30.01.2015 Views

High-water Level River Discharge Measurement Method in Japan

High-water Level River Discharge Measurement Method in Japan

High-water Level River Discharge Measurement Method in Japan

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Flood <strong>River</strong> <strong>Discharge</strong><br />

<strong>Measurement</strong> <strong>Method</strong> <strong>in</strong> <strong>Japan</strong><br />

Hydrologic Eng<strong>in</strong>eer<strong>in</strong>g Research Team<br />

Hydraulic Eng<strong>in</strong>eer<strong>in</strong>g Research Group<br />

Public Work Research Institute (PWRI)


Contents<br />

1. Overview of <strong>River</strong> <strong>Discharge</strong><br />

Observation <strong>in</strong> <strong>Japan</strong><br />

2. Standard Flood <strong>Discharge</strong><br />

<strong>Measurement</strong> <strong>Method</strong> <strong>in</strong> <strong>Japan</strong><br />

3. Other Flood <strong>Discharge</strong> <strong>Measurement</strong><br />

<strong>Method</strong> <strong>in</strong> <strong>Japan</strong><br />

1. Non-Contact Surface Current meter<br />

2. Pressure-flood current meter<br />

3. <strong>Measurement</strong> us<strong>in</strong>g ADCP


Feature of <strong>River</strong> <strong>in</strong> <strong>Japan</strong><br />

• Catchment area is small<br />

• <strong>River</strong>s have very steep bed<br />

slope<br />

• Annual precipitation is big<br />

<strong>Japan</strong><br />

Annual precipitation[mm/year]<br />

Other countries<br />

Most of Floods are Flash Floods<br />

<strong>in</strong> <strong>Japan</strong>


<strong>River</strong> <strong>Discharge</strong> Observation<br />

framework <strong>in</strong> <strong>Japan</strong><br />

Oversee<br />

<strong>River</strong> Bureau,MLIT<br />

PWRI<br />

Technical Support<br />

Manual Preparation<br />

Regional Bureaus<br />

Check the data ,has responsibility <strong>in</strong><br />

the data.<br />

Local Work offices<br />

Order observation<br />

Local survey company<br />

Observed data<br />

<strong>River</strong><br />

<strong>Discharge</strong><br />

Observation<br />

Flood<br />

<strong>Discharge</strong><br />

<strong>Measurement</strong><br />

Low-flow<br />

discharge<br />

<strong>Measurement</strong>


Feature of Flood <strong>River</strong> <strong>Discharge</strong><br />

<strong>Measurement</strong> <strong>in</strong> <strong>Japan</strong><br />

Problem<br />

• There are a lot of debris flows.<br />

• Current velocity is high.<br />

Contact current meter is almost impossible<br />

<strong>Measurement</strong> us<strong>in</strong>g Floats has become<br />

standard <strong>in</strong> <strong>Japan</strong>.


Historical back ground of Flood <strong>Discharge</strong><br />

<strong>Measurement</strong> <strong>in</strong> <strong>Japan</strong><br />

M<strong>in</strong>istry of construction staffs observed by themselves often<br />

us<strong>in</strong>g bamboo which grow naturally around observatory at its<br />

early period<br />

Increased observatory(about 1400<br />

place <strong>in</strong> <strong>Japan</strong> for MLIT)<br />

Decreased staffs<br />

Local construction office can’t<br />

observe discharge by itself<br />

S<strong>in</strong>ce an office cannot apply a large<br />

amount of cost, the quality of data<br />

may have fallen off.<br />

ex:<strong>Discharge</strong> and WL observatory<br />

relevant to Tone <strong>River</strong> bas<strong>in</strong> (We<br />

can see a lot of observatory )


<strong>Measurement</strong> us<strong>in</strong>g Floats<br />

• Characteristic<br />

1. Standard method of Flood <strong>River</strong> <strong>Discharge</strong><br />

<strong>Measurement</strong> to make rat<strong>in</strong>g curve<br />

2. Plunge floats from a bridge


Operational Problem of <strong>Measurement</strong><br />

us<strong>in</strong>g Floats.1<br />

• It is difficult to observe the WL rais<strong>in</strong>g time or peak time.<br />

• Decreas<strong>in</strong>g expert observers (It became impossible to contract with<br />

one contractor who have know-how for long time,because bid system<br />

was changed)<br />

The example by<br />

which the data of a<br />

rise term is not<br />

observed


Technical Problem of <strong>Measurement</strong><br />

us<strong>in</strong>g Floats.1<br />

• Now averaged (max.&m<strong>in</strong>.) conversion factor<br />

for each type of float is as follows:<br />

1) Surface float: 0.85 ( valid for h 0.7m )<br />

2) 0.5 m float: 0.88 ( valid for h = 0.7 1.3m )<br />

3) 1 m float: 0.91 ( valid for h = 1.3 2.6m )<br />

4) 2 m float: 0.94 ( valid for h = 2.6 5.2m )<br />

5) 4 m float: 0.94 ( valid for h 5.2m )<br />

This standard was decided about 40 years ago, Then, research was<br />

progressed and the problems mentioned later was po<strong>in</strong>ted out. So,we<br />

should re-check these factors.<br />

We are go<strong>in</strong>g to check these factors<br />

from this year to next year


Technical Problem of <strong>Measurement</strong> us<strong>in</strong>g<br />

Floats.2(Hypothesis on Disturbed flow <strong>in</strong> the downstream of bridge piers)<br />

Actual discharge value:Q<br />

Q<br />

<br />

<br />

Non-back flow field<br />

Back flow field<br />

<strong>Discharge</strong> observed value based on the current standard Q’<br />

Q 1 =A 1 <br />

Q 2 =A 2 V 2<br />

Non-back flow field<br />

Q 1 <strong>Discharge</strong> of non-back flow field ,A 1 river area of non-back flow field,<br />

V 1 average velocity of non-back flow field,<br />

Q 2 <strong>Discharge</strong> of back flow field,A 2 river area of back flow field,<br />

V 2 average velocity of back flow field<br />

V 1<br />

Q=Q 1 +Q 2<br />

=A 1 V 1 +A 2 V 2<br />

Q 1 =A 1 V 1<br />

Q<br />

<br />

<br />

Non-back flow field<br />

Q 1<br />

=A 1<br />

(V 1<br />

+V <br />

)<br />

Back flow field Q 2<br />

=A 2<br />

(V 1<br />

+V <br />

)<br />

Q’= Q 1<br />

+Q 2<br />

=(V 1<br />

+V <br />

)(A 1<br />

+A 2<br />

)<br />

Non-back flow field Q 1<br />

=A 1<br />

(V 1<br />

+V <br />

)<br />

Q 1 <strong>Discharge</strong> of non-back flow field,A 1 river area of non-back flow field,V 1 average velocity of non-back flow field,<br />

V acceleration by aboideau ris<strong>in</strong>g effect,Q 2 <strong>Discharge</strong> of back flow field,A 2 river area of back flow field<br />

comparison of <strong>Discharge</strong> observed value of current standard and Actual discharge observed value<br />

Q’=Q+(V 1 -V )A 2 +V (A 1 +A 2 )<br />

<strong>Discharge</strong> observed value based on the current<br />

standard has overestimates the river discharge<br />

The part become exorbitance<br />

caused bythe underl<strong>in</strong>e part<br />

Tone <strong>River</strong> downstream construction office<br />

Tone <strong>River</strong> downstream part river bed and discharge observation research report <strong>in</strong> 1999


Hypothesis on Disturbed flow <strong>in</strong> the downstream of<br />

bridge pies<br />

<br />

<br />

vertically averaged current velocity [m/s]<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

It is shown that current velocity become low around the<br />

bridge piers.<br />

<br />

transverse direction distance [m]<br />

Vertically averaged current velocity observation data by<br />

ADCP (10/3/2003 at Isikariohasi observatory)


Technical Problem of <strong>Measurement</strong> us<strong>in</strong>g<br />

Floats.3<br />

(Hypothesis on parallel spiral flow)<br />

<br />

‘Parallel spiral flow’<br />

is created <strong>in</strong> the<br />

downstream of bridge<br />

basements. Floats are<br />

apt to be concentrated<br />

<strong>in</strong> the l<strong>in</strong>es. Velocity<br />

is about +10% more<br />

than the average.”<br />

Accord<strong>in</strong>g to Dr. Ryosaku<br />

KINOSHITA (1998) A<br />

discussion on the flood<br />

discharge measurement <strong>in</strong> the<br />

downstream of river, Journal of<br />

<strong>Japan</strong> Society of Hydrology &<br />

Water Resources, vol.11, No.5,<br />

pp.460-471 471 (<strong>in</strong> <strong>Japan</strong>ese).


The observation by ADCP (19/12/2000,Mashimo discharge observatory)<br />

Hypothesis of parallel spiral flow<br />

The figure which changed the depth to<br />

width <strong>in</strong>to 1 to 1<br />

:uv component Contour diagram<br />

:w component Contour diagram<br />

Upstream<br />

Downstream<br />

From upstream and downstream the periodic structure<br />

appeared regularly.<br />

we can guess the existence of a parallel spiral flow.


Technical Problem of <strong>Measurement</strong><br />

us<strong>in</strong>g Floats.4(other problem)<br />

When vegetation flourish on flood channel, floats don’t<br />

run properly<br />

• It is difficult to use floats <strong>in</strong> the middle<br />

<strong>water</strong> level or on the river terrace.<br />

Not flow floats<br />

these area


Other flood <strong>River</strong> <strong>Discharge</strong> <strong>Measurement</strong><br />

<strong>Method</strong>s<br />

In order to supplement the drawback of float observation,<br />

we need to develop and put other techniques <strong>in</strong> operational.<br />

Development of other flood <strong>River</strong> <strong>Discharge</strong><br />

<strong>Measurement</strong> <strong>Method</strong>s <strong>in</strong> <strong>Japan</strong><br />

. Non-Contact Surface Velocity <strong>Measurement</strong><br />

(supplement method for <strong>Measurement</strong> us<strong>in</strong>g floats)<br />

. Pressure-type Flood Current Meter<br />

( for <strong>in</strong>vestigation use only)<br />

. ADCP<br />

(under <strong>in</strong>vestigation for high <strong>water</strong>)


Non-Contact Surface Velocity<br />

<strong>Measurement</strong><br />

Characteristic<br />

1. Measure river surface velocity (estimate cross-sectional<br />

total discharge by summ<strong>in</strong>g up each of the cross-sectional areas.<br />

Vertically averaged velocity is calculated us<strong>in</strong>g a conversion factor )<br />

2. 4 types of Non-Contact Surface current meter<br />

were developed(The PWRI and other six private<br />

companies developed them for four years. The current<br />

meters are attached on bridge or bank of river,<br />

and we can observe automatically even from a<br />

remote office.


Assortment of Non-Contact Surface<br />

Current Meter1<br />

• Doppler type<br />

1. Radio wave-type current meter<br />

2. Ultrasonic-type current meter


Assortment of Non-Contact Surface<br />

Current Meter2<br />

• Image process<strong>in</strong>g type<br />

1. PIV current meter<br />

2. Optical Flow current meter


Problem of Non-Contact Surface<br />

Velocity <strong>Measurement</strong><br />

1. Conversion factor is subject to change<br />

We decided conversion factor from observed<br />

data at Uono-<strong>River</strong> and Tone-<strong>River</strong>,<br />

We must get more data and verify the factor<br />

us<strong>in</strong>g the data.<br />

<br />

<strong>Discharge</strong> by Non-Contact<br />

Surface Current Meter [m3/s]<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>Discharge</strong> by float observation[m3/s]<br />

The <strong>Discharge</strong> by Non-contact<br />

Surface Current Meter us<strong>in</strong>g the<br />

conversion factor made from<br />

Uono-<strong>River</strong> and Tone-<strong>River</strong> data<br />

are settled <strong>in</strong> less than about 5%<br />

of float observation discharge.


Problem of Non-Contact Surface<br />

Velocity <strong>Measurement</strong><br />

1. Correction of W<strong>in</strong>d Effect.<br />

We made the algorithm to elim<strong>in</strong>ate w<strong>in</strong>d current and<br />

tested the effect <strong>in</strong> an <strong>in</strong>door experiment, but we haven’t<br />

developed method to elim<strong>in</strong>ate the effect of w<strong>in</strong>dswell.<br />

The relative error of discharge measured<br />

value[%]<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Radio<br />

wave<br />

<br />

<br />

<br />

<br />

<br />

<br />

Ultra<br />

Sonic<br />

<br />

PIV<br />

<br />

Optical<br />

flow<br />

With no <strong>in</strong>fluence<br />

compensation of a<br />

w<strong>in</strong>d<br />

With <strong>in</strong>fluence<br />

<br />

compensation of a<br />

w<strong>in</strong>d


Problem of Non-Contact Surface<br />

Velocity <strong>Measurement</strong> 3<br />

1. Cost is expensive


Out look of Non-Contact Surface Current<br />

Meter<br />

We will get data from new 6 sites <strong>in</strong> this year


Pressure-type Flood Current Meter<br />

• Characteristics<br />

1. Used for turbulence 2D constitution research<br />

ma<strong>in</strong>ly<br />

2. hanged from a bridge<br />

3. Measure vertical <strong>water</strong> velocity profile


Problem of Pressure-type Flood<br />

Current Meter<br />

1. Cost is expensive<br />

(about ¥100,000,000$850,000)<br />

2. Possibility of miss by flow<strong>in</strong>g objects<br />

or when current velocity is fast (more<br />

4m/s)


<strong>Measurement</strong> us<strong>in</strong>g ADCP(by radiocontrolled<br />

boat)<br />

• Characteristics<br />

1. Used for turbulence 3D structure of turbulence <strong>in</strong><br />

river flow<br />

2. Measure vertical <strong>water</strong> velocity profile precisely<br />

3. We can use it if current velocity is not so fast (less<br />

than 34m/s)


Problem of <strong>Measurement</strong> us<strong>in</strong>g<br />

ADCP(by radio-controlled boat)<br />

1. Steer<strong>in</strong>g of radio-controlled boat is difficult.<br />

(Substantially only one company has the operation<br />

technology.)<br />

2. It is difficult to use if current velocity is high


Conclusion<br />

• Float observation is standard <strong>in</strong> <strong>Japan</strong><br />

• In order to supplement the drawback of float<br />

observationNon-Contact Surface Velocity<br />

<strong>Measurement</strong>, Pressure-type Flood Current<br />

Meter, <strong>Measurement</strong> us<strong>in</strong>g ADCP are now<br />

be<strong>in</strong>g developed.


Our <strong>in</strong>terest<br />

• How to rat<strong>in</strong>g curve management<br />

• The other possibility of us<strong>in</strong>g Non-Contact<br />

Surface Velocity <strong>Measurement</strong><br />

• The other possibility of us<strong>in</strong>g ADCP

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!