm, (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) are for P = 0.2π<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) are for P = π/2. (a), (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (e) are for a rectangular-barrier SL<br />

with W b = 0.05L <str<strong>on</strong>g>and</str<strong>on</strong>g> u = P/W b , while (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) are for the KP model. (e)<br />

shows the spectrum for u corresp<strong>on</strong>ding to P = (1/2+2)π; the dashed curves show<br />

the c<strong>on</strong>tours <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum in (c) for P = π/2. (f) shows the discrepancy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the SL minib<str<strong>on</strong>g>and</str<strong>on</strong>g>s between the exact <strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> those obtained from the KP model,<br />

averaged over k space (where we used k y L/π = 6 as a cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f). The c<strong>on</strong>ducti<strong>on</strong><br />

(valence) minib<str<strong>on</strong>g>and</str<strong>on</strong>g>s are numbered with positive (negative) integers.<br />

7.4 Extended Kr<strong>on</strong>ig-Penney model<br />

In this model we replace the <strong>single</strong> δ-functi<strong>on</strong> barrier in the unit cell by two barriers<br />

with strengths P 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> −P 2 . In this case the SL potential is given by<br />

∑<br />

∑<br />

V (x) = P 1 δ(x − nL) − P 2 δ(x − (n + 1/2)L). (7.26)<br />

n<br />

Here we will restrict ourselves to the important case <str<strong>on</strong>g>of</str<strong>on</strong>g> P 1 = P 2 . For this potential<br />

we can also use Eq. (7.16) <str<strong>on</strong>g>of</str<strong>on</strong>g> Sec. 7.3, with the transfer matrix N replaced by the<br />

appropriate <strong>on</strong>e.<br />

n<br />

93


CHAPTER 7.<br />

BILAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

First, let us c<strong>on</strong>sider the spectrum al<strong>on</strong>g k y = 0, which is determined by the<br />

transcendental equati<strong>on</strong>s<br />

cos k x L = cos αL cos 2 P + D α sin 2 P, (7.27a)<br />

cos k x L = cos βL cos 2 P + D β sin 2 P, (7.27b)<br />

with D γ = [ (γ 2 + ε 2 ) cos γL − γ 2 + ε 2] /4γ 2 ε 2 . It is more c<strong>on</strong>venient to look at the<br />

crossing points because the spectrum is symmetric around zero energy. This follows<br />

from the form <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential (its spatial average is zero) or from the dispersi<strong>on</strong><br />

relati<strong>on</strong> Eq. (7.27a): the change ε → −ε entails α ↔ β <str<strong>on</strong>g>and</str<strong>on</strong>g> the crossings in the<br />

spectrum are easily obtained by taking the limit ε → 0 in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the dispersi<strong>on</strong><br />

relati<strong>on</strong>s. This gives the value <str<strong>on</strong>g>of</str<strong>on</strong>g> k x at the crossings:<br />

k x,0 = ± arccos[1 − (L 2 /8) sin 2 P ]/L, (7.28)<br />

while the crossing points are at (ε, k x , k y ) = (0, ±k x,0 , 0). If the k x,0 value is not<br />

real, then there is no soluti<strong>on</strong> at zero energy <str<strong>on</strong>g>and</str<strong>on</strong>g> a gap arises in the spectrum.<br />

From Eq. (7.27a) we see that for sin 2 P > 16/L 2 a b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap arises.<br />

Figure 7.11: The first c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> valence minib<str<strong>on</strong>g>and</str<strong>on</strong>g>s for the extended KP<br />

model for L = 10 nm with P = 0.125π in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> P = 0.25π in (b).<br />

In Fig. 7.11 we show the lowest c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> highest valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> for (a)<br />

P = 0.125π, <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) P = 0.25π. If we make the corresp<strong>on</strong>dence with the KP model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> previous secti<strong>on</strong> we see that this model leads to qualitatively similar (but not<br />

identical) spectra shown in Figs. 7.8(a,b): <strong>on</strong>e should take P twice as large in the<br />

corresp<strong>on</strong>ding KP model <str<strong>on</strong>g>of</str<strong>on</strong>g> Sec. 7.3 in order to obtain a similar spectrum. Here<br />

we have the interesting property that the spectrum exhibits mirror symmetry with<br />

respect to ε = 0, which makes the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the touching points <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the gap<br />

easier.<br />

In Fig. 7.12 we plot the k x value (dash-dotted blue curve) <str<strong>on</strong>g>of</str<strong>on</strong>g> the touching points<br />

k x,0 versus P , if there is no gap, <str<strong>on</strong>g>and</str<strong>on</strong>g> the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the gap E gap (solid red curve) if<br />

there is <strong>on</strong>e. The touching points move toward the BZ boundary with increasing<br />

P . Bey<strong>on</strong>d the P value for which the boundary is reached, a gap appears between<br />

the c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> valence minib<str<strong>on</strong>g>and</str<strong>on</strong>g>s.<br />

94


7.5. CONCLUSIONS<br />

Figure 7.12: Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the ±k x,0 values, for which the minib<str<strong>on</strong>g>and</str<strong>on</strong>g>s touch each other, as<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P (dash-dotted blue curve), <str<strong>on</strong>g>and</str<strong>on</strong>g> the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap E gap (solid<br />

red curve). The calculati<strong>on</strong> is d<strong>on</strong>e for the extended KP model with L = 10 nm.<br />

7.5 C<strong>on</strong>clusi<strong>on</strong>s<br />

We investigated the transmissi<strong>on</strong> through <strong>single</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> double δ-functi<strong>on</strong> potential<br />

barriers <strong>on</strong> bilayer graphene using the four-b<str<strong>on</strong>g>and</str<strong>on</strong>g> Hamilt<strong>on</strong>ian. The transmissi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ductance are found to be periodic functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the barriers<br />

P = V W b /v F with period π. The same periodicity was previously obtained for<br />

such barriers <strong>on</strong> <strong>single</strong>-layer graphene, see Ch. 5. We emphasize that the periodicity<br />

obtained here implies that the transmissi<strong>on</strong> satisfies the relati<strong>on</strong> T (k x , k y , P ) =<br />

T (k x , k y , P + nπ) for arbitrary values <str<strong>on</strong>g>of</str<strong>on</strong>g> k x , k y , P , <str<strong>on</strong>g>and</str<strong>on</strong>g> integer n. In previous<br />

theoretical work <strong>on</strong> graphene (Shytov et al., 2008; Silvestrov <str<strong>on</strong>g>and</str<strong>on</strong>g> Efetov, 2007)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> bilayer graphene (Snyman <str<strong>on</strong>g>and</str<strong>on</strong>g> Beenakker, 2007; Ramezani Masir et al., 2010)<br />

Fabry-Pérot res<strong>on</strong>ances were studied <str<strong>on</strong>g>and</str<strong>on</strong>g> T = 1 was found for particular values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

α, the electr<strong>on</strong> momentum inside the barrier al<strong>on</strong>g the x axis. For a rectangular<br />

barrier <str<strong>on</strong>g>of</str<strong>on</strong>g> width W <str<strong>on</strong>g>and</str<strong>on</strong>g> Schrödinger-type electr<strong>on</strong>s, Fabry-Pérot res<strong>on</strong>ances occur<br />

for αW = nπ <str<strong>on</strong>g>and</str<strong>on</strong>g> E > V 0 as well as in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a quantum well for E > 0,<br />

V 0 < 0. In graphene, because <str<strong>on</strong>g>of</str<strong>on</strong>g> Klein tunneling, the latter c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> energy<br />

is not needed. Because α depends <strong>on</strong> the energy <str<strong>on</strong>g>and</str<strong>on</strong>g> the potential barrier height<br />

in the combinati<strong>on</strong> E − V 0 , any periodicity <str<strong>on</strong>g>of</str<strong>on</strong>g> T in the energy is equivalent to<br />

a periodicity in V 0 if no approximati<strong>on</strong>s are made, e.g., E ≪ V 0 , etc. Although<br />

this may appear similar to the periodicity in P , there are fundamental differences.<br />

As shown in Snyman <str<strong>on</strong>g>and</str<strong>on</strong>g> Beenakker (2007), the Fabry-Pérot res<strong>on</strong>ances are not<br />

exactly described by the c<strong>on</strong>diti<strong>on</strong> αW = nπ (see Fig. 3 in Snyman <str<strong>on</strong>g>and</str<strong>on</strong>g> Beenakker<br />

(2007)) while the periodicity <str<strong>on</strong>g>of</str<strong>on</strong>g> T in the effective barrier strength is exactly nπ.<br />

Furthermore, the Fabry-Pérot res<strong>on</strong>ances are found for T = 1, while the periodicity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T in P is valid for any value <str<strong>on</strong>g>of</str<strong>on</strong>g> T between 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.<br />

Further, we studied the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the KP model <str<strong>on</strong>g>and</str<strong>on</strong>g> found it to be periodic<br />

in the strength P with period 2π. In the extended KP model this period reduces<br />

to π. This difference is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact that for the extended SL the<br />

unit cell c<strong>on</strong>tains two δ-functi<strong>on</strong> barriers. These periodicities are identical to the<br />

<strong>on</strong>e found earlier in the (extended) KP model <strong>on</strong> <strong>single</strong>-layer graphene. We found<br />

95


CHAPTER 7.<br />

BILAYER GRAPHENE: KRONIG-PENNEY MODEL<br />

that the SL c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> valence minib<str<strong>on</strong>g>and</str<strong>on</strong>g>s touch each other at two points or<br />

that there is an energy gap between them. In additi<strong>on</strong>, we found a simple relati<strong>on</strong><br />

describing the positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these touching points. N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> these periodic behaviors<br />

results from the two-b<str<strong>on</strong>g>and</str<strong>on</strong>g> Hamilt<strong>on</strong>ian; this clearly indicates that the two-b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Hamilt<strong>on</strong>ian is an incorrect descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the KP model in bilayer graphene. In<br />

general, results derived from these two tight-binding Hamilt<strong>on</strong>ians agree well <strong>on</strong>ly<br />

for small energies (Castro Neto et al., 2009; Beenakker, 2008). The precise energy<br />

ranges are not explicitly known <str<strong>on</strong>g>and</str<strong>on</strong>g> may depend <strong>on</strong> the particular property studied.<br />

For the range pertaining to the four-b<str<strong>on</strong>g>and</str<strong>on</strong>g> Hamilt<strong>on</strong>ian ab-initio results (Latil <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Henrard, 2006) indicate that it is approximately from −1 eV to +0.6 eV.<br />

The questi<strong>on</strong> arises whether the above periodicities in P survive when the potential<br />

barriers have a finite width. To assess that, we briefly investigated the<br />

spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a rectangular SL potential with thin barriers <str<strong>on</strong>g>and</str<strong>on</strong>g> compared it with<br />

that in the KP limit. We showed with some examples that for specific SL parameters<br />

the KP model is acceptable in a narrow range <str<strong>on</strong>g>of</str<strong>on</strong>g> P <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly as a rough<br />

approximati<strong>on</strong> outside this range. The same c<strong>on</strong>clusi<strong>on</strong> holds for the periodicity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the KP model.<br />

The main differences between the results for the KP model <strong>on</strong> bilayer graphene<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> those <strong>on</strong> <strong>single</strong>-layer graphene, see Ch. 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> Barbier et al. (2009a), are as<br />

follows. In c<strong>on</strong>trast to <strong>single</strong>-layer graphene we found here that:<br />

1) The c<strong>on</strong>ductance for a <strong>single</strong> δ-functi<strong>on</strong> potential barrier depends <strong>on</strong> the Fermienergy<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> drops almost to zero for certain values <str<strong>on</strong>g>of</str<strong>on</strong>g> E <str<strong>on</strong>g>and</str<strong>on</strong>g> P .<br />

2) The KP model (<str<strong>on</strong>g>and</str<strong>on</strong>g> its extended versi<strong>on</strong>) in bilayer graphene can open a b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gap; if there is no such gap, two touching points appear in the spectrum instead<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e.<br />

3) The Dirac line found in the extended KP model in <strong>single</strong>-layer graphene is not<br />

found in bilayer graphene.<br />

96


8<br />

Snake states <str<strong>on</strong>g>and</str<strong>on</strong>g> Klein tunneling in a<br />

graphene Hall bar with a pn-juncti<strong>on</strong><br />

8.1 Introducti<strong>on</strong><br />

The pn-juncti<strong>on</strong> is an interesting system in graphene because it exhibits Klein<br />

tunneling as well as the analog <str<strong>on</strong>g>of</str<strong>on</strong>g> a negative refracti<strong>on</strong> index. Moreover the phenomen<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ‘snake states’ al<strong>on</strong>g the pn-interface has been predicted (Davies et al.,<br />

2012; Carmier et al., 2011). Actually at such a pn-juncti<strong>on</strong> <strong>on</strong>e has a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

‘skipping orbits’ when electr<strong>on</strong>s arriving at the pn-juncti<strong>on</strong> are reflected <str<strong>on</strong>g>and</str<strong>on</strong>g> ‘snake<br />

states’ when they exhibit negative refractive index behavior. Al<strong>on</strong>g with theoretical<br />

proposals (Davies et al., 2012), experiments <strong>on</strong> such systems were undertaken<br />

recently (Williams <str<strong>on</strong>g>and</str<strong>on</strong>g> Marcus, 2011; Lohmann et al., 2009). This motivated us to<br />

investigate the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a graphene Hall bar (Weingart et al., 2009) c<strong>on</strong>taining a<br />

pn-juncti<strong>on</strong>. In previous work <strong>on</strong> mesoscopic Hall bars Beenakker <str<strong>on</strong>g>and</str<strong>on</strong>g> van Houten<br />

(1989) proposed a classical model to describe the magnetic resp<strong>on</strong>se. Such Hall<br />

probes have been applied as n<strong>on</strong>invasive probes for local magnetic fields (Novoselov<br />

et al., 2002; Peeters <str<strong>on</strong>g>and</str<strong>on</strong>g> Li, 1998) to investigate, e.g., mesoscopic superc<strong>on</strong>ducting<br />

disks <str<strong>on</strong>g>and</str<strong>on</strong>g> ferromagnetic particles. In this work we investigate a Hall bar made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

graphene with a pn-juncti<strong>on</strong> al<strong>on</strong>g <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its axes in the ballistic regime using the<br />

billiard model.<br />

8.2 Model<br />

The system we investigate, shown in Fig. 8.1, is a Hall bar with four identical leads,<br />

with in the middle a pn-juncti<strong>on</strong> dividing the Hall cross in an n-doped regi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

p-doped regi<strong>on</strong>. The doping can be realized electrically by applying gate potentials<br />

V p <str<strong>on</strong>g>and</str<strong>on</strong>g> V n <strong>on</strong> the p- <str<strong>on</strong>g>and</str<strong>on</strong>g> n-regi<strong>on</strong> respectively. We modeled this by a shift in energy<br />

E F → E F − V n <str<strong>on</strong>g>and</str<strong>on</strong>g> define V = V p − V n , which is equivalent to having V n = 0.<br />

We use the following dimensi<strong>on</strong>less units throughout the work: R ∗ = R/R 0 , with<br />

1 The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter were published as:<br />

M. Barbier, G. Papp, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. Peeters, Appl. Phys. Lett. 100, 163121 (2012).<br />

97


CHAPTER 8. SNAKE STATES AND KLEIN TUNNELING IN A<br />

GRAPHENE HALL BAR WITH A PN-JUNCTION<br />

Figure 8.1: A sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hall bar geometry, where the pn-juncti<strong>on</strong> is represented<br />

by the red line, <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>tacts are shown in blue having a chemical potential<br />

µ i . Three c<strong>on</strong>figurati<strong>on</strong>s are possible for the voltage <str<strong>on</strong>g>and</str<strong>on</strong>g> current probes: α (Hall<br />

resistance measurement), <str<strong>on</strong>g>and</str<strong>on</strong>g> β <str<strong>on</strong>g>and</str<strong>on</strong>g> γ (bend resistance measurements). The inset<br />

shows the potential pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile.<br />

R 0 = h v F 1<br />

4e 2 |E F |W<br />

, B ∗ = B/B 0 , with B 0 = |E F |<br />

ev F W , r∗ c = r c /W = (1−ξ)/B ∗ , with ξ =<br />

V/E F , where W is the width <str<strong>on</strong>g>of</str<strong>on</strong>g> the channels, v F ≈ 10 6 m/s is the Fermi-velocity,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> e is the charge <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>. Our numerical simulati<strong>on</strong>s are d<strong>on</strong>e for typical<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> W = 1 µm <str<strong>on</strong>g>and</str<strong>on</strong>g> E F = 50 meV, which results in R 0 = 6.08 × 10 2 h<br />

4e<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 2<br />

B 0 = 0.05 T. In order for our approach to be valid, we must require that: (1) we are<br />

in the ballistic regime, meaning that the mean free path l e is larger than the width<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the channels W , <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) the system can be described classically, implying that,<br />

a) the c<strong>on</strong>finement quantizati<strong>on</strong> E q = v F /W <str<strong>on</strong>g>and</str<strong>on</strong>g> b) the L<str<strong>on</strong>g>and</str<strong>on</strong>g>au level quantizati<strong>on</strong><br />

ω D = √ 2v F /l B with the magnetic length l B = √ /eB are small compared to<br />

the thermal fluctuati<strong>on</strong>s k B T . Since in graphene the temperature dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> l e<br />

is found to be small within a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures, <str<strong>on</strong>g>and</str<strong>on</strong>g> l e is in the order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

micr<strong>on</strong>s for clean graphene samples, see, e.g., Mayorov et al. (2011), (1) is satisfied<br />

for not too low temperatures, <str<strong>on</strong>g>and</str<strong>on</strong>g> for the used parameters.<br />

8.2.1 L<str<strong>on</strong>g>and</str<strong>on</strong>g>auer-Büttiker theory<br />

We calculate the Hall <str<strong>on</strong>g>and</str<strong>on</strong>g> bend resistances according to the L<str<strong>on</strong>g>and</str<strong>on</strong>g>auer-Büttiker<br />

theory (Büttiker, 1986). The idea <str<strong>on</strong>g>of</str<strong>on</strong>g> this theory is the following:<br />

1 Normally R 0 = h<br />

2e 2 for a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG, but since graphene has a n<strong>on</strong>c<strong>on</strong>stant DOS equal<br />

to ρ(E) =<br />

4|E|<br />

2π(v F ) 2 , we have R 0 ∝ 1/E F .<br />

98


8.2. MODEL<br />

Each terminal i c<strong>on</strong>tributes an amount<br />

2e<br />

I = N i<br />

h (µ i − µ 0 ), (8.1)<br />

to the current. Here N i is a normalizati<strong>on</strong> factor depending <strong>on</strong> the channel, µ i is<br />

the Fermi-level, µ 0 is the level where all electr<strong>on</strong>ic energy levels are occupied <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

no space for moving electr<strong>on</strong>s is left, hence no net current is expected to originate<br />

from electr<strong>on</strong>s having an energy below this value. The electr<strong>on</strong>s can be scattered<br />

by the device into another channel or can be reflected. The probability for this<br />

event we denote by T ij To obtain the real current I i going out <str<strong>on</strong>g>of</str<strong>on</strong>g> the terminal we<br />

subtract from this value, (1) the current which is reflected back into the terminal<br />

i with probability T ii <str<strong>on</strong>g>and</str<strong>on</strong>g>, (2) the current coming from the electr<strong>on</strong>s which were<br />

scattered from another terminal j into the terminal i with probability T ij . This<br />

leads to<br />

⎡<br />

⎤<br />

I i = 2e ⎣N i (1 − T ii )(µ i − µ 0 ) − ∑ N j T ij (µ j − µ 0 ) ⎦ , (8.2)<br />

h<br />

j≠i<br />

where N i is the Because <str<strong>on</strong>g>of</str<strong>on</strong>g> current (flux) c<strong>on</strong>servati<strong>on</strong> N i = N i T ii + ∑ j≠i N jT ij ,<br />

therefore the above equati<strong>on</strong> becomes<br />

⎡<br />

⎤<br />

I i = 2e ⎣N i (1 − T ii )µ i − ∑ N j T ij µ j ) ⎦ , (8.3)<br />

h<br />

j≠i<br />

getting rid <str<strong>on</strong>g>of</str<strong>on</strong>g> the µ 0 term. Because in graphene the DOS is linear in |E − V |, the<br />

normalizati<strong>on</strong> factor N i ∝ |E − V i |. This means that more electr<strong>on</strong>s are injected<br />

from regi<strong>on</strong>s with a higher DOS. If V i is not c<strong>on</strong>stant over the c<strong>on</strong>tact—like in<br />

our case—we need to integrate over the c<strong>on</strong>tact to find the current I i , that is:<br />

N j T ij ∝ ∫ x 0<br />

dx 0 |E − V (x 0 )|T ij,x0 , with x 0 the locati<strong>on</strong> <strong>on</strong> the c<strong>on</strong>tact where the<br />

electr<strong>on</strong> is injected. The relati<strong>on</strong> in Eq. (8.3) which relates the voltage eV i = µ i<br />

with the current I i defines the c<strong>on</strong>ductance tensor G, through I = GV . We find<br />

for the c<strong>on</strong>ductance tensor<br />

⎛<br />

⎞<br />

1 − T 11 −T 12 · · · −T 1M<br />

−T 21 1 − T 22 · · · −T 2M<br />

G = ⎜<br />

⎝<br />

.<br />

. . ..<br />

⎟<br />

(8.4)<br />

. ⎠<br />

−T M1 −T M2 · · · 1 − T MM<br />

A resistance tensor R can be defined as R = G −1 .<br />

This we can apply to the Hall bar system. For this device we have four terminals.<br />

According to the L<str<strong>on</strong>g>and</str<strong>on</strong>g>auer-Büttiker formalism (Büttiker, 1986) the resistances can<br />

be measured by having a voltage probe placed at two c<strong>on</strong>tacts (where no net current<br />

flows through) <str<strong>on</strong>g>and</str<strong>on</strong>g> the current running through the other two. Measuring the<br />

voltage V kl = (µ k − µ l )/e between terminals (k, l) <str<strong>on</strong>g>and</str<strong>on</strong>g> allow the current I mn to<br />

flow between (m, n) a resistance can be defined by<br />

R mn,kl = V kl T km T ln − T kn T lm<br />

= R 0 , (8.5)<br />

I mn D<br />

99


CHAPTER 8. SNAKE STATES AND KLEIN TUNNELING IN A<br />

GRAPHENE HALL BAR WITH A PN-JUNCTION<br />

with the voltage V kl = (µ k −µ l )/e measured between terminals (k, l) <str<strong>on</strong>g>and</str<strong>on</strong>g> a current<br />

I mn is flowing between (m, n). T ij are the transmissi<strong>on</strong> matrix elements giving the<br />

probability for an electr<strong>on</strong> injected from terminal j to end up in terminal i, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

D is a (sub)determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmissi<strong>on</strong> matrix T , which is symmetric in the<br />

magnetic flux: D(B) = D(−B).<br />

One has the following exact symmetries:<br />

(1) R mn,kl = −R mn,lk = −R nm,kl , <str<strong>on</strong>g>and</str<strong>on</strong>g> the reciprocal relati<strong>on</strong><br />

(2) R mn,kl (B) = R kl,mn (−B).<br />

There are three resistances <str<strong>on</strong>g>of</str<strong>on</strong>g> interest: the Hall resistance R H = R α = R 13,24 ,<br />

the bend resistances R B = R β = R 14,32 <str<strong>on</strong>g>and</str<strong>on</strong>g> R γ = R 12,43 , <str<strong>on</strong>g>and</str<strong>on</strong>g> their counterparts<br />

(denoted by a prime) obtained by switching the voltage <str<strong>on</strong>g>and</str<strong>on</strong>g> current probes, where<br />

the latter are related to the former by the relati<strong>on</strong> R i (−B) = −R i ′(B).<br />

These<br />

resistances are defined by R i = V i /I i (i = α, β, γ), where the different V i <str<strong>on</strong>g>and</str<strong>on</strong>g> I i<br />

are shown in Fig. 8.1.<br />

8.2.2 Transmissi<strong>on</strong> matrix<br />

To obtain the transmissi<strong>on</strong> matrix elements we use the semi-classical billiard model<br />

(Beenakker <str<strong>on</strong>g>and</str<strong>on</strong>g> van Houten, 1989). T ij are found by injecting a large number N<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s from terminals j <str<strong>on</strong>g>and</str<strong>on</strong>g> tracking down which ratio ends up in terminals<br />

i. The probability to be injected from a terminal j is, according to Beenakker<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> van Houten (1989), uniformly distributed over the channel width, <str<strong>on</strong>g>and</str<strong>on</strong>g> has<br />

an angular distributi<strong>on</strong> P (α) = 1 2 cos(α). In graphene it also depends <strong>on</strong> the<br />

DOS which changes with the parameter ξ = E F /V . Because in the system under<br />

c<strong>on</strong>siderati<strong>on</strong> the DOS is not the same in every channel (<str<strong>on</strong>g>and</str<strong>on</strong>g> not even homogeneous<br />

inside channels 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4), we incorporate this by a factor ε j (x) = |1 − ξ j (x)| for<br />

injecti<strong>on</strong> from positi<strong>on</strong> x at terminal j. This means that the electr<strong>on</strong> has a higher<br />

probability to be injected from a regi<strong>on</strong> where the DOS is large.<br />

Figure 8.2: Schematics <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> having energy E F < V incident under an angle<br />

φ i <strong>on</strong> a pn-juncti<strong>on</strong>, (a) shows the incident, reflected, <str<strong>on</strong>g>and</str<strong>on</strong>g> transmitted momenta<br />

p i , p r , <str<strong>on</strong>g>and</str<strong>on</strong>g> p t , while (b) shows the potential pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile with the Dirac c<strong>on</strong>es.<br />

100


8.2. MODEL<br />

The trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s are assumed to be ballistic <str<strong>on</strong>g>and</str<strong>on</strong>g> the electr<strong>on</strong><br />

moves al<strong>on</strong>g a circular orbit with cyclotr<strong>on</strong> radius r c . Unlike in a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG<br />

where rc classical = p<br />

eB<br />

= mv2<br />

eBv<br />

, in graphene we have a linear dispersi<strong>on</strong> relati<strong>on</strong><br />

E kin = v F p <str<strong>on</strong>g>and</str<strong>on</strong>g> we obtain instead<br />

r c = p F<br />

e|B| =<br />

E kin<br />

ev F |B| = |E F − V |<br />

ev F |B|<br />

, (8.6)<br />

a cyclotr<strong>on</strong> radius that can be tuned by changing the magnetic field strength B<br />

or the potential V . To investigate the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> incident <strong>on</strong> the<br />

pn-juncti<strong>on</strong>, we calculate the transmissi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reflecti<strong>on</strong> probabilities <strong>on</strong> the pnjuncti<strong>on</strong><br />

quantum mechanically (according to the Dirac model), as well as how<br />

the particle is deflected by the juncti<strong>on</strong>. The directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle will change<br />

<strong>on</strong> transmissi<strong>on</strong> through the juncti<strong>on</strong>. If the incident angle is φ i then in case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reflecti<strong>on</strong>, the reflected angle is φ r = φ i . For transmissi<strong>on</strong> the angle φ t <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

transmitted electr<strong>on</strong> is related to the incident <strong>on</strong>e as<br />

p t sin(φ t ) = p i sin(φ i ), (8.7)<br />

where p t <str<strong>on</strong>g>and</str<strong>on</strong>g> p i are the corresp<strong>on</strong>ding momenta in the respective regi<strong>on</strong>s, if the<br />

regi<strong>on</strong> has potential V then p = (E − V )/v F , this is shown in Fig. 8.2. This<br />

relati<strong>on</strong> is similar to the wellknown Snell’s law in optics. In case | sin(φ t )| > 1,<br />

total reflecti<strong>on</strong> occurs <str<strong>on</strong>g>and</str<strong>on</strong>g> the reflecti<strong>on</strong> probability R = 1. Otherwise R is given<br />

by Davies et al. (2012):<br />

( )<br />

R =<br />

∣ sin φ1 + φ 2<br />

/ cos<br />

2<br />

(<br />

φ1 − φ 2<br />

2<br />

)∣ ∣∣∣<br />

2<br />

. (8.8)<br />

Thus when an electr<strong>on</strong> hits the pn-juncti<strong>on</strong>, it has a probability to be reflected or<br />

to be transmitted. From the above “Snell’s law”, we observe that the transmissi<strong>on</strong><br />

probability to go from a regi<strong>on</strong> with large |p| (<str<strong>on</strong>g>and</str<strong>on</strong>g> hence high DOS) towards a regi<strong>on</strong><br />

with low |p| is small, while for electr<strong>on</strong>s going in the opposite way transmissi<strong>on</strong> is<br />

very likely.<br />

Our procedure to find the transmissi<strong>on</strong> matrix element T ij can be summarized<br />

as follows:<br />

1. We inject electr<strong>on</strong>s from lead j with both angles α ∈] − π/2, π/2[ <str<strong>on</strong>g>and</str<strong>on</strong>g> positi<strong>on</strong>s<br />

in the lead x linearly distributed over the interval. To incorporate the<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong> with angle α <str<strong>on</strong>g>and</str<strong>on</strong>g> positi<strong>on</strong> x, we attach a weight factor<br />

P (α, x) ∝ 1 2 cos(α) |1 − ξ j(x)| to the corresp<strong>on</strong>ding electr<strong>on</strong> path.<br />

2. For each <str<strong>on</strong>g>of</str<strong>on</strong>g> these electr<strong>on</strong>s we compute its path as follows: we determine<br />

the circle (using Eq. (8.6) to obtain the radius) al<strong>on</strong>g which the electr<strong>on</strong> is<br />

traveling <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently obtain the intersecti<strong>on</strong>s between this circle <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> line-pieces c<strong>on</strong>stituted by the borders <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hall bar geometry <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

pn-juncti<strong>on</strong>. The closest intersecti<strong>on</strong> represents the point where the electr<strong>on</strong><br />

‘hits’ the border <str<strong>on</strong>g>of</str<strong>on</strong>g> a channel, a lead, or the pn-juncti<strong>on</strong>. For this ‘hit’ we<br />

101


CHAPTER 8. SNAKE STATES AND KLEIN TUNNELING IN A<br />

GRAPHENE HALL BAR WITH A PN-JUNCTION<br />

compute the next circle al<strong>on</strong>g which the electr<strong>on</strong> will proceed. If the electr<strong>on</strong><br />

hits the wall <str<strong>on</strong>g>of</str<strong>on</strong>g> a channel the next circle is calculated c<strong>on</strong>sidering elastic<br />

collisi<strong>on</strong>. When the electr<strong>on</strong> hits the pn-juncti<strong>on</strong> the reflecti<strong>on</strong> probability<br />

R is calculated using Eq. (8.8) <str<strong>on</strong>g>and</str<strong>on</strong>g> a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om number ζ ∈ [0, 1] is tossed to<br />

determine whether the electr<strong>on</strong> is transmitted (ζ > R) or reflected (ζ < R).<br />

When the electr<strong>on</strong> is transmitted the “Snell’s law” (i.e., Eq. (8.7)) is used to<br />

obtain the next circle.<br />

3. The path ends when a electr<strong>on</strong> hits the border <str<strong>on</strong>g>of</str<strong>on</strong>g> a lead i, in which case the<br />

transmissi<strong>on</strong> T ij towards this lead is augmented by the weight factor P (α, x).<br />

For the above procedure to be valid, a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s should be injected.<br />

In our simulati<strong>on</strong>s we took 400 angles <str<strong>on</strong>g>and</str<strong>on</strong>g> 600 positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong> for every<br />

channel. This procedure has to be repeated for every channel <str<strong>on</strong>g>and</str<strong>on</strong>g> every value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnetic field B <str<strong>on</strong>g>and</str<strong>on</strong>g> potential V in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> interest.<br />

8.2.3 Symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the system<br />

Although the four-fold symmetry is lost in our system, we still have the following<br />

symmetries:<br />

1) T ij (B) = T ji (−B), the Onsager relati<strong>on</strong>,<br />

2) T j2 (B) = T j4 (−B), with j = 1, 3,<br />

3) T 13 (B) = T 13 (−B),<br />

where the last two are specific to our pn-juncti<strong>on</strong> set-up. Therefore, both the Hall<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> bend resistances obey<br />

1) R γ (−B) = −R β (B),<br />

2) R α (−B) = −R α (B),<br />

Hence it suffices for the Hall resistance to <strong>on</strong>ly plot R α (B) for positive values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the magnetic field. Moreover for the bend resistance we choose to plot R β (B).<br />

8.3 Results <str<strong>on</strong>g>and</str<strong>on</strong>g> discussi<strong>on</strong><br />

To underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the pn-juncti<strong>on</strong> <strong>on</strong> the resistances, we plot the<br />

electr<strong>on</strong> density ρ(x, y) in Fig. 8.3 for B ∗ = 3, V/E F = 2. For this B the cyclotr<strong>on</strong><br />

radius r c = W/3 is equal in both regi<strong>on</strong>s, but with opposite directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

for the electr<strong>on</strong>s. Notice that r c = W/3 is large enough for the charge carriers to<br />

reach the pn-juncti<strong>on</strong>, but not the other edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the channel without scattering<br />

(remember the width <str<strong>on</strong>g>of</str<strong>on</strong>g> the channels is W ). There is symmetry for injecti<strong>on</strong> from<br />

lead 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 because <str<strong>on</strong>g>of</str<strong>on</strong>g> equal cyclotr<strong>on</strong> radii in both regi<strong>on</strong>s. For injecti<strong>on</strong> in the<br />

first lead we see that, due to the negative refracti<strong>on</strong> index, there is a n<strong>on</strong>zero T 21 .<br />

Comparing injecti<strong>on</strong> from lead 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 we notice that the snake states are <strong>on</strong>ly<br />

102


8.3. RESULTS AND DISCUSSION<br />

Figure 8.3: The electr<strong>on</strong> density ρ(x, y) inside the Hall cross for B ∗ = 3, V/E F = 2<br />

for carrier injecti<strong>on</strong> from the four different leads as indicated by the arrows.<br />

traveling from 4 to 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> not in the opposite directi<strong>on</strong>. Further, to appreciate<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the difference <str<strong>on</strong>g>of</str<strong>on</strong>g> the DOS in the two regi<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> the corresp<strong>on</strong>ding<br />

difference in probability for an electr<strong>on</strong> to be injected in that regi<strong>on</strong>, we plot the<br />

electr<strong>on</strong> density ρ(x, y) in Fig. 8.4 for B ∗ = 1.5, <str<strong>on</strong>g>and</str<strong>on</strong>g> V/E F = 0.8. For those<br />

parameters both regi<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g> n-type, but the DOS <str<strong>on</strong>g>and</str<strong>on</strong>g> the cyclotr<strong>on</strong> radius <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the right regi<strong>on</strong> are five times smaller than these <str<strong>on</strong>g>of</str<strong>on</strong>g> the left regi<strong>on</strong>. For injecti<strong>on</strong> in<br />

the first lead we observe that the pn-juncti<strong>on</strong> serves as an almost impenetrable wall<br />

for the electr<strong>on</strong>s. This can be understood from the fact that transmissi<strong>on</strong> towards<br />

regi<strong>on</strong>s with a smaller DOS is unlikely (due to the Snell’s law menti<strong>on</strong>ed above).<br />

By the same reas<strong>on</strong>ing we can appreciate that the electr<strong>on</strong>s injected from lead 2<br />

are scattered mainly towards the terminal 4, whereby reflecti<strong>on</strong> <strong>on</strong> the pn-juncti<strong>on</strong><br />

allows skipping orbits al<strong>on</strong>g the interface. Notice also that although the electr<strong>on</strong>s<br />

injected from the right regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lead 2 are traveling towards channel 3 that the<br />

DOS in this regi<strong>on</strong> is small such that <strong>on</strong>ly few electr<strong>on</strong>s will reach lead 3.<br />

In Fig. 8.5 the (a) Hall resistance, (b) Hall coefficient, <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) the bend resistance<br />

are shown for various values <str<strong>on</strong>g>of</str<strong>on</strong>g> ξ = V/E F . Two cases are clearly distinct:<br />

103


CHAPTER 8. SNAKE STATES AND KLEIN TUNNELING IN A<br />

GRAPHENE HALL BAR WITH A PN-JUNCTION<br />

Figure 8.4: The electr<strong>on</strong> density ρ(x, y) inside the Hall cross for B ∗ = 1.5, V/E F =<br />

0.8 for carrier injecti<strong>on</strong> from the four different leads as indicated by the arrows.<br />

(1) 0 < ξ < 1, such that the potential barrier is lower than the Fermi-energy<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> both regi<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g> n-type, <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) ξ > 1 where the right regi<strong>on</strong> is p-type,<br />

which reverts the circling directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> makes the refracti<strong>on</strong> index<br />

negative, allowing for Klein tunneling in graphene. From this figure we see that<br />

the Hall resistance shows a plateau for small 0 < ξ < 1, while for ξ > 1 it is<br />

negative <str<strong>on</strong>g>and</str<strong>on</strong>g> approaches zero with increasing ξ. The plateau in R H is due to the<br />

pn-juncti<strong>on</strong>, which guides the electr<strong>on</strong>s making it difficult for them to cross the<br />

juncti<strong>on</strong> 2 . If ξ is increased above 1, the electr<strong>on</strong>s in the p-regi<strong>on</strong> will turn in the<br />

opposite directi<strong>on</strong>, therefore they can bend towards a different channel <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

pn-juncti<strong>on</strong> will collimate the electr<strong>on</strong>s (Cheianov <str<strong>on</strong>g>and</str<strong>on</strong>g> Fal’ko, 2006). This diminishes<br />

the Hall resistance with increasing ξ = V/E F until it vanishes at V = 2E F<br />

where r c is the same in both regi<strong>on</strong>s. From the Hall coefficient we can see that,<br />

unlike the case without pn-juncti<strong>on</strong>, the Hall coefficient is negative <str<strong>on</strong>g>and</str<strong>on</strong>g> decreases<br />

for high magnetic fields in case ξ > 1, while for ξ < 1 it approaches asymptoti-<br />

2 This is very similar to the guiding found in Beenakker <str<strong>on</strong>g>and</str<strong>on</strong>g> van Houten (1989), where the<br />

guiding occurs due to the rounding <str<strong>on</strong>g>of</str<strong>on</strong>g> the edges <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hall cross.<br />

104


8.4. CONCLUSIONS<br />

cally the value for ξ = 0 with increasing B. The bend resistance <strong>on</strong> the c<strong>on</strong>trary<br />

becomes highly asymmetric with increasing ξ = V/E F , <str<strong>on</strong>g>and</str<strong>on</strong>g> is str<strong>on</strong>gly enhanced<br />

by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the pn-juncti<strong>on</strong>. In particular, notice that in regime (2) |R B |<br />

increases for large <str<strong>on</strong>g>and</str<strong>on</strong>g> negative B. To underst<str<strong>on</strong>g>and</str<strong>on</strong>g> this we observe from Eq. (8.5)<br />

that R B ∝ T 31 T 24 − T 34 T 21 . Notice further that for large <str<strong>on</strong>g>and</str<strong>on</strong>g> negative B, T 31 ≈ 0<br />

while T 21 <str<strong>on</strong>g>and</str<strong>on</strong>g> T 34 are n<strong>on</strong>zero because the right regi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> p-type.<br />

Figure 8.5: (a) Hall resistance, (b) Hall coefficient, <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) the bend resistance,<br />

versus the magnetic field strength are shown for various values <str<strong>on</strong>g>of</str<strong>on</strong>g> ξ = V/E F =<br />

0; 0.4; 0.8; 1.2; 1.6; 2, given by the labels next to the curves.<br />

8.4 C<strong>on</strong>clusi<strong>on</strong>s<br />

We investigated the Hall <str<strong>on</strong>g>and</str<strong>on</strong>g> bend resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> a Hall cross made <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene<br />

c<strong>on</strong>taining a pn-juncti<strong>on</strong>. The Hall resistance exhibits a ‘last Hall plateau’, as in<br />

a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard 2DEG when the Hall bar has rounded corners, in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> ξ < 1<br />

where the juncti<strong>on</strong> serves as a guiding center for the electr<strong>on</strong>s. For ξ > 1, the Hall<br />

resistance is qualitatively very different: i) its sign is opposite, ii) no Hall plateau<br />

is present but rather a local minimum, iii) |R H | diminishes both with increasing ξ<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> B, <str<strong>on</strong>g>and</str<strong>on</strong>g> iv) for ξ = 2, R H = 0. The bend resistance is highly asymmetric for<br />

ξ > 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> the resistance increases with increasing magnetic field B in <strong>on</strong>e directi<strong>on</strong>,<br />

while it reduces to zero in the other directi<strong>on</strong>.<br />

105


9<br />

C<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> outlook<br />

Here I present the c<strong>on</strong>clusi<strong>on</strong>s from my thesis, <str<strong>on</strong>g>and</str<strong>on</strong>g> a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> possible future<br />

research directi<strong>on</strong>s.<br />

9.1 C<strong>on</strong>clusi<strong>on</strong>s<br />

In this thesis I theoretically investigated the electr<strong>on</strong>ic transport <str<strong>on</strong>g>properties</str<strong>on</strong>g> in<br />

<str<strong>on</strong>g>nanostructures</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e-dimensi<strong>on</strong>al <str<strong>on</strong>g>superlattices</str<strong>on</strong>g> in graphene. The study focuses<br />

<strong>on</strong> theoretical models, rather than <strong>on</strong> the practical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>crete systems,<br />

such that the characteristic <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the systems are obtained for more general<br />

systems. The electr<strong>on</strong>ic <str<strong>on</strong>g>properties</str<strong>on</strong>g> can to a great extent be determined from<br />

the electr<strong>on</strong>ic b<str<strong>on</strong>g>and</str<strong>on</strong>g>structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a system, therefore I mainly focused <strong>on</strong> studying<br />

the spectrum <str<strong>on</strong>g>and</str<strong>on</strong>g> its c<strong>on</strong>sequences <strong>on</strong> electr<strong>on</strong>ic transport characteristics such as<br />

the c<strong>on</strong>ductivity <str<strong>on</strong>g>and</str<strong>on</strong>g> the density <str<strong>on</strong>g>of</str<strong>on</strong>g> states. Further, to gain a deeper insight in<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> such <str<strong>on</strong>g>superlattices</str<strong>on</strong>g> <strong>on</strong> the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s, we c<strong>on</strong>sidered the<br />

tunneling <str<strong>on</strong>g>properties</str<strong>on</strong>g> through simple <str<strong>on</strong>g>nanostructures</str<strong>on</strong>g>.<br />

In the first chapter I present the introducti<strong>on</strong> to this work. A few methods to<br />

obtain graphene samples are presented al<strong>on</strong>g with some experimental techniques to<br />

fabricate <str<strong>on</strong>g>nanostructures</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>superlattices</str<strong>on</strong>g>. In order to give an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> how graphene<br />

may be useful, I discuss some applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> graphene that already have been<br />

realized since 2004, the point in time where the graphene era started. Furthermore,<br />

a motivati<strong>on</strong> for the work <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this work are given here.<br />

The sec<strong>on</strong>d chapter is devoted to introducing the general electr<strong>on</strong>ic <str<strong>on</strong>g>properties</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graphene, necessary to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the work. The theoretical frame<br />

we use is explained <str<strong>on</strong>g>and</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> the approximati<strong>on</strong>s used further <strong>on</strong> in the thesis<br />

are justified.<br />

In Ch. 3 we showed that Klein tunneling in graphene is a result from the spectrum<br />

being gapless together with the chiral nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac particles. This can<br />

be seen from the fact that relativistic particles obeying the Klein-Gord<strong>on</strong> equati<strong>on</strong>,<br />

which also have a linear <str<strong>on</strong>g>and</str<strong>on</strong>g> gapless spectrum, do not exhibit perfect Klein<br />

tunneling for perpendicular incidence.<br />

In Ch. 4 we investigated the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>superlattices</str<strong>on</strong>g> c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e-dimensi<strong>on</strong>al<br />

barriers <strong>on</strong> <strong>single</strong>-layer graphene. We show that, due to the Klein tunneling in<br />

107


CHAPTER 9.<br />

CONCLUSIONS AND OUTLOOK<br />

<strong>single</strong>-layer graphene, a gap cannot be introduced in the spectrum using such electrostatic<br />

potentials. In the directi<strong>on</strong> perpendicular to the barriers the linear spectrum<br />

persists. In the other directi<strong>on</strong> though, parallel to the potential barriers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the superlattice, the spectrum gets modified to a great extent. We investigated<br />

two phenomena: (1) the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> extra Dirac points, which turn out to have<br />

a clear arrangement in k-space, <str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>d to topologically protected zeroenergy<br />

states, <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) the phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> collimati<strong>on</strong>, which is characterized by<br />

the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> a spectrum that is almost dispersi<strong>on</strong>less in <strong>on</strong>e directi<strong>on</strong>, while<br />

being linear in the other directi<strong>on</strong>. Both effects are in fact related: the emergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> extra Dirac points in the spectrum is characterized by a spectrum that<br />

is dispersi<strong>on</strong>less in the directi<strong>on</strong> parallel to the potential barriers.<br />

In Ch. 5 we investigated the Kr<strong>on</strong>ig-Penney model in <strong>single</strong>-layer graphene.<br />

In this model <strong>on</strong>e assumes a periodic potential c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> δ-functi<strong>on</strong> barriers.<br />

Originating from c<strong>on</strong>densed-matter physics, this model simulates the sharp potentials<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the i<strong>on</strong>s in a crystal by δ-functi<strong>on</strong> barriers. Since electr<strong>on</strong>s in graphene<br />

behave as (ultra-)relativistic particles, we can use this model to study the relativistic<br />

extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Kr<strong>on</strong>ig-Penney model (the so-called Dirac Kr<strong>on</strong>ig-Penney<br />

model). We find that in graphene, this model results in a spectrum that is periodic<br />

in the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the δ-functi<strong>on</strong> barriers. Further, we find that we can create a<br />

Dirac line in the spectrum (instead <str<strong>on</strong>g>of</str<strong>on</strong>g> a Dirac point), when we extend the Kr<strong>on</strong>ig-<br />

Penney model to a superlattice with alternating-in-sign δ-functi<strong>on</strong> barriers. We<br />

remark that, because δ-functi<strong>on</strong> barriers are ill-defined in graphene, these results<br />

are especially interesting in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> real two-dimensi<strong>on</strong>al Dirac particles.<br />

In Ch. 6 we studied <strong>on</strong>e-dimensi<strong>on</strong>al electrostatic <str<strong>on</strong>g>superlattices</str<strong>on</strong>g> in bilayer graphene.<br />

Just like in Ch. 4, we can show that extra Dirac points appear in the spectrum.<br />

Different from the case <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>single</strong>-layer graphene, we show that in bilayer graphene<br />

<strong>on</strong>e has more types <str<strong>on</strong>g>of</str<strong>on</strong>g> extra Dirac points: extra Dirac points may appear also<br />

for k y = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>zero k x , but are not protected like in <strong>single</strong>-layer graphene. In<br />

bilayer graphene there is the possibility to induce a b<str<strong>on</strong>g>and</str<strong>on</strong>g>gap in the spectrum by applying<br />

a potential difference between the two layers. When applying a superlattice<br />

to bilayer graphene, c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> interfaces where the bias (potential difference)<br />

flips, the valley <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> splits into two anisotropic c<strong>on</strong>e-like structures.<br />

The splitting, as well as the anisotropy, becomes larger with increasing bias.<br />

In Ch. 7 we studied the Kr<strong>on</strong>ig-Penney model in bilayer graphene. Also in this<br />

case we find a spectrum that is periodic in the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the δ-functi<strong>on</strong> barriers.<br />

We checked the validity <str<strong>on</strong>g>of</str<strong>on</strong>g> this model using the tight-binding model, <str<strong>on</strong>g>and</str<strong>on</strong>g> showed<br />

that it is <strong>on</strong>ly valid for rather small strengths <str<strong>on</strong>g>of</str<strong>on</strong>g> the barriers.<br />

In Ch. 8 we investigated the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> introducing a pn-juncti<strong>on</strong> in a graphene<br />

Hall bar in the ballistic regime, using a billiard model. We found that the transport<br />

<str<strong>on</strong>g>properties</str<strong>on</strong>g>, the Hall resistance <str<strong>on</strong>g>and</str<strong>on</strong>g> the bend resistance are very different when<br />

<strong>on</strong>e regi<strong>on</strong> is n-type <str<strong>on</strong>g>and</str<strong>on</strong>g> the other p-type. For the latter case, scattering at the<br />

pn-junctiIn the study the focus is <strong>on</strong> the theoretical models (<str<strong>on</strong>g>and</str<strong>on</strong>g> less <strong>on</strong><strong>on</strong> (obeying<br />

a negative refracti<strong>on</strong> index) results in a negative Hall resistance <str<strong>on</strong>g>and</str<strong>on</strong>g> a highly<br />

asymmetric bend resistance.<br />

108


9.2. FUTURE PERSPECTIVES<br />

9.2 Future perspectives<br />

• In Ch. 4 we found that 1D electrostatic <str<strong>on</strong>g>superlattices</str<strong>on</strong>g> in <strong>single</strong>-layer graphene<br />

allow directing the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s perpendicular to the barriers. This<br />

kind <str<strong>on</strong>g>of</str<strong>on</strong>g> tuning <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum could be used as an alternative <str<strong>on</strong>g>of</str<strong>on</strong>g> opening<br />

a gap in the spectrum to stop the electr<strong>on</strong>s. In bilayer graphene we have a<br />

similar effect for <str<strong>on</strong>g>superlattices</str<strong>on</strong>g> (see Ch. 6). Studying the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

<str<strong>on</strong>g>superlattices</str<strong>on</strong>g> more accurately (i.e., taking into account more details <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

system), could allow to obtain a trustworthy model for tuning the collimati<strong>on</strong><br />

using experimentally feasible parameters.<br />

• In Ch. 8 we simulated the transport <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a graphene Hall bar using<br />

a simple billiard model. The fact that ballistic transport is extensive in<br />

graphene gives this model some credit as a good first approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

real electr<strong>on</strong>ic behavior in such systems. This technique could be extended<br />

easily to other mesoscopic systems <str<strong>on</strong>g>and</str<strong>on</strong>g> to bilayer graphene.<br />

109


10<br />

C<strong>on</strong>clusies en toekomstperspectief<br />

In dit ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk geef ik een samenvatting van de resultaten van mijn thesis en<br />

mogelijke verdere studies gerelateerd aan dit werk.<br />

10.1 Samenvatting van deze thesis<br />

In deze thesis heb ik de elektr<strong>on</strong>ische transporteigenschappen in nanostructuren<br />

en één-dimensi<strong>on</strong>ale superroosters in grafeen theoretisch <strong>on</strong>derzocht. Door in deze<br />

studie de focus eerder op het theoretisch modelleren (en minder op het praktische<br />

simuleren van c<strong>on</strong>crete systemen) te leggen k<strong>on</strong>den meer algemene karakteristieke<br />

eigenschappen van de systemen verkregen worden. De elektr<strong>on</strong>ische eigenschappen<br />

van systemen kunnen grotendeels bepaald worden door het bestuderen van de<br />

elektr<strong>on</strong>ische b<str<strong>on</strong>g>and</str<strong>on</strong>g>enstructuur <str<strong>on</strong>g>of</str<strong>on</strong>g> spectrum van het systeem. Zodoende heb ik het<br />

spectrum en de c<strong>on</strong>sequenties ervan op elektr<strong>on</strong>ische transporteigenschappen, zoals<br />

de c<strong>on</strong>ductiviteit en de toest<str<strong>on</strong>g>and</str<strong>on</strong>g>sdichtheid, uitgebreid <strong>on</strong>derzocht. Verder heb ik,<br />

om een beter inzicht te verkrijgen in het gedrag van elektr<strong>on</strong>en in systemen zoals<br />

superroosters, eveneens de tunneling doorheen eenvoudige nanostructuren <strong>on</strong>derzocht.<br />

In het eerste ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk wordt een introductie tot dit werk gegeven. Er worden<br />

een aantal manieren vermeld hoe grafeen kan bekomen worden en hoe men<br />

nanostructuren en superroosters kan creëren in grafeen. Om een idee te krijgen<br />

van de toepasbaarheid van dit materiaal leg ik verder kort een aantal toepassingen<br />

gebaseerd op grafeen uit, dewelke al zijn gerealizeerd sinds het jaar 2004. Daarna<br />

geef ik de motivatie voor dit werk en mijn c<strong>on</strong>tributies tot het <strong>on</strong>derzoeksdomein.<br />

Het tweede ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk is gewijd aan het introduceren van de algemene elektr<strong>on</strong>ische<br />

eigenschappen van grafeen, dewelke nodig zijn om het verdere werk te<br />

begrijpen. Het theoretische kader dat we verderdoor in het werk zullen gebruiken<br />

wordt hier uitgelegd, en sommige van de gebruikte benaderingen worden verantwoord.<br />

In Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk 3 to<strong>on</strong>den we aan dat het fenomeen van Klein-tunneling in grafeen<br />

het resultaat is van, enerzijds het spectrum van grafeen dat geen b<str<strong>on</strong>g>and</str<strong>on</strong>g>klo<str<strong>on</strong>g>of</str<strong>on</strong>g> verto<strong>on</strong>t,<br />

en <str<strong>on</strong>g>and</str<strong>on</strong>g>erzijds van de chiraliteit (omwille van de pseudo-spin) van de Dirac-<br />

(quasi-)deeltjes in grafeen. Dit hebben we aangeto<strong>on</strong>d door tunneling door een<br />

111


CHAPTER 10.<br />

CONCLUSIES EN TOEKOMSTPERSPECTIEF<br />

barrière in grafeen te vergelijken met deze van spinloze deeltjes die voldoen aan de<br />

Klein-Gord<strong>on</strong>vergelijking. Hoewel de Klein-Gord<strong>on</strong>vergelijking eveneens relativistische<br />

deeltjes beschrijft en eenzelfde spectrum als de Diracvergelijking heeft, leidt<br />

de eerste niet tot perfecte tunneling bij loodrechte inval op de barrière.<br />

In Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk 4 v<strong>on</strong>den we dat, omwille van het fenomeen van Klein-tunneling,<br />

het introduceren van een b<str<strong>on</strong>g>and</str<strong>on</strong>g>klo<str<strong>on</strong>g>of</str<strong>on</strong>g> in het spectrum van grafeen <strong>on</strong>mogelijk is door<br />

een 1D elektrostatisch superrooster aan te leggen. Langsheen de richting van de<br />

potentiaal zal het spectrum steeds lineair blijven. In de richting parallel aan de<br />

potentiaalbarrières van het superrooster wordt het spectrum echter sterk beïnvloed<br />

door de aanwezigheid ervan. Twee fenomenen hebben we hierin <strong>on</strong>derzocht: (1)<br />

het verschijnen van extra Diracpunten, duidelijk geordend in de k-ruimte op de k y -<br />

as dewelke gelinkt kunnen worden met topologisch beschermde punten bij energie<br />

nul, en (2) het fenomeen van collimatie, dit is het verschijnsel waarbij het spectrum<br />

nagenoeg dispersieloos in de éne richting is, terwijl het dat niet in de <str<strong>on</strong>g>and</str<strong>on</strong>g>ere richting<br />

is (waar het in <strong>on</strong>s geval lineair is). Door de parameters van het superrooster, nodig<br />

om deze fenomenen te verkrijgen, te <strong>on</strong>derzoeken, v<strong>on</strong>den we dat deze aan elkaar<br />

gelinkt zijn: het verschijnen van een extra paar van Diracpunten in het spectrum<br />

wordt gekenmerkt door het dispersieloos zijn van dit spectrum in de richting parallel<br />

aan de barrières.<br />

In Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk 5 hebben we het Kr<strong>on</strong>ig-Penney model in éénlagig grafeen <strong>on</strong>derzocht.<br />

Dit model dat bestaat uit periodisch aangelegde δ-functie barrières is erg<br />

belangrijk omwille van de link met de elektr<strong>on</strong>ische structuur van kristalstructuren.<br />

In kristallen kunnen de scherpe aantrekkingspotentialen van de i<strong>on</strong>en gemodelleerd<br />

worden door δ-functie barrières. Daar de elektr<strong>on</strong>en in grafeen zich gedragen als<br />

(ultra-)relativistische deeltjes kunnen we met dit model de relativistische uitbreiding<br />

van het Kr<strong>on</strong>ig-Penney model (in dit geval ook het Dirac-Kr<strong>on</strong>ig-Penney model<br />

genoemd) <strong>on</strong>derzoeken. Dit model resulteert in grafeen in een spectrum dat periodisch<br />

is in de grootte van de δ-functie barrières. Voor δ-functie potentiaalbarrières<br />

is de tight-binding-Hamilt<strong>on</strong>iaan die we gebruiken echter niet meer geldig (dit soort<br />

barrière is niet glad over de afst<str<strong>on</strong>g>and</str<strong>on</strong>g> tussen de koolst<str<strong>on</strong>g>of</str<strong>on</strong>g>-atomen, een nodige voorwaarde).<br />

Voor 2D Dirac-deeltjes werkt dit model wel, en in deze c<strong>on</strong>text zijn deze<br />

resultaten nuttig.<br />

In Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk 6 bestudeerden we 1D elektrostatische superroosters in tweelagig<br />

grafeen. Net als in Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk 4 k<strong>on</strong>den we aant<strong>on</strong>en dat extra Diracpunten in de<br />

spectra verschijnen. Anders dan in enkellagig grafeen zijn er in tweelagig grafeen<br />

meerdere soorten extra Diracpunten: er zijn eveneens extra Diracpunten mogelijk<br />

gelegen op de k x -as, deze zijn echter niet topologisch beschermd en kunnen “verdwijnen”.<br />

In tweelagig grafeen is er de mogelijkheid om door middel van het aanleggen<br />

van een potentiaalverschil tussen de twee lagen een b<str<strong>on</strong>g>and</str<strong>on</strong>g>klo<str<strong>on</strong>g>of</str<strong>on</strong>g> te creëren. Een interessant<br />

systeem om te bestuderen is een superrooster, dat bestaat uit het periodisch<br />

ompolen van een aangelegde potentiaal tussen de twee lagen. We vinden dat de<br />

enkele vallei in de c<strong>on</strong>ductieb<str<strong>on</strong>g>and</str<strong>on</strong>g> van het spectrum in twee anisotrope kegelvormige<br />

valleien splitst. Deze splitsing in de k-ruimte, net als de anisotropie, vergroot met<br />

de aangelegde potentiaal.<br />

In Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk 7 hebben we het Kr<strong>on</strong>ig-Penney model toegepast op tweelagig<br />

112


10.2. TOEKOMSTPERSPECTIEF<br />

grafeen. Ook voor tweelagig grafeen resulteert dit model in een spectrum dat<br />

periodisch is in de grootte van de δ-functie barrières. In het geval van tweelagig<br />

grafeen hebben we de geldigheid van het model nagegaan en v<strong>on</strong>den dat dit enkel<br />

geldig is voor relatief lage barrières.<br />

In Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk 8 <strong>on</strong>derzochten we de invloed van een pn-junctie in een Hallbar<br />

besta<str<strong>on</strong>g>and</str<strong>on</strong>g>e uit grafeen, in het ballistische regime en gebruikmakende van een<br />

“biljart”-model. We to<strong>on</strong>den aan dat de Hall- en de buig-weerst<str<strong>on</strong>g>and</str<strong>on</strong>g> voor dit systeem<br />

sterk afhangt van het type ladingsdragers, elektr<strong>on</strong>en <str<strong>on</strong>g>of</str<strong>on</strong>g> holtes, in beide regio’s<br />

(links en rechts van de pn-junctie). Indien de dragers in de regio’s verschillend<br />

zijn, zal door o.a. de verstrooiing (<strong>on</strong>der invloed van de negatieve refractie-index)<br />

aan de pn-junctie een negatieve Hall-weerst<str<strong>on</strong>g>and</str<strong>on</strong>g> bekomen worden, alsook een sterk<br />

asymmetrische buig-weerst<str<strong>on</strong>g>and</str<strong>on</strong>g>.<br />

10.2 Toekomstperspectief<br />

• In Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk 4 v<strong>on</strong>den we dat door een elektrostatisch superrooster in enkellagig<br />

grafeen aan te leggen het mogelijk was om de beweging van de elektr<strong>on</strong>en<br />

te beperken tot één richting, namelijk de richting loodrecht op de barrières.<br />

Dit laat toe om de verboden richting te gebruiken als een alternatief voor het<br />

verkrijgen van een b<str<strong>on</strong>g>and</str<strong>on</strong>g>klo<str<strong>on</strong>g>of</str<strong>on</strong>g> (de st<str<strong>on</strong>g>and</str<strong>on</strong>g>aard-manier om elektr<strong>on</strong>en te stoppen).<br />

Ook in tweelagig grafeen kunnen we een dergelijk effect bekomen door<br />

een wisselend potentiaalverschil tussen de twee lagen te creëren zoals gezien<br />

in Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk 6. Een nauwkeurigere studie van de voorwaarden om dit effect<br />

te verkrijgen zou kunnen leiden tot een betrouwbaar model voor het<br />

experimenteel verkrijgen van gerichte elektr<strong>on</strong>en in grafeen.<br />

• In Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>dstuk 8 hebben we de transporteigenschappen van een Hall-bar in<br />

grafeen gesimuleerd gebruikmakend van een eenvoudig biljart-model. Deze<br />

manier van werken is effectief in grafeen omwille van het feit dat grafeen een<br />

relatief grote vrije weglengte bezit (wat ballistisch transport geeft). Deze<br />

techniek kan eenvoudig uitgebreid worden voor <str<strong>on</strong>g>and</str<strong>on</strong>g>ere systemen en/<str<strong>on</strong>g>of</str<strong>on</strong>g> tweelagig<br />

grafeen.<br />

113


A<br />

Single-layer graphene<br />

A.1 Crossing points for unequal barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> well widths<br />

Suppose a soluti<strong>on</strong> (ε, k x = 0, k y ) <str<strong>on</strong>g>of</str<strong>on</strong>g> the dispersi<strong>on</strong> relati<strong>on</strong> (Eq. (4.3)) is known for<br />

which the derivative ∂ε/∂k y at a certain k y value is undefined; then this k y value can<br />

be a crossing point. The c<strong>on</strong>diti<strong>on</strong> for such a soluti<strong>on</strong> is sin(λW w ) = sin(ΛW b ) = 0,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cos(λW w ) = cos(ΛW b ) = ±1, which entails<br />

λW w = jπ,<br />

ΛW b = (j + 2m)π,<br />

with j <str<strong>on</strong>g>and</str<strong>on</strong>g> m integers. Explicitly we obtain<br />

[<br />

(ε + uWb ) 2 − ky<br />

2 ]<br />

W<br />

2<br />

w = (jπ) 2 ,<br />

[<br />

(ε − u(1 − Wb )) 2 − ky<br />

2 ]<br />

W<br />

2<br />

b = ((j + 2m)π) 2 .<br />

(A.1)<br />

(A.2)<br />

Subtracting the sec<strong>on</strong>d equati<strong>on</strong> from the first <strong>on</strong>e in (B2) gives<br />

( )<br />

j<br />

2uε − u 2 (1 − 2W b ) = π 2 2<br />

(j + 2m)2<br />

Ww<br />

2 −<br />

Wb<br />

2 , (A.3)<br />

from which the corresp<strong>on</strong>ding value <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy ε can be extracted. Substituting<br />

this value in the first <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqs. (A.2) <strong>on</strong>e obtains<br />

ε j,m = u (<br />

2 (1 − 2W b) + π2 j<br />

2<br />

2u Ww<br />

2 −<br />

)<br />

(j + 2m)2<br />

Wb<br />

2 ,<br />

k yj,m = ± [ (ε j,m + uW b ) 2 − (jπ/W w ) 2] 1/2<br />

.<br />

(A.4)<br />

115


B<br />

Bilayer graphene<br />

B.1 Eigenvalues <str<strong>on</strong>g>and</str<strong>on</strong>g> eigenstates<br />

Starting with the 4×4 Hamilt<strong>on</strong>ian for a <strong>on</strong>e-dimensi<strong>on</strong>al potential V (x, y) = V (x),<br />

the time-independent Schrödinger equati<strong>on</strong> Hψ = Eψ leads to<br />

−i(∂ x − k y )ψ B = ε ′ ψ A − ψ B ′,<br />

−i(∂ x + k y )ψ A = ε ′ ψ B ,<br />

−i(∂ x + k y )ψ A ′ = ε ′ ψ B ′ − ψ A ,<br />

−i(∂ x − k y )ψ B ′ = ε ′ ψ A ′,<br />

(B.1)<br />

The spectrum <str<strong>on</strong>g>and</str<strong>on</strong>g> the corresp<strong>on</strong>ding eigenstates can be obtained, for c<strong>on</strong>stant<br />

V (x, y) = V , by progressive eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the unknowns in Eq. (B.1) <str<strong>on</strong>g>and</str<strong>on</strong>g> soluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the resulting sec<strong>on</strong>d-order differential equati<strong>on</strong>s. The result for the spectrum is<br />

ε = u + 1/2 ± √ 1/4 + k 2 ,<br />

ε = u − 1/2 ± √ 1/4 + k 2 .<br />

(B.2)<br />

The unnormalised eigenstates are given by the columns <str<strong>on</strong>g>of</str<strong>on</strong>g> the matrix GM, where<br />

⎛<br />

⎞<br />

1 1 1 1<br />

G = ⎜f+ α f− α f β + f β − ⎟<br />

⎝−1 −1 1 1 ⎠ ,<br />

f− α f+ α −f β − −f β +<br />

(B.3)<br />

with f α,β<br />

± = −i(k y ± i(α, β))/ε ′ ; α = [ε ′2 + ε ′ − k 2 y] 1/2 <str<strong>on</strong>g>and</str<strong>on</strong>g> β = [ε ′2 − ε ′ − k 2 y] 1/2 are<br />

the wave vectors. M is given by<br />

⎛<br />

⎞<br />

e iαx 0 0 0<br />

M = ⎜ 0 e −iαx 0 0<br />

⎟<br />

⎝ 0 0 e iβx 0 ⎠ .<br />

0 0 0 e −iβx<br />

(B.4)<br />

117


APPENDIX B. BILAYER GRAPHENE<br />

The wave functi<strong>on</strong> in a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant potential is a linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

eigenstates <str<strong>on</strong>g>and</str<strong>on</strong>g> can be written<br />

⎛ ⎞ ⎛ ⎞<br />

ψ A<br />

A<br />

Ψ(x) = ⎜ ψ B<br />

⎟<br />

⎝ψ B ′ ⎠ = GM ⎜B<br />

⎟<br />

⎝C⎠ .<br />

(B.5)<br />

ψ A ′<br />

D<br />

We can reduce its complexity by the linear transformati<strong>on</strong> Ψ(x) → RΨ(x) where<br />

⎛<br />

⎞<br />

1 0 −1 0<br />

R = 1 ⎜0 1 0 −1<br />

⎟<br />

2 ⎝1 0 1 0 ⎠ ,<br />

(B.6)<br />

0 1 0 1<br />

which transforms Ψ(x) to Ψ(x) = (1/2)(ψ A −ψ B ′, ψ B −ψ A ′, ψ A +ψ B ′, ψ B +ψ A ′) T .<br />

Then the basis functi<strong>on</strong>s are given by the columns <str<strong>on</strong>g>of</str<strong>on</strong>g> GM with<br />

⎛<br />

⎞<br />

1 1 0 0<br />

G = ⎜ α/ε ′ −α/ε ′ −ik y /ε ′ −ik y /ε ′<br />

⎟<br />

⎝ 0 0 1 1 ⎠ .<br />

(B.7)<br />

−ik y /ε ′ −ik y /ε ′ β/ε ′ −β/ε ′<br />

The matrix M is unchanged under the transformati<strong>on</strong> R <str<strong>on</strong>g>and</str<strong>on</strong>g> the new Ψ(x) fulfils<br />

the same boundary c<strong>on</strong>diti<strong>on</strong>s as the old <strong>on</strong>e.<br />

B.2 KP model: transfer matrix<br />

We denote the wave functi<strong>on</strong> to the left <str<strong>on</strong>g>of</str<strong>on</strong>g>, inside, <str<strong>on</strong>g>and</str<strong>on</strong>g> to the right <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier<br />

by ψ j (x) = G j M j A j , with j = 1, 2, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3, respectively. Further, we have G 1 = G 3<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> M 1 = M 3 . The c<strong>on</strong>tinuity <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> at x = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> x = W b gives<br />

the boundary c<strong>on</strong>diti<strong>on</strong>s ψ 1 (0) = ψ 2 (0) <str<strong>on</strong>g>and</str<strong>on</strong>g> ψ 2 (W b ) = ψ 3 (W b ). In explicit matrix<br />

notati<strong>on</strong> this gives G 1 A 1 = G 2 A 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> G 2 M 2 (W b )A 2 = M 1 (W b )G 1 A 3 , where A 1 =<br />

G1 −1 G 2M −1<br />

2 (W b)G2 −1 G 1M 1 (W b )A 3 . Then the transfer matrix N can be written as<br />

N = G1 −1 G 2M −1<br />

2 (W b)G2 −1 G 1M 1 (W b ). Let us define N ′ = G 2 M −1<br />

2 (W b)G2 −1 , which<br />

leads to ψ 1 (0) = N ′ ψ 3 (W b ).<br />

To treat the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a δ-functi<strong>on</strong> barrier we take the limits V → ∞ <str<strong>on</strong>g>and</str<strong>on</strong>g> W b → 0<br />

such that the dimensi<strong>on</strong>less potential strength P = V W b /v F is kept c<strong>on</strong>stant.<br />

Then G 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> M 2 (W b ) simplify to<br />

⎛<br />

⎞<br />

1 1 0 0<br />

G 2 = ⎜−1 1 0 0<br />

⎟<br />

⎝ 0 0 1 1⎠ ,<br />

(B.8)<br />

0 0 −1 1<br />

⎛<br />

118<br />

M 2 (W b ) =<br />

⎜<br />

⎝<br />

⎞<br />

e iP 0 0 0<br />

0 e −iP 0 0<br />

0 0 e iP 0<br />

0 0 0 e −iP<br />

⎟<br />

⎠ ,<br />

(B.9)


B.3.<br />

KP MODEL: 2 × 2 HAMILTONIAN<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> N ′ becomes<br />

⎛<br />

⎞<br />

cos P i sin P 0 0<br />

N ′ = ⎜i sin P cos P 0 0<br />

⎟<br />

⎝ 0 0 cos P i sin P ⎠ .<br />

0 0 i sin P cos P<br />

(B.10)<br />

B.3 KP model: 2 × 2 Hamilt<strong>on</strong>ian<br />

Using the 2 × 2 Hamilt<strong>on</strong>ian instead <str<strong>on</strong>g>of</str<strong>on</strong>g> the 4 × 4 <strong>on</strong>e can sometimes lead to unexpectedly<br />

different results; below we give a few examples. In a slightly modified<br />

notati<strong>on</strong> pertinent to the 2×2 Hamilt<strong>on</strong>ian we set α = [−ε+k 2 y] 1/2 , β = [ε+k 2 y] 1/2 ,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> use the same dimensi<strong>on</strong>less units as before.<br />

Bound states for a <strong>single</strong> δ-functi<strong>on</strong> barrier u(x) = P δ(x), without accompanying<br />

propagating states, are possible if k y = 0 or k 2 y > |ε|. In the former case the<br />

<strong>single</strong> soluti<strong>on</strong> is ε = −sign(P )P 2 /4. In the latter <strong>on</strong>e the dispersi<strong>on</strong> relati<strong>on</strong> is<br />

ε 2 (P + 2α)(P − 2β) + 2P 2 k 2 y(αβ − k 2 y) = 0.<br />

(B.11)<br />

The dispersi<strong>on</strong> relati<strong>on</strong> for the KP model obtained from the 2 × 2 Hamilt<strong>on</strong>ian<br />

is<br />

cos(2kL) + 2F 1 cos(kL) + F 2 = 0,<br />

(B.12)<br />

where<br />

F 1 = − cosh(βL) − cosh(αL) + P 2β sinh(βL) − P 2α sinh(αL),<br />

F 2 = 1<br />

αβε 2 {<br />

αβ(ε 2 + k 2 yP 2 /4)<br />

+ β cosh(βL) [ α(2ε 2 − k 2 y) cosh(αL) + ε 2 P sinh(αL) ]<br />

(B.13)<br />

− P 2 sinh(βL) [ α(ε 2 − k 4 y/2)P sinh(αL) + 2ε 2 α cosh(αL) ]} .<br />

B.4 Current density<br />

We want to find expressi<strong>on</strong>s for the current density <str<strong>on</strong>g>of</str<strong>on</strong>g> the 4×4 Hamilt<strong>on</strong>ian bilayer<br />

graphene, therefore we follow the normal procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> taking the current density<br />

definiti<strong>on</strong> from the c<strong>on</strong>tinuity equati<strong>on</strong> ∂ t |ψ| 2 + ∇ · j = 0. The c<strong>on</strong>tinuity equati<strong>on</strong><br />

is<br />

∂ t |ψ| 2 + ∇ · j = 0<br />

(B.14)<br />

We try to find the current-density j in the following. The Schrödinger equati<strong>on</strong> is<br />

given by<br />

i∂ t ψ = −ivα · ∇ψ + τψ<br />

(B.15)<br />

119


APPENDIX B. BILAYER GRAPHENE<br />

where<br />

α =<br />

( ) σ 0<br />

0 σ<br />

With the Pauli-matrices σ x = ( 0 1<br />

1 0<br />

⎛<br />

⎞<br />

0 0 0 t<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> τ = ⎜0 0 0 0<br />

⎟<br />

⎝0 0 0 0⎠<br />

t 0 0 0<br />

)<br />

, σy = ( 0 −i<br />

i 0<br />

equati<strong>on</strong>, plus its Hermitian c<strong>on</strong>jugate is given by<br />

{<br />

i∂t ψ = −ivα · ∇ψ + τψ<br />

− i∂ t ψ † = iv(∇ψ † ) · α † + ψ † τ †<br />

(B.16)<br />

)<br />

, σz = ( 1 0<br />

0 −1<br />

)<br />

. The Schrödinger<br />

(B.17)<br />

Left-multiply the first equati<strong>on</strong> by ψ † <str<strong>on</strong>g>and</str<strong>on</strong>g> right-multiply the sec<strong>on</strong>d by ψ.<br />

{<br />

ψ † ∂ t ψ = −vψ † α · ∇ψ + ψ † τψ<br />

− (∂ t ψ † )ψ = v(∇ψ † ) · αψ + ψ † τ † ψ<br />

(B.18)<br />

subtract the sec<strong>on</strong>d from the first<br />

ψ † ∂ t ψ + (∂ t ψ † )ψ = −v[ψ † α · ∇ψ + (∇ψ † ) · αψ] + [ψ † τψ − ψ † τ † ψ]<br />

(B.19)<br />

Sec<strong>on</strong>d term is zero<br />

ψ † ∂ t ψ + (∂ t ψ † )ψ = −v[ψ † α · ∇ψ + (∇ψ † ) · αψ]<br />

(B.20)<br />

⇒ ∂ t ψ † ψ = −v[ψ † ∇ · αψ + (∇ψ † ) · αψ]<br />

⇒ ∂ t ψ † ψ = −∇ · [vψ † αψ]<br />

(B.21)<br />

(B.22)<br />

Such that comparing with the c<strong>on</strong>tinuity equati<strong>on</strong> we obtain the current density<br />

j = vψ † αψ.<br />

120


Bibliography<br />

Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Chakraborty, T.<br />

Adv. Phys. 59, 261–482 (2010).<br />

Arovas, D. P., Brey, L., Fertig, H. A., Kim, E., <str<strong>on</strong>g>and</str<strong>on</strong>g> Ziegler, K. New J. Phys. 12,<br />

123020 (2010).<br />

Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei,<br />

T., Ri Kim, H., S<strong>on</strong>g, Y. I., Kim, Y.-J., Kim, K. S., Ozyilmaz, B., Ahn, J.-H.,<br />

H<strong>on</strong>g, B. H., <str<strong>on</strong>g>and</str<strong>on</strong>g> Iijima, S. Nat. Nano. 5, 574–578 (2010).<br />

Balog, R., Jorgensen, B., Nilss<strong>on</strong>, L., Andersen, M., Rienks, E., Bianchi, M.,<br />

Fanetti, M., Laegsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher,<br />

F., Hammer, B., Pedersen, T. G., H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Hornekaer, L. Nat.<br />

Mater. 9, 315–319 (2010).<br />

Barbier, M. “grafeen: tunneling door een barrière en het krönig-penney model”.<br />

Master’s thesis, Universiteit Antwerpen, Belgium, 2007.<br />

Barbier, M., Peeters, F. M., Vasilopoulos, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Pereira Jr, J. M. Phys. Rev. B<br />

77, 115446 (2008).<br />

Barbier, M., Vasilopoulos, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, F. M. Phys. Rev. B 80, 205415 (2009).<br />

Barbier, M., Vasilopoulos, P., Peeters, F. M., <str<strong>on</strong>g>and</str<strong>on</strong>g> Pereira Jr, J. M. Phys. Rev. B<br />

79, 155402 (2009).<br />

Barbier, M., Vasilopoulos, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, F. M. Phys. Rev. B 81, 075438 (2010).<br />

Barbier, M., Vasilopoulos, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, F. M. Phys. Rev. B 82, 235408 (2010).<br />

Barbier, M., Vasilopoulos, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, F. M. Phil. Trans. R. Soc. A 368,<br />

5499–5524 (2010).<br />

Barbier, M., Papp, G., <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, F. M. Appl. Phys. Lett. 100, 163121 (2012).<br />

Beenakker, C. W. J. Rev. Mod. Phys. 80, 1337–1354 (2008).<br />

Beenakker, C. W. J. <str<strong>on</strong>g>and</str<strong>on</strong>g> van Houten, H. Phys. Rev. Lett. 63, 1857–1860 (1989).<br />

Berger, C., S<strong>on</strong>g, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov,<br />

A. N., C<strong>on</strong>rad, E. H., First, P. N., <str<strong>on</strong>g>and</str<strong>on</strong>g> de Heer, W. A. J. Phys. Chem. B 108,<br />

19912–19916 (2004).<br />

Bliokh, Y. P., Freilikher, V., Savel’ev, S., <str<strong>on</strong>g>and</str<strong>on</strong>g> Nori, F. Phys. Rev. B 79, 075123<br />

(2009).<br />

Boehm, H. P., Clauss, A., H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann, U., <str<strong>on</strong>g>and</str<strong>on</strong>g> Fischer, G. O. Z. Naturforsch. B 17,<br />

150 (1962).<br />

121


BIBLIOGRAPHY<br />

Boehm, H.-P., Sett<strong>on</strong>, R., <str<strong>on</strong>g>and</str<strong>on</strong>g> Stummp, E. Pure & Appl. Chem. 66, 1893–1901<br />

(1994).<br />

Bommel, A. J. V., Crombeen, J. E., <str<strong>on</strong>g>and</str<strong>on</strong>g> Tooren, A. V. Surf. Sci. 48, 463–472<br />

(1975).<br />

B<strong>on</strong>accorso, F., Sun, Z., Hasan, T., <str<strong>on</strong>g>and</str<strong>on</strong>g> Ferrari, A. C. Nat. Phot<strong>on</strong>. 4, 611–622<br />

(2010).<br />

Brey, L. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fertig, H. A. Phys. Rev. Lett. 103, 046809 (2009).<br />

Bunch, J. S., Verbridge, S. S., Alden, J. S., van der Z<str<strong>on</strong>g>and</str<strong>on</strong>g>e, A. M., Parpia, J. M.,<br />

Craighead, H. G., <str<strong>on</strong>g>and</str<strong>on</strong>g> McEuen, P. L. Nano Lett. 8, 2458–2462 (2008).<br />

Büttiker, M. Phys. Rev. Lett. 57, 1761–1764 (1986).<br />

Carmier, P., Lewenkopf, C., <str<strong>on</strong>g>and</str<strong>on</strong>g> Ullmo, D. Phys. Rev. B 84, 195428 (2011).<br />

Castro, E. V., Novoselov, K. S., Morozov, S. V., Peres, N. M. R., dos Santos, J. M.<br />

B. L., Nilss<strong>on</strong>, J., Guinea, F., Geim, A. K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Castro Neto, A. H. Phys. Rev.<br />

Lett. 99, 216802 (2007).<br />

Castro Neto, A. H., Guinea, F., <str<strong>on</strong>g>and</str<strong>on</strong>g> Peres, N. M. R. Phys. World 19 (2006).<br />

Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., <str<strong>on</strong>g>and</str<strong>on</strong>g> Geim, A. K.<br />

Rev. Mod. Phys. 81, 109–162 (2009).<br />

Charb<strong>on</strong>neau, M., van Vliet, K. M., <str<strong>on</strong>g>and</str<strong>on</strong>g> Vasilopoulos, P. J. Math. Phys. 23,<br />

318–336 (1982).<br />

Cheianov, V. V. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fal’ko, V. I. Phys. Rev. B 74, 041403 (2006).<br />

Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S.-Y., Edgeworth, J., Li, X.,<br />

Magnus<strong>on</strong>, C. W., Velamakanni, A., Piner, R. D., Kang, J., Park, J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Ru<str<strong>on</strong>g>of</str<strong>on</strong>g>f,<br />

R. S. ACS Nano 5, 1321–1327 (2011).<br />

Cho, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fuhrer, M. Nano Res. 4, 385–392 (2011).<br />

Cooper, D. R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A.,<br />

Majlis, N., Massicotte, M., V<str<strong>on</strong>g>and</str<strong>on</strong>g>sburger, L., Whiteway, E., <str<strong>on</strong>g>and</str<strong>on</strong>g> Yu, V. ISRN<br />

C<strong>on</strong>dens. Matter Phys. 2012, 56 (2012).<br />

Das Sarma, S., Adam, S., Hwang, E. H., <str<strong>on</strong>g>and</str<strong>on</strong>g> Rossi, E. Rev. Mod. Phys. 83,<br />

407–470 (2011).<br />

Davies, N., Patel, A. A., Cortijo, A., Cheianov, V., Guinea, F., <str<strong>on</strong>g>and</str<strong>on</strong>g> Fal’ko, V. I.<br />

Phys. Rev. B 85, 155433 (2012).<br />

de Heer, W. A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B.,<br />

Hankins<strong>on</strong>, J., <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>rad, E. PNAS 108, 16900 (2011).<br />

122


BIBLIOGRAPHY<br />

DiVincenzo, D. P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Mele, E. J. Phys. Rev. B 29, 1685–1694 (1984).<br />

Dominguez-Adame, F. J. Phys.: C<strong>on</strong>dens. Matter 1, 109 (1989).<br />

Dragoman, D., Dragoman, M., <str<strong>on</strong>g>and</str<strong>on</strong>g> Plana, R. J. Appl. Phys. 107, 044312 (2010).<br />

Geim, A. K. <str<strong>on</strong>g>and</str<strong>on</strong>g> MacD<strong>on</strong>ald, A. H. Phys. Today 60, 35–41 (2007).<br />

Haldane, F. D. M. Phys. Rev. Lett. 61, 2015–2018 (1988).<br />

Ho, J. H., Chiu, Y. H., Tsai, S. J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Lin, M. F. Phys. Rev. B 79, 115427 (2009).<br />

Hobs<strong>on</strong>, J. P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Nierenberg, W. A. Phys. Rev. 89, 662 (1953).<br />

Huard, B., Sulpizio, J. A., St<str<strong>on</strong>g>and</str<strong>on</strong>g>er, N., Todd, K., Yang, B., <str<strong>on</strong>g>and</str<strong>on</strong>g> Goldhaber-Gord<strong>on</strong>,<br />

D. Phys. Rev. Lett. 98, 236803 (2007).<br />

Iijima, S. Nature 354, 56–58 (1991).<br />

Itoh, H., Ichinose, T., Oshima, C., Ichinokawa, T., <str<strong>on</strong>g>and</str<strong>on</strong>g> Aizawa, T. Surf. Sci. Lett.<br />

254, L437–L442 (1991).<br />

Katsnels<strong>on</strong>, M. I., Novoselov, K. S., <str<strong>on</strong>g>and</str<strong>on</strong>g> Geim, A. K. Nat. Phys. 2, 620–625 (2006).<br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g>, T., Michely, T., Behm, R., Hemminger, J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Comsa, G. Surf. Sci. 264,<br />

261–270 (1992).<br />

Latil, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Henrard, L. Phys. Rev. Lett. 97, 036803 (2006).<br />

Lee, C., Wei, X., Kysar, J. W., <str<strong>on</strong>g>and</str<strong>on</strong>g> H<strong>on</strong>e, J. Science 321, 385–388 (2008).<br />

Leenaerts, O., Partoens, B., <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, F. M. Appl. Phys. Lett. 93, 4 (2008).<br />

Liang, X., Jung, Y., Wu, S., Ismach, A., Olynick, D. L., Cabrini, S., <str<strong>on</strong>g>and</str<strong>on</strong>g> Bokor, J.<br />

Nano Lett. 10, 2454–2460 (2012).<br />

Liao, L., Lin, Y.-C., Bao, M., Cheng, R., Bai, J., Liu, Y., Qu, Y., Wang, K. L.,<br />

Huang, Y., <str<strong>on</strong>g>and</str<strong>on</strong>g> Duan, X. Nature 467, 305–308 (2010).<br />

Liao, L., Bai, J., Cheng, R., Zhou, H., Liu, L., Liu, Y., Huang, Y., <str<strong>on</strong>g>and</str<strong>on</strong>g> Duan, X.<br />

Nano Lett. 1, 1 (2011).<br />

Lin, Y.-M., Dimitrakopoulos, C., Jenkins, K. A., Farmer, D. B., Chiu, H.-Y., Grill,<br />

A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Avouris, P. Science 327, 662 (2010).<br />

Lohmann, T., v<strong>on</strong> Klitzing, K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Smet, J. H. Nano Lett. 9, 1973–1979 (2009).<br />

Martin, I., Blanter, Y. M., <str<strong>on</strong>g>and</str<strong>on</strong>g> Morpurgo, A. F. Phys. Rev. Lett. 100, 036804<br />

(2008).<br />

Martinez, J. C., Jalil, M. B. A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Tan, S. G. Appl. Phys. Lett. 95, 213106<br />

(2009).<br />

123


BIBLIOGRAPHY<br />

Matulis, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, F. M. Phys. Rev. B 77, 115423 (2008).<br />

Mayorov, A. S., Gorbachev, R. V., Morozov, S. V., Britnell, L., Jalil, R., P<strong>on</strong>omarenko,<br />

L. A., Blake, P., Novoselov, K. S., Watanabe, K., Taniguchi, T., <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Geim, A. K. Nano Lett. 11, 2396–2399 (2011).<br />

McCann, E. Phys. Rev. B 74, 161403 (2006).<br />

McCann, E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fal’ko, V. I. Phys. Rev. Lett. 96, 086805 (2006).<br />

McClure, J. W. Phys. Rev. 104, 666–671 (1956).<br />

McClure, J. W. Phys. Rev. 108, 612–618 (1957).<br />

McKellar, B. H. J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Stephens<strong>on</strong>, G. J. Physical Review A 36, 2566–2569 (1987).<br />

McKellar, B. H. J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Stephens<strong>on</strong>, G. J. Phys. Rev. C 35, 2262–2271 (1987).<br />

Meyer, J. C., Girit, C. O., Crommie, M. F., <str<strong>on</strong>g>and</str<strong>on</strong>g> Zettl, A. Appl. Phys. Lett. 92,<br />

123110 (2008).<br />

Norimatsu, W. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kusunoki, M. Chem. Phys. Lett. 468, 52–56 (2009).<br />

Novoselov, K. S., Geim, A. K., Dub<strong>on</strong>os, S. V., Cornelissens, Y. G., Peeters, F. M.,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Maan, J. C. Phys. Rev. B 65, 233312 (2002).<br />

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dub<strong>on</strong>os,<br />

S. V., Grigorieva, I. V., <str<strong>on</strong>g>and</str<strong>on</strong>g> Firsov, A. A. Science 306, 666–669 (2004).<br />

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnels<strong>on</strong>, M. I.,<br />

Grigorieva, I. V., Dub<strong>on</strong>os, S. V., <str<strong>on</strong>g>and</str<strong>on</strong>g> Firsov, A. A. Nature 438, 197–200<br />

(2005).<br />

Ohta, T., Bostwick, A., Seyller, T., Horn, K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Rotenberg, E. Science 313, 951<br />

(2006).<br />

Park, C.-H., Yang, L., S<strong>on</strong>, Y.-W., Cohen, M. L., <str<strong>on</strong>g>and</str<strong>on</strong>g> Louie, S. G. Nat. Phys. 4,<br />

213–217 (2008).<br />

Park, C.-H., Yang, L., S<strong>on</strong>, Y.-W., Cohen, M. L., <str<strong>on</strong>g>and</str<strong>on</strong>g> Louie, S. G. Phys. Rev.<br />

Lett. 101, 126804 (2008).<br />

Park, C.-H., S<strong>on</strong>, Y.-W., Yang, L., Cohen, M. L., <str<strong>on</strong>g>and</str<strong>on</strong>g> Louie, S. G. Nano Lett. 8,<br />

2920–2924 (2009).<br />

Park, C.-H., S<strong>on</strong>, Y.-W., Yang, L., Cohen, M. L., <str<strong>on</strong>g>and</str<strong>on</strong>g> Louie, S. G. Phys. Rev.<br />

Lett. 103, 046808 (2009).<br />

Partoens, B. <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, F. M. Phys. Rev. B 74, 075404 (2006).<br />

Peeters, F. M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Li, X. Q. Appl. Phys. Lett. 72, 572 (1998).<br />

124


BIBLIOGRAPHY<br />

Pereira, J. M., Peeters, F. M., <str<strong>on</strong>g>and</str<strong>on</strong>g> Vasilopoulos, P. Phys. Rev. B 76, 115419 (2007).<br />

Pereira Jr, J. M., Mlinar, V., Peeters, F. M., <str<strong>on</strong>g>and</str<strong>on</strong>g> Vasilopoulos, P. Phys. Rev. B<br />

74, 045424 (2006).<br />

Pereira Jr, J. M., Vasilopoulos, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, F. M. Appl. Phys. Lett. 90, 132122<br />

(2007).<br />

Peres, N. J. Phys.: C<strong>on</strong>dens. Matter 21, 323201 (2009).<br />

Prasai, D., Tuberquia, J. C., Harl, R. R., Jennings, G. K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Bolotin, K. I. ACS<br />

Nano 6, 1102–1108 (2012).<br />

Ramezani Masir, M., Vasilopoulos, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Peeters, F. M. Phys. Rev. B 82, 115417<br />

(2010).<br />

Rammal, R. J. Phys. France 46, 1345–1354 (1985).<br />

San-Jose, P., Prada, E., McCann, E., <str<strong>on</strong>g>and</str<strong>on</strong>g> Schomerus, H. Phys. Rev. Lett. 102,<br />

247204 (2009).<br />

Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnels<strong>on</strong>, M. I.,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Novoselov, K. S. Nat. Mater. 6, 652–655 (2007).<br />

Schwierz, F. Nat. Nano. 5, 487–496 (2010).<br />

Semen<str<strong>on</strong>g>of</str<strong>on</strong>g>f, G. W. Phys. Rev. Lett. 53, 2449–2452 (1984).<br />

Shioyama, H. J. Mater. Sci. Lett. 20, 499–500 (2001).<br />

Shytov, A. V., Rudner, M. S., <str<strong>on</strong>g>and</str<strong>on</strong>g> Levitov, L. S. Phys. Rev. Lett. 101, 156804<br />

(2008).<br />

Silvestrov, P. G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Efetov, K. B. Phys. Rev. Lett. 98, 016802 (2007).<br />

Smith, D. L. <str<strong>on</strong>g>and</str<strong>on</strong>g> Mailhiot, C. Rev. Mod. Phys. 62, 173–234 (1990).<br />

Snyman, I. <str<strong>on</strong>g>and</str<strong>on</strong>g> Beenakker, C. W. J. Phys. Rev. B 75, 045322 (2007).<br />

Sun, J., Fertig, H. A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Brey, L. Phys. Rev. Lett. 105, 156801 (2010).<br />

Sun, Z., Pint, C. L., Marcano, D. C., Zhang, C., Yao, J., Ruan, G., Yan, Z., Zhu,<br />

Y., Hauge, R. H., <str<strong>on</strong>g>and</str<strong>on</strong>g> Tour, J. M. Nat. Commun. 2, 559 (2011).<br />

Wallace, P. R. Phys. Rev. 71, 622–634 (1947).<br />

Wang, H., Nezich, D., K<strong>on</strong>g, J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Palacios, T. Electr<strong>on</strong> Device Lett., IEEE 30,<br />

547–549 (2009).<br />

Wang, L.-G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhu, S.-Y. Phys. Rev. B 81, 205444 (2010).<br />

Weingart, S., Bock, C., Kunze, U., Speck, F., Seyller, T., <str<strong>on</strong>g>and</str<strong>on</strong>g> Ley, L. Appl. Phys.<br />

Lett. 95, 262101 (2009).<br />

125


BIBLIOGRAPHY<br />

Williams, J. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Marcus, C. M. Phys. Rev. Lett. 107, 046602 (2011).<br />

Wu, Y., ming Lin, Y., Bol, A. A., Jenkins, K. A., Xia, F., Farmer, D. B., Zhu, Y.,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Avouris, P. Nature 472, 74–78 (2011).<br />

Xue, J., Sanchez-Yamagishi, J., Bulmash, D., Jacquod, P., Deshp<str<strong>on</strong>g>and</str<strong>on</strong>g>e, A., Watanabe,<br />

K., Taniguchi, T., Jarillo-Herrero, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> LeRoy, B. J. Nat. Mater. 10,<br />

282–285 (2011).<br />

Yankowitz, M., Xue, J., Cormode, D., Sanchez-Yamagishi, J. D., Watanabe, K.,<br />

Taniguchi, T., Jarillo-Herrero, P., Jacquod, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> LeRoy, B. J. Nat. Phys.<br />

advance <strong>on</strong>line publicati<strong>on</strong> (2012).<br />

Young, A. F. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kim, P. Annu. Rev. C<strong>on</strong>dens. Matter Phys. 2, 101–120 (2011).<br />

Zhang, Y., Tan, Y.-W., Stormer, H. L., <str<strong>on</strong>g>and</str<strong>on</strong>g> Kim, P. Nature 438, 201–204 (2005).<br />

126


Pers<strong>on</strong>al Informati<strong>on</strong><br />

Curriculum Vitae<br />

Name:<br />

Barbier, Michaël<br />

Sex:<br />

Male<br />

Born: Kapellen (Belgium), April 4, 1983<br />

Nati<strong>on</strong>ality: Belgian<br />

Civic State: unmarried<br />

C<strong>on</strong>tact<br />

Department Fysica,<br />

Universiteit Antwerpen,<br />

Groenenborgerlaan 171,<br />

B-2020 Antwerpen Belgium<br />

E-mail: michael.barbier@ua.ac.be<br />

Tel: +32-(0)3-265.35.40<br />

Educati<strong>on</strong><br />

2007-2012: PhD in Physics, university <str<strong>on</strong>g>of</str<strong>on</strong>g> Antwerp, Belgium<br />

2005-2007: Master in Physics, university <str<strong>on</strong>g>of</str<strong>on</strong>g> Antwerp, Belgium<br />

2002-2005: Bachelor in Physics, university <str<strong>on</strong>g>of</str<strong>on</strong>g> Antwerp, Belgium<br />

Expertise<br />

Programming/scripting (basic knowledge): Java, Fortran, Pascal, C++, pyth<strong>on</strong><br />

Scientific packages: Maple, Matlab/Octave, Mathematica<br />

Languages: Dutch (native), English (fluent), French (basic), Russian (basic)<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Publicati<strong>on</strong>s<br />

1. M. Barbier, F. M. Peeters, P. Vasilopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> J. M. Pereira Jr, Dirac <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Klein-Gord<strong>on</strong> particles in <strong>on</strong>e-dimensi<strong>on</strong>al periodic potentials, Phys. Rev. B 77,<br />

115446 (2008).<br />

2. M. Barbier, P. Vasilopoulos, F. M. Peeters, <str<strong>on</strong>g>and</str<strong>on</strong>g> J. M. Pereira Jr, Bilayer graphene<br />

with <strong>single</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> multiple electrostatic barriers: B<str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>and</str<strong>on</strong>g> transmissi<strong>on</strong>,<br />

Phys. Rev. B 79, 155402 (2009).<br />

3. M. Barbier, P. Vasilopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. Peeters, Dirac electr<strong>on</strong>s in a kr<strong>on</strong>ig-penney<br />

potential: Dispersi<strong>on</strong> relati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> transmissi<strong>on</strong> periodic in the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

barriers, Phys. Rev. B 80, 205415 (2009).<br />

4. M. Barbier, P. Vasilopoulos, F. M. Peeters, <str<strong>on</strong>g>and</str<strong>on</strong>g> J. M. Pereira Jr, B<str<strong>on</strong>g>and</str<strong>on</strong>g> structure,<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> states, <str<strong>on</strong>g>and</str<strong>on</strong>g> transmissi<strong>on</strong> in graphene bilayer <str<strong>on</strong>g>superlattices</str<strong>on</strong>g>, AIP<br />

C<strong>on</strong>ference Proceedings 1199, pp. 547–548 (2010).<br />

5. M. Barbier, P. Vasilopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. Peeters, Extra dirac points in the energy<br />

spectrum for <str<strong>on</strong>g>superlattices</str<strong>on</strong>g> <strong>on</strong> <strong>single</strong>-layer graphene, Phys. Rev. B 81, 075438<br />

(2010).


6. M. Barbier, P. Vasilopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. Peeters, Kr<strong>on</strong>ig-penney model <strong>on</strong> bilayer<br />

graphene: Spectrum <str<strong>on</strong>g>and</str<strong>on</strong>g> transmissi<strong>on</strong> periodic in the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the barriers,<br />

Phys. Rev. B 82, 235408 (2010).<br />

7. M. Barbier, P. Vasilopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. Peeters, Single-layer <str<strong>on</strong>g>and</str<strong>on</strong>g> bilayer graphene<br />

<str<strong>on</strong>g>superlattices</str<strong>on</strong>g>: collimati<strong>on</strong>, additi<strong>on</strong>al dirac points <str<strong>on</strong>g>and</str<strong>on</strong>g> dirac lines, Phil. Trans. R.<br />

Soc. A 368, 5499 (2010).<br />

8. M. Barbier, G. Papp, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. Peeters, Snake states <str<strong>on</strong>g>and</str<strong>on</strong>g> klein tunneling in a<br />

graphene hall bar with a pn-juncti<strong>on</strong>, Appl. Phys. Lett. 100, 163121 (2012).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!