10.07.2015 Views

intermittent behavior of financial time series - MathFinance

intermittent behavior of financial time series - MathFinance

intermittent behavior of financial time series - MathFinance

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Statistical Mechanics <strong>of</strong> Financial Time Series andApplications in Risk ManagementPresentation at the Math Finance WorkshopHochschule für Bankwirtschaft, Frankfurt, April 2004Dr. Peter NeuDresdner Bank AGGroup Risk ControlFrankfurtPr<strong>of</strong>. Dr. Reimer KühnKing’s CollegeMathematics DepartmentLondonDisclaimer: This presentation expresses the views <strong>of</strong> the authors and does not necessarily reflect policies or risk models <strong>of</strong> Dresdner Bank AG


AGENDAGeometric Brownian motion and <strong>intermittent</strong> <strong>behavior</strong> <strong>of</strong> <strong>financial</strong> <strong>time</strong><strong>series</strong>: universality, scaling, volatility correlations, non-stationarityMinimal interacting generalization <strong>of</strong> the geometric Brownian motionApplications to Risk Measurement: Market, Credit & Operational RiskPage 22 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


AGENDAGeometric Brownian motion and <strong>intermittent</strong> <strong>behavior</strong> <strong>of</strong> <strong>financial</strong> <strong>time</strong><strong>series</strong>: universality, scaling, volatility correlations, non-stationarityMinimal interacting generalization <strong>of</strong> the geometric Brownian motionApplications to Risk Measurement: Market, Credit & Operational RiskPage 33 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


DO THE MODELS FOR FINANCIAL TIME SERIES WORK WELLIN PRACTICE?“Any virtue can become a vice if taken to extreme,and the models are only approximations to the complex real world.”Robert Merton, 1995“Suddenly, all the multi-factor interest rate models weremeaningless as a basis for trading decisions…Those quants hailing from physics background found the eventsreminiscent <strong>of</strong> a “phase change”, such as when liquid turns into gas.”Nicholas Dunbar, Risk Magazine 1998reporting about the Russia crisisand the LTCM bailoutPage 44 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


APPLICATION IN MARKET RISK MANAGEMENTValue-at-RiskValue-at-Risk defined w.r.t. a <strong>time</strong> horizon Dt and confidence interval q:d PV = PV(x) - PV(0)d PVValue-at-Risk defined as( δ PV ( ∆t)> VaR∆) = 1−qPrq,tVaR L0VaR xrisk factorsInterplay betweenq distribution <strong>of</strong> risk factorsq (non-linear) pricing function0xS(t + ∆t)= lnS(t)Page 66 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


IS THE GBM-MODEL CORRECT?Return Distribution Is Not GaussianCentral result <strong>of</strong> GBM-model contradicts empirical observationslogSi(t + τS ( t)i)∝⎡⎛φ ⎢⎜⎣⎝µi−σi22⎞⎟ ⋅ τ ,⎠σi⋅τ⎤⎥⎦Φ: standard normal pdf-1-2-3End-<strong>of</strong>-day DAX log-returnsbetween 14.2.1989 and13.2.2004St. NormalDAXExtreme stock price-4changes are moreln P-5frequent than-6-7predicted by the GBM-8-9-10Data Source: Dresdner Bank AG-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6Page 7Standardized log-returns7 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


HOW CAN WE DO BETTER?Physicists in academia became interested in finance because <strong>of</strong>similarities to the physics <strong>of</strong> complex systems and phase transitionsQuestion raised are:q Are <strong>financial</strong> <strong>time</strong> <strong>series</strong> stationary?q Is there universality <strong>of</strong> <strong>financial</strong> <strong>time</strong> <strong>series</strong>, i.e., do prices <strong>of</strong> different assetshave the same statistical properties?q Is there a single market mechanics driving stock prices at all <strong>time</strong> scales?q Is there a stable distribution replacing the Gaussian distribution, e.g., Lévydistribution?q What is the underlying market dynamics replacing the GBM?Page 88 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


INTERMITTENT BEHAVIOR OF FINANCIAL TIME SERIESVolatility Bursts and Leverage Effect: Financial Time Series Are Not Stationary4%S&P 5002%0%-2%End-<strong>of</strong>-day log-retuns: Ln S(t+ 1 day) – lnS(t)-4%4%2%0%-2%-4%4%2%0%-2%-4%DowDAX-6%14.02.8914.08.8914.02.90Data Source: Dresdner Bank AG14.08.9014.02.9114.08.9114.02.9214.08.9214.02.9314.08.9314.02.9414.08.9414.02.9514.08.95Page 914.02.9614.08.9614.02.9714.08.9714.02.9814.08.9814.02.9914.08.9914.02.0014.08.0014.02.0114.08.0114.02.0214.08.0214.02.0314.08.039 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


INTERMITTENT BEHAVIOR OF FINANCIAL TIME SERIESUniversalityReturns <strong>of</strong> different stock indices have the same statistical properties420End-<strong>of</strong>-day log-returns between14.2.1989 and 13.2.2004Exponentialλ = 1.5S&PDOWDAXNIKKEIln P(Z)-2-4-6-8Data Source: Dresdner Bank AG-10-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6Normalized log-returns ZPage 1010 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


INTERMITTENT BEHAVIOR OF FINANCIAL TIME SERIESStable Lévy Distribution and Scaling at Intermediate FluctuationsMandelbrot: At intermediatefluctuations a stable (m < 2) Lévydistributions is appropriateSource: Mantegna & Stanley, Nature 376, 46 (1995)S&P 500: τ = 1 min, µ = 1.4P(Zτ)∝ Z−( 1+µ )τ,µ≈32Apparent scaling suggestsS&P 500: τ = 1 min - 16 hq same market mechanism operatingat all <strong>time</strong> scales τq single universal distribution functionPage 1111 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


INTERMITTENT BEHAVIOR OF FINANCIAL TIME SERIESSummary“Stylized” facts in <strong>financial</strong> <strong>time</strong> <strong>series</strong>:q Trading activities are very non-stationary: quiescent periods change with hectictrading activities resulting in volatility burst <strong>of</strong> <strong>financial</strong> <strong>time</strong> <strong>series</strong>q All empirical data have fat-tailed (leptokurtic) probability distributionq Underlying distribution <strong>of</strong> “all” stocks seems to follow an “universal” non-stablepower law in the large fluctuation regime (inverse cubic law: P(Z > x) ~ x – 3 )q Although distribution is non-stable, convergence to Gaussian is extremely slowq Amplitudes <strong>of</strong> stock returns decay algebraically (υ ~ 0.3-0.6) showing that thereis no characteristic <strong>time</strong> scale and correlations extend infinitely far in <strong>time</strong>What is the underlying market dynamics replacing the GBM?The answer <strong>of</strong> this question is not truly established at presentPage 1414 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


AGENDAGeometric Brownian motion and <strong>intermittent</strong> <strong>behavior</strong> <strong>of</strong> <strong>financial</strong> <strong>time</strong><strong>series</strong>: universality, scaling, volatility correlations, non-stationarityMinimal interacting generalization <strong>of</strong> the geometric Brownian motionApplications to Risk Measurement: Market, Credit & Operational RiskPage 1515 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


MINIMAL INTERACTING GENERALIZATION OF THE GBMMotivation <strong>of</strong> the ModelApparent contradiction to Central Limit Theorem: return distribution isnon-stable, nonethelessq PDF <strong>of</strong> stock indices have the same power-law <strong>behavior</strong> as have individualstocksq Power law converges very slowly (τ > 4 days) to GaussianConclusions:q Temporal and inter-asset correlation must be importantq Hypothesis that traders act as independent agent is wrongModel setting – include:q Functional dependencies between stock returnsq Incoming information, communication between traders and herdingPage 1616 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


MINIMAL INTERACTING GENERALIZATION OF THE GBMDynamicsGeometric Brownian Motiondhidt= Ii+σ ⋅η (t)iihi= logSiSi0I iσ i= µi−22Minimal interacting generalization <strong>of</strong> the Geometric Brownian Motiondhidt= Ii−κi⋅hi+ ∑Jj(j≠i)ij⋅g(hj)+σi⋅η( t)iMean revertingterm ensures longtermstability <strong>of</strong>marketsSource: Kühn, Kutsia & Neu, work in progresssee also: G. Iori, Int. J. Mod. Phys. C10, 1149 (1999)Functional non-linearinteraction termbetween stock pricesPage 17GBM valid on<strong>time</strong> scalesshort comparedto t ~ 1/κ, 1/J17 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


MINIMAL INTERACTING GENERALIZATION OF THE GBMModel Settingsdhidt= Ii−κi⋅hi+ ∑Jj(j≠i)ij⋅g(hj)+σi⋅η( t)iMean reverting term: k


MINIMAL INTERACTING GENERALIZATION OF THE GBMSimulation <strong>of</strong> Incoming Negative InformationSimulated stock return distribution shows the same statisticalproperties as market stock returns and universality1,E+0101,E+00SimulationGaussExponential-2SimulationPower lawζ = 41,E-01-4GaussP(dh)1,E-02λ = 2ln P(|dh|>x)-6-81,E-03-101,E-04-121,E-05-4 -3 -2 -1 0 1 2 3 4dhSource: Kühn, Kutsia & Neu, work in progressPage 19-14-3 -2 -1 0 1 2ln (x)19 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


MINIMAL INTERACTING GENERALIZATION OF THE GBMSimulation <strong>of</strong> Incoming Negative InformationSimulated stock returns show …q volatility burstsq fast decaying return correlationsq algebraically slow decaying volatilitycorrelation (υ ~ 0.6)Source: Kühn, Kutsia & Neu, work in progressPage 2020 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


AGENDAGeometric Brownian motion and <strong>intermittent</strong> <strong>behavior</strong> <strong>of</strong> <strong>financial</strong> <strong>time</strong><strong>series</strong>: universality, scaling, volatility correlations, non-stationarityMinimal interacting generalization <strong>of</strong> the geometric Brownian motionApplications to Risk Measurement: Market, Credit & Operational RiskPage 2121 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


MEASUREMENT OF MARKET RISKLiquidity <strong>of</strong> Trading Position Is DecisiveStock returns change more jumpy than in a random walkq no perfect hedge possibleq impact on trading P&L hinges on liquidity <strong>of</strong> trading position− Liquid trading positions can be closed on short-term notice=> <strong>intermittent</strong> <strong>behavior</strong> has no <strong>time</strong> to impact− Illiquid trading positions or those which cannot be sold on strategic grounds arefully exposed to <strong>intermittent</strong> <strong>behavior</strong>Regulatory capital puffer for market risks assumes market liquidationperiod <strong>of</strong> 10 days:Regulatory capital for market risk∝ average VaR 99×%,1Day10q intermittency renders the “square-root <strong>of</strong> 10” law invalid for illiquid tradingpositionsPage 2222 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


MEASUREMENT OF CREDIT RISKStructural Approach With Factor Model for Inter-asset CorrelationAsset return driven by factor noise:log A ( t ∆t)~ σ ∆t⋅η>ηi+ii= ∑ ∑2iβik⋅ Yk+ 1−βik⋅εik = 1kCommonrisk factorsfor all firmsDefault probabilities:Pr( Ai(T)< D i) PD i , TPr =( A ( T)< D Y)ii=⎛⎜ ΦΦ⎜⎜⎝Firm-specificrisk factors−1!log D( PDi,T) − ∑1−∑ βkk2ikPage 23iβikΦ is cumulative normal distributionYk⎞⎟⎟⎟⎠Monte Carlo simulationCredit-Loss distributionUnexpected LossConfidence intervalEL Value at Risk23 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


FUNCTIONAL COUPLINGS GENERATE COLLECTIVECASCADING DEFAULTSq Default indicator variableq Default dynamics driven byn ( t + ∆t)=i⎧1⎨⎩0A ( t)< DiA ( t)≥ Diii− Gaussian couplings β ik− Functional couplings w ijq Conditional default probabilitybecomes path-dependentPr( Ai(t + ∆t)< Di{ Y,n}) = ni(t + ∆ t){ Y , n}⎛⎜ Φ= Φ ⎜⎜⎝−1( PD )i,∆t+∑j1−w∑kijn ( t)−jβ2ik∑kβikYk⎞⎟⎟⎟⎠q Parameter calibration− PD i|j = transition default probabilityw ij=Φ−1−1( PD i ) − Φ ( PD )q Perform path-dependent Monte Carlosimulations: N = T/∆t <strong>time</strong> steps in riskhorizon [0,T]| jiSource: Neu & Kühn, Preprint (2004)Page 2424 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


IMPACT OF CAPITAL ALLOCATION FOR CREDIT RISKSignificant increase <strong>of</strong> economic capital due to cascading lossesLoss distribution functionEconomic Capital: EC = L 99,90%- ELPD i|j/PD i= 1.16PD i|j/PD i= 1.04100% connectivityPD i|j/PD i= 1.0020% connectivityPD i|j/PD iSource: Neu & Kühn, Preprint (2004)Page 2525 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


INTERACTING PROCESS MODEL FOR OPERATIONAL RISKLoss SeverityProcesses are designed tomutually support eachother (chain or network)low medium highP1P1P3P3P4P4P8P8P2P2P6P6Loss FrequencyP5P5P9P9P7P7low medium highSource: Kühn & Neu, Physica A 322, 650 (2003)P9P9Page 26Expert assessment or loss database:q What is the expected <strong>time</strong> period, , thatprocess i will fail for the first <strong>time</strong>?q Given that process i has failed, what is theexpected <strong>time</strong> period, , for process j t<strong>of</strong>ail also?q Unconditional & transition failure probabilitywithin ∆t:PDi,∆t=∆tτq Process dynamicsiPDi |,∆ j t∆t26 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004=( )+ w n ( t−1( ){ }= Φ Φ PDn(t )iτij∑n ( t + ∆t))iw ij=Φ−1−1( PD i) − Φ ( PD )| jjiijj


IMPACT OF CAPITAL ALLOCATION FOR OPERATIONAL RISKLoss dynamics characteristics:LossesTimeSource: Kühn & Neu, Physica A 322, 650 (2003)Page 2727 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


CONCLUSIONSequential “functional” correlations are a candidate to explain stylizedfacts in <strong>financial</strong> <strong>time</strong> <strong>series</strong> such asq non-stationarity: volatility burst on many scalesq universal fat (non-Gaussian) tails in probability distribution <strong>of</strong> log-returnsq fast decaying correlations <strong>of</strong> returns, but relatively slow decay <strong>of</strong> volatilitycorrelationsRelevance for Risk Management:Without sequential correlations capital allocated as risk buffer can besignificantly underestimated for illiquid positionsPage 2828 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


REFERENCESStylized facts <strong>of</strong> <strong>financial</strong> <strong>time</strong> <strong>series</strong>• J.P. Bouchaud, M. Potter, “Theory <strong>of</strong> <strong>financial</strong> risks”, Cambridge University Press (2000)• R.N. Mantegna, E.H. Stanley, “An introduction to econophysics” Cambridge University Press (2000)• J. Voit, “ The statistical mechanics <strong>of</strong> <strong>financial</strong> markets”, Springer (2003)• J.P. Bouchaud, “Elements <strong>of</strong> a theory <strong>of</strong> <strong>financial</strong> risks”, Physica A 285, 18 (2000)• E.H. Stanley, P. Gopikrishnan, V. Plerou, L.A.N. Amaral, “Quantifying fluctuations in economic systems by adapting methods fromstatistical physics”, Physica A 287, 339 (2000)• X. Xavier, P. Gopikrishnan, V. Plerou, E.H. Stanley, “A theory <strong>of</strong> power-law distributions in <strong>financial</strong> markets fluctuations”,Nature 423, 267 (2003)Credit Risk Management• R. Jarrow, F. Yu, “Counterparty risk and the pricing <strong>of</strong> defaultable securities”, Journal <strong>of</strong> Finance 56, 1765 (2001)• E. Rogge, Ph. Schönbucher, “Modelling dynamic portfolio credit risk”, Working paper (2003)• K. Giesecke, St. Weber, “Cyclical correlation, credit contagion and portfolio losses, to appear in Journal <strong>of</strong> Banking and Finance• D. Egl<strong>of</strong>f, M. Leippold, P. Vanini, “A simple model for credit contagion”, Working paper (2003)• P. Neu, R. Kühn, “Credit risk enhancement in a network <strong>of</strong> interdependent firms”, Working paper (2004)Operational Risk Mangement• R. Kühn , P. Neu, “Functional correlation approach to operational risk in banking organizations”, Physica A 322, 650 (2003)• M. Leippold, P. Vanini, “The quantification <strong>of</strong> operational risk”, Working paper (2003)Page 2929 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


Page 3030 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


Contact addresses:Dr. Peter NeuDresdner Bank AGGroup Risk Control, HH 21.OGJürgen-Ponto-Platz 160301 Frankfurt a. M.Tel: +49 (69) 263 18582Email: Peter.Neu@Dresdner-Bank.comPr<strong>of</strong>. Dr. Reimer KühnKing’s CollegeMathematics DepartmentStrandLondon W2C 2LR, UKTel: +44 (20) 7848 1035Email: kuehn@mth.kcl.ac.ukPage 3131 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


Back-upPage 3232 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


S&P 500 2 Dec 1940 to 26 Mar 20044%Daily S&P 500 log-returnfrom 2 Dec 1940 to 26 March 2004-1Daily S&P 500 log-returnsfrom 30 Dec 1927 to 26 March 20042%-20%-3-4-2%-4%-6%-8%ln P(Z)-5-6-7-8-9-10%1940194519501955196019651970197519801985199019952000-10-20 -19-18-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-1-012345678910111213ZPage 3333 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004


MINIMAL INTERACTING GENERALIZATION OF THE GBMModel propertiesdhidt= Ii−κi⋅hi+ ∑Jj(j≠i)ij⋅g(hj)+σi⋅η( t)iDynamics is formally identical to that <strong>of</strong> a graded response neuronFor sufficient small k and J ijthe system has exponentially many metastablesolutions which produce intermittency in market dynamicsDynamics associated with fluctuations within a state is very different fromthat <strong>of</strong> transitions between different meta-stable statesDynamics between meta-stable states is associated with majorrestructurings <strong>of</strong> the whole system and is accompanied by volatility burstPage 3434 © Neu&Kühn, Math Finance Workshop · April, 1 th 2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!