30.01.2015 Views

Effectiveness of CPPI Strategies under Discrete ... - MathFinance

Effectiveness of CPPI Strategies under Discrete ... - MathFinance

Effectiveness of CPPI Strategies under Discrete ... - MathFinance

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> <strong>Strategies</strong><br />

<strong>under</strong> <strong>Discrete</strong>–Time Trading<br />

S. Balder, M. Brandl 1 , Antje Mahayni 2<br />

1 Department <strong>of</strong> Banking and Finance, University <strong>of</strong> Bonn<br />

2 Department <strong>of</strong> Accounting and Finance, Mercator School <strong>of</strong> Management,<br />

University <strong>of</strong> Duisburg–Essen<br />

Frankfurt <strong>MathFinance</strong> Conference<br />

January 2008, Frankfurt<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 1/29


Motivation I<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

Portfolio insurance strategies:<br />

guarantee a minimum level <strong>of</strong> wealth at a specified time<br />

horizon<br />

and participate in the potential gains <strong>of</strong> a reference portfolio<br />

Most prominent examples <strong>of</strong> dynamic versions<br />

constant proportion portfolio insurance (<strong>CPPI</strong>)<br />

option–based portfolio insurance (OBPI) (with synthetic puts)<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 2/29


Motivation II<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

Optimality <strong>of</strong> an investment strategy depends on<br />

risk pr<strong>of</strong>ile <strong>of</strong> the investor<br />

⇒ solve for the strategy which maximizes the expected utility<br />

Portfolio insurers can be modelled by<br />

utility maximizers with<br />

additional constraint that the value <strong>of</strong> the strategy is above a<br />

specified wealth level<br />

⇒ Mostly, solution is given by the unconstrained problem<br />

including a put option (in spirit <strong>of</strong> OPBI method)<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 3/29


Motivation III<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

Introduction <strong>of</strong> various sources <strong>of</strong> market incompleteness<br />

stochastic volatility<br />

trading restrictions<br />

⇒ Determination <strong>of</strong> an optimal investment rule <strong>under</strong> minimum<br />

wealth constraints quite difficult if not impossible<br />

Another problem is model risk<br />

inconsistency between true and assumed model<br />

⇒ strategies based on optimality criterion w.r.t. one particular<br />

model, fail to be optimal if true asset price dynamic deviate<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 4/29


Motivation IV<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

Alternative to maximization approach<br />

analysis <strong>of</strong> robustness properties <strong>of</strong> a stylized strategy<br />

⇒ we consider the <strong>CPPI</strong> rule as given<br />

<strong>CPPI</strong> is very popular among practitioners because <strong>of</strong> its<br />

simplicity and<br />

possibility to customize it to the preferences <strong>of</strong> an investor<br />

<strong>CPPI</strong> provides a value above a floor level unless price<br />

dynamic <strong>of</strong> the risky asset permits jumps (gap risk)<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 5/29


Motivation V<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

Liquidity constraints and price jumps can be modeled in a<br />

setup where<br />

the price dynamic <strong>of</strong> the risky asset is described by a<br />

continuous–time stochastic process<br />

but trading is restricted to discrete time<br />

⇒ Benchmark case with the advantage that<br />

risk measures can be given in closed form<br />

(gap risk is easily priced)<br />

we can discuss criteria which ensure that the gap risk does not<br />

increase to a level which contradicts the original intention <strong>of</strong><br />

portfolio insurance<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 6/29


Outline<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

Introduction<br />

Model setup<br />

Structure and properties <strong>of</strong> continuous–time <strong>CPPI</strong> (Review)<br />

<strong>Discrete</strong>–time version <strong>of</strong> <strong>CPPI</strong><br />

Conditions which define the discrete–time version<br />

Risk measures <strong>of</strong> discrete–time <strong>CPPI</strong><br />

Introduction <strong>of</strong> transaction costs and their effects<br />

Illustration <strong>of</strong> results<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 7/29


Model Setup<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

Two investment possibilities<br />

a risky asset S<br />

and a riskless bond B which grows with constant interest rate r<br />

Assumption<br />

dB t = B t r dt, B 0 = b<br />

d S t = S t (µ dt + σ dW t ) , S 0 = s<br />

W = (W t ) 0≤t≤T denotes a standard Brownian motion with<br />

respect to the real world measure P. µ and σ are constants<br />

(µ > r ≥ 0 and σ > 0)<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 8/29


<strong>CPPI</strong> principle I<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

Continuous–time investment strategy or saving plan for the<br />

interval [0, T ]<br />

α t : fraction <strong>of</strong> the portfolio value at time t which is<br />

invested in the risky asset S<br />

V = (V t ) 0≤t≤T<br />

: portfolio value process which is<br />

associated with the strategy α, i.e.<br />

dV t (α) = V t<br />

(<br />

α t<br />

dS t<br />

S t<br />

+ (1 − α t ) dB t<br />

B t<br />

)<br />

, where V 0 = x.<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 9/29


<strong>CPPI</strong> principle II<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

<strong>CPPI</strong> principle<br />

α t := mC t<br />

V t<br />

where<br />

C t = V t − F<br />

}{{} t denotes the cushion<br />

Floor<br />

F t = exp{−r(T − t) }{{}<br />

G } denotes the floor<br />

guarantee<br />

m denotes the multiplier<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 10/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

Properties <strong>of</strong> continuous–time <strong>CPPI</strong> I<br />

Lognormal asset price dynamic implies<br />

Cushion process (C t ) 0≤t≤T<br />

<strong>of</strong> a simple <strong>CPPI</strong> is lognormal,<br />

i.e.<br />

dC t = C t ((r + m(µ − r)) dt + σm dW t )<br />

t–value <strong>of</strong> a simple <strong>CPPI</strong> with parameter m and G is<br />

V t =<br />

+ V 0−Ge −rT<br />

S m 0<br />

{(<br />

exp<br />

Ge−r(T −t)<br />

r − m ( r − 1 2 σ2) − m 2 σ2<br />

2<br />

) }<br />

t St<br />

m<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 11/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

Properties <strong>of</strong> continuous–time <strong>CPPI</strong> II<br />

t–value <strong>of</strong> the strategy consists <strong>of</strong><br />

the present value <strong>of</strong> the guarantee G, i.e. the floor at t<br />

( ) m<br />

and a non–negative part which is proportional to<br />

St<br />

S 0<br />

⇒ Value process <strong>of</strong> a simple <strong>CPPI</strong> strategy is path independent<br />

The pay<strong>of</strong>f above the guarantee is<br />

linear for m = 1<br />

convex for m ≥ 2<br />

Portfolio protection is efficient with probability one , i.e. the<br />

terminal value <strong>of</strong> the strategy is higher than the guarantee<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 12/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

Properties <strong>of</strong> continuous–time <strong>CPPI</strong> III<br />

Expected value and the variance <strong>of</strong> a simple <strong>CPPI</strong> are<br />

E [V t ] = F t + (V 0 − F 0 ) exp {(r + m(µ − r)) t}<br />

Var [V t ] = (V 0 − F 0 ) 2 exp {2 (r + m(µ − r)) t}<br />

( { } )<br />

exp m 2 σ 2 t − 1<br />

Expected value independent <strong>of</strong> the volatility σ<br />

Standard deviation increases exponentially<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 13/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Illustration: Standard deviation<br />

Motivation<br />

Outline<br />

Model Setup<br />

<strong>CPPI</strong> priciple<br />

standarddeviation<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 0.05 0.1 0.15 0.2 0.25 0.3<br />

volatility<br />

Standard deviation <strong>of</strong> the final value <strong>of</strong> a simple <strong>CPPI</strong> with V 0 = 1000,<br />

G = 800, T = 1 and varying σ for µ = 0.1, r = 0.05 and<br />

m = 2 (m = 4, m = 8 respectively)<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 14/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Conditions<br />

Definition<br />

Cushion process<br />

Conditions posed on discrete–time <strong>CPPI</strong> version<br />

<strong>Discrete</strong>–time version <strong>of</strong> the simple <strong>CPPI</strong> strategy satisfying<br />

the following three conditions<br />

Value process converges in distribution to the value process <strong>of</strong><br />

the continuous–time simple <strong>CPPI</strong> strategy<br />

Implications<br />

Self–financing<br />

Non–negative asset exposure<br />

First condition implies that the cushion process <strong>of</strong> the<br />

discrete–time version converges to a lognormal process in<br />

distribution<br />

The cushion process with respect to a discrete–time set <strong>of</strong><br />

trading dates may also be negative<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 15/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Conditions<br />

Definition<br />

Cushion process<br />

Definition <strong>of</strong> discrete–time <strong>CPPI</strong> version<br />

Notation<br />

τ n denote a sequence <strong>of</strong> equidistant refinements <strong>of</strong> the interval<br />

[0, T ], i.e.<br />

τ n = { t n 0 = 0 < t n 1 < · · · < t n n−1 < t n n = T }<br />

A strategy φ τ = (η τ , β τ ) is called simple discrete–time <strong>CPPI</strong><br />

if for t ∈]t k , t k+1 ] and k = 0, . . . , n − 1<br />

{ m C<br />

ηt τ τ }<br />

tk<br />

:= max , 0 , number <strong>of</strong> assets<br />

S tk<br />

β τ t := 1<br />

B tk<br />

(<br />

V<br />

τ<br />

tk<br />

− η τ t S tk<br />

)<br />

number <strong>of</strong> bonds<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 16/29


Cushion process<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Conditions<br />

Definition<br />

Cushion process<br />

Let t s := min { t k ∈ τ|V τ<br />

t k<br />

− F tk ≤ 0 }<br />

where t s = ∞ if the minimum is not attained<br />

Then<br />

V τ<br />

t k+1<br />

− F tk+1 = e r(t k+1−min{t s,t k+1 }) ( V τ<br />

t 0<br />

− F t0<br />

)<br />

min{s,k+1}<br />

∏<br />

i=1<br />

(<br />

m S t i<br />

S ti−1<br />

− (m − 1)e r T n<br />

)<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 17/29


Events<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Conditions<br />

Definition<br />

Cushion process<br />

Let<br />

{<br />

Stk<br />

A k := > m − 1<br />

S tk−1 m<br />

er T n<br />

}<br />

for k = 1, . . . , n, then it holds<br />

{t s > t i } =<br />

i⋂<br />

j=1<br />

A j<br />

⎛ ⎞<br />

i−1<br />

⋂<br />

and {t s = t i } = A C i ∩ ⎝ A j<br />

⎠<br />

j=1<br />

for i = 1, . . . , n<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 18/29


Risk Measures<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Definition<br />

Transaction costs<br />

Shortfall probability P SF<br />

P SF := P (V τ T ≤ G) = P (V τ T ≤ F T )<br />

Local shortfall probability P LSF<br />

P LSF := P ( V τ<br />

t 1<br />

≤ F t1 |V τ<br />

t 0<br />

> F t0<br />

)<br />

Expected shortfall given default ESF<br />

ESF := E [G − V τ T |V τ T ≤ G]<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 19/29


Shortfall probability<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Definition<br />

Transaction costs<br />

P LSF = N (−d 2 )<br />

where d 2 := ln m<br />

m−1 + (µ − r)T n − 1 2σ2 T √<br />

n<br />

σ<br />

T<br />

n<br />

P SF = 1 −<br />

(1 − P LSF) n<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 20/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Illustration: Shortfall probability<br />

(T = 1, µ = 0.085 and r = 0.05)<br />

Definition<br />

Transaction costs<br />

shortfall probability<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

m⩵12<br />

m⩵15<br />

m⩵18<br />

0<br />

0 10 20 30 40 50<br />

number <strong>of</strong> rehedges<br />

shortfall probability<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

m⩵12<br />

m⩵15<br />

m⩵18<br />

0.4<br />

0 10 20 30 40 50<br />

number <strong>of</strong> rehedges<br />

σ = 0.1 σ = 0.3<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 21/29


Expected shortfall<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Definition<br />

Transaction costs<br />

Expected final value<br />

E [V τ T ] = G + (V 0 − F 0 )<br />

[<br />

E n 1 + e −r T n E2<br />

e rT − E n 1<br />

1 − E 1 e −r T n<br />

where E 1 := me µ T n N (d1 ) − e r T n (m − 1)N (d2 )<br />

[<br />

)]<br />

E 2 := e r T n 1 + m<br />

(e (µ−r) T n − 1 − E 1 .<br />

Expected shortfall<br />

]<br />

ESF =<br />

(V 0 − F 0 )e −r T n E 2<br />

e rT −E n 1<br />

1−E 1 e −r T n<br />

P SF<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 22/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Sensitivity <strong>of</strong> risk measures<br />

Definition<br />

Transaction costs<br />

Risk measures Strategy parameter Model parameter<br />

G m µ σ<br />

Mean ↓ ↑ ↑ ↑<br />

Stdv. ↓ ↑ ↑ ↑<br />

P SF – ↑ ↓ ↑<br />

ESF ↓ ↑ ↑ ↑<br />

Sensitivity analysis <strong>of</strong> risk measures symbol<br />

↑ for monotonically increasing and<br />

↓ for monotonically decreasing<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 23/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Proportional transaction costs I<br />

Definition<br />

Transaction costs<br />

Introduction <strong>of</strong> proportional transaction costs<br />

Proportionality factor is denoted by θ<br />

Intuition :<br />

Protection feature <strong>of</strong> the <strong>CPPI</strong> is based on a prespecified<br />

riskfree investment<br />

⇒ Introduction <strong>of</strong> transaction costs must not change the number<br />

<strong>of</strong> risk free bonds which are prescribed by the <strong>CPPI</strong> method<br />

⇒ Transaction costs are financed by a<br />

reduction <strong>of</strong> the asset exposure<br />

⇒ Adjusting the cushion to the transaction costs gives<br />

∣ C tk+1 + = C tk+1 − θ<br />

∣ mC S tk+1 ∣∣∣<br />

t k+1 + − mC tk +<br />

S tk<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 24/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Proportional transaction costs II<br />

Definition<br />

Transaction costs<br />

(i) P LSF,TA = N<br />

( )<br />

−d2 TA (θ)<br />

ln<br />

(1−θ)m<br />

m−1<br />

d2 TA<br />

+ (µ − r) T n<br />

(θ) := − 1 2 σ2 T n<br />

√<br />

T<br />

σ<br />

n<br />

(ii) P SF,TA = 1 −<br />

(1 − P LSF) n<br />

(iii) ESF TA =<br />

V 0 −F 0<br />

1+θm e−r T n E2<br />

TA<br />

e rT −(E TA<br />

1 ) n<br />

1−E TA<br />

1 e−r T n<br />

P SF,TA<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 25/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Moments and risk measures<br />

Moments and risk measures<br />

Risk pr<strong>of</strong>ile<br />

Distribution<br />

Parameter constellation:<br />

µ = 0.085, σ = 0.1 (0.2 or 0.3, respectively), r = 0.05, T = 1 and<br />

V 0 = G = 1000<br />

n m Mean Stdv. Dev. SFP ESF<br />

12 10 1072.43 (1073.22) 88.56 (368.16) 0.0011 (0.3265) 3.72 (14.87)<br />

36 10 1072.65 (1072.67) 92.95 (463.935) 0.0000 (0.0268) 1.37 (5.00)<br />

60 10 1072.69 (1072.69) 93.90 (489.08) 0.0000 (0.0013) 0.00 (3.13)<br />

∞ 10 1072.76 (1072.76) 95.37 (532.66) 0.0000 (0.0000) 0.00 (0.00)<br />

Moments and risk measures for σ = 0.1 (σ = 0.2 respectively)<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 26/29


Risk pr<strong>of</strong>ile<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Moments and risk measures<br />

Risk pr<strong>of</strong>ile<br />

Distribution<br />

θ = 0.00 θ = 0.01<br />

n m ESF m ESF<br />

12 11.843 (6.065) 5.313 (4.478) 10.684 (5.772) 4.116 (3.925)<br />

36 18.146 (9.234) 5.149 (4.190) 15.490 (8.531) 2.500 (2.824)<br />

60 22.336 (11.335) 5.243 (4.121) 18.409 (10.274) 1.603 (2.088)<br />

m for an implied shortfall probability <strong>of</strong> 0.01 and σ = 0.1<br />

(σ = 0.2)<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 27/29


Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Distribution <strong>of</strong> final <strong>CPPI</strong> value<br />

Moments and risk measures<br />

Risk pr<strong>of</strong>ile<br />

Distribution<br />

0.01<br />

Σ⩵0.1<br />

0.01<br />

Σ⩵0.2<br />

0.008<br />

Θ⩵0.00<br />

0.008<br />

Θ⩵0.00<br />

density<br />

0.006<br />

0.004<br />

Θ⩵0.01<br />

density<br />

0.006<br />

0.004<br />

Θ⩵0.01<br />

0.002<br />

0.002<br />

1000 1100 1200 1300 1400<br />

final value<br />

500 750 1000 1250 1500 1750<br />

final value<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 28/29


Conclusion<br />

Motivation and Outline<br />

<strong>Discrete</strong>–time <strong>CPPI</strong><br />

Risk Measures<br />

Illustration<br />

Moments and risk measures<br />

Risk pr<strong>of</strong>ile<br />

Distribution<br />

<strong>CPPI</strong> strategies are common in hedge funds and retail<br />

products (→ meaningful risk management and pricing must<br />

take into account the gap risk)<br />

Introduction <strong>of</strong> trading restrictions is one possibility to model<br />

a gap risk in the sense that a <strong>CPPI</strong> strategy can not be<br />

adjusted adequately<br />

The analysis <strong>of</strong> the risk measures <strong>of</strong> a discrete–time <strong>CPPI</strong><br />

strategy poses various problems which are to be considered<br />

Basically, it is necessary to check the associated risk measures<br />

and to determine whether the strategy is still effective in<br />

terms <strong>of</strong> portfolio protection<br />

S. Balder, M. Brandl and A. Mahayni <strong>Effectiveness</strong> <strong>of</strong> <strong>CPPI</strong> 29/29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!