30.01.2015 Views

quantum games with atoms and cavities - Electrodynamique ...

quantum games with atoms and cavities - Electrodynamique ...

quantum games with atoms and cavities - Electrodynamique ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Entanglement, complementarity <strong>and</strong> decoherence:<br />

<strong>quantum</strong> <strong>games</strong> <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

J.M. Raimond<br />

Laboratoire Kastler Brossel,<br />

ENS, UPMC <strong>and</strong> IUF<br />

Florence, Mai 2004 Support:JST (ICORP), EC, CNRS, UMPC, IUF, CdF 1


A century of <strong>quantum</strong> mechanics<br />

An enormous range of applications, from superstrings to universe<br />

(a) (b) (c)<br />

10 -35 m<br />

10 -15 m<br />

10 -10 m<br />

(d) (e) (f)<br />

10 -8 m<br />

1 m<br />

10 8 m<br />

(g)<br />

(h)<br />

10 20 m<br />

10 26 m<br />

Florence, Mai 2004 2


A century of <strong>quantum</strong> mechanics<br />

One of the most precise theories so far.<br />

• QED: <strong>quantum</strong> description of electromagnetic interactions.<br />

– Spectrum of hydrogen atom at 10 -12 level<br />

– Gyromagnetic ratio of a free electron<br />

• St<strong>and</strong>ard model: a unified description of all interaction (but gravitation)<br />

Florence, Mai 2004 3


A wealth of applications:<br />

A century of <strong>quantum</strong> mechanics<br />

– Computers <strong>and</strong> the transistor revolution<br />

From the ENIAC to the laptop<br />

Florence, Mai 2004 4


A century of <strong>quantum</strong> mechanics<br />

• Nuclear magnetic imagers for medicine<br />

Florence, Mai 2004 5


A century of <strong>quantum</strong> mechanics<br />

• Lasers<br />

Florence, Mai 2004 6


A century of <strong>quantum</strong> mechanics<br />

• Ultrastable clocks <strong>and</strong> the GPS system<br />

Florence, Mai 2004 7


A century of <strong>quantum</strong> mechanics<br />

• Tailoring structures at the atomic level<br />

Florence, Mai 2004 8


A century of <strong>quantum</strong> mechanics<br />

• And yet an intriguing theory.<br />

– A microscopic world that defies our “classical” intuition.<br />

• These lectures will be devoted to the theoretical investigation <strong>and</strong> the<br />

experimental exploration of the most ‘bizarre’ aspects of the <strong>quantum</strong><br />

world.<br />

– Superposition principle<br />

– Complementarity<br />

– Quantum entanglement <strong>and</strong> non locality.<br />

– Quantum information processing<br />

– Quantum decoherence<br />

Florence, Mai 2004 9


The “strangeness” of the <strong>quantum</strong><br />

• Superposition principle <strong>and</strong> <strong>quantum</strong> interferences<br />

– The sum of <strong>quantum</strong> states is yet another possible state<br />

– A system “suspended” between two different classical realities<br />

D<br />

d<br />

a<br />

I<br />

Ψ =Ψ<br />

1<br />

+Ψ2<br />

= I + 2Re Ψ Ψ<br />

D<br />

a = λ<br />

d<br />

0 1 2<br />

– Feynman: Young’s slits experiment contains all the mysteries of the<br />

<strong>quantum</strong><br />

Florence, Mai 2004 10


The “strangeness” of the <strong>quantum</strong><br />

• Young interferences <strong>with</strong> electrons (A. Tonomura, 1989)<br />

Florence, Mai 2004 11


The “strangeness” of the <strong>quantum</strong><br />

• Quantum Young interferences <strong>with</strong> <strong>atoms</strong> (Shimizu 1992)<br />

Florence, Mai 2004 12


The “strangeness” of the <strong>quantum</strong><br />

• Complementarity (From Einstein-Bohr at the 1927 Solvay congress)<br />

– Microscopic slit: set in motion when deflecting particle. Which path<br />

information <strong>and</strong> no fringes<br />

– Macroscopic slit: impervious to interfering particle. No which path<br />

information <strong>and</strong> fringes<br />

– Wave <strong>and</strong> particle are complementary aspects of the <strong>quantum</strong> object.<br />

Florence, Mai 2004 13


The “strangeness” of the <strong>quantum</strong><br />

• Complementarity <strong>and</strong> Heisenberg uncertainty relations<br />

Particle's momentum p=h/λ<br />

Momentum transfer ∆P=pd/D<br />

Measure screen momentum <strong>with</strong>in ∆P:<br />

∆x=a<br />

Position uncertainty ∆X=h/∆P<br />

d<br />

D<br />

Position uncertainty= interfrange.<br />

Complete washing out of fringes<br />

Localisation <strong>and</strong> wave behavior are incompatible<br />

Florence, Mai 2004 14


• No cloning theorem<br />

The “strangeness” of the <strong>quantum</strong><br />

– It is impossible to produce two exact copies of an arbitrary <strong>quantum</strong><br />

states (violates unitarity of Schrödinger evolution): No <strong>quantum</strong> fax<br />

Florence, Mai 2004 15


• Entanglement<br />

The “strangeness” of the <strong>quantum</strong><br />

– Two systems after an interaction described by a single global state<br />

– No system has a-well defined state on his own<br />

• A measurement performed on one system affects the state of the<br />

other<br />

• Quantum correlations irrespective of the distance between<br />

entangled systems<br />

– At the heart of <strong>quantum</strong> non-locality<br />

– Einstein did not like that…<br />

• <strong>and</strong> he was wrong (Bell inequalities violation)<br />

Florence, Mai 2004 16


• Bell inequalities.<br />

The “strangeness” of the <strong>quantum</strong><br />

– Two observers (Alice <strong>and</strong> Bob) share a pair of two level particles<br />

(levels 0 <strong>and</strong> 1 eg spin ½) in one of four “Bell states”<br />

– Spin operators (more in further lectures)<br />

– Essential property<br />

Florence, Mai 2004 17


The “strangeness” of the <strong>quantum</strong><br />

• Bell inequalities (cont’d)<br />

– Einstein argument<br />

• Alice can tell <strong>with</strong> certainty what value she gets for a measurement<br />

of any σ u by asking Bob to make the measurement<br />

• An “element of reality” is associated to any component of Alice’s<br />

spin in XOZ plane<br />

• Classical vision: any experimental result is predetermined at pair<br />

preparation time (“hidden variable apporoach”)<br />

– CHSH version of Bell inequalities<br />

0<br />

a<br />

EPR<br />

b<br />

0<br />

1 a' Alice source<br />

Bob<br />

b'<br />

1<br />

Florence, Mai 2004 18


The “strangeness” of the <strong>quantum</strong><br />

• Bell inequalities (cont’d)<br />

– If hidden variables are right:<br />

– But <strong>quantum</strong> mechanics predicts:<br />

With<br />

We get:<br />

Florence, Mai 2004 19


The “strangeness” of the <strong>quantum</strong><br />

• Bell inequalities (cont’d)<br />

3<br />

2<br />

1<br />

S Bell<br />

−2 2 ≤S<br />

≤2<br />

2<br />

0<br />

-1<br />

-2<br />

-3<br />

0,0 0,5 1,0 θ/π<br />

1,5 2,0<br />

• Possible experimental test of <strong>quantum</strong> mechanics versus local realism.<br />

• A major step in our underst<strong>and</strong>ing of <strong>quantum</strong> mechanics<br />

Florence, Mai 2004 20


A severe test<br />

The “strangeness” of the <strong>quantum</strong><br />

• Correlations between two polarization-entangled photons 400 m apart.<br />

• Correlation signal S


The “strangeness” of the <strong>quantum</strong><br />

• Quantum/classical limit<br />

– No <strong>quantum</strong> superpositions at<br />

macroscopic scale<br />

– The "Schrödinger cat"<br />

• Decoherence<br />

1<br />

2<br />

( )<br />

+ ⇔<br />

Environment<br />

– A macroscopic system is strongly<br />

coupled to a complex<br />

environment<br />

– No entangled states neither.<br />

We only observe a very small fraction of<br />

all possible <strong>quantum</strong> states<br />

WHY <br />

– In all models, this coupling<br />

• leaves only a few states<br />

intact (preferred basis)<br />

• destroys very rapidly the<br />

<strong>quantum</strong> superpositions of<br />

these states<br />

Decoherence<br />

Florence, Mai 2004 22


Main features of decoherence<br />

Very fast process<br />

A simple decoherence model<br />

superposition lifetime<br />

=<br />

relaxation time<br />

separation betweenstates<br />

-<br />

0<br />

∆x<br />

+<br />

Depends upon the initial <strong>quantum</strong> state<br />

(distance between states or<br />

"macroscopicity" parameter)<br />

Needle in a superposition of positions<br />

Background gas. Particles <strong>with</strong> de<br />

Broglie wavelength λ 0<br />

.<br />

Not a trivial relaxation mechanism<br />

(but explained by st<strong>and</strong>ard relaxation<br />

theory for simple models)<br />

When ∆x>λ 0<br />

, the first collision destroys<br />

the coherence (Heisenberg<br />

microscope: the environment "knows"<br />

the needle position)<br />

Extraordinarily fast decoherence<br />

Strong link <strong>with</strong> complementarity:<br />

environment acquires "which path"<br />

information<br />

Florence, Mai 2004 23


The importance of decoherence<br />

Measurement theory<br />

Applications of <strong>quantum</strong> weirdness<br />

Decoherence plays an essential role in<br />

<strong>quantum</strong> measurement:<br />

Prevents meters from being in a<br />

<strong>quantum</strong> superposition!<br />

1<br />

2<br />

( + )<br />

Only statistical mixtures of meter states,<br />

corresponding to exclusive classical<br />

probabilities<br />

1<br />

2<br />

-<br />

0<br />

+<br />

-<br />

( +<br />

)<br />

-<br />

0<br />

+<br />

-<br />

0<br />

+<br />

"Stable" states <strong>and</strong> hence measured<br />

observable determined by relaxation<br />

dynamics<br />

0<br />

-<br />

+<br />

0<br />

+<br />

-<br />

0<br />

+<br />

Manipulate complex entangled states for<br />

<strong>quantum</strong> information processing or<br />

computing<br />

Decoherence affects these states.<br />

Very fast loss of <strong>quantum</strong> information<br />

A terrible obstacle to these applications<br />

NB: decoherence does not prohibit<br />

macroscopic <strong>quantum</strong> states (BEC,<br />

superfluids): a single <strong>quantum</strong> state<br />

Florence, Mai 2004 24


Why explorations of the <strong>quantum</strong> world <br />

A fundamental interest<br />

Promising applications<br />

Better underst<strong>and</strong>ing of <strong>quantum</strong><br />

postulates<br />

• Superposition<br />

• Measurement<br />

• Entanglement <strong>and</strong> non-locality<br />

Exploration of the <strong>quantum</strong>-classical<br />

boundary<br />

Realize some of the gendankenexperiments<br />

used by the founding<br />

fathers of <strong>quantum</strong> mechanics.<br />

«we never experiment <strong>with</strong> just one electron<br />

or atom or (small) molecule. In thoughtexperiments<br />

we sometimes assume that we<br />

do; this invariably entails ridiculous<br />

consequences…. »<br />

Use <strong>quantum</strong> weirdness to realize new<br />

functions for information transmission<br />

or processing<br />

From bits (0 or 1) to qubits (|0> <strong>and</strong> |1>)<br />

• Quantum cryptography<br />

• Quantum teleportation<br />

• Quantum information processing<br />

• Quantum computing<br />

All rely on sophisticated <strong>quantum</strong><br />

entanglement manipulations<br />

(Schrödinger British Journal of the Philosophy of<br />

Sciences, Vol 3, 1952)<br />

Florence, Mai 2004 25


Quantum cryptography<br />

Key distribution<br />

Practical realization<br />

With photons<br />

Two operators (Alice <strong>and</strong> Bob) share an<br />

entangled pair.<br />

Their measurements are correlated.<br />

Measure same observable: a r<strong>and</strong>om<br />

but common bit.<br />

Eavesdropper: measurements <strong>and</strong><br />

unavoidable perturbation of the<br />

correlations (no more Bell inequalities<br />

violation)<br />

Detect any eavesdropper<br />

Unconditionally secure key<br />

• Optical telecom fibers; distances up<br />

to 60 km<br />

• Free space: in principle possible for<br />

satellite-ground communication<br />

"Commercial" realizations available<br />

Long haul communication: lack of a<br />

"<strong>quantum</strong> repeater"<br />

Florence, Mai 2004 26


Quantum teleportation<br />

Principle<br />

Experimental realizations<br />

Photons polarization states<br />

Innsbruck+Rome<br />

Quantum fluctuations of a laser<br />

field<br />

Caltech<br />

A very beautiful illustration of<br />

<strong>quantum</strong> non-locality<br />

Transmit exactly an arbitrary<br />

<strong>quantum</strong> state from one station to<br />

another<br />

Impossible <strong>with</strong> measurements<br />

Use <strong>quantum</strong> non-locality<br />

No matter creation, no superluminal<br />

propagation<br />

Quite far from Star-Trek !!<br />

Florence, Mai 2004 27


Quantum teleportation<br />

• Principle of <strong>quantum</strong> teleportation<br />

|ψ 〉<br />

Bell<br />

Measurement<br />

2 classical bits<br />

U<br />

u<br />

a<br />

b<br />

|ψ 〉<br />

EPR Source<br />

• Bell states basis<br />

Florence, Mai 2004 28


– Initial state<br />

Quantum teleportation<br />

– Measurement of u <strong>and</strong> a in the “Bell basis” projects b on a state<br />

differing of the initial one by a trivial unitary transformation.<br />

– Knowing the result of Alice measurement bob can render the initial<br />

state.<br />

– Before Alice’s measurement, Bob has a statistical mixture of all four<br />

states i.e. an equal mixture of 0 <strong>and</strong> 1.<br />

– No matter creation, no superluminal communication.<br />

– A splendid illustration of <strong>quantum</strong> non-locality.<br />

Florence, Mai 2004 29


Quantum computing<br />

From bits to qubits<br />

Quantum parallelism<br />

Classical computer: bits<br />

0 or 1<br />

Quantum computer: qubits<br />

Two-level system<br />

states |0> <strong>and</strong> |1><br />

A qubit can be in a state superposition<br />

A <strong>quantum</strong> computer <strong>with</strong> an n qubits<br />

register can manipulate a <strong>quantum</strong><br />

superposition of all numbers <strong>and</strong><br />

perform simultaneously 2 n<br />

calculations !<br />

Quantum mechanics linearity:<br />

State superpositions available<br />

1<br />

2<br />

( 0 + 1 )<br />

is a possible state for a qubit<br />

Exponentially more efficient than a<br />

classical computer<br />

( + )<br />

Makes easy a few difficult problems<br />

• Shor : factorization<br />

• Grover : search in an unsorted<br />

database<br />

Florence, Mai 2004 30<br />

1<br />

2


Organisation of a <strong>quantum</strong> computer<br />

Quantum gates<br />

Any operation can be decomposed<br />

in a set of elementary operations<br />

p qubits<br />

(1 or 2 qubits)<br />

U<br />

Any <strong>quantum</strong> algorithm can be<br />

realized <strong>with</strong> a network of<br />

<strong>quantum</strong> gates<br />

Universal gates:<br />

p qubits<br />

A set of one or two gates allowing<br />

the realization of any network<br />

Some <strong>quantum</strong> gates<br />

1 qubit: arbitrary rotation<br />

iψ<br />

⎛ cosϕ<br />

e sinϕ<br />

⎞<br />

U ( ϕψ , ) = ⎜ −iψ<br />

⎟<br />

⎝−e<br />

sinϕ<br />

cosϕ<br />

⎠<br />

2 qubits: <strong>quantum</strong> phase gate<br />

0,0 ⎯⎯→ 0,0<br />

0,1 ⎯⎯→ 0,1<br />

1, 0 ⎯⎯→ 1, 0<br />

i<br />

1,1 ⎯⎯→ 1,1<br />

e Φ<br />

Conditional dynamics<br />

Florence, Mai 2004 31


Quantum entanglement manipulations<br />

• Quantum non locality, complementarity, computation all boil down to<br />

sophisticated <strong>quantum</strong> entanglement manipulations !<br />

• Not easy experimentally. Criteria to be met<br />

– Two-level systems.<br />

– Individually addressed<br />

– Prepared in a given state (initialization)<br />

– Final state completely analyzable (read out)<br />

– Strong common interaction to produce entanglement<br />

– Weak coupling to outside world to limit decoherence<br />

• Two last requirements clearly incompatible<br />

– Few suitable systems.<br />

– Even fewer achieved entanglement control <strong>and</strong> manipulation<br />

Florence, Mai 2004 32


Tools for fundamental <strong>quantum</strong> mechanics studies<br />

• Nuclear magnetic resonance<br />

– Controlled <strong>quantum</strong> states evolution for nuclear spins<br />

– Intramolecular interaction lead to spin/spin entanglement<br />

– Various applications to <strong>quantum</strong> computing<br />

– Thermodynamic ensembles of large number of molecules. No<br />

individual <strong>quantum</strong> systems<br />

Florence, Mai 2004 33


Tools for fundamental <strong>quantum</strong> mechanics studies<br />

• Entangled “twin” photons<br />

Correlation<br />

– Photon pairs naturally produced in an entangled state<br />

– Easy manipulation <strong>and</strong> transport of individual photons<br />

– Widely used for non-locality tests, <strong>quantum</strong> cryptography <strong>and</strong><br />

<strong>quantum</strong> teleportation<br />

– Weak photon-photon interaction. Further entanglement processing<br />

difficult. No photon-photon universal <strong>quantum</strong> gate.<br />

Florence, Mai 2004 34


Tools for fundamental <strong>quantum</strong> mechanics studies<br />

• Cold <strong>atoms</strong> <strong>and</strong> BE condensates<br />

– Atoms in optical lattices: control of individual <strong>atoms</strong> (one per site)<br />

– Controlled collisions <strong>and</strong> <strong>quantum</strong> gates<br />

– Not yet individual access to <strong>atoms</strong><br />

Florence, Mai 2004 35


• Ions in traps<br />

Tools for fundamental <strong>quantum</strong> mechanics studies<br />

– Single addressable long-lived <strong>quantum</strong> systems<br />

– Two ion <strong>quantum</strong> gates<br />

– Simple algorithms, teleportation.<br />

– One of the most promising systems for few qubits implementations<br />

– Great experimental difficulties<br />

Florence, Mai 2004 36


• Mesoscopic circuits<br />

Tools for fundamental <strong>quantum</strong> mechanics studies<br />

– Long-lived two level systems (artificial <strong>atoms</strong>)<br />

– Two qubits <strong>quantum</strong> gates<br />

– Promising for ‘large scale’ integration<br />

– Decoherence not well understood<br />

Florence, Mai 2004 37


Tools for fundamental <strong>quantum</strong> mechanics studies<br />

• Cavity <strong>quantum</strong> electrodynamics<br />

– Realizes the simplest matter-field system: a single atom coherently<br />

coupled to a few photons in a single mode of the radiation field,<br />

sustained by a high quality cavity.<br />

– Perfect test bench for fundamental <strong>quantum</strong> behaviors<br />

– Can be used for proof of principle demonstrations of <strong>quantum</strong> logics<br />

– Not really scalable to large scale architectures<br />

• Comes in two regimes<br />

– Weak coupling: radiative properties modifications<br />

– Strong coupling: atom-field interaction overwhelms dissipative<br />

processes (focus here)<br />

• Comes in two flavours<br />

– Optical CQED<br />

– Microwave CQED<br />

Florence, Mai 2004 38


A short history of cavity QED<br />

• The genesis<br />

• The strong coupling regime<br />

Purcell 46: spontaneous emission rate<br />

modification for a spin in a resonant<br />

circuit<br />

• The beginning<br />

Drexhage (70's) : Spontaneous emission<br />

spatial pattern modification for a<br />

molecule near a mirror<br />

• The weak coupling regime<br />

One- <strong>and</strong> two-photon micromasers<br />

(Munich, ENS,85-90)<br />

Vacuum Rabi splitting (Kimble, 92)<br />

Quantum Rabi oscillations<br />

• Using strong coupling for<br />

entanglement manipulations<br />

In progress<br />

• The "industrial" age<br />

Spontaneous emission acceleration<br />

(Goy, 83)<br />

Spontaneous emission inhibition<br />

(Kleppner, 85)<br />

Observed since then on many systems<br />

Use spontaneous emission modification<br />

for light emitting devices (VCSEL's<br />

<strong>and</strong> LED's)<br />

Florence, Mai 2004 39


Optical CEQD<br />

• A single atom in a high Q optical cavity (Fabry Perot)<br />

– Strong coupling regime<br />

– Easy interface <strong>with</strong> propagating photons (<strong>quantum</strong> communication)<br />

– Large atom-field forces: atom trapping <strong>with</strong> single photons<br />

– Single atom lasers <strong>and</strong> single photon deterministic sources<br />

– Fast pace <strong>and</strong> difficult control of entanglement.<br />

• Caltech, Munich, Stony brook,…<br />

Florence, Mai 2004 40


Microwave CQED<br />

• A single Rydberg atom interacting <strong>with</strong> a superconducting cavity<br />

– With circular <strong>atoms</strong>: both <strong>atoms</strong> <strong>and</strong> field long-lived<br />

– Very strong coupling regime<br />

– Fundamental <strong>quantum</strong> mechanics illustrations<br />

– Complex entanglement manipulations<br />

• Munich <strong>and</strong> ENS<br />

Florence, Mai 2004 41


‘Programme’ of these lectures<br />

• A detailed description of microwave CQED experiments<br />

– An opportunity to review many basic <strong>quantum</strong> concepts<br />

• Complementarity, decoherence, entanglement<br />

– A good introduction to basic <strong>quantum</strong> optics techniques<br />

• Quantum fields, Wigner representation, relaxation theory, <strong>quantum</strong><br />

Monte Carlo trajectories, dressed atom…<br />

– An opportunity to review <strong>quantum</strong> information concepts<br />

• Quantum computing, algorithms, <strong>quantum</strong> error correction<br />

codes…<br />

Florence, Mai 2004 42


An “appetizer” chapter<br />

• A brief survey of CQED <strong>with</strong> circular Rydberg <strong>atoms</strong> <strong>and</strong> superconducting<br />

<strong>cavities</strong><br />

• An experiment on complementarity<br />

• A direct study of the decoherence process<br />

Florence, Mai 2004 43


CQED <strong>with</strong> circular Rydberg <strong>atoms</strong> <strong>and</strong> superconducting <strong>cavities</strong><br />

Florence, Mai 2004 44


Circular Rydberg <strong>atoms</strong><br />

High principal <strong>quantum</strong> number<br />

Maximal orbital <strong>and</strong> magnetic <strong>quantum</strong><br />

numbers<br />

• Long lifetime<br />

• Microwave two-level transition<br />

• Huge dipole matrix element<br />

• Stark tuning<br />

• Field ionization detection<br />

– selective <strong>and</strong> sensitive<br />

• Velocity selection<br />

– Controlled interaction time<br />

– Well-known sample position<br />

Atoms individually addressed<br />

(centimeter separation between <strong>atoms</strong>)<br />

Full control of individual transformations<br />

51 (level e)<br />

51.1 GHz<br />

50 (level g)<br />

Complex preparation (53 photons ! )<br />

Stable in a weak directing electric field<br />

Single atom preparation: brute force !<br />

Florence, Mai 2004 45


Superconducting cavity<br />

Design<br />

Highly polished niobium Mirrors<br />

• Open Fabry Perot cavity <strong>with</strong> a<br />

"photon recirculating ring"<br />

• Compatible <strong>with</strong> a static electric field<br />

(circular state stability <strong>and</strong> Stark<br />

tuning)<br />

• Very sensitive to geometric quality of<br />

mirrors<br />

Cavity Damping time: 1 ms<br />

Field energy (db)<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

-2 0 2 4 6 8 10<br />

Florence, Mai 2004 46<br />

time (ms)


General scheme of the experiments<br />

Rev. Mod. Phys. 73, 565 (2001)<br />

Florence, Mai 2004 47


From Dream to Reality<br />

Atoms preparation<br />

detection<br />

lasers<br />

Atomic<br />

beam<br />

Florence, Mai 2004 48


An object at the <strong>quantum</strong>/classical boundary<br />

Coherent field in a cavity<br />

From <strong>quantum</strong> to classical<br />

• State produced by a classical source<br />

in the cavity mode<br />

• Small field:<br />

α<br />

α = e ∑<br />

2<br />

−α<br />

/2<br />

n<br />

n n!<br />

– |n>: photon number state<br />

– Defined by complex amplitude α<br />

• A picture in phase space (Fresnel<br />

plane)<br />

n<br />

Im α<br />

| α|<br />

Φ<br />

n<br />

1<br />

∆Φ<br />

Re α<br />

2<br />

= α ∆ n=<br />

n<br />

∆N∆Φ≈1<br />

– Large <strong>quantum</strong> fluctuations. A<br />

field at the single-photon level is<br />

a <strong>quantum</strong> object<br />

• Large field<br />

– Small <strong>quantum</strong> fluctuations. A<br />

field <strong>with</strong> more than 10 photons is<br />

almost a classical object.<br />

Florence, Mai 2004 49<br />

a<br />

φ


Resonant atom-cavity interaction<br />

Quantum Rabi oscillations<br />

Initial state |e,0><br />

|3><br />

|2><br />

e><br />

g><br />

|1><br />

|0><br />

Atom Cavity<br />

Ω<br />

|3><br />

|2><br />

|e><br />

|1><br />

|g> |0><br />

Atom Cavity<br />

P e<br />

(t)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

time ( µ s)<br />

0 30 60 90<br />

Oscillatory Spontaneous emission <strong>and</strong> strong coupling regime<br />

Florence, Mai 2004 50


Rabi oscillation in a small coherent field<br />

1.0<br />

P e<br />

(t)<br />

0.5<br />

0.0<br />

Time ( µs)<br />

• A more complex signal<br />

0 30 60 90<br />

• π/2 pulse possible for any cavity field by proper tuning of interaction time<br />

Florence, Mai 2004 51


Rabi oscillation in a small coherent field:<br />

observing discrete Rabi frequencies<br />

Fourier transform of the Rabi oscillation signal<br />

Ω 0<br />

Ω 0<br />

2<br />

Ω 0<br />

3<br />

Discrete peaks<br />

corresponding to<br />

discrete photon numbers<br />

FFT (arb. u.)<br />

Direct observation<br />

of field quantization<br />

in a "box"<br />

0 25 50 75 100 125 150<br />

Frequency (kHz)<br />

Florence, Mai 2004 52


Rabi oscillation in a small coherent field:<br />

Measuring the photon number distribution<br />

1<br />

P () ( ) 1 cos<br />

( )<br />

g<br />

t = ∑ P N − Ω<br />

0t<br />

N + 1 . e<br />

2<br />

N<br />

( )<br />

−t<br />

/ τ<br />

Fit of P(n) on the Rabi oscillation signal:<br />

0,5<br />

0,4<br />

Measured P(n)<br />

Poisson law<br />

P(n)<br />

0,3<br />

0,2<br />

N = 0.85<br />

0,1<br />

0,0<br />

0 1 2 3 4 5<br />

Photon number<br />

accurate field statistics measurement<br />

Florence, Mai 2004 53


All results<br />

• 0<br />

• 0.4<br />

• 0.85<br />

• 1.77<br />

1.0<br />

0.5<br />

0.0<br />

1.0<br />

0.0 0.5 1.0<br />

n = 0.06<br />

th<br />

n = 0.4<br />

coh<br />

photons<br />

P e<br />

(t)<br />

0.5<br />

0.0<br />

1.0<br />

0.5<br />

0.0<br />

1.0<br />

FFT Amplitude<br />

P(n)<br />

0.0 0.5<br />

0.0 0.5<br />

n = 0.85<br />

coh<br />

n = 1.77<br />

coh<br />

0.5<br />

0.0<br />

0.0 0.3<br />

0 30 60 90<br />

0 50 100 150<br />

0 1 2 3 4 5<br />

Time (<br />

µs)<br />

Frequency (kHz)<br />

n<br />

Florence, Mai 2004 54


Field quantization<br />

• Many evidences of field quantization since Compton effect<br />

• Note that photoelectric effect is not a proof of field quantization (Dirac <strong>and</strong><br />

Wenzel 1926)<br />

• Quantization of Rabi frequencies provide a visceral evidence of field<br />

quantization<br />

• A direct insight into field statistics<br />

Florence, Mai 2004 55


Quantum Rabi oscillations: state transformations<br />

Initial state<br />

e,0<br />

1<br />

e,0 e⎯⎯→−<br />

,0 e,0 ⎯⎯→ eg,0<br />

,1 2π ( epulse<br />

,0 + g,1<br />

)<br />

2<br />

g,1 ( ⎯⎯→− ce e + cg π/2 spontaneous g,1) 0 ⎯⎯→ g<br />

Conditional ( ce 1 + c<br />

emission dynamics<br />

g<br />

0 )<br />

pulse<br />

π spontaneous emission pulse<br />

g,0 ⎯⎯→+ Entanglement g,0<br />

Quantum<br />

creation<br />

Atom/cavity state copy phase gate<br />

Atom-cavity EPR pair<br />

P e<br />

(t)<br />

0.8<br />

51 (level e)<br />

0.6<br />

51.1 GHz<br />

50 (level g)<br />

0.4<br />

0.2<br />

0.0<br />

Brune et al, PRL 76, 1800 (96)<br />

time ( µ s)<br />

0 30 60 90<br />

Florence, Mai 2004 56


Three "stitches" to "knit" <strong>quantum</strong> entanglement<br />

Combine elementary transformations to create complex entangled states<br />

• State copy <strong>with</strong> a π pulse<br />

– Quantum memory : PRL 79, 769 (97)<br />

• Creation of entanglement <strong>with</strong> a π/2 pulse<br />

– EPR atomic pairs : PRL 79, 1 (97)<br />

• Quantum phase gate based on a 2π pulse<br />

– Quantum gate : PRL 83, 5166 (99)<br />

– Absorption-free detection of a single photon: Nature 400, 239 (99)<br />

• Entanglement of three systems (six operations on four qubits)<br />

– GHZ Triplets : Science 288, 2024 (00)<br />

• Entanglement of two radiation field modes<br />

– Phys. Rev. A 64, 050301 (2001)<br />

• Direct entanglement of two <strong>atoms</strong> in a cavity-assisted collision<br />

– Phys. Rev. Lett. 87, 037902 (2001)<br />

Florence, Mai 2004 57


An experiment on complementarity<br />

a realization of Bohr’s 1927 gedankenexperiment<br />

Florence, Mai 2004 58


A “modern” version of Bohr’s proposal<br />

• Mach Zehnder interferometer<br />

φ<br />

φ<br />

D<br />

•Interference between two well-separated paths.<br />

• Getting a which-path<br />

information<br />

Florence, Mai 2004 59


A “modern” version of Bohr’s proposal<br />

• Mach-Zehnder interferometer <strong>with</strong> a moving slit<br />

φ<br />

φ<br />

D<br />

• Massive slit: negligible motion, no which- path information, fringes<br />

• Microscopic slit: which path information <strong>and</strong> no fringes<br />

Florence, Mai 2004 60


Complementarity <strong>and</strong> uncertainty relations<br />

Get a which path information<br />

P>∆p<br />

(∆p <strong>quantum</strong> fluctuations of<br />

beam splitter’s momentum)<br />

Hence<br />

∆x > h/∆p > h/P=λ<br />

B 1<br />

b<br />

P<br />

O<br />

φ<br />

a<br />

B 2<br />

M<br />

D<br />

φ<br />

M'<br />

Beam splitter’s <strong>quantum</strong> position fluctuations larger than wavelength: no<br />

fringes<br />

Florence, Mai 2004 61


Complementarity <strong>and</strong> entanglement<br />

• A more general analysis of Bohr’s experiment<br />

– Initial beam-splitter state<br />

– Final state for path b<br />

α<br />

0<br />

B 1<br />

M'<br />

b<br />

P<br />

a<br />

O<br />

φ<br />

B 2<br />

M<br />

D<br />

φ<br />

– Particle/beam-splitter state<br />

Ψ = Ψ<br />

a<br />

0 + Ψb α<br />

– Final fringes signal<br />

• Small mass, large kick<br />

– Particle/beam-splitter entanglement<br />

– (an EPR pair if states orthogonal)<br />

NO FRINGES<br />

• Large mass, small kick<br />

FRINGES<br />

Ψa Ψb 0 α<br />

0 α = 0<br />

0 α = 1<br />

Florence, Mai 2004 62


Entanglement <strong>and</strong> complementarity<br />

Entanglement <strong>with</strong> another system destroys interference<br />

• explicit detector (beam-splitter/ external)<br />

• uncontrolled measurement by the environment (decoherence)<br />

φ<br />

φ<br />

D<br />

Complementarity, decoherence <strong>and</strong> entanglement intimately linked<br />

Florence, Mai 2004 63


A more realistic system: Ramsey interferometry<br />

• Two resonant π/2 classical pulses on an atomic transition e/g<br />

1.0<br />

a<br />

M<br />

0.8<br />

B 1<br />

R 1<br />

R 2<br />

P g<br />

0.6<br />

0.4<br />

b<br />

φ<br />

0.2<br />

0.0<br />

M'<br />

B 2<br />

Fréquence relative (kHz)<br />

0 10 20 30 40 50 60<br />

D<br />

Which path information<br />

Atom emits one photon in R 1<br />

or R 2<br />

Ordinary macroscopic fields<br />

(heavy beam-splitter)<br />

Field state not appreciably affected. No "which path" information<br />

FRINGES<br />

Mesoscopic Ramsey field<br />

(light beam-splitter)<br />

Addition of one photon changes the field. "which path" info<br />

NO FRINGES<br />

Florence, Mai 2004 64


Experimental requirements<br />

• Ramsey interferometry<br />

– Long atomic lifetimes<br />

– Millimeter-wave transitions<br />

• Circular Rydberg <strong>atoms</strong><br />

• π/2 pulses in mesoscopic fields<br />

– Very strong atom-field coupling<br />

• Circular Rydberg <strong>atoms</strong><br />

• Field coherent over atom/field interaction<br />

• Superconducting millimeter-wave <strong>cavities</strong><br />

Florence, Mai 2004 65


Bohr’s experiment <strong>with</strong> a Ramsey interferometer<br />

• Illustrating complementarity: Store one Ramsey field in a cavity<br />

S<br />

Atom-cavity interaction time<br />

Tuned for π/2 pulse<br />

Possible even if C empty<br />

– Initial cavity state α<br />

1<br />

Ψ = e, αe<br />

+ g,<br />

αg<br />

– Intermediate atom-cavity state 2<br />

• Ramsey fringes contrast α α<br />

– Large field<br />

e<br />

α ≈ α ≈ α<br />

• FRINGES<br />

e<br />

g<br />

e<br />

R 1<br />

R 2<br />

g<br />

C<br />

φ<br />

( )<br />

g<br />

D<br />

φ<br />

– Small field<br />

α<br />

= 0, α = 1<br />

• NO FRINGE<br />

e<br />

g<br />

Florence, Mai 2004 66


Quantum/classical limit for an interferometer<br />

Fringes contrast<br />

Fringes contrast versus photon number N<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0 2 4 6 8 10 12 14 16<br />

Nature, 411, 166 (2001)<br />

N<br />

Fringes vanish for <strong>quantum</strong><br />

field<br />

photon number plays<br />

the role of the beamsplitter's<br />

"mass"<br />

An illustration of the ∆N∆Φ<br />

uncertainty relation :<br />

• Ramsey fringes reveal<br />

field pulses phase<br />

correlations.<br />

• Small <strong>quantum</strong> field: large<br />

phase uncertainty <strong>and</strong> low<br />

fringe contrast<br />

Not a trivial blurring of the<br />

fringes by a classical noise:<br />

atom/cavity entanglement<br />

can be erased<br />

Florence, Mai 2004 67


An elementary <strong>quantum</strong> eraser<br />

• Another thought experiment<br />

φ<br />

φ<br />

D<br />

Two interactions <strong>with</strong> the same beamsplitter assembly erase the which path information<br />

<strong>and</strong> restore the interference fringes<br />

Florence, Mai 2004 68


Ramsey “<strong>quantum</strong> eraser”<br />

• A second interaction <strong>with</strong> the mode erases the atom-cavity entanglement<br />

1.0<br />

Resonant Non-resonant Resonant<br />

0.9<br />

0.8<br />

0.7<br />

φ<br />

0.6<br />

0.5<br />

Pe<br />

0.4<br />

e,0<br />

1<br />

( ,0 + ,1 )<br />

2 e g<br />

g,1<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

10 12 14 16 18 20 22 24<br />

• Ramsey fringes <strong>with</strong>out fields !<br />

– Quantum interference fringes <strong>with</strong>out external field<br />

– A good tool for <strong>quantum</strong> manipulations<br />

Florence, Mai 2004 69


A genuine <strong>quantum</strong> eraser<br />

Manipulating atom/cavity entanglement<br />

• Atom A i<br />

interacts <strong>with</strong> cavity field<br />

• Copy cavity state on another atom A e<br />

(π pulse)<br />

e<br />

A e<br />

Erasing entanglement<br />

π/2 pulse on A e<br />

mixes the states<br />

Resulting state:<br />

1<br />

2<br />

⎡<br />

⎣<br />

( − + ) + ( + )<br />

e e g g e g<br />

e i i e i i<br />

⎤<br />

⎦<br />

g<br />

A i<br />

Detection of A e<br />

projects A i<br />

onto a state<br />

superposition <strong>with</strong> a well-defined<br />

phase depending upon state of A e<br />

.<br />

State of two <strong>atoms</strong>:<br />

1<br />

2<br />

( e, g − g , e )<br />

i e i e<br />

An atomic EPR pair (PRL 79, 1 (97))<br />

FRINGES<br />

after a classical π/2 pulse on A i<br />

Phase conditioned to state of A e<br />

Direct detection of A e<br />

:no fringes on A i<br />

Entanglement <strong>with</strong> A e<br />

or C provides<br />

"which path" information on A i<br />

.<br />

Florence, Mai 2004 70


An EPR experiment revisited<br />

Conditional fringes on A i<br />

0 20 40 60 80<br />

1.0<br />

0.8<br />

A e<br />

in e<br />

A e<br />

in g<br />

1.0<br />

No fringes when<br />

tracing on A e<br />

Conditional Probabilities<br />

0.6<br />

0.4<br />

0.2<br />

Probability<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Relative frequency (kHz)<br />

0.0<br />

0 20 40 60 80<br />

Relative Frequency (kHz)<br />

PRL 79, 1 (97)<br />

A <strong>quantum</strong> eraser demonstration <strong>and</strong> controlled entanglement of two <strong>atoms</strong><br />

Florence, Mai 2004 71


A direct study of the decoherence process<br />

Florence, Mai 2004 72


Another experiment on complementarity<br />

e<br />

Cavity as an external detector in the<br />

Ramsey interferometer<br />

Cavity contains initially a coherent field<br />

Non-resonant atom-field interaction:<br />

e<br />

g<br />

R 1<br />

R 2<br />

α<br />

C<br />

Atom modifies the cavity field phase<br />

Phase shift α 1/δ<br />

S<br />

(index of refraction effect)<br />

⎯⎯→<br />

⎯⎯→<br />

e<br />

g<br />

(δ:atom-cavity detuning)<br />

1<br />

g<br />

D<br />

φ<br />

"Which path" information:<br />

• Small phase shift (large δ)<br />

(smaller than <strong>quantum</strong> phase noise)<br />

– field phase almost unchanged<br />

– No which path information<br />

– St<strong>and</strong>ard Ramsey fringes<br />

• Large phase shift (small δ)<br />

(larger than <strong>quantum</strong> phase noise)<br />

– Cavity fields associated to the<br />

two paths distinguishable<br />

– Unambiguous which path<br />

information<br />

– No Ramsey fringes<br />

Florence, Mai 2004 73


Fringes <strong>and</strong> field state<br />

1.0<br />

0.5<br />

Complementarity<br />

Fringes contrast <strong>and</strong> phase<br />

60<br />

n=9.5 (0.1)<br />

6<br />

Ramsey Fringe Signal<br />

0.0<br />

1.0<br />

0.5<br />

712 kHz<br />

Vacuum<br />

712 kHz,<br />

9.5 phot ons<br />

Fringe Contr ast (%)<br />

40<br />

20<br />

0<br />

0.0 0.2 0.4 0.6 0.8<br />

φ (radians)<br />

0.0 0.2 0.4 0 2<br />

φ (radians)<br />

4<br />

Fringe Shift (rd)<br />

0.0<br />

104 kHz<br />

0 2 4 6 8 10<br />

ν (kHz)<br />

347 kHz<br />

PRL 77, 4887 (96)<br />

• Excellent agreement <strong>with</strong> theoretical<br />

predictions.<br />

• Not a trivial fringes washing out effect<br />

Calibration of the cavity field<br />

9.5 (0.1) photons<br />

Florence, Mai 2004 74


A laboratory version of the Schrödinger cat<br />

Field state after atomic detection<br />

1<br />

2<br />

( + )<br />

A coherent superposition of two<br />

"classical" states.<br />

Very similar to the Schrödinger cat<br />

An atom to probe field coherence<br />

Quantum interferences involving the<br />

cavity state<br />

First atom<br />

Φ<br />

−Φ<br />

D<br />

Second atom<br />

Decoherence will transform this<br />

superposition into a statistical mixture<br />

Slow relaxation: possible to study the<br />

decoherence dynamics<br />

Decoherence caught in the act<br />

Two indistinguishable <strong>quantum</strong> paths to<br />

the same final state:<br />

2Φ<br />

−2Φ<br />

Florence, Mai 2004 75


A decoherence study<br />

Atomic correlation signal<br />

Decoherence versus size of the cat<br />

Two-Atom Correlation Signal<br />

0.0 0.1 0.2<br />

n=3.3 δ/2π =70 <strong>and</strong> 170 kHz<br />

0 1 2<br />

t/T<br />

r<br />

0 1 2 PRL 77, 4887 (1996)<br />

τ/T<br />

r<br />

Florence, Mai 2004 76<br />

correlation signal<br />

correlation signal<br />

δ/2π =70 kHz<br />

20<br />

16<br />

n=5.5<br />

12<br />

8<br />

4<br />

0<br />

0 1 2<br />

20<br />

t/T<br />

r<br />

16<br />

12<br />

n=3.3<br />

8<br />

4<br />

0


Decoherence features<br />

• Faster than cavity relaxation<br />

• Faster when distance between states increases<br />

• Decoherence time scale depends upon a "macroscopicity" parameter<br />

• Directly linked to complementarity <strong>and</strong> entanglement (environment<br />

acquires information on the <strong>quantum</strong> system)<br />

Not a trivial relaxation mechanism, if described by st<strong>and</strong>ard relaxation theory<br />

Essential for <strong>quantum</strong> measurement<br />

meters are not in superposition states<br />

Difficulty for applications of QM<br />

the more complex the entangled state, the faster the decoherence<br />

Florence, Mai 2004 77


The ENS team<br />

• Permanent members<br />

– Serge Haroche, Michel Brune, Gilles Nogues, Jean-Michel Raimond<br />

• Thesis students<br />

– F. Bernardot, P. Nussenzveig, A. Maali, J. Dreyer, X. Maître, P.<br />

Domokos, G. Nogues, A. Rauschenbeutel, P. Bertet, S. Osnaghi, A.<br />

Auffeves, P. Maioli, T. Meunier, P. Hyafil, J. Mozley, S. Gleyzes<br />

• Post doctoral visitors<br />

– F. Schmidt-Kaler, E. Hagley, P. Milman, S. Kuhr<br />

• Theoretical collaborations<br />

– L. Davidovich, N. Zagury (Rio)<br />

– D. Vitali, P. Tombesi (Camerino)<br />

• Optical CQED<br />

– V. Lefèvre, J. Hare<br />

Florence, Mai 2004 78


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 79


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 80


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beamsplitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 81


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beamsplitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 82


• Hamiltonian<br />

A mechanical oscillator<br />

• Dimensionless coordinates<br />

• Creation <strong>and</strong> annihilation operators<br />

• Fock states<br />

• |0>: “vacuum” state<br />

Florence, Mai 2004 83


A mechanical oscillator<br />

• Fock states wavefunctions<br />

Florence, Mai 2004 84


A mechanical oscillator<br />

• Operators evolution in Heisenberg point of view<br />

– Annihilation operators evolves in the same way as the classical<br />

amplitude<br />

Florence, Mai 2004 85


A cavity field mode<br />

• Quadratic hamiltonian as in the case of mechanical oscillator (field is a<br />

collection of harmonic oscillators)<br />

• Photon annihilation <strong>and</strong> creation operators<br />

• Electric field operator<br />

– normalization factor (dimension of a field)<br />

– local polarization<br />

– relative field mode amplitude <strong>and</strong> polarization (1 at field maximum)<br />

a solution of Helmoltz equation <strong>with</strong> cavity limiting conditions<br />

• Heisenberg picture<br />

Florence, Mai 2004 86


Field normalisation<br />

• Energy of Fock states<br />

• Cavity mode volume<br />

Florence, Mai 2004 87


Case of an open Fabry Perot cavity<br />

• Field amplitude<br />

(a)<br />

Elastic blade<br />

Ring<br />

R<br />

L<br />

2w 0<br />

PZT<br />

• Free space field quantization: introduction of a fictitious quantization box.<br />

Volume goes to infinity. Here: a real “photon box”. Field per photon<br />

perfectly defined. No need for complex limit taking.<br />

Florence, Mai 2004 88


Field quadratures<br />

• Coordinates for a two-dimensional phase space (generalizes X <strong>and</strong> P)<br />

• Eigenstates are non-normalizable (position/momentum eigenstates)<br />

• Pictorial representation of wave-functions in phase space<br />

Florence, Mai 2004 89


Phase space representation<br />

• Vacuum <strong>and</strong> three photon states<br />

Xφ+π/2<br />

X π/2<br />

X π/2<br />

X φ<br />

φ<br />

X 0<br />

X 0<br />

(a)<br />

(b)<br />

Florence, Mai 2004 90


Fock states<br />

• Fock states have a zero expectation value for the electric field (prop to a)<br />

<strong>and</strong> the vector potential<br />

• Fock states have a non zero electromagnetic energy<br />

• Fock states cannot be interpreted in terms of a classical field: a first<br />

example of non-classical states<br />

Florence, Mai 2004 91


Coherent states<br />

• Fock states are utterly non-classical. Other states<br />

Displacement operator<br />

• Physical interpretation of the displacement operator<br />

– Glauber formula (valid when A, B commute <strong>with</strong> their commutator)<br />

Translation operator<br />

Along X 0<br />

Florence, Mai 2004 92


Coherent state as a displacement of vacuum<br />

X π/2<br />

α<br />

Imα<br />

Reα<br />

X 0<br />

• The coherent state is a displaced vacuum. Hence a minimum uncertainty<br />

state<br />

Florence, Mai 2004 93


Creating coherent field <strong>with</strong> a classical current<br />

• Classical current density coupled to the mode (at origin for the sake of<br />

simplicity)<br />

• Source cavity coupling<br />

• Neglect the two terms oscillating at twice cavity frequency (RWA)<br />

• State evolution<br />

• Recognize for<br />

• A classical current produces a displacement <strong>and</strong> a coherent state.<br />

Florence, Mai 2004 94


Displacement <strong>and</strong> annihilation operator<br />

• Action of the displacement on the annihilation: calculate<br />

writes<br />

With<br />

– Baker-Hausdorf Lemma<br />

– two terms only<br />

Florence, Mai 2004 95


Combination of displacements<br />

• Displacement of a coherent state<br />

• Quantum analogue of classical homodyning<br />

Florence, Mai 2004 96


• Again Glauber<br />

Fock states expansion of coherent states<br />

• Last term leaves vacuum invariant.<br />

• Exp<strong>and</strong> second term in power series <strong>and</strong> note that<br />

• Essential property<br />

• NB a non hermitic. Admits complex eigenvalues<br />

• Non zero electric field value (not the case for Fock state)<br />

Florence, Mai 2004 97


Photon number distribution<br />

•<br />

0.5<br />

p<br />

c<br />

(n)<br />

0.4<br />

(a)<br />

p<br />

c<br />

(n)<br />

0.08<br />

(b)<br />

0.3<br />

0.06<br />

0.2<br />

0.04<br />

0.1<br />

0.02<br />

0.0<br />

0 1 2 3 4 5 6 7 8<br />

n<br />

0.00<br />

0 5 10 15 20 25 30 35<br />

n<br />

Florence, Mai 2004 98


Pictorial representation of a coherent state<br />

• A simple qualitative phase space diagram<br />

Im α<br />

1<br />

| α|<br />

Φ<br />

∆Φ<br />

Re α<br />

n<br />

2<br />

= α ∆ n= n ∆N∆Φ ≈1<br />

Florence, Mai 2004 99


A basis of coherent states<br />

• Scalar product of coherent states<br />

• Overcomplete basis<br />

• No unique decomposition (zero is also a coherent state)<br />

Florence, Mai 2004 100


Coherent states wavefunctions<br />

• Use<br />

• Inject between exponentials closure on<br />

• is the wavefunction of vacuum in P representation<br />

• A gaussian along the real axis, <strong>with</strong> a modulation reflecting the translation<br />

along the imaginary axis. Probability distribution<br />

Florence, Mai 2004 101


Time evolution of a coherent state<br />

• Evolution of coherent state given by<br />

(b)<br />

Im α<br />

Recover classical trajectory<br />

Of amplitude in phase space<br />

ω c<br />

t<br />

Re α<br />

Florence, Mai 2004 102


Quasi-probability distributions<br />

• Give a quantitative status to the description of <strong>quantum</strong> states in phase<br />

space.<br />

• For classical fields, any state represented by a probability distribution in<br />

phase space (cf statistical physics)<br />

• For <strong>quantum</strong> states no analog (because of Heisenberg uncertainty<br />

limitations)<br />

• Possible to define quasi probability distributions in phase space. They<br />

contain all possible information on the <strong>quantum</strong> state but they may be<br />

negative or singular.<br />

• Use here two distributions<br />

– Q function (very pictorial but not very useful)<br />

– W function (Wigner distribution). Extremely useful <strong>and</strong> precious<br />

insights in <strong>quantum</strong> states<br />

Florence, Mai 2004 103


The Q function<br />

• Definition for an arbitrary state<br />

– For a pure state: square of the overlap <strong>with</strong> the coherent state<br />

• Alternative definition<br />

– Probability to get zero photons in a field displaced by –α. Leads to<br />

simple experimental schemes to measure Q<br />

• Q for a coherent state<br />

Florence, Mai 2004 104


Examples of Q functions<br />

• Five photons coherent state <strong>and</strong> two-photon Fock state<br />

-4 -2<br />

0<br />

Q<br />

2<br />

4<br />

0.3<br />

0.2<br />

0.1<br />

α ι<br />

-4<br />

-2<br />

0<br />

2<br />

α r<br />

0<br />

4<br />

-4 -2<br />

0<br />

2<br />

4<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

-4<br />

-2<br />

0<br />

2<br />

0<br />

4<br />

Florence, Mai 2004 105


Properties of the Q function.Link <strong>with</strong> characteristic function<br />

in anti-normal order<br />

Q(α) is a function ≥ 0, determined by « sweeping » phase space <strong>with</strong> a coherent state<br />

<strong>and</strong> attributing to each of its « positions » the expectation value in this state of the field<br />

density operator, divided by π .<br />

Another definition of Q: Fourier transform of the expectation value in the field state<br />

of the operator exp (-λ ∗ a) exp(λa + ) (characteristic function of the field in antinormal<br />

order):<br />

(ρ<br />

C )<br />

an<br />

(λ) = ∫∫ d 2 α Q (ρ ) (α) e λα * −λ * α<br />

= 1 π Tr ∫∫ d 2 αρα α e λα * −λ * α<br />

= 1 π Tr d 2 αρe −λ * a<br />

∫∫ α α e λa+<br />

= Tr ρ e −λ* a<br />

e λa + = e −λ* a<br />

e λa+ ρ<br />

(3 − 4)<br />

Operators in anti-normal (an) order<br />

<strong>and</strong> by inverse transformation (normalization checked by substituting in first line of (3-4)):<br />

Q (ρ ) (α) = 1 d 2 λ C (ρ)<br />

π 2<br />

an<br />

(λ) e λ* α −λα<br />

∫∫ *<br />

(3 − 5)<br />

Florence, Mai 2004 106


Wigner function: an insight into a <strong>quantum</strong> state<br />

A quasi-probability distribution in phase space.<br />

• Characterizes completely the <strong>quantum</strong> state<br />

• Negative for non-classical states.<br />

p<br />

Im(α)<br />

Describes the motion of a particle or<br />

a <strong>quantum</strong> single mode field<br />

Motion<br />

of a particle<br />

q<br />

Re(α)<br />

Electromagnetic<br />

field<br />

Florence, Mai 2004 107


Wigner function<br />

• Definition<br />

• By inverse Fourier transform<br />

• In particular<br />

• The probability distribution of x is obtained by integrating W over p<br />

• This property should obviously be invariant by rotation in phase space<br />

∫<br />

W q cosθ − p sin θ, q sinθ + p cosθ<br />

dp<br />

( )<br />

θ θ θ θ θ<br />

= P q = q Uˆ<br />

θ ˆ ρUˆ<br />

θ q<br />

( ) ( ) ( )<br />

†<br />

θ<br />

• All elements of density matrix derived from W: contains all possible<br />

information on <strong>quantum</strong> state.<br />

Florence, Mai 2004 108


Wigner function<br />

• Wigner function is normalized<br />

∫ dpdqW(q,p)=1<br />

• W may be negative. If cancels (nodes of<br />

wavefunction in x representation), W should have negative parts. Cannot<br />

be a full fledged probability distribution in all cases<br />

• W gives all averages of operators in symmetric ordering<br />

Tr ⎡⎣ ˆ ρ ( xp ˆˆ + px ˆˆ )/2 ⎤⎦ = ∫ dxdpW ( x,<br />

p)<br />

xp<br />

ˆ<br />

ˆ<br />

ˆ<br />

A =Tr[ρA]= ∫ dpdqW(q,p)f<br />

s(q,p)<br />

Florence, Mai 2004 109


A few Wigner functions<br />

• Vacuum<br />

• Coherent state<br />

• Fock state<br />

• Thermal field<br />

Florence, Mai 2004 110


Vacuum |0><br />

Examples of Wigner functions<br />

-2<br />

0<br />

2<br />

2<br />

Coherent state |β><br />

(β=1.5+1.5i)<br />

-4 -2 0 2 4<br />

2<br />

Thermal field n th<br />

=1<br />

-4 -2 0 2 4<br />

2<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

-2<br />

0<br />

2<br />

-1<br />

-2<br />

-4<br />

-2<br />

0<br />

2<br />

-1<br />

-2<br />

4 -4<br />

-2<br />

0<br />

2<br />

-1<br />

-2<br />

4 Fock state |1><br />

-2 0 2<br />

2<br />

-4<br />

5 photons Fock state<br />

4<br />

2<br />

0<br />

-2<br />

1<br />

0<br />

0<br />

-1<br />

-0.3<br />

-2<br />

2<br />

0<br />

-2<br />

-4<br />

-2<br />

0<br />

2<br />

Florence, Mai 2004 111<br />

4


A classicality criterion<br />

• A field whose Wigner function is positive can be understood as a classical<br />

field <strong>with</strong> fluctuations described by a classical probability distribution<br />

– Coherent states, thermal states<br />

• A field <strong>with</strong> negative W cannot be understood classically<br />

– Fock states<br />

Florence, Mai 2004 112


An alternative simple expression of W<br />

• Two simple expressions left as an exercise<br />

• Parity operator<br />

• +1 for even Fock states, -1 for odd Fock states<br />

• Leads to a very simple experimental determination of W<br />

L. Davidovich, Private comm<br />

Florence, Mai 2004 113


Wigner function in terms of the characteristic function<br />

• Definition. Symmetric ordering<br />

• D unitary<br />

• Coherent field<br />

• Fock state<br />

• Wigner function<br />

• Normal order characteristic function<br />

* 2<br />

• Relation <strong>with</strong> anti normal order ( ρ) λa<br />

λ a λ /2 ( ρ)<br />

C ( λ) Trρe + −<br />

= = e C ( λ)<br />

s<br />

an<br />

Florence, Mai 2004 114


Schrödinger cat states<br />

• An example of non-classical state<br />

– Quantum superposition of two coherent fields <strong>with</strong> opposite phases.<br />

– No classical counterpart<br />

X π/2<br />

– Evidence the coherence<br />

−β<br />

β<br />

X 0<br />

– Photon number distribution: only even photon numbers contribute<br />

(even cat)<br />

P(n)<br />

– Odd cat<br />

024<br />

– Eigenstates of <strong>with</strong> +1 <strong>and</strong> -1 eigenvalues<br />

13 5<br />

Florence, Mai 2004 115


Quadrature distributions<br />

• X wavefunction of the even cat<br />

– Sum of two gaussian<br />

• P distribution of the even cat<br />

– With<br />

– Modulation revealing coherence<br />

Florence, Mai 2004 116


Graphical interpretation of quadrature distributions<br />

(a) (b) (c)<br />

X π/2<br />

X 0<br />

X π/2 X π/2<br />

X ϕ<br />

X 0<br />

X 0<br />

Florence, Mai 2004 117


Q<br />

( β +−β<br />

)<br />

Q function of a cat<br />

1<br />

( α) =<br />

2<br />

[<br />

π +<br />

−2<br />

β<br />

2 (1 e )<br />

e<br />

2 2<br />

2 2<br />

−α−β<br />

− α+<br />

β<br />

+ e<br />

+ α β −α β<br />

− ( α + β )<br />

2e<br />

cos 2(<br />

1 2 2 1)]<br />

-4 -2<br />

0<br />

2<br />

4<br />

0.15<br />

0.1<br />

0.05<br />

-4<br />

-2<br />

0<br />

2<br />

0<br />

4<br />

Exponential suppression of interferences near the origin revealing cat coherence.<br />

Q function of a cat similar to one of a mixture.<br />

Q is not well adapted to displaying mesoscopic <strong>quantum</strong> superpositions<br />

Florence, Mai 2004 118


Wigner function of phase-cat states ( β real)<br />

W ( β +−β ) (α) =<br />

1<br />

2π 2 (1 + e −2β 2 )<br />

d 2 λ e (αλ* −α * λ)<br />

[ ∫∫ ( β D(λ) β + −β D(λ) −β + β D(λ) −β + −β D(λ) β )] (3− 26)<br />

W (coherence) (α) =<br />

« Incoherent » terms (sum of Wigner functions<br />

of the two states |β> <strong>and</strong> |-β>)<br />

Coherent interference<br />

cohérent terms<br />

(W (coherence) )<br />

1<br />

[ dλ<br />

2π 2 (1+ e −2β 2 1<br />

dλ 2<br />

e 2i(α 2λ 1<br />

−α 1<br />

λ 2<br />

)<br />

∫∫<br />

−β D(λ) β + term β →−β] )<br />

(3 − 27)<br />

we can write the matrix element < −β |D(λ)|β > as (assuming β real <strong>with</strong>out loss of generality):<br />

−β D(λ) β = e iβλ 2<br />

−β β + λ = exp[−2β(β + λ 1<br />

) − λ 1 2 /2− λ 2 2 /2] (3− 28)<br />

<strong>and</strong> from (3-27) <strong>and</strong> (3-28) we find Gaussian integrals in λ 1 <strong>and</strong> λ 2 , from which the expression of W<br />

can easily be derived (see next page):<br />

dλ 1<br />

dλ 2<br />

e 2i(α 2λ 1<br />

−α 1<br />

λ 2<br />

)<br />

∫∫ −β D(λ) β = ∫ dλ 1<br />

exp[− 1 2 (λ 1<br />

+ 2(β − iα 2<br />

)) 2 − 2α 22<br />

− 4iβα 2<br />

]<br />

× ∫ dλ 2<br />

exp[− 1 2 (λ 2<br />

+ 2iα 1<br />

) 2 − 2α 12<br />

] = 2π e −2 α 2 e −4iβα 2<br />

(3− 29)<br />

Florence, Mai 2004 119


Graphs of Wigner functions of coherent states <strong>and</strong> of<br />

Vacuum<br />

their superpositions<br />

-2<br />

0<br />

2<br />

2<br />

Phase cat | β>+|−β><br />

1<br />

0<br />

W ( β +−β ) (α) =<br />

1<br />

[ ] (3 − 30)<br />

π(1 + e −2β 2 ) e−2α −β 2 + e −2α + β 2 + 2e −2α 2 cos4βα 2<br />

-1<br />

2<br />

(β real here)<br />

2<br />

-2<br />

-2<br />

0<br />

(case β=3)<br />

The interference term around |α|=0 has<br />

negative parts. The integral along<br />

directions parallel to the α 1 axis<br />

corresponding to fixed α 2 vanishes for<br />

some values of α 2 : «dark fringes» of P π/2<br />

(α) (see Lectures 1 <strong>and</strong> 2)<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

Florence, Mai 2004 120<br />

-2<br />

-1<br />

α 1<br />

α 2<br />

0<br />

1<br />

1<br />

0<br />

-1<br />

2<br />

-2<br />

-4<br />

Statistical<br />

mixture of<br />

|β> <strong>and</strong> |−β><br />

-2<br />

0<br />

2<br />

4<br />

-2<br />

-1<br />

0<br />

1<br />

1<br />

0<br />

-1<br />

2 -2<br />

2


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beamsplitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 121


The problem<br />

• The field mode (system S) is coupled to a complex environment E<br />

– Charge carriers in the mirrors, other propagating modes coupled by<br />

mirror defects<br />

• The S+E system undergoes an hamiltonian evolution <strong>and</strong> is described by<br />

a pure state<br />

• The environment state is not accessible. We are interested only in the<br />

system’s reduced density matrix<br />

• Find the evolution equation of system’s density matrix.<br />

Florence, Mai 2004 122


The Kraus approach<br />

• Any mapping of a density matrix onto another density matrix (completely<br />

positive <strong>quantum</strong> map) can be put (non unambiguously) under the form<br />

– With a number of Kraus operators at most N² (N dimension of Hilbert<br />

space)<br />

• Assume that evolution ruled by a differential equation: mapping between<br />

ρ(t) <strong>and</strong> ρ(t+dt) (Markov approximation)<br />

• M i depends only upon dt if we assume that environment state not<br />

appreciably modified by system’s evolution (Born approximation)<br />

Florence, Mai 2004 123


Kraus cont’d<br />

• One of the operators is order zero in dt. Without loss of generality<br />

– (H <strong>and</strong> K hermitian) <strong>and</strong><br />

• As we get<br />

• Hence, H identified <strong>with</strong> the hamiltonian<br />

• Relaxation modelled by a Liouvillian in Lindbladt form<br />

Florence, Mai 2004 124


Physical interpretation of the L i<br />

• Evolution of a wavefunction during dt<br />

– Either system unchanged or (<strong>with</strong> a probability of order dt) evolution<br />

towards a wavefunction<br />

– L i describes the system evolution when some event occurs in the<br />

environment (eg apparition or disparition of a photon in the<br />

environment).<br />

– L i : “jump operator” (cf Monte carlo approach)<br />

– Underlying model: continuous monitoring of the environment. Change<br />

in the environment reflected by the action of one jump operator onto<br />

the system<br />

Florence, Mai 2004 125


• Jump operators<br />

Application to the cavity case<br />

– Zero temperature cavity: only event escape of one photon from the<br />

cavity, detected in the environment.<br />

• Associated jump operator a (annihilation operator) <strong>with</strong>in a<br />

normalization factor<br />

– Finite temperature cavity: also transfer of a thermal photon from the<br />

environment into the cavity.<br />

• Associated jump operator α a + (creation operator)<br />

• Complete Lindblad form:<br />

Florence, Mai 2004 126


A more st<strong>and</strong>ard approach<br />

• A simple environment model: collection of harmonic oscillators spanning a<br />

large frequency interval, weakly <strong>and</strong> linearly coupled to cavity mode (final<br />

result is model independent)<br />

• Cavity-environment hamiltonian<br />

• Interaction representation vs free hamiltonians<br />

• Many modes between ∆ <strong>and</strong> ∆+d∆, average coupling g(∆), “coupling<br />

density (proportional to g <strong>and</strong> mode density) γ(∆)<br />

Florence, Mai 2004 127


Evolution of density matrix<br />

• Global <strong>and</strong> reduced evolution equations<br />

• Second order expansion<br />

• Assume cavity <strong>and</strong> environment initially uncorrelated<br />

• Assume reservoir state unchanged (Born approx)<br />

• All first order terms cancel. Only second order contributions. 16 terms…<br />

Florence, Mai 2004 128


One term out of 16<br />

• One of the terms when developing second order onto the F operators<br />

• Equation of evolution for cavity density matrix<br />

• Large frequency span of reservoir. K has a short time memory. Markov<br />

approximation<br />

Florence, Mai 2004 129


• Gathering all terms<br />

Final Liouville-Lindblad equation<br />

• Same form as from Kraus approach.<br />

• More cumbersome approach but finer underst<strong>and</strong>ing of underlying<br />

mechanisms<br />

• Same equation for all environment models (eg two level <strong>atoms</strong>) provided<br />

large environment, wide frequency range <strong>and</strong> linear coupling<br />

• A trustable equation for relaxation, depending upon a single, classically<br />

measurable, parameter: cavity quality factor Q<br />

Florence, Mai 2004 130


Heisenberg picture: Langevin forces<br />

• Evolution of field operators in the Heisenberg approach<br />

• Classical damping of a (evolves as classical damped field amplitude) plus<br />

additional noise term. Brownian motion preserving commutation relations.<br />

• Leads to simple physical pictures of the evolution<br />

Florence, Mai 2004 131


Application: photon number distribution relaxation<br />

• Evolution of diagonal density matrix terms<br />

• Steady state solution: detailed balance condition<br />

• variance<br />

Florence, Mai 2004 132


Thermal field vs coherent field<br />

Florence, Mai 2004 133


Fock states lifetime<br />

• Single photon lifetime (at zero temperature)<br />

• κ -1 =T c The classical field energy damping time<br />

• |n> lifetime : T c /n<br />

• A simple effect but also a decoherence effect (fast relaxation of a nonclassical<br />

field)<br />

• Relaxation of coherent states can be obtained by a complex algebraic<br />

derivation. Here, simpler to use the Monte Carlo approach or a simple<br />

beam-splitter model (later on)<br />

Florence, Mai 2004 134


Quantum Monte Carlo trajectories<br />

• Model the relaxation in terms of stochastic wavefunctions.<br />

• Instead of tracing the environment, assume that it is (virtually) monitored.<br />

Continuous measurement of photon escapes for cavity by an array of<br />

detectors in the environment. At any time, the system is described by a<br />

wavefunction.<br />

• Two kind of evolutions<br />

– Jumps when an environment detector ‘clicks’<br />

– Non-unitary evolution between clicks. Not detecting a photon gives<br />

some hints that the cavity might be empty. The longer the time interval<br />

for no detection, the higher the probability that the cavity is empty. A<br />

no-detection gives information on the system, albeit more ambiguous<br />

than a click.<br />

• System density matrix recovered by averaging wavefunctions over very<br />

many trajectories.<br />

• A rigorous derivation based on Kraus approach.<br />

• Here: give the recipe <strong>and</strong> check consistent <strong>with</strong> Lindblad<br />

Florence, Mai 2004 135


Quantum Monte Carlo: general principle<br />

• During dt probability for a jump described by L i<br />

• Total jump probability<br />

• Wavefunction evolution if jump L i<br />

• Evolution if no jump<br />

– With<br />

• Iterate over time following this procedure. At each step, choose r<strong>and</strong>omly<br />

jump/no jump <strong>and</strong> L i if jump<br />

• Extremely efficient numerically for large systems (cold <strong>atoms</strong>)<br />

Florence, Mai 2004 136


Equivalence <strong>with</strong> Lindblad<br />

• Average over very many trajectories the projector on wavefunction.<br />

Evolution equation:<br />

• Replace jump <strong>and</strong> no-jump wavefunctions by their expression <strong>and</strong> get<br />

• St<strong>and</strong>ard Lindblad form associated <strong>with</strong> L i .<br />

Florence, Mai 2004 137


Case of cavity relaxation at zero temperature<br />

• Jump operators proportional to a<br />

• Jump probability per unit time<br />

– Obvious interpretation in terms of photon loss<br />

• Effective hamiltonian (interaction <strong>with</strong> respect to cavity hamiltonian)<br />

– Proportional to photon number<br />

• No-jump evolution<br />

Florence, Mai 2004 138


Relaxation of a Fock state<br />

• Fock state is an eigenstate of the no-jump evolution. Invariant in the nojump<br />

periods<br />

• Photon number decreases by one at each jump<br />

• Staircase decrease of the photon number. R<strong>and</strong>om step times<br />

• Ordinary exponential relaxation of energy recovered by averaging many<br />

trajectories.<br />

• Photon number variance zero initially <strong>and</strong> at long times. Maximum during<br />

evolution due to dispersion in jumps timing.<br />

Florence, Mai 2004 139


Relaxation of a coherent state<br />

• Coherent state eigenstate of jump operator. No evolution when jump ie<br />

photon detected in the environment. Counterintuitive<br />

– Loosing a photon reduces the photon number but<br />

– Seeing a photon gives an indication that the field amplitude is nonzero.<br />

Results in an increase of average photon number which exactly<br />

compensates the effect above.<br />

• Evolution between jumps only. Deterministic evolution. System remains at<br />

any time in a pure state<br />

• Evolution under the free cavity hamiltonian <strong>and</strong><br />

• Amounts to adding an imaginary part to<br />

• frequency ω+ικ/2<br />

Florence, Mai 2004 140


Relaxation in terms of characteristic functions<br />

• A simple result for the normal order characteristic function for a zero<br />

temperature relaxation. Very useful for relaxation of Schrödinger cats.<br />

Consider formally λ <strong>and</strong> λ* as<br />

Independent variables<br />

• Transforms Lindblad equation into a differential equation for C n<br />

– Associate formally a C n function to all combinations of ρ <strong>with</strong> a, a +<br />

(terms in the Lindblad equation)<br />

– Show that<br />

Florence, Mai 2004 141


Equation for C n<br />

• Substitution in Lindblad<br />

• Explicit solution<br />

• Extremely simple solution. Obtain it by characteristic method of check<br />

validity by direct substitution<br />

Florence, Mai 2004 142


Relaxation of a Schrödinger cat<br />

• Zero temperature evolution of a cat<br />

Florence, Mai 2004 143


Relaxation of a Schrödinger cat<br />

• Identify C n (t) <strong>with</strong> a density matrix<br />

• Damping of non diagonal terms <strong>with</strong> a rate 2κ|α|². Lifetime of the<br />

mesoscopic coherent Tc/2n. A typical decoherence effect (much more on<br />

that later)<br />

Florence, Mai 2004 144


Underst<strong>and</strong>ing fast decoherence<br />

• Decoherence time scale much shorter than energy lifetime.<br />

• Monte carlo approach: <strong>quantum</strong> jumps due to the action of a operator<br />

• A jump changes the parity of the cat <strong>with</strong>out changing the components<br />

amplitudes<br />

• A no-jump slightly reduces the components amplitudes <strong>with</strong>out affecting<br />

parity.<br />

• Average over many trajectories: washing out of parity information in a<br />

time typical of first photon escape ie Tc/n.<br />

• Fast evolution towards a statistical mixture<br />

• Then slow evolution (no jump terms) towards vacuum<br />

• Parity jumps can be corrected. Idea of a feedback method (feeding cats<br />

<strong>with</strong> <strong>quantum</strong> food) More later.<br />

Florence, Mai 2004 145


Decoherence in the Wigner point of view<br />

• Equation for Wigner function<br />

• Fokker planck equation. Drift to origin (damping of amplitude) <strong>and</strong><br />

diffusion.<br />

• Cat: fringes near origin <strong>with</strong> spacing 1/β. Washed out by diffusion process<br />

faster <strong>and</strong> faster when amplitude increases<br />

• Note: explicit solution (<strong>with</strong> κ=1)<br />

Florence, Mai 2004 146


Illustrated cat relaxation<br />

Florence, Mai 2004 147


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beam-splitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 148


Beamsplitters<br />

• A semi transparent plate couples two propagating modes <strong>with</strong> the same<br />

polarization. Which <strong>quantum</strong> operations<br />

• An equivalent model: a fibre coupler<br />

• Classical amplitudes transformations<br />

Florence, Mai 2004 149


A simple <strong>quantum</strong> model<br />

• Models wave packet ‘collision’ on the beamsplitter<br />

• Transient linear coupling of the two modes <strong>with</strong> hamiltonian<br />

• Operators evolution in Heisenberg point of view<br />

– With Baker-Hausdorf lemma<br />

Florence, Mai 2004 150


A simple <strong>quantum</strong> model<br />

• With <strong>and</strong> group odd <strong>and</strong> even terms,<br />

proportional to a <strong>and</strong> b, in factor of expansions of cosθ <strong>and</strong> sinθ<br />

• Similarly<br />

• Mode annihilation operators transform as classical field amplitudes<br />

• Taking conjugate <strong>and</strong> <strong>with</strong><br />

• Examine now (in Schrödinger point of view) the action of the beamsplitter<br />

on simple states<br />

Florence, Mai 2004 151


Action on simple states<br />

• Mode b always in vacuum to start <strong>with</strong><br />

• Mode a in vacuum<br />

– Output state |0,0><br />

• Mode a in |1><br />

• Case of a balanced beam-splitter (θ=π/4)<br />

• Creation of an entangled state of the two modes (of EPR type)<br />

Florence, Mai 2004 152


• Fock state input<br />

Action on simple states<br />

• Massively entangled two mode state. Superposition of all possible<br />

partitions<br />

Florence, Mai 2004 153


• Coherent input<br />

Action on simple states<br />

• Two unentangled coherent outputs. Amplitudes follow the classical laws.<br />

• Coherent states impervious to entanglement <strong>with</strong> other modes<br />

• Important consequences for their relaxation<br />

Florence, Mai 2004 154


Action on simple states<br />

• Modes a <strong>and</strong> b contain a single photon<br />

• Case of a balanced beamsplitter θ=π/4<br />

• Both photons emerge in the same mode (M<strong>and</strong>el dip). A genuinely<br />

<strong>quantum</strong> effect. A direct manifestation of bosonic nature of photons.<br />

Destructive <strong>quantum</strong> interference between the direct <strong>and</strong> exchange paths<br />

cancels the probability for having one photon in each output<br />

Florence, Mai 2004 155


A partial Bell state analyzer<br />

• Each mode sustains two orthogonal polarizations H or V.<br />

• Assume splitting amplitudes independent of polarization<br />

• Two impinging photons. Four Bell states HH+/-VV, HV+/-VH<br />

• Three symmetric Bell states. The two photons emerge in the same path<br />

as for HH or VV<br />

• One antisymmetric polarization state HV-VH. Global state must be<br />

symmetric. Only possibility: antisymmetric mode combination. One photon<br />

in each output path.<br />

• Can be checked easily by an explicit calculation along the same lines left<br />

as an exercise<br />

• A possibility to distinguish one Bell state among four.<br />

• Teleportation, entanglement swapping experiments based on this<br />

process.<br />

Florence, Mai 2004 156


• Two interfering paths<br />

• Coherent state input<br />

Mach-zehnder: a <strong>quantum</strong> interferometer<br />

• After B 1<br />

• Dephaser<br />

• After B 2<br />

• Final photon count<br />

• Obviously the classical result<br />

• However phase of the incoming<br />

field plays no role. Same interference<br />

Pattern <strong>with</strong> a Fock state<br />

Florence, Mai 2004 157


Interferences <strong>with</strong>out phase: Fock state input<br />

• n photons Fock state as input<br />

• Final state<br />

• (action of a tunable beam-splitter on the Fock state)<br />

• Partition of the n photons in the two output ports <strong>with</strong> probabilities<br />

• Only the relative phase of the two interfering paths is important. The initial<br />

coherence plays no role. Same interference pattern <strong>with</strong> coherent states<br />

<strong>and</strong> single photon input.<br />

• A photon always interferes <strong>with</strong> itself (Dirac)<br />

Florence, Mai 2004 158


Single photon interferences in a Mach Zehnder<br />

• From Grangier et al 1986<br />

Florence, Mai 2004 159


Sensitivity of the interferometer<br />

• Quantum (shot noise) limits for the detection of small phases<br />

• Fock state input. Noise on the a detector<br />

• Sensitivity: η, inverse of the smallest dephasing changing the output<br />

photon number by more than these flucutations<br />

• Independent of phase. At fringes extrema, no variation of N <strong>with</strong> φ, but no<br />

noise either<br />

Florence, Mai 2004 160


• Coherent input<br />

Sensitivity of the interferometer<br />

• At φ=π/2 times larger than for Fock states<br />

• Initial photon number fluctuations add up <strong>with</strong> partition noise<br />

• Sensitivity<br />

• Optimum sensitivity on a dark fringe (no influence of input<br />

noise)<br />

• Same optimum sensitivity as for a Fock state.<br />

• Improved sensitivity in 1/N possible <strong>with</strong> non-linear beam splitters (n<br />

photons follow all path a or b)<br />

• Realizations <strong>with</strong> two photon states in the optical domain <strong>and</strong> ‘simulation’<br />

<strong>with</strong> ions in a trap<br />

Florence, Mai 2004 161


Homodyne field measurement<br />

• Another application of the beamsplitter. Mixes a large coherent input <strong>with</strong><br />

a <strong>quantum</strong> field. Large transmission T=cos²θ<br />

• First term= LO intensity. Can be substracted. Second term negligible if LO<br />

intense enough<br />

• Last term<br />

• Direct measurement of the <strong>quantum</strong> field<br />

Quadrature<br />

At the heart of tomographic field measurements<br />

Florence, Mai 2004 162


An insight into coherent field relaxation<br />

• A simple relaxation model in terms of beamsplitters. Mode a coupled to<br />

very many other modes b i . Coupling hamiltonian:<br />

• Action of H i during a small time interval : equivalent to coupling a <strong>with</strong><br />

modes b i by small reflection beamsplitters<br />

• Action of one of the couplings<br />

• Sum up independently all weak couplings<br />

• Mode a contains still a coherent state <strong>with</strong> a reduced amplitude.<br />

Reduction apparently quadratic in δτ. Deceptive.<br />

Florence, Mai 2004 163


An insight into coherent field relaxation<br />

• Large density of environment modes. Number of relevant ones for a time<br />

interval δτ of the order of 1/δτ<br />

• Rewrite as:<br />

• Decrease of a amplitude linear in δτ. Sum up time intervals, assuming<br />

that the environment modes remain in the same initial state (Born approx)<br />

• Recover coherent state relaxation. Note also that the environment modes<br />

contain at time t tiny coherent states (useful later for cat relaxation)<br />

• Obtained from mere energy conservation<br />

Florence, Mai 2004 164


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beamsplitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 165


A two-level atom<br />

Level scheme<br />

|e〉<br />

ω eg<br />

|g〉<br />

Equivalent to a spin ½<br />

e =+ g =−<br />

Pauli matrices<br />

⎛1 0 ⎞ ⎛0 1⎞<br />

= ⎜ ⎟ σ<br />

⎝0 −1<br />

x<br />

= ⎜ ⎟<br />

⎠ ⎝1 0⎠<br />

1<br />

±<br />

x<br />

= ( + ± − )<br />

2<br />

σ z<br />

σ<br />

y<br />

⎛0<br />

−i⎞<br />

= ⎜ ⎟<br />

⎝i<br />

0 ⎠<br />

Florence, Mai 2004 166


Bloch sphere<br />

• Most general state + u . Correspondence between states <strong>and</strong> point on a<br />

unit radius sphere<br />

• Analogous to the Poincaré polarization sphere<br />

Florence, Mai 2004 167


A two-level atom<br />

• Raising <strong>and</strong> lowering operators<br />

{ σ σ }<br />

, 1<br />

− +<br />

=<br />

• Free hamiltonian<br />

H<br />

ωeg<br />

= σ<br />

z<br />

2<br />

• Dipole operator<br />

(<br />

*<br />

)<br />

a − a +<br />

D= d ε σ + ε σ<br />

Florence, Mai 2004 168


• Global hamiltonian<br />

Atom-cavity coupling<br />

• Four terms, two of which are anti-resonant: RWA<br />

Vacuum Rabi<br />

frequency<br />

• Jaynes <strong>and</strong> Cumming model (63)<br />

• Atom-cavity detuning<br />

• Uncoupled atom-cavity levels<br />

Florence, Mai 2004 169


Uncoupled atom-cavity levels<br />

• At low detunings, grouped in multiplicities<br />

• Couplings only inside the multiplicities<br />

• g,0 isolated. Impervious to atom-cavity<br />

coupling<br />

• Interaction representation<br />

– Energy origin at manifold center<br />

• Complete hamiltonian<br />

• In matrix form<br />

• Easy diagonalisation: dressed levels<br />

Florence, Mai 2004 170


The dressed levels<br />

• Eigenstates of the whole atom-field hamiltonian<br />

• In general complex expressions. Two simple cases<br />

– Resonance<br />

– Far off resonance<br />

Florence, Mai 2004 171


The resonant case<br />

• Atom-cavity at exact resonance<br />

|e,2><br />

|g,3><br />

Ω<br />

3<br />

|+,2><br />

|-,2><br />

• A doublet for the weak excitation<br />

from the ground state (the<br />

vacuum Rabi splitting<br />

• e <strong>and</strong> g are no longer<br />

eigenstates: a <strong>quantum</strong> Rabi<br />

oscillation between these levels<br />

|e,1><br />

|g,2><br />

|e,0><br />

|g,1><br />

|g,0><br />

Ω<br />

Ω<br />

2<br />

"vacuum Rabi<br />

splitting"<br />

|-,1><br />

|+,0><br />

|-,0><br />

Florence, Mai 2004 172


The <strong>quantum</strong> Rabi oscillation<br />

• An atom initially in e in a n-photon Fock state. Assumed at r=0 f=1<br />

• Atom initially in g<br />

• A Rabi oscillation between the two uncoupled levels.<br />

• Exists even when cavity empty (atom in e only)<br />

• Creates atom-cavity entanglement (much more on that later)<br />

Florence, Mai 2004 173


The vacuum Rabi splitting<br />

• Equivalent to the normal mode splitting for two coupled oscillators.<br />

Observed for an atom in an optical cavity <strong>and</strong> for excitons in a<br />

semiconducting cavity<br />

Kimble et al<br />

1992<br />

Weisbuch et al 92<br />

Florence, Mai 2004 174


Non resonant case<br />

• Position of dressed levels as a function of detuning<br />

Energy<br />

|+,n〉<br />

|e,n〉<br />

0<br />

hΩ<br />

|-,n〉<br />

|g,n+1〉<br />

-3 -2 -1 0 1 2 3 4<br />

∆ c<br />

/Ω<br />

Florence, Mai 2004 175


Large atom-field detuning case<br />

• Large atom-cavity detuning. Assumes also atom at rest at cavity centre<br />

Lamb shift + light shift<br />

Atomic ior effect<br />

Florence, Mai 2004 176


Action of an atom on a coherent field<br />

• Define an effective hamiltonian for shifts<br />

• Apply to<br />

• The atom (<strong>quantum</strong> system) controls the classical phase of the field<br />

• At the heart of Schrödinger cat states generation<br />

Florence, Mai 2004 177


Taking into account atomic motion<br />

• Up to now atom fixed. Real <strong>atoms</strong> cross gaussian mode<br />

• No simple expressions. Only resonant <strong>and</strong> far off resonant case<br />

– Resonant case<br />

– All expressions obtained at r=0 remain valid when replacing real time<br />

by the effective interaction time taking account mode geometry<br />

Florence, Mai 2004 178


Taking into account atomic motion<br />

– Non resonant case<br />

– Use effective hamiltonian, proportional to f²<br />

– The r=0 results also valid when using the effective interaction time<br />

– Note that resonant <strong>and</strong> non-resonant effective interaction times are<br />

not equal<br />

Florence, Mai 2004 179


Large field limit: classical field on a spin 1/2<br />

• Coupling <strong>with</strong> a very large coherent field α (not part of dynamics)<br />

• Interaction representation <strong>with</strong> respect to cavity frequency<br />

• Remove time dependence by going to rotating frame<br />

• In terms of Pauli matrices<br />

Florence, Mai 2004 180


Rabi rotation on the Bloch sphere<br />

• A geometrical interpretation<br />

– Any point on the Bloch<br />

sphere can be reached<br />

from + by interaction <strong>with</strong><br />

the proper field for the<br />

proper time.<br />

– Any component of the<br />

spin can be measured<br />

<strong>with</strong> a +/- detector <strong>with</strong> a<br />

prior rotation<br />

Florence, Mai 2004 181


• π/2 resonant pulse<br />

A few resonant pulses<br />

• π resonant pulse<br />

• 2π resonant pulse<br />

– Note sign change<br />

Florence, Mai 2004 182


The Ramsey interferometer<br />

• Two π/2 pulses <strong>with</strong> zero<br />

Phase <strong>and</strong> a depasing element<br />

Transient atomic level energy<br />

Shifts producing an atomic phase<br />

R 1<br />

Dep.<br />

R 2<br />

Evident analogy <strong>with</strong> a MZ<br />

Interference between two <strong>quantum</strong> paths<br />

Florence, Mai 2004 183


Another way of sweeping phase<br />

• Do not change atomic phase but change relative phase of pulses<br />

• Two independent sources<br />

• A same source, slightly offset from the atomic frequency (negligible offset<br />

for the interaction <strong>with</strong> a single pulse)<br />

• An essential method for high resolution spectroscopy. Long interrogation<br />

times <strong>with</strong>out long interaction <strong>with</strong> the source<br />

• At the heart of all atomic clocks<br />

Florence, Mai 2004 184


Ramsey fringes <strong>with</strong> cold <strong>atoms</strong><br />

• A cold <strong>atoms</strong> experiment for high stability clocks<br />

Florence, Mai 2004 185


A spin interferometer<br />

Two rotations of the spin around different axes through two timeseparated<br />

interactions <strong>with</strong> classical fields<br />

z<br />

z<br />

z<br />

x<br />

y<br />

R<br />

y<br />

y<br />

(π/ 2) R φ<br />

(π/ 2)<br />

x<br />

x<br />

y<br />

•Two Stern <strong>and</strong> Gerlach devices<br />

•Polarizer <strong>and</strong> analyzer<br />

•Final detection probability depends upon the relative phase of the pulses<br />

1.0<br />

0.8<br />

0.9<br />

g<br />

0.6<br />

0.6<br />

P g<br />

0.4<br />

0.3<br />

0.2<br />

0.0<br />

0 200 400 600 800<br />

0.0<br />

Fréquence relative (kHz)<br />

0 10 20 30 40 50 60<br />

Fréquence relative (kHz)<br />

Florence, Mai 2004 186


Rabi oscillation in a mesoscopic field<br />

• Intermediate regime of a few tens of photons. A first insight<br />

• A simple theoretical problem<br />

• A surprisingly complex behavior<br />

Florence, Mai 2004 187


Collapse <strong>and</strong> revival<br />

• Collapse: dispersion of field amplitudes due to dispersion of photon<br />

number<br />

• Revival: rephasing of amplitudes at a finite time such that oscillations<br />

corresponding to n <strong>and</strong> n+1 come back in phase<br />

• Revival is a genuinely <strong>quantum</strong> effect<br />

Florence, Mai 2004 188


Atomic relaxation<br />

• Atomic density matrices<br />

1 <br />

ρ = ⎡ 1 + n . σ ⎤<br />

2 ⎣ ⎦<br />

det ( ρ ) = (1/4)(1- n 2 ) ≥ 0<br />

<br />

n ≤ 1<br />

<br />

n = 1<br />

<br />

n < 1<br />

Pure case<br />

Statistical mixture<br />

• Geometrical representation: points inside the Bloch sphere<br />

• Ambiguity of representation<br />

<br />

n= λn + (1 −λ)<br />

n<br />

1 2<br />

→ ρ = λρ + (1 −λ)<br />

ρ<br />

1 2<br />

Florence, Mai 2004 189


Spontaneous emission relaxation<br />

• Emission from e to g (inside the two level system)<br />

• Stationary state at finite temperature<br />

Florence, Mai 2004 190


Spontaneous emission in a Monte Carlo process<br />

• Use the Monte Carlo approach. Atom in e, zero temperature<br />

• One jump operator (lowering)<br />

• Getting no jump decreases the probability for finding the atom in e<br />

• Continuous evolution as<br />

• Until a jump suddenly reduces wavepacket in g<br />

Florence, Mai 2004 191


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beamsplitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 192


General scheme of the experiments<br />

Rev. Mod. Phys. 73, 565 (2001)<br />

Florence, Mai 2004 193


Circular Rydberg <strong>atoms</strong><br />

High principal <strong>quantum</strong> number<br />

Maximal orbital <strong>and</strong> magnetic <strong>quantum</strong><br />

numbers<br />

• Long lifetime<br />

• Microwave two-level transition<br />

• Huge dipole matrix element<br />

• Stark tuning<br />

• Field ionization detection<br />

– selective <strong>and</strong> sensitive<br />

51 (level e)<br />

51.1 GHz<br />

50 (level g)<br />

54.3 GHz<br />

• Velocity selection<br />

– Controlled interaction time<br />

– Well known sample position<br />

Atoms individually addressed<br />

(centimeter separation between <strong>atoms</strong>)<br />

Full control of individual transformations<br />

Complex preparation (53 photons ! )<br />

Stable in a weak directing electric field<br />

Florence, Mai 2004 194


Circular states wavefunction<br />

• Simple expression (maximal <strong>quantum</strong> numbers spherical harmonic)<br />

Florence, Mai 2004 195


A classical atom<br />

• All <strong>quantum</strong> numbers are large. Most properties can be calculated by<br />

classical arguments (correspondence principle)<br />

• Eg: stark polarizability <strong>and</strong> ionisation threshold (atomic units used)<br />

– Using<br />

– Weak field limit exp<strong>and</strong> first equation<br />

– In natural units, polarizability of 50 -2MHz/(V/cm)². -255kHz/(V/cm)²<br />

differential on the 50 to 51 transition<br />

Florence, Mai 2004 196


• Ionization threshold<br />

A classical atom<br />

– Eliminate radius in the system: closed equation for θ<br />

– First term has a maximum, 0.2, obtained for<br />

– Ionization threshold<br />

– 165 <strong>and</strong> 152 V/cm for 50 <strong>and</strong> 51. Good agreement <strong>with</strong> measured<br />

values<br />

Florence, Mai 2004 197


A classical atom<br />

• Spontaneous emission lifetime<br />

– Radiation reaction force<br />

– Angular momentum equation<br />

– Average on long times <strong>and</strong> note (integration by parts)<br />

– Circular to circular transition corresponds to one unit angular<br />

momentum<br />

– Exact agreement <strong>with</strong> <strong>quantum</strong> value<br />

Florence, Mai 2004 198


52 F m=2<br />

Circular state preparation<br />

n=52 in 2.5 V/ cm<br />

Circular<br />

states<br />

52<br />

π<br />

σ<br />

1.26 µm<br />

5D<br />

776 nm<br />

250 MHz<br />

•Three diode laser steps<br />

51<br />

•Stark switching to the lower Stark level m=2<br />

•Adiabatic 250 MHz transitions to the circular state<br />

•Final microwave transition in a high field: 'purification'<br />

5P<br />

σ<br />

780 nm<br />

5S<br />

Florence, Mai 2004 199


Working <strong>with</strong> single <strong>atoms</strong><br />

Method<br />

Pros <strong>and</strong> cons<br />

• Weak excitation of the atomic beam:<br />

Poisson statistics for the atom<br />

number in each sample<br />

• Finite detection efficiency: 40%<br />

No deterministic preparation of single<br />

atom samples<br />

Brute force approach:<br />

Prepare much less than one (0.1) atom<br />

on the average<br />

Extremely easy to achieve<br />

Long data taking times, growing<br />

exponentially <strong>with</strong> atomic samples<br />

count<br />

• 1 sample (1 atom): 10 minutes<br />

• 2 samples: Hours<br />

• 3 samples: Days<br />

• 4 samples: Weeks (not very practical)<br />

When an atom is detected, low<br />

probability for an undetected second<br />

one: single atom samples<br />

Florence, Mai 2004 200


Velocity selection<br />

Doppler selective optical pumping<br />

55°<br />

Atomic<br />

beam<br />

L 1<br />

L 2<br />

L 3<br />

85<br />

Rb<br />

Time of flight<br />

• Pulsed laser selection of F=3 (2 µs)<br />

• Pulsed Rydberg excitation (2 µs)<br />

• Improvement of velocity selection<br />

1.0<br />

410.6 +/- 1 m/s 432 +/- 1 m/s<br />

0.8<br />

δ<br />

δ<br />

F'=4<br />

120 MHz 5P 3/ 2<br />

F'=3<br />

63 MHz<br />

F'=2<br />

29 MHz<br />

F'=1<br />

Normalized atomic flux<br />

0.6<br />

0.4<br />

0.2<br />

L 1 L 2 L 3<br />

7000<br />

6000<br />

5000<br />

0.0<br />

390 400 410 420 430 440 450<br />

Velocity (m/s)<br />

5S<br />

F=3<br />

F=2<br />

Atoms flux<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

∆v=15 m/s<br />

0 200 400 600 800<br />

Atomic velocity (m/s)<br />

• Final width: 2 m/s.<br />

• Position of atomic sample known<br />

<strong>with</strong>in 1mm<br />

Florence, Mai 2004 201


Field ionization detection<br />

D e<br />

D g<br />

Electrostatic<br />

Ionization signals<br />

n=52<br />

0.6 K<br />

lenses<br />

n=51<br />

n=50<br />

4.2 K<br />

125 V/ cm 136 V/ cm 148 V/ cm<br />

Field<br />

77 K<br />

Electron<br />

Multipliers<br />

• Detection efficiency 40%<br />

• Error rate 4%<br />

• Dark counts: negligible<br />

Counting Electronics<br />

Florence, Mai 2004 202


Superconducting cavity<br />

Design<br />

Highly polished niobium Mirrors<br />

• Open Fabry Perot cavity <strong>with</strong> a<br />

"photon recirculating ring"<br />

• Compatible <strong>with</strong> a static electric field<br />

(circular state stability <strong>and</strong> Stark<br />

tuning)<br />

• Very sensitive to geometric quality of<br />

mirrors<br />

Cavity Damping time: 1 ms<br />

Field energy (db)<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

-2 0 2 4 6 8 10<br />

Florence, Mai 2004 203<br />

time (ms)


Tuning system<br />

• 15 MHz range Sub Hz sensitivity<br />

Florence, Mai 2004 204


Two cavity modes<br />

• Two modes <strong>with</strong> the same geometry <strong>and</strong> orthogonal linear polarizations<br />

• Degenerate in an ideal cavity<br />

• Mirrors imperfections lift this degeneracy:<br />

– Two modes M a <strong>and</strong> M b <strong>with</strong> a frequency splitting 80-130 kHz<br />

– Atom can be tuned at resonance <strong>with</strong> either mode via Stark tuning<br />

Florence, Mai 2004 205


Determination of cavity Q<br />

Cavity width: 100 Hz<br />

Peak transmission –80 dB<br />

Millimeter-wave vector network analyzer<br />

(ABmm)<br />

•120 dB dynamical range<br />


Ring <strong>and</strong> coherent atomic state manipulations<br />

• Use classical microwave sources to<br />

manipulate atomic state before or<br />

after interaction <strong>with</strong> the mode<br />

S<br />

• Small access <strong>and</strong> exit holes in the<br />

cavity ring: stray fields spoil any<br />

atomic coherence<br />

• All coherent manipulations are to be<br />

performed inside the cavity-ring<br />

structure<br />

• Classical fields fed in a low-Q<br />

transverse st<strong>and</strong>ing wave structure<br />

Independent manipulation of two atomic<br />

samples feasible (exploit the nodes<br />

<strong>and</strong> antinodes)<br />

Tight constraints on the atomic timing<br />

No long distance <strong>quantum</strong> correlations<br />

(no teleportation experiment)<br />

Florence, Mai 2004 207


The 3 He- 4 He refrigerator<br />

N 2<br />

4He<br />

4<br />

He<br />

1.4 K<br />

3<br />

He<br />

0.6 K<br />

4.2 K<br />

77 K<br />

Florence, Mai 2004 208


Aim:<br />

Cavity cooling<br />

Get rid of a residual 1 photon thermal<br />

field <strong>and</strong> of photons left by previous<br />

experiments<br />

Timing<br />

6000<br />

5000<br />

Cooling <strong>atoms</strong><br />

prepared in g<br />

Method<br />

Send packets of 1-10 <strong>atoms</strong> in the lower<br />

state g.<br />

Counts (A.U.)<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Probe atom<br />

prepared in g<br />

1450 1460<br />

x10<br />

They efficiently absorb residual photons<br />

<strong>and</strong> cool the cavity mode<br />

1000 1200 1400 1600 1800<br />

Performances:<br />

Detection time (µs)<br />

Reduction of average thermal photon<br />

number down to 0.1<br />

Experiment performed in a time short<br />

compared to cavity relaxation time T r<br />

Florence, Mai 2004 209


From dream.. To reality<br />

Florence, Mai 2004 210


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 211


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 212


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 213


Cavity induced shifts<br />

• Use sensitivity of Ramsey techniques to evidence cavity induced shifts<br />

• Early experiments performed in a very low Q cavity<br />

Florence, Mai 2004 214


• ∆ c /2π=150 kHz<br />

Light shifts<br />

Field relaxation (2 µs) much<br />

faster than atomic transit time:<br />

sensitive only to average field<br />

intensity. Field quantization<br />

aspects are irrelevant.<br />

Florence, Mai 2004 215


Lamb shifts<br />

• Interaction <strong>with</strong> the ‘vacuum’<br />

Solid line corrected for residual thermal field (0.32 photons)<br />

A remarkable single mode Lamb shift effect<br />

Florence, Mai 2004 216


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 217


Principle<br />

• Cumulative emissions in the cavity by Rabi oscillations create a ‘large’<br />

field.<br />

• Very long cavity damping time (closed <strong>cavities</strong>): field maintained <strong>with</strong><br />

much less than one atom on the average<br />

• A true <strong>quantum</strong> device<br />

• One- <strong>and</strong> two-photon micromasers realized<br />

• Garching <strong>and</strong> ENS<br />

• Recently: optical analogue microlasers (Kimble)<br />

Florence, Mai 2004 218


• A gain/loss analysis<br />

A semi-classical model<br />

• n photons state in the cavity . Probability for atomic emission<br />

• Photon number rate equation<br />

• A graphical solution<br />

Florence, Mai 2004 219


Graphical solution for steady state<br />

• First threshold gain>losses near origin<br />

• Multiple thresholds <strong>and</strong> hysteretic behavior<br />

Florence, Mai 2004 220


Quantum model<br />

• Equation for the photon number distribution (no phase information, no<br />

coherences)<br />

• Solution by detailed balance condition. Leads to recursion relation<br />

• A single operating point. Multistable behaviour washed out by <strong>quantum</strong><br />

fluctuations<br />

• Gives average photon number <strong>and</strong> photon fluctuations<br />

Florence, Mai 2004 221


Average photon number<br />

• Oscillations corresponding to multiple thresholds<br />

• Dips corresponding to the ‘trapping states’ conditions (gain cancels for<br />

some photon number)<br />

Florence, Mai 2004 222


Photon number variance<br />

• Strong sub-poissonian character, particularly near trapping states (ideally<br />

a Fock state is generated)<br />

• Large variance close to thresholds<br />

Florence, Mai 2004 223


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 224


2π <strong>quantum</strong> Rabi pulse<br />

Initial state<br />

e,0 ⎯⎯→− e,0<br />

g,1 ⎯⎯→− g,1<br />

2π pulse<br />

Conditional dynamics<br />

e,0<br />

g,0 ⎯⎯→+ g,0<br />

Quantum phase gate<br />

P e<br />

(t)<br />

0.8<br />

51 (level e)<br />

0.6<br />

51.1 GHz<br />

50 (level g)<br />

0.4<br />

0.2<br />

Brune et al, PRL 76, 1800 (96)<br />

0.0<br />

time ( µ s)<br />

0 30 60 90<br />

Florence, Mai 2004 225


A single photon phase-shifts an atomic coherence<br />

Principle<br />

Preparation <strong>and</strong> test of an atomic<br />

coherence: Ramsey set-up<br />

e<br />

g<br />

π<br />

P g<br />

Timing<br />

Position<br />

(a)<br />

C<br />

e<br />

π<br />

π/2<br />

A 1<br />

g A 2<br />

2π<br />

R 1<br />

gi<br />

D<br />

π/2<br />

D<br />

R 2<br />

gi<br />

Time<br />

i<br />

R 1<br />

C R 2 D 0 ν−ν gi<br />

π phase shift of fringes when cavity<br />

contains one photon<br />

Signal<br />

0,9<br />

0,8<br />

0,7<br />

One photon<br />

Zero photon<br />

Preparation of |1>: source atom,<br />

prepared in e, π <strong>quantum</strong> Rabi<br />

pulse<br />

Probability<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0 10 20 30 40 50 60<br />

Frequency ν (kHz)<br />

Florence, Mai 2004 226


Absorption-free detection of a single photon<br />

Principle<br />

0,9<br />

One photon<br />

Zero photon<br />

• Photon detection<br />

• Photon is still there after the<br />

detection: QND measurement<br />

0,8<br />

0,7<br />

0,6<br />

Probability<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0 10 20 30 40 50 60<br />

Frequency ν (kHz)<br />

Atomic state correlated to photon<br />

number for a proper phase<br />

– i for 0<br />

– g for 1<br />

Nogues et al,Nature 400, 239 (99)<br />

Florence, Mai 2004 227


A brief reminder on QND measurements<br />

An ideal intensity measurement<br />

Braginsky 1970: ideal <strong>quantum</strong><br />

measurement.<br />

For light intensity : count the photon<br />

number <strong>with</strong>out changing it<br />

Ordinary intensity measurement<br />

Photon is<br />

destroyed<br />

Optical QND measurements:<br />

•Interaction of "signal" <strong>and</strong> "meter" beams<br />

in a Kerr non-linear medium<br />

•Interferometric detection of index change<br />

produced by "signal" intensity<br />

Meter<br />

Signal<br />

QND intensity measurement<br />

Phase reference<br />

Photon<br />

detected but<br />

still present<br />

A QND detection can be repeated<br />

In our experiment:<br />

•Signal: cavity field<br />

•Meter: atom<br />

Florence, Mai 2004 228


A repeated QND measurement<br />

Measure twice a single photon<br />

Conditional probabilities<br />

• Photon from a small thermal field (0.3<br />

photon on average)<br />

• First QND measurement<br />

• Second "absorptive" measurement<br />

0,50<br />

0,45<br />

0,40<br />

0,35<br />

I 1<br />

if<br />

1 photon<br />

G 1<br />

if<br />

1 photon<br />

E 2<br />

if G 1<br />

E 2<br />

if I 1<br />

E 2<br />

Timing<br />

Probability<br />

0,30<br />

0,25<br />

0,20<br />

Position<br />

C<br />

Relaxation 2π<br />

g<br />

π/2<br />

R1<br />

gi<br />

A 1<br />

π/2<br />

g<br />

D<br />

R 2<br />

gi<br />

A 2<br />

π<br />

Time<br />

D<br />

0,15<br />

0,10<br />

0 10 20 30 40 50 60<br />

Frequency (kHz)<br />

A clear indication of the QND nature of<br />

the measurement<br />

Florence, Mai 2004 229


Test of the QND measurement quality<br />

A three <strong>atoms</strong> experiment<br />

Conditional probabilities<br />

Probe<br />

Meter<br />

Source<br />

0.5<br />

0.4<br />

No meter<br />

Meter in i 2<br />

Source atom. Prepared in e<br />

π/2 spontaneous emission<br />

detected in e: zero photon<br />

detected in g: one photon<br />

Probability<br />

0.3<br />

0.2<br />

Meter in g 2<br />

0.1<br />

Meter atom: Ramsey fringes set at φ=0<br />

if zero photon: detected in i<br />

if one photon: detected in g<br />

0.0<br />

g 1<br />

g 3<br />

g 1<br />

e 3<br />

e 1<br />

g 3<br />

e 1<br />

e 3<br />

Probe atom: prepared in g, π pulse in one photon<br />

Absorptive probe of cavity field<br />

if zero photon: detected in g<br />

if one photon: detected in e<br />

• QND error rate 20%<br />

• Spurious absorption in the mode by<br />

the meter atom: 20 %<br />

Florence, Mai 2004 230


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 231


How to measure W for the electromagnetic field <br />

Propagating fields : « Tomographic » methods<br />

Principle : - measure marginal<br />

distributions P(q θ<br />

) for different θ<br />

- inverse Radon transform<br />

allows reconstruction of W(q,p)<br />

( medical tomography)<br />

Refs : - Coherent <strong>and</strong> squeezed states : - Smithey et al., PRL 70, 1244 (1993)<br />

- Breitenbach et al., Nature 387, 471 (1997)<br />

- One-photon Fock state : Lvovsky et al., PRL 87, 050402 (2001)<br />

- α|0>+β|1> : Lvovsky et al., PRL 88, 250401-1 (2002)<br />

Florence, Mai 2004 232


RESULTATS EXPERIMENTAUX<br />

Smithey et et al., PRL 70,<br />

1244 (1993)<br />

Breitenbach et et al, al, Nature 387,<br />

471 (1997)<br />

Comprimé<br />

Vide<br />

Florence, Mai 2004 233


MESURE MESURE COMPLETE COMPLETE DE DE LA LA DISTRIBUTION DISTRIBUTION DE DE WIGNER WIGNER POUR POUR UN UN PHOTON<br />

PHOTON<br />

Lvovsky et et al, al, PRL 87, 050402 (2001)<br />

Florence, Mai 2004 234


Other methods<br />

• Use the link between W <strong>and</strong> parity operator<br />

^<br />

W(α) = 2Tr(D( −α)ρ D(α) ( −1)<br />

N<br />

)<br />

^<br />

ˆ<br />

• Displace the field <strong>and</strong> measure parity by determination of photon number<br />

probability<br />

– Direct counting (Banaszek et al for coherent states)<br />

– Quantum Rabi oscillations for an ion in a trap (Winel<strong>and</strong>)<br />

• A dem<strong>and</strong>ing method. Much more information than the mere average<br />

parity needed<br />

Florence, Mai 2004 235


Mesure de la fonction de Wigner pour un ion piégé<br />

• Etat de vibration d'un ion unique:<br />

Etat nombre<br />

n = 1<br />

1<br />

2<br />

( 0 + 1 )<br />

Matrice densité<br />

D. Liebfried et al, PRL 77, 4281 (1996), NIST, Boulder<br />

• Etat de vibration d'un atome neutre:<br />

- G.Drobny <strong>and</strong> V. Buzek, PRA 65 053410 (2002)<br />

D'aprés les données de: C. Salomon et I. Bouchoule<br />

Florence, Mai 2004 236


Our approach<br />

- Proposed by Lutterbach <strong>and</strong> Davidovich (Lutterbach et al.<br />

PRL 78 (1997) 2547)<br />

- Based on :<br />

ρ(-α)<br />

^<br />

W(α) = 2Tr(D( −α)ρD(α)(<br />

−1)<br />

D(-α)<br />

ρ<br />

^<br />

ρ(-α)<br />

ˆ<br />

( − 1) N n =<br />

« parity » operator<br />

Nˆ<br />

)<br />

+ n if n=2k<br />

W is the expectation value of the Parity operator<br />

the displaced state ρ(−α)<br />

−<br />

n<br />

if n=2k+1<br />

( −1)<br />

A) Apply D(-α) Inject –α in cavity mode OK<br />

B) How to measure ( −1)<br />

<br />

Nˆ<br />

Nˆ<br />

in<br />

Florence, Mai 2004 237


Dispersive regime :<br />

Dispersive interaction<br />

δ=<br />

ω<br />

at<br />

−ω<br />

cav<br />

No energy exchange<br />

>> Ω/2<br />

ω<br />

cav<br />

|e><br />

ω<br />

at<br />

|g><br />

δ<br />

But : light shift<br />

∆E<br />

∆E<br />

2<br />

e, n +<br />

= Ω<br />

(n 1)<br />

4δ<br />

2<br />

=−<br />

n<br />

4δ<br />

Ω<br />

g, n<br />

1 ( )<br />

2 e g<br />

Phase shift<br />

1 ( e e g )<br />

2<br />

+ i∆Φ( n)<br />

of Ramsey fringes<br />

on the e-g transition<br />

1<br />

P(e)<br />

+ ∆Φ(n)=Φ 0 n<br />

∆φ(n)<br />

Empty cavity |0><br />

Fock state |n><br />

0<br />

Florence, Mai 2004 238<br />

φ


For φ=φ* :<br />

If N even, detection in e<br />

If N odd, detection in g<br />

^<br />

Parity Measurement<br />

=∑ φ<br />

n<br />

P ( −1)<br />

P(n) = Pφ<br />

*(e)-P<br />

*(g)<br />

= C<br />

n<br />

Φ 0 =π<br />

1<br />

P(e)<br />

0<br />

φ∗<br />

To measure W(α) : 1) inject – α<br />

2) measure fringe contrast C<br />

3) W(α)= 2 C<br />

N even<br />

Vacuum |0><br />

N odd<br />

State |1><br />

State ρ<br />

C<br />

C=+1 for state |2n><br />

C=-1 for state |2n+1><br />

φ<br />

Florence, Mai 2004 239


Experimental Tools<br />

- Slow <strong>atoms</strong> (150m/s) for long interaction times<br />

- Ramsey interferometer :<br />

Contrast <strong>with</strong>out cavity :<br />

70%<br />

(see experimental poster by T.<br />

Meunier for more details)<br />

1<br />

0.5<br />

0<br />

- Injection of a known<br />

coherent field |α><br />

waveguide<br />

att cav<br />

dB<br />

switch<br />

ν cav =51.099GHz<br />

S cav<br />

Florence, Mai 2004 240


Testing the method: vacuum state Wigner function<br />

e-g detection<br />

∆φ<br />

π/2<br />

R2<br />

position<br />

Atomic<br />

frequency<br />

ν cav<br />

D(-α)<br />

π/2<br />

R1<br />

|g,0><br />

δ<br />

Dispersive interaction<br />

Cavity mode<br />

time<br />

•Use Stark effect to tune interferometer phase<br />

•No phase information in cavity field: injected field phase irrelevant<br />

•Finite intrinsic contrast of the Ramsey interferometer<br />

Florence, Mai 2004 241


Wigner function of the "vacuum"<br />

α=0<br />

0.6 0.83<br />

1<br />

P(e)<br />

0.4<br />

0.5<br />

P(e)<br />

0.2<br />

0.6<br />

0.4<br />

α=0.6<br />

(norm.)<br />

πW(α)<br />

2<br />

0<br />

0.12 0.05<br />

0 1 2<br />

N phot<br />

0.2<br />

0.6 α=1.25<br />

1<br />

P(e)<br />

0.4<br />

0.2<br />

-1 0 1 2 3<br />

φ/π<br />

0<br />

0 1<br />

α<br />

2<br />

Florence, Mai 2004 242


Single photon Wigner function measurement<br />

e-g detection<br />

∆φ<br />

π/2<br />

R2<br />

position<br />

Atomic<br />

frequency<br />

ν cav<br />

|e,0><br />

π<br />

D(-α)<br />

π/2<br />

R1<br />

|g,1><br />

δ<br />

Dispersive interaction<br />

Cavity mode<br />

time<br />

Preparation<br />

of cavity state<br />

Wigner function measurement scheme<br />

Florence, Mai 2004 243


Wigner function of a "one-photon" Fock state<br />

0,7<br />

0,6<br />

α=0<br />

1,0<br />

P(e)<br />

P(e)<br />

0,5<br />

0,4<br />

0,3<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0 1 2 3<br />

α=0.3<br />

Φ/π<br />

(norm.)<br />

πW(α)<br />

0,5<br />

0,0<br />

-0,5<br />

-1,0<br />

0,0 0,5 1,0 1,5 2,0<br />

α<br />

P(e)<br />

0,3<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0 1 2 3<br />

α=0.81<br />

0 1 2 3<br />

Φ/π<br />

Φ/π<br />

1<br />

0.5<br />

0<br />

0.71<br />

0.25<br />

0.04<br />

0 1 2<br />

Nphot<br />

Florence, Mai 2004 244


Towards other states<br />

- Cavity QED setup : direct measurement of the field<br />

2<br />

0<br />

-2<br />

2<br />

- Next improvements : - better isolation<br />

1<br />

- better detectors<br />

0<br />

More complex states : ex<br />

( 0 + 1<br />

)/<br />

2<br />

-1<br />

-2<br />

0<br />

-2<br />

2<br />

- In the future : « movie » of the decoherence of a Schrödinger cat<br />

2<br />

2<br />

1<br />

0<br />

…….<br />

1<br />

0<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

-2<br />

-1<br />

0<br />

1<br />

-1<br />

2 -2<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

-2<br />

-1<br />

0<br />

1<br />

-1<br />

2 -2<br />

Florence, Mai 2004 245


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 246


Generation of a single photon state<br />

• Already used. π <strong>quantum</strong> Rabi pulse for an atom in e<br />

• Fidelity about 80%<br />

• Cumulative emissions lead to other Fock state but <strong>atoms</strong> are an<br />

expensive resource <strong>and</strong> fidelity not very high<br />

• Creation of multi-photon Fock states<br />

– Photon pump<br />

– Two photon emission in a Raman process<br />

Florence, Mai 2004 247


Photon pump<br />

• Successive π pulses in one cavity mode <strong>and</strong> recycling from g to e <strong>with</strong><br />

adiabatic rapid passages in a large coherent field stored in the other<br />

mode (Domokos et al EPJD 1,1)<br />

Florence, Mai 2004 248


Two-photon generation <strong>with</strong> a single atom<br />

• A complex raman process involving the two modes<br />

• Mode M a empty. Mode M b contains a field (thermal or coherent) Atommode<br />

M a detuning δ close to intermode detuning ∆<br />

• A third order resonant process<br />

PRL 88,143601<br />

• Coupling amplitude<br />

Florence, Mai 2004 249


Evidence of Raman process<br />

• Maser emission. Raman observed in ‘sideb<strong>and</strong>s’ for increasing fields in<br />

M b<br />

Florence, Mai 2004 250


Measuring the photon number<br />

• Use Ramsey fringes light shifts. Compare generated field <strong>with</strong> single<br />

photon field<br />

• Efficient <strong>and</strong> high fidelity generation of a two-photon field<br />

Florence, Mai 2004 251


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 252


IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• 1) A reminder on <strong>quantum</strong> computing<br />

• 2) Quantum entanglement knitting stitches<br />

• 3) Cavity assisted collisions<br />

Florence, Mai 2004 253


IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• 1) A reminder on <strong>quantum</strong> computing<br />

• 2) Quantum entanglement knitting stitches<br />

• 3) Cavity assisted collisions<br />

Florence, Mai 2004 254


Ordinateurs classiques et complexité<br />

Calcul=processus physique<br />

• Codage des éléments d’information<br />

(bits) sur des éléments physiques<br />

(courant, tension).<br />

• Processus physique conduisant au<br />

résultat<br />

Données<br />

n bits<br />

N=2 n valeurs<br />

Complexité<br />

• Calcul facile: temps et ressources<br />

polynomiales dans le nombre de bits<br />

(ex: produit de deux nombres)<br />

• Calcul difficile: temps et/ou<br />

ressources exponentielles dans le<br />

nombre de bits (ex: factorisation)<br />

Classes de complexité<br />

• P: Polynomial<br />

• NP: Non-polynomial mais solution<br />

vérifiable en temps polynomial<br />

• NP Complet: problème équivalent à<br />

tout autre NP-complet<br />

Résultats<br />

Une question non résolue<br />

Florence, Mai 2004 255<br />

P<br />

≠<br />

NP


Machine de Turing<br />

Principe de Church-Turing:<br />

Du point de vue de la complexité, tous les ordinateurs classiques sont<br />

équivalents entre eux et équivalents au plus simple: la machine de Turing<br />

...<br />

0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 ...<br />

Registre<br />

Automate<br />

1<br />

0 0 1 0<br />

état interne<br />

Un problème difficile sur une machine le reste sur tout autre.<br />

Seules possibilité pour attaquer les problèmes difficiles:<br />

• Patience (peu commercial)<br />

• Parallélisme (mais utilisation exponentielle de ressources ex: calcul<br />

distribué)<br />

• Changer les lois physiques du calcul: calcul quantique<br />

Florence, Mai 2004 256


Principe d'un ordinateur quantique<br />

Bits et qubits<br />

Les bits sont remplacés par des<br />

systèmes à deux niveaux :<br />

superpositions d'états<br />

Représentation des données<br />

Registre de n qubits:<br />

Base<br />

1<br />

2<br />

( 0 + 1 )<br />

espace des états de dim. 2 n<br />

0,0,0, …,0 = 0<br />

0,0,0, …,1 = 1<br />

1,1,1, …,1<br />

= 2 n −1<br />

Un vecteur code un nombre<br />

Lecture d'un registre<br />

Mesure d'une quantité sur chaque qubit<br />

ayant |0> et |1> pour vecteurs<br />

propres et 0 et 1 pour valeurs<br />

propres.<br />

Lecture indépendante des n qubits: un<br />

nombre entre 0 et 2 n -1<br />

(indice du vecteur correspondant).<br />

On peut représenter les nombres par<br />

des vecteurs d’état et lire les valeurs<br />

finales (au sens de la mesure<br />

quantique).<br />

Peut-on calculer <br />

Florence, Mai 2004 257


Calcul quantique<br />

Évolution quantique unitaire. Définie par l’évolution des vecteurs de base<br />

ε , ε ,…, ε ⎯⎯→ U ε , ε ,…, ε ε = 0,1<br />

1 2 n<br />

1 2<br />

Un ordinateur quantique est au moins équivalent à une machine de Turing<br />

classique: tout calcul classique est réalisable à condition de respecter l'unitarité<br />

n<br />

x<br />

⎯⎯→<br />

f ( x)<br />

est interdit si f n'est pas inversible<br />

Mais on peut toujours former U tel que, avec deux registres de n qubits :<br />

x, y ⎯⎯→ x, y⊕<br />

f( x)<br />

x,0 ⎯⎯→ x, f( x)<br />

Lecture du résultat: mesure du second registre<br />

Florence, Mai 2004 258


Parallélisme quantique massif<br />

On peut calculer une valeur de la fonction f<br />

x,0 ⎯⎯→ x, f( x)<br />

Mais on peut aussi, dans le même temps, calculer toutes les valeurs de f<br />

∑<br />

x<br />

∑<br />

x,0 ⎯⎯→ x, f( x)<br />

Calcul intrinsèquement massivement parallèle. Exponentiellement plus<br />

efficace qu'un calculateur classique.<br />

x<br />

Lecture du résultat<br />

Naïvement, on n'obtient qu'une valeur de f d'argument aléatoire.<br />

Pas évident de tirer parti de ce parallélisme.<br />

Peu d'algorithmes efficaces connus pour un ordinateur quantique<br />

Florence, Mai 2004 259


Une brève histoire de l'informatique quantique<br />

La préhistoire<br />

73 Bennett<br />

Calcul réversible classique<br />

80 Benioff<br />

Proposition de principe<br />

82 Feynman<br />

Quantum simulator<br />

Dimension exponentielle de l'espace<br />

85 Deutsch<br />

Machines de Turing quantique<br />

Bases conceptuelles<br />

92 Deutsch<br />

Premiers algorithmes ad-hoc<br />

Portes logiques quantiques<br />

L'âge d'or<br />

94 Shor<br />

95<br />

Algorithme de factorisation<br />

Utile et accélération exponentielle<br />

Propositions théoriques de portes<br />

95 Winel<strong>and</strong><br />

Première réalisation d'une porte<br />

97 Grover<br />

98-99<br />

00-01<br />

Algorithme de recherche<br />

Utile mais accélération faible<br />

Premiers algorithmes quantiques<br />

réalisés en RMN<br />

Premières manipulations d'états<br />

intriqués complexes<br />

Florence, Mai 2004 260


Portes logiques quantiques<br />

Théorème<br />

• Toute transformation unitaire de n<br />

qubits est décomposable en un<br />

produit de transformations unitaires<br />

élémentaires à un et deux qubits<br />

Exemples de portes<br />

Portes à un qubit.<br />

• Transformation la plus générale d’un<br />

système à deux niveaux:<br />

Traduction:<br />

• Tout calcul quantique est réalisable<br />

par application successive de<br />

« portes logiques quantiques »:<br />

machines portant sur un ou deux<br />

qubits<br />

Portes universelles<br />

• Un ensemble fini de portes qui<br />

permettent de réaliser par<br />

association tout réseau de calcul<br />

quantique<br />

iψ<br />

⎛ cosϕ<br />

e sinϕ<br />

⎞<br />

U ( ϕψ , ) = ⎜ −iψ<br />

⎟<br />

⎝−e<br />

sinϕ<br />

cosϕ<br />

⎠<br />

représentation graphique:<br />

• Cas particulier: porte de Hadamard<br />

Florence, Mai 2004 261<br />

U<br />

1 1<br />

H = ⎛ ⎞ H<br />

⎜ ⎟<br />

⎝1 −1⎠<br />

⎧ 1<br />

0 → 0 + 1<br />

⎪ 2<br />

⎨<br />

⎪ 1<br />

1 → 0 − 1<br />

⎪⎩ 2<br />

( )<br />

( )


Portes (suite 1)<br />

• Porte Non<br />

• Porte CNOT<br />

Ν<br />

0 1<br />

N = ⎛ ⎞<br />

⎜ ⎟<br />

⎝1 0⎠<br />

Portes à deux qubits<br />

• Porte de phase<br />

CNOT<br />

⎛1<br />

⎞<br />

⎜ ⎟<br />

1<br />

= ⎜ ⎟<br />

⎜ 0 1 ⎟<br />

⎜<br />

1 0⎟<br />

⎝ ⎠<br />

π<br />

Remarque<br />

⎛1<br />

⎞<br />

⎜<br />

⎟<br />

1<br />

π = ⎜<br />

⎟<br />

⎜ 1 0 ⎟<br />

⎜<br />

0 −1⎟<br />

⎝<br />

⎠<br />

=<br />

H<br />

π<br />

H<br />

Florence, Mai 2004 262


Portes (suite 2)<br />

Portes à n bits<br />

• Porte de Toffoli<br />

Calcul réversible classique<br />

Universalité<br />

Tout calcul quantique peut être réalisé<br />

avec:<br />

• Des portes à un qubit<br />

• Des portes CNOT<br />

Ex: un additionneur<br />

• Control U<br />

U<br />

– Faire U sur n-1 bits si le bit de<br />

contrôle est à un<br />

– Ne rien faire sinon<br />

Florence, Mai 2004 263


Une opération utile<br />

Préparation d’un registre de n bits dans un superposition de toutes les<br />

valeurs<br />

n<br />

2 −1<br />

1<br />

x ⎯⎯→ ∑ y<br />

n<br />

2 0<br />

Préparation de l’état |0> et application d’une Hadamard sur chaque qubit<br />

1<br />

0 ⎯⎯→ 0 + 1<br />

2<br />

( )<br />

pour chaque qubit<br />

n<br />

1 1<br />

0 ⎯⎯→ 0 + 1 = ∑<br />

n−1 2 −1<br />

∏(<br />

)<br />

n<br />

n<br />

2 0<br />

2<br />

0<br />

y<br />

pour le registre<br />

Florence, Mai 2004 264


Calcul de fonctions élémentaires<br />

Fonctions de {0,1} dans {0,1}<br />

Deux qubits<br />

Ligne rouge: |x>. Ne sera pas affecté. Ligne verte |y> devient |y+f(x)><br />

4 fonctions:<br />

f(x) = 0 ∀ x<br />

f(x)<br />

0<br />

0 Ν<br />

01<br />

f(x) = 1 ∀ x<br />

01<br />

0<br />

0<br />

Ν<br />

Ν<br />

Ν<br />

01<br />

f(x)<br />

01<br />

Fonctions « constantes » Fonctions « balancées »<br />

A un bit, il n’y a que des fonctions constantes ou balancées. Situations plus complexes<br />

pour les fonctions de n bits dans n bits.<br />

Florence, Mai 2004 265


Quelques fonctions de {0,1,2,3} sur {0,1}<br />

2 4 =16 fonctions possibles<br />

f(x)<br />

0 N<br />

01 23<br />

f(x)<br />

0 N N<br />

01 23<br />

Exemple de<br />

fonction<br />

constante<br />

(f=1. Deux<br />

telles fonctions)<br />

Exemple de<br />

Fonction<br />

balancée (autant<br />

de f(x) = 0 que de<br />

f(x) = 1)<br />

(six fonctions)<br />

0 N<br />

f(x)<br />

01 23<br />

Tous les autres cas se déduisent<br />

simplement de ceux-ci<br />

Fonction ni<br />

constante ni<br />

balancée<br />

(huit fonctions)<br />

Florence, Mai 2004 266


Les problèmes posés sous forme d’oracle<br />

Les problèmes logiques que nous allons considérer ici sont posés sous forme d ’<br />

«oracle». On suppose qu’ une machine programmée selon des règles inconnues<br />

(décrite comme une «boîte noire» ou oracle), calcule une fonction dont nous ne<br />

connaissons que certaines caractéristiques. Le problème consiste à déterminer une<br />

propriété inconnue de la fonction, sans «ouvrir» la boite. Nous pouvons interroger<br />

l ’oracle en entrant des données dans la boite et en manipulant sa sortie, sans l’ouvrir<br />

pour en analyser le contenu. Le problème sera «facile» si sa résolution dem<strong>and</strong>e un<br />

nombre total d’opérations croissant de façon polynomiale avec le nombre de bits,<br />

«difficile» s’il croit de façon exponentielle avec ce nombre. Nous allons montrer que le<br />

passage du calcul classique au calcul quantique transforme certains oracles classiques<br />

difficiles en oracles quantiques faciles. Dans d’ autres cas, le problème quantique reste<br />

difficile, mais moins que le problème classique (croissance toujours exponentielle du<br />

nombre d ’opérations, mais avec un exposant plus petit que classiquement ).<br />

0,1,1,1…..1, 0 0,0,1,0…..1, 0<br />

f(x) <br />

Choix libre de la<br />

préparation des<br />

bits d ’entrée<br />

« Lecture » du<br />

programme<br />

interdite<br />

Choix libre des<br />

opérations sur les<br />

bits de sortie<br />

Florence, Mai 2004 267


L’oracle de Deutsch-Josza<br />

f(x) constante ou<br />

balancée <br />

f(x) est une fonction booléenne de [ 0, 2 n -1] dans [ 0, 1]. On sait<br />

qu’elle est soit constante, soit balancée. Est-elle l’un ou l ’autre <br />

Classiquement, il faut « interroger » l’oracle 2 n− 1 +1 fois pour répondre à la question à coup sûr<br />

(il faut introduire 2 n− 1 +1 valeurs différentes de x et calculer f(x) à chaque fois) → Croissance<br />

exponentielle avec n du nombre d ’opérations et problème classique « difficile »<br />

L’oracle de Grover f(x) est une fonction booléenne de [ 0, 2 n -1] dans [ 0, 1] qui n’est non nulle<br />

f (x) = δ (x-x 0<br />

)<br />

que pour x = x 0<br />

. Trouver x 0<br />

.<br />

x 0<br />

<br />

Equivaut à la recherche «inversée» d’un abonné dans un annuaire à partir de son<br />

numéro connu a. Les x sont les abonnés, f(x) vaut 1 si a est le numéro de x, 0 sinon.<br />

Classiquement, il faut calculer f(x ) («consulter» l ’annuaire) N = 2 n − 1 fois pour trouver à coup<br />

sûr. Problème classique difficile.<br />

L’oracle de Simon<br />

« Période » de<br />

f(x) <br />

Exemples d’oracles classiquement difficiles<br />

f(x) est une fonction de [0, 2 n -1] dans [0, 2 n -1] telle que f (x’) = f (x) ssi x<br />

= x ⊕ s où s est une suite inconnue à n termes de « 0 » et « 1 » et ⊕<br />

représente l ’addition « bit à bit » (s : «période» de f ). Déterminer s<br />

Classiquement, il faut calculer f (x ) pour des valeurs aléatoires de x jusqu ’à trouver deux x et<br />

x’ tels que f (x) = f (x’). Alors x ⊕ s = x’ et x ⊕ x’ = x ⊕ x ⊕ s = s (car x ⊕ x ={ 0} ). Il faut<br />

2 n - 1 + 1 opérations pour trouver la réponse à coup sûr → Problème classique « difficile ».<br />

Florence, Mai 2004 268


Exemple élémentaire<br />

Algorithme de Deutsch-Josza à un qubit.<br />

Principe du calcul<br />

Déterminer si f de {0,1} dans {0,1} est<br />

constante ou balancée.<br />

Une autre formulation du problème:<br />

comment déterminer qu’une pièce a<br />

bien un côté pile et un côté face<br />

• Classiquement: regarder les deux<br />

côtés.<br />

• Quantiquement: regarder en une fois<br />

une superposition quantique des<br />

deux côtés.<br />

Deux qubits pour calculer f<br />

|0><br />

|1><br />

H<br />

H<br />

1<br />

1<br />

2<br />

2<br />

( 0 + 1 )<br />

( 0 + 1 ) cste 0<br />

( 0 − 1 )<br />

( 0 − 1 )<br />

2<br />

f<br />

Un seul calcul de f pour décider de sa<br />

nature.<br />

1<br />

1<br />

2<br />

2<br />

( 0 − 1 ) bal 1<br />

1<br />

H<br />

Florence, Mai 2004 269


Fonction constante : 0<br />

1<br />

2<br />

( 0 + 1 )( 0 − 1 )<br />

Deux cas parmi quatre<br />

f 1<br />

⎯⎯→ ⎡ 0<br />

2 ⎣<br />

+ 1<br />

= 1 ⎡ 0 1 2 ⎣<br />

+<br />

⎦<br />

=<br />

2<br />

0 1<br />

H 1<br />

⎯⎯→<br />

( 0<br />

2 0 − 1 )<br />

( 0 ⊕ f (0) − 1 ⊕ f (0) ) ( 0 ⊕ f(1) − 1 ⊕ f(1)<br />

)<br />

( 0 − 1 ) ( 0 − 1 ) ⎤ ( + )( 0 − 1 )<br />

|0><br />

|1><br />

⎤<br />

⎦<br />

H<br />

H<br />

1<br />

1<br />

2<br />

2<br />

( 0 + 1 )<br />

( 0 − 1 )<br />

f<br />

H<br />

Fonction balancée: identité<br />

1<br />

2<br />

( 0 + 1 )( 0 − 1 )<br />

f 1<br />

⎯⎯→ ⎡ 0<br />

2 ⎣<br />

+ 1<br />

= 1 ⎡ 0 1 2 ⎣<br />

+<br />

⎦<br />

=<br />

2<br />

0 1<br />

H 1<br />

⎯⎯→<br />

( 0<br />

2 1 − 1 )<br />

( 0 ⊕ f (0) − 1 ⊕ f (0) ) ( 0 ⊕ f(1) − 1 ⊕ f(1)<br />

)<br />

( 0 − 1 ) ( 1 − 0 ) ⎤ ( − )( 0 − 1 )<br />

⎤<br />

⎦<br />

Florence, Mai 2004 270


Généralisation : Deutsch-Josza pour n qubits<br />

(1/2 n/2 ) Σ x<br />

| x ><br />

(1/2 n/2 ) Σ x<br />

(− 1) f(x) | x ><br />

| {0} > A<br />

H 1 .H 2 ….H n<br />

N H<br />

f(x) constante ou<br />

balancée <br />

| 0> B<br />

(1/2 1/2 ) [| 0 > − | 1 >]<br />

(1/2 1/2 ) [| 0 > − | 1 >]<br />

Le registre d’entrée A (n qubits) est préparé (par application de la transformation de Hadamard<br />

H sur chaque qubit) dans la superposition symétrique des 2 n états | x > possibles.<br />

Le registre de sortie B (1 qubit) est inversé par N, puis préparé par H dans (1/2 1/2 ) [| 0 > − | 1 >] .<br />

Action de l ’oracle: | x > | 0 > → | x > | f (x ) > et | x > | 1 > → | x > | 1 ⊕ f (x ) ><br />

Si f (x ) = 0: | x > [| 0 > − | 1 > ] → | x > [| 0 > − | 1 > ]<br />

} ( − 1) f(x) | x > [| 0 > − | 1 > ]<br />

Si f (x ) = 1: | x > [| 0 > − | 1 > ] →−| x > [| 0 > − | 1 > ]<br />

Et par superposition:<br />

(1/2 ( n+1)/2 ) Σ x<br />

| x > [| 0 > − | 1 > ] → (1/2 (n+1)/2 ) (Σ x<br />

(− 1) f(x) | x > ) [| 0 > − | 1 > ]<br />

Les registres restent non intriqués après l’oracle. Déphasage des amplitudes<br />

dans le registre A en (− 1) f(x) .<br />

Florence, Mai 2004 271


Deux possibilités<br />

Si f(x ) est constante: f (x ) = 0 ∀ x ou f (x ) =1 ∀ x →<br />

(1/2 n/2 ) Σ x<br />

(− 1) f(x) | x > = ± (1/2 n/2 ) Σ x<br />

| x > → registre A inchangé (au signe près)<br />

Si f(x) est balancée: autant de f (x ) = 0 que de f(x ) = 1 →<br />

Autant d ’amplitudes +1 que d ’amplitudes −1 dans la superposition finale du registre A<br />

→ Σ x<br />

(− 1) f(x) | x > orthogonal à Σ x<br />

| x ><br />

Résoudre l ’oracle revient à distinguer deux états orthogonaux de l’état final du registre A:<br />

On applique à nouveau H à tous les qubits. Comme H 2 =1, on retrouve l’état initial |{0} > si<br />

f(x ) est constante, un état orthogonal si f(x) est balancée → au moins un des qubits doit<br />

alors être 1. On le vérifie en mesurant les qubits finals de A.<br />

| 0, 0, 0, ... > ou<br />

mesure<br />

H 1 .H 2 ….H n<br />

H 1 .H 2 ….H état orthogonal<br />

n<br />

f(x)<br />

à | 0, 0, 0, ... ><br />

des qubits<br />

N<br />

H<br />

La réponse nécessite au plus 3n+2 opérations à un qubit (2n + 1 opérations H, une<br />

opération de bascule (N) et au plus mesure de n qubits (on peut arrêter dès qu’on<br />

trouve un 1) → problème quantiquement «facile».<br />

Florence, Mai 2004 272


Remarques<br />

1. Où est l’intrication<br />

Les qubits de A ne sont pas intriqués à B qui reste inchangé. De l’intrication est en général<br />

cependant créée entre les qubits de A:<br />

Exemple. Cas d ’une fonction balancée agissant sur un registre A de trois qubits:<br />

Σ x<br />

(− 1) f(x) | x >= | 000 > − | 001 > + | 010 > − | 011 > + | 100 > − | 101 > − | 110 > + | 111 ><br />

= | 0 > 1 [| 00 > − | 01 > + | 10 > − | 11 >] 23 + | 1> 1 [| 00 > − | 01 > − | 10 > + | 11 >] 23<br />

= | 0 > 1 | Ψ > 23 + | 1 > 1 | Φ > 23 avec 23 < Φ | Ψ > 23 = 0<br />

Cette décomposition de montre que le qubit 1 et l ’ensemble des qubits 2 et 3<br />

sont maximalement intriqués.<br />

2. Cet algorithme est-il vraiment avantageux par rapport à la procédure classique<br />

L’ avantage de l’ algorithme quantique n’existe que si on cherche une réponse certaine.<br />

Si on s’ autorise une probabilité finie ε d’ erreur, aussi petite soit-elle, l’algorithme<br />

classique (calcul successif de f (x) pour des valeurs de x tirées au hasard) donne un<br />

résultat acceptable au bout de k ≅ − log 2<br />

(ε ) opérations (nombre indépendant de n). Le<br />

problème classique devient donc «facile» dès qu ’on accepte un taux fini d ’erreur. Ceci<br />

diminue considérablement l ’intérêt de l ’algorithme quantique puisqu’ il faut être sûr<br />

de pouvoir l ’effectuer sans aucune décohérence pour qu ’il soit avantageux par rapport<br />

à la version classique.<br />

Florence, Mai 2004 273


n qubits<br />

L’algorithme de Simon<br />

(1/√2)[ | x > + | x ⊕ s >]<br />

| {0} > A<br />

H 1 .H 2 ….H n<br />

x<br />

| {0} > B<br />

n qubits<br />

« Période » de<br />

f(x) <br />

} Σ | x> | f(x)><br />

Mesure de B:<br />

résultat f (x)<br />

H 1 .H 2 ….H n<br />

On réalise la suite d’opérations schématisée ci-dessus: calcul parallèle de toutes les valeurs<br />

de la fonction suivie d’une mesure du registre B projetant A dans une superposition de<br />

deux états qui diffèrent bit à bit de la quantité inconnue s. On applique alors à nouveau les<br />

transformations de Hadamard aux n qubits de A: elles font évoluer chaque qubit suivant la<br />

loi: | 0 > → (1/√2) [ | 0 > + | 1> ] et | 1 > → (1/√2) [ | 0 > − | 1> ]. Un état |{ x }> (produit<br />

de n états | x i<br />

> avec x i<br />

= 0 ou 1) devient une superposition de produits d’états | y i<br />

> (avec y i<br />

= 0 ou 1). Les coefficients de cette superposition valent + 1 ou −1suivant la parité de<br />

la somme Σ i<br />

x i<br />

y i<br />

:<br />

|{ x }> = | x 1<br />

, x 2<br />

, x 3<br />

,…..x n<br />

> → = (1/2 (n+1)/2 ) Σ { y }<br />

(−1) { Σ i x i y i } | y 1<br />

, y 2<br />

, y 3<br />

,…..y n<br />

><br />

L’état final de A est donc:<br />

(1/2 (n+1)/2 )Σ {y} [ (−1) { Σ i x i y i } + (−1) { Σ i ( x i ⊕ s i ) y i } ] | y 1<br />

, y 2<br />

, y 3<br />

,…..y n<br />

><br />

= (1/2 (n+1)/2 ) Σ {y} (−1) { Σ i x i y i } [ 1 + (−1) { Σ i s i y i } ] | y 1<br />

, y 2<br />

, y 3<br />

,…..y n<br />

><br />

Une mesure répétée ~ n fois de A va alors nous permettre de déterminer s<br />

Florence, Mai 2004 274


Détermination de la période inconnue<br />

| Ψ ( final) > A<br />

= (1/2 (n+1)/2 ) Σ {y} (−1) { Σ i x i y i } [ 1 + (−1) { Σ i s i y i } ] | y 1<br />

, y 2<br />

, y 3<br />

,…..y n<br />

><br />

Amplitude non nulle ssi<br />

Σ i<br />

s i<br />

y i<br />

= 0 (modulo 2)<br />

Une mesure des qubits individuels donne une suite y 1a<br />

, y 2a<br />

, y 3a<br />

,…..y na<br />

de valeurs 0 et 1 qui<br />

satisfait la condition:<br />

Σ i<br />

s i<br />

y ia<br />

= 0 (modulo 2).<br />

On recommence n fois l ’opération et on obtient ainsi, en général, n relations<br />

indépendantes (si par hasard deux mesures donnent le même vecteur, on recommence<br />

une fois de plus):<br />

Σ i<br />

s i<br />

y ia<br />

= 0<br />

Σ i<br />

s i<br />

y ib<br />

= 0<br />

. . . . . . . .<br />

Σ i<br />

s i<br />

y in<br />

= 0<br />

La résolution de ce système d ’équations donne s. Le processus requiert ≅ 4n 2 opérations. Le<br />

problème est donc quantiquement facile. De plus, il tolère des erreurs puisqu’on peut toujours<br />

vérifier le résultat en comparant f ( x ) et f (x ⊕ s) une fois s obtenu.<br />

Florence, Mai 2004 275


Rôle de l’intrication et de la mesure<br />

Dans l’ algorithme de Simon, l’ intrication et la mesure projective jouent un rôle plus<br />

essentiel que dans ceux de Deutsch et Grover. L’oracle intrique les registres A et B, puis la<br />

mesure de B projette A dans une superposition de deux états seulement. Après mélange par<br />

la « lame séparatrice », la signature du signal d ’interférence final nous renseigne sur la<br />

séparation de ces deux états, donc sur la période cherchée. Quoique mathématiquement<br />

plus compliqué, l’algorithme de Shor, basé sur la recherche de la période d ’une fonction,<br />

ressemble beaucoup dans son principe à celui de Simon.<br />

Remarque: il n’ est même pas besoin de «lire» la mesure du registre B. Il suffit d’ avoir intriqué<br />

B à son appareil de mesure , ce qui réduit A à un mélange statistique de superpositions | x > + |<br />

x ⊕ s >. Leur recombinaison finale par H 1<br />

.H 2<br />

…H n<br />

ne conduit, quel que soit x, à une<br />

interférence constructive que pour les états | y 1<br />

, y 2<br />

, y 3<br />

,…..y n<br />

> satisfaisant les équations<br />

linéaires de la page précédente (on peut réduire le nombre d’opérations à 3n 2 ).<br />

Florence, Mai 2004 276


Factorisation<br />

Un problème classique difficile<br />

Meilleur algorithme connu (Number Field Sieve) sur n bits en<br />

1<br />

1.9n 3<br />

e<br />

Factorisation de RSA 155: 8000 MIPS-années soit 2.5 10 17 instructions !<br />

109417386415705274218097073220403576120037329454492059909138421314763499842889347847179<br />

97257891267332497625752899781833797076537244027146743531593354333897=102639592829741<br />

105772054196573991675900716567808038066803341933521790711307779*10660348838016845482<br />

0927220360012878679207958575989291522270608237193062808643<br />

Problème difficile dont l'inverse est facile (multiplication)<br />

Idéal pour la cryptographie (codage et décodage faciles, casser le code très<br />

difficile)<br />

Un algorithme rapide de factorisation aurait des conséquences énormes sur<br />

les algorithmes de cryptage (et sur l'économie)<br />

1994: Shor propose un algorithme de factorisation rapide sur un ordinateur<br />

quantique<br />

Florence, Mai 2004 277


Algorithme de Shor<br />

Algorithme de factorisation<br />

exponentiellement plus efficace<br />

que la version classique<br />

but : factoriser N>>1<br />

Ordre d'un entier<br />

x


Exemple élémentaire<br />

Factoriser 15<br />

Ordre de x<br />

On choisit x=7<br />

R=4<br />

On calcule 7 a [15]<br />

a<br />

7 a [15]<br />

Le gcd de 4+1 et 15 est un facteur de 15<br />

Le gcd de 4-1 et 15 est un facteur de 15<br />

1<br />

2<br />

7<br />

4<br />

15=5x3<br />

3<br />

13<br />

4<br />

1<br />

Florence, Mai 2004 279


Algorithme quantique (1)<br />

Principe<br />

Calculer beaucoup de valeurs de f<br />

en utilisant le parallélisme et<br />

extraire la période (~ N)<br />

Deux registres de m qubits.<br />

q=2 m choisi tel que<br />

2N 2 < q < 4N 2<br />

État initial<br />

0,0<br />

Superposition de tous les nombres<br />

q−1<br />

1<br />

0,0 ⎯⎯→ ϕ = ∑ a,0<br />

q a=<br />

0<br />

Pour chaque qubit:<br />

1<br />

0 ⎯⎯→ ( 0 + 1 )<br />

2<br />

Exponentiation modulaire<br />

q−1<br />

1<br />

a<br />

ϕ ⎯⎯→ ∑ ax , N<br />

q<br />

Possible de façon efficace<br />

Utilise le parallélisme<br />

Mesure du second registre<br />

Obtention d'une valeur aléatoire y<br />

Projection du premier registre sur les<br />

antécédents de y<br />

Florence, Mai 2004 280<br />

k+jr<br />

a=<br />

0<br />

[ ]<br />

k aléatoire, j entier<br />

Le premier registre contient une<br />

superposition d'états répartis<br />

périodiquement avec la période r<br />

1<br />

A<br />

∑<br />

j<br />

k<br />

+<br />

jr


Amplitude<br />

Algorithme quantique (2)<br />

Répartition des amplitudes<br />

Après la transformation de Fourier<br />

k k+r k+2r k+jr Vecteur<br />

La mesure du premier registre en<br />

l'état ne donne aucune<br />

information ("offset" k aléatoire)<br />

Extraire la période:<br />

réaliser une transformation de<br />

Fourier discrète<br />

Possible de façon efficace (en un<br />

temps polynomial) Amélioration<br />

exponentielle/FFT classique<br />

q/ r 2q/ r<br />

Mesure du registre: une valeur de la<br />

forme<br />

p q/r<br />

p entier arbitraire<br />

Par un calcul classique efficace,<br />

extraction, avec une probabilité<br />

finie, de r et factorisation de N<br />

Énormes conséquences pratiques si<br />

on peut réaliser cet algorithme<br />

Florence, Mai 2004 281


Quelques caractéristiques importantes<br />

Utilise le parallélisme massif<br />

calcul simultané de toutes les<br />

exponentiations modulaires<br />

ϕ ⎯⎯→<br />

Probabiliste<br />

1<br />

• Probabilité finie d'obtenir le<br />

résultat<br />

• Ne décroît pas exponentiellement<br />

avec le nombre de bits<br />

• Résultat facile à vérifier<br />

q<br />

q−1<br />

∑<br />

a=<br />

0<br />

ax ,<br />

a<br />

[ N]<br />

Utilise des effets authentiquement<br />

quantiques<br />

État<br />

1<br />

q<br />

État intriqué<br />

q−1<br />

∑<br />

a=<br />

0<br />

ax ,<br />

[ N]<br />

analogue à la paire EPR<br />

1<br />

( , , )<br />

2 + − − − +<br />

Calcul: manipulation d'intrication<br />

Mesure du second registre:<br />

projection du premier<br />

Rien de comparable avec un<br />

ordinateur analogique classique<br />

(même avec superpositions)<br />

a<br />

Florence, Mai 2004 282


Simulation quantique<br />

Un autre domaine pour le calcul<br />

quantique<br />

Simuler la dynamique ou les états<br />

propres d’un système quantique<br />

Ex: trouver l’état fondamental d’un<br />

système de spins en interaction sur<br />

un réseau<br />

Intérêts<br />

• Dès 30 qubits, traiter des problèmes<br />

inaccessibles aux calculs classiques.<br />

• Par rapport au système donné par la<br />

nature, on peut faire varier la force et<br />

la nature des interactions.<br />

Classiquement difficile: la taille de<br />

l’espace de Hilbert croît<br />

exponentiellement avec la taille du<br />

système<br />

Feynman 1985: utiliser un système<br />

quantique pour en simuler un autre.<br />

Problèmes:<br />

• Peu de systèmes facilement<br />

simulables.<br />

• Problème de la décohérence<br />

Florence, Mai 2004 283


IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• 1) A reminder on <strong>quantum</strong> computing<br />

• 2) Quantum entanglement knitting stitches<br />

• 3) Cavity assisted collisions<br />

Florence, Mai 2004 284


Quantum Rabi oscillations<br />

Initial atom-cavity state<br />

1<br />

Ψ (0) = e,0 = + ,0 + −,0<br />

2<br />

( )<br />

State at time t:<br />

Ω t Ω t<br />

Ψ = +<br />

2 2<br />

0 0<br />

() t cos e,0 sin g,1<br />

1+ cosΩ<br />

Probability for being in e :<br />

0t<br />

Pe<br />

() t =<br />

2<br />

•Oscillatory spontaneous<br />

emission<br />

•An atomic transition saturated by<br />

a single photon<br />

•Non-linear optics at the single<br />

photon level.<br />

P e<br />

(t)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

time ( µ s)<br />

0 30 60 90<br />

Florence, Mai 2004 285


Quantum Rabi oscillations: state transformations<br />

Initial state<br />

e,0<br />

1<br />

e,0 e⎯⎯→−<br />

,0 e,0 ⎯⎯→ eg,0<br />

,1 2π ( epulse<br />

,0 + g,1<br />

)<br />

2<br />

g,1 ( ⎯⎯→− ce e + cg π/2 spontaneous g,1) 0 ⎯⎯→ g<br />

Conditional ( ce 1 + c<br />

emission dynamics<br />

g<br />

0 )<br />

pulse<br />

π spontaneous emission pulse<br />

g,0 ⎯⎯→+ Entanglement g,0<br />

Quantum<br />

creation<br />

Atom/cavity state copy phase gate<br />

Atom-cavity EPR pair<br />

P e<br />

(t)<br />

0.8<br />

51 (level e)<br />

0.6<br />

51.1 GHz<br />

50 (level g)<br />

0.4<br />

0.2<br />

0.0<br />

Brune et al, PRL 76, 1800 (96)<br />

time ( µ s)<br />

0 30 60 90<br />

Florence, Mai 2004 286


Three "stitches" to "knit" <strong>quantum</strong> entanglement<br />

Combine elementary transformations to create complex entangled states<br />

• State copy <strong>with</strong> a π pulse<br />

– Quantum memory : PRL 79, 769 (97)<br />

• Creation of entanglement <strong>with</strong> a π/2 pulse<br />

– EPR atomic pairs : PRL 79, 1 (97)<br />

• Quantum phase gate based on a 2π pulse<br />

– Quantum gate : PRL 83, 5166 (99)<br />

– Absorption-free detection of a single photon: Nature 400, 239 (99)<br />

• Entanglement of three systems (six operations on four qubits)<br />

– GHZ Triplets : Science 288, 2024 (00)<br />

• Entanglement of two radiation field modes<br />

– Phys. Rev. A 64, 050301 (2001)<br />

• Direct entanglement of two <strong>atoms</strong> in a cavity-assisted collision<br />

– Phys. Rev. Lett. 87, 037902 (2001)<br />

Florence, Mai 2004 287


Quantum memory<br />

• Use the π <strong>quantum</strong> Rabi pulse to transfer a qubit from an atom to the<br />

cavity <strong>and</strong> back<br />

• Timing<br />

• An useful space-time diagram for the timing of complex experiments<br />

Florence, Mai 2004 288


• Final signal<br />

Coherent information transfer<br />

• Ramsey fringes <strong>with</strong> the two pulses on different <strong>atoms</strong> <strong>and</strong> transient<br />

storage of <strong>quantum</strong> information in the cavity field<br />

Florence, Mai 2004 289


Quantum memory lifetime<br />

• Contrast of the fringes as a function of time<br />

0.6<br />

0.4<br />

Fringes amplitude<br />

0.2<br />

0.0<br />

0 1 2 3<br />

T/T<br />

cav<br />

• Coherence lifetime is twice cavity damping time (equal superposition of 0<br />

<strong>and</strong> 1)<br />

Florence, Mai 2004 290


Preparation <strong>and</strong> detection of a single photon state<br />

• First atom in e: preparation of a single photon Fock state<br />

• Other atom read out: measurement of a Fock state lifetime<br />

1.0<br />

Π<br />

fe<br />

First atom sent in e<br />

Second atom sent in g<br />

0.8<br />

Delay in C: T<br />

7000 coincidences per point<br />

0.6<br />

0.4<br />

0.2<br />

Two data sets for two modes<br />

T cav<br />

=84 µs<br />

T cav<br />

=112 µs<br />

Conditional probability<br />

second in e<br />

when first in g<br />

Maximum value 75%<br />

well understood <strong>with</strong><br />

known experimental<br />

imperfections<br />

0.0<br />

0 1 2 3 4 5<br />

T/T<br />

cav<br />

Florence, Mai 2004 291


Creation of an EPR atom pair<br />

A simple entanglement manipulation experiment<br />

• Initial state<br />

g<br />

e<br />

eg , ,0<br />

π/2 pulse:<br />

•Entanglement creation<br />

1<br />

( ,0 + ,1 )<br />

2 e g g<br />

•State copy<br />

•Final state<br />

1<br />

( )<br />

1<br />

eg , − ge , in spin terms: ( ↑↓ , −↓↑ , )<br />

2 2<br />

1<br />

= →← , −←→ ,<br />

2<br />

( )<br />

Hagley et al, PRL 79, 1 (97)<br />

Florence, Mai 2004 292


Testing entanglement<br />

Two complementary experiments<br />

Spin singlet state is rotation-invariant:<br />

• Spin anticorrelations along any<br />

detection axis<br />

– Check atomic energy<br />

anticorrelations (detection along<br />

0z)<br />

• "longitudinal experiment"<br />

Longitudinal experiment<br />

Direct detection of atomic energies<br />

Timing<br />

Position<br />

D D<br />

C<br />

e A 1 g A 2<br />

Expect. Obs<br />

e,e<br />

0 0.10<br />

Time<br />

– Check that superposition is<br />

coherent by detecting spins in a<br />

non-compatible basis (axes in the<br />

horizontal plane of Bloch sphere)<br />

• "transverse experiment"<br />

63 % of pairs present the expected<br />

correlation.<br />

Imperfections well accounted for by<br />

cavity relaxation (T r<br />

=112µs) <strong>and</strong> π<br />

pulse imperfections<br />

Florence, Mai 2004 293<br />

e,g<br />

g,e<br />

g,g<br />

0.5<br />

0.5<br />

0<br />

0.42<br />

0.27<br />

0.21


Transverse experiment<br />

Principle<br />

• Measure atom 1 along x axis<br />

• Measure atom 2 along φ axis<br />

– (apply Ramsey pulses <strong>with</strong><br />

adjustable phase φ on two <strong>atoms</strong>)<br />

z<br />

z<br />

Position<br />

Timing<br />

C<br />

R 1<br />

eg<br />

D<br />

π/2 π/2<br />

D<br />

R 2<br />

eg<br />

y<br />

y<br />

e<br />

A 1 g A 2<br />

Time<br />

x<br />

x<br />

φ<br />

"Bell signal"<br />

0.3<br />

• Measure<br />

σ σ<br />

• Expect +1 for φ=π, -1 for φ=0<br />

x<br />

ϕ<br />

Bell signal<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

Ramsey fringes <strong>with</strong> two pulses on two<br />

different <strong>atoms</strong> !<br />

-2 0 2 4<br />

Florence, Mai 2004 294<br />

-0.2<br />

-0.3<br />

φ/π


Fidelity<br />

Fidelity estimate F = Tr( ρ ΨEPR<br />

ΨEPR<br />

)<br />

Assuming that imperfections do not create unwanted coherences:<br />

P + V⊥<br />

F = <br />

2<br />

• P : population in the "expected" channels in longitudinal experiment<br />

»0.71<br />

• V ⊥ : visibility of the Bell signal in the transverse experiment<br />

»0.25<br />

Hence F=48%<br />

Violation of Bell inequalities Requires a Bell contrast signal >0.71<br />

Florence, Mai 2004 295


Principle:<br />

First atom<br />

Initial state<br />

π/2 pulse in M a<br />

π pulse in M b<br />

Second atom:<br />

probes field states<br />

Entangling two modes of the radiation field<br />

• Final transfer rate modulated versus<br />

the delay at the beat note between<br />

modes<br />

∆<br />

0<br />

−δ<br />

A s<br />

π/2<br />

π<br />

e,0,0<br />

D<br />

Single photon beats<br />

1.0<br />

P e<br />

(T)<br />

0.5<br />

( ,0,0 ,1,0 )<br />

2 e + g<br />

0.0<br />

( 0,1 1,0 )<br />

2 g + 1.0<br />

1<br />

1<br />

A p<br />

π<br />

(b)<br />

π/2<br />

M a<br />

M b<br />

D<br />

0.5<br />

0.0<br />

1.0<br />

0.5<br />

0.0<br />

48 50 52 54 56 58<br />

200 202 204 206 208<br />

400 402 404 406 408<br />

0.0<br />

0 π/2Ω 3π/2Ω T Τ+π/Ω t<br />

698 700 702 704 706<br />

T(µs)<br />

Florence, Mai 2004 296<br />

1.0<br />

0.5<br />

(a)<br />

(b)<br />

(c)<br />

(d)


A <strong>quantum</strong> phase gate<br />

Principle<br />

2π <strong>quantum</strong> Rabi pulse:<br />

conditional dynamics<br />

e<br />

g<br />

π<br />

D<br />

C<br />

i<br />

"Truth table"<br />

49 (level i )<br />

51.1 GHz<br />

cavi ty<br />

50 (level g)<br />

54.3 GHz<br />

Ramsey source<br />

• Cavity qubit: states |0> <strong>and</strong> |1><br />

• Atomic qubit: states |i> <strong>and</strong> |g><br />

i,0 ⎯⎯→ i,0<br />

i,1 ⎯⎯→ i,1<br />

g,0 ⎯⎯→ g,0<br />

iφ<br />

g,1 ⎯⎯→− g,1 = e g,1<br />

51 (level e)<br />

Tests<br />

Two complementary experiments<br />

• A single photon shifts the phase<br />

of an atomic coherence<br />

1 1<br />

0 0<br />

2 2<br />

1 1<br />

1 1<br />

2 2<br />

( i + g ) ⎯⎯→ ( i + g )<br />

( i + g ) ⎯⎯→ ( i − g )<br />

• A single atom phase shifts the<br />

cavity field<br />

( 0<br />

0 +<br />

1<br />

1 ) ⎯⎯→ ( 0<br />

0 +<br />

1<br />

1 )<br />

( 0<br />

0 +<br />

1<br />

1 ) ⎯⎯→ ( 0<br />

0 −<br />

1<br />

1 )<br />

i c c i c c<br />

g c c g c c<br />

Rauschenbeutel et al., PRL 83, 5166 (99)<br />

Quantum phase gate<br />

Florence, Mai 2004 297


A single photon phase-shifts an atomic coherence<br />

Principle<br />

Preparation <strong>and</strong> test of an atomic<br />

coherence: Ramsey set-up<br />

e<br />

g<br />

π<br />

P g<br />

Timing<br />

Position<br />

(a)<br />

C<br />

e<br />

π<br />

π/2<br />

A 1<br />

g A 2<br />

2π<br />

R 1<br />

gi<br />

D<br />

π/2<br />

D<br />

R 2<br />

gi<br />

Time<br />

i<br />

R 1<br />

C R 2 D 0 ν−ν gi<br />

π phase shift of fringes when cavity<br />

contains one photon<br />

Signal<br />

0,9<br />

0,8<br />

0,7<br />

One photon<br />

Zero photon<br />

Preparation of |1>: source atom,<br />

prepared in e, π <strong>quantum</strong> Rabi<br />

pulse<br />

Probability<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0 10 20 30 40 50 60<br />

Frequency ν (kHz)<br />

Florence, Mai 2004 298


A single atom phase-shifts the field<br />

Principle<br />

|0> <strong>and</strong> |1> superposition:<br />

small coherent field<br />

α ≈ c 0 + c 1<br />

0 1<br />

Amplitude read-out:<br />

atom in g. π Rabi pulse<br />

Minimum transfer:<br />

minimum amplitude<br />

Atom in i<br />

c 0 + c 1 ≈ α<br />

0 1<br />

in g<br />

c 0 − c 1 ≈−α<br />

0 1<br />

Timing<br />

Homodyne detection<br />

i<br />

α + αe φ<br />

i<br />

− α + αe φ<br />

Zero amplitude for<br />

φ = π φ = 0<br />

Position<br />

C<br />

(b)<br />

α<br />

g<br />

A 2<br />

2π<br />

π/2<br />

R1<br />

gi<br />

D<br />

αe ιθ<br />

g<br />

A 3<br />

π<br />

Time<br />

D<br />

Florence, Mai 2004 299


Coherent gate operation<br />

Atom in i<br />

0.4<br />

Probe transfer<br />

0.3<br />

Atom in g<br />

0.2<br />

0.4<br />

-2 -1 0 1 2<br />

φ/π<br />

A fully coherent<br />

<strong>quantum</strong> gate<br />

Probe transfer<br />

0.3<br />

0.2<br />

-2 -1 0 1 2<br />

φ/π<br />

Florence, Mai 2004 300


Tuning the <strong>quantum</strong> gate phase<br />

Role of atom-cavity detuning<br />

Phase of gate:<br />

360<br />

• For δ=0 : resonant interaction. π gate<br />

• Large δ: dispersive regime. Transient<br />

modification of atom <strong>and</strong> cavity<br />

frequencies: gate <strong>with</strong> a small angle<br />

• Intermediate δ range:<br />

– Intermediate values of φ<br />

– Absorption remains small (


“Quantum program”: generation of a GHZ state<br />

A 2<br />

A 1<br />

π/2 2π pulse<br />

Atom-cavity Cavity-Atom entanglement<br />

Control-phase creation<br />

gate<br />

Florence, Mai 2004 302


• prepared state:<br />

The "GHZ" state"<br />

1<br />

⎡<br />

1, 0<br />

1,<br />

1<br />

2 ⎣<br />

e g i − g<br />

( ) ( )<br />

2 2 2 2<br />

⎤<br />

⎦<br />

• In term of qubits:<br />

1<br />

2<br />

( 0,0,0 + 1,1,1 )<br />

• In term of spin 1/2:<br />

1<br />

2<br />

( + , + , + + − , − − )<br />

1 2 c 1 2,<br />

c<br />

• " GHZ triplet "<br />

(Greenberger Horne Zeilinger)<br />

Florence, Mai 2004 303


Entanglement tests<br />

Assessing preparation fidelity<br />

Two complementary experiments:<br />

• Correlations in a "longitudinal" basis<br />

– State populations<br />

– Measurement of diagonal terms *<br />

ρ triplet<br />

+ ++ ..................... −−−<br />

⎡* . . . . . . * ⎤<br />

⎢<br />

. * . . . . . .<br />

⎥<br />

⎢<br />

⎥<br />

⎢ . . * . . . . . ⎥<br />

⎢<br />

⎥<br />

. . . * . . . .<br />

= ⎢<br />

⎥<br />

⎢ . . . . * . . . ⎥<br />

⎢<br />

⎥<br />

⎢<br />

. . . . . * . .<br />

⎥<br />

⎢ . . . . . . * . ⎥<br />

⎢⎣<br />

* . . . . . . * ⎥⎦<br />

• Correlations in a "transverse" basis<br />

– Measurement of correlated to state of atom 2<br />

– Measures one off-diagonal term *<br />

Rauschenbeutel et al Science 288, 2024 (00)<br />

Florence, Mai 2004 304


Measurement of σ z1 . σ z2 . σ z3 : longitudinal expt<br />

• Step 1: transfer of the field state to a third atom performing a π absorption pulse in C:<br />

1<br />

⎡ e ( ) ( )<br />

1, 0 g2 + i2 + g1,<br />

1 g2<br />

− i ⎤<br />

2<br />

⊗ g3<br />

2 ⎣<br />

⎦<br />

1<br />

⇒ ⎡ e ( ) ( )<br />

1<br />

g + i g3 + g1<br />

g − i e ⎤<br />

3<br />

⊗<br />

2 ⎣<br />

⎦<br />

1<br />

( +<br />

)<br />

1, +<br />

2, +<br />

3<br />

+ −1,<br />

−2,<br />

−3<br />

2<br />

2 2 2 2<br />

0<br />

• step 2: detection of each atom for measuring σ z1 . σ z2 . σ z3<br />

- <strong>atoms</strong> 1 et 3 : direct measurement of energy<br />

- atome 2: measurement of energy after applucation of an external π/2 pulse:<br />

π/2<br />

( )<br />

( − )<br />

⎧<br />

⎪1 2 g2 + i2 → i2<br />

⎨<br />

⎪⎩<br />

1 2 g i → g<br />

⇒ 1<br />

2 e i g + g g e<br />

( 1, 2, 3 1, 2,<br />

3 )<br />

2 2<br />

Florence, Mai 2004 305


Position (cm)<br />

Full set of operations for measurement of σ z1 . σ z2 . σ z3<br />

0<br />

π/2<br />

D<br />

D<br />

D<br />

10<br />

8<br />

6<br />

Atom # 1<br />

Atom # 2<br />

π/2 2π π<br />

π/2<br />

4<br />

2<br />

Atom # 3<br />

θ<br />

π/2<br />

D<br />

• Rabi oscillation in C<br />

π/2<br />

•Detection<br />

•Classical π/2 pulse<br />

Time<br />

State before detection:<br />

⇒ 1<br />

2 e i g + g g e<br />

( 1, 2, 3 1, 2,<br />

3 )<br />

Florence, Mai 2004 306


Measurement results:<br />

• measurement of σ z1<br />

. σ z2<br />

. σ z3<br />

P long<br />

=P eig<br />

+ P gge<br />

= 0.58 (0.02)<br />

0.4<br />

0.3<br />

0.2<br />

|- 1 ,- 2 ,- 3 〉<br />

|+ 1<br />

,+ 2 ,+ 3 〉<br />

0.1<br />

0<br />

Pgig<br />

Pgie<br />

Pggg<br />

Pgge<br />

Peig<br />

Peie<br />

Pegg<br />

Pege<br />

Rauschenbeutel et al., Science 288, 2024 (2000)<br />

Florence, Mai 2004 307


Transverse experiment<br />

Position<br />

Timing<br />

• R 1<br />

<strong>and</strong> R 3<br />

test the A 1<br />

-A 3<br />

EPR<br />

"transverse" correlations<br />

• Measure the A 1<br />

-A 3<br />

"Bell" signal as a<br />

function of the state of A 2<br />

Tests<br />

A 1<br />

R 1<br />

(II)<br />

Ψ triplet<br />

A 2<br />

A 3<br />

C<br />

π/2<br />

D<br />

π<br />

D<br />

R 3<br />

(II)<br />

π/2<br />

D<br />

Time<br />

1<br />

ψ<br />

triplet<br />

= ⎡ i2 ( e1,0 + g1,1 ) + g2 ( e1,0 − g1,1<br />

) ⎤<br />

2 ⎣<br />

⎦<br />

Bell signal<br />

Results<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-6 -4 -2 0 2<br />

Detection phase φ<br />

Florence, Mai 2004 308


Fidelity of preparation of the GHZ state<br />

• measurement of σ z1<br />

. σ z2<br />

. σ z3<br />

P long<br />

=P eig<br />

+ P gge<br />

= 0.58 (0.02)<br />

• measurement of σ x1<br />

. σ x2<br />

. σ x3<br />

A= 〈σ x1<br />

. σ x2<br />

. σ x3<br />

〉 = -0.28 (0.03)<br />

• fidelity:<br />

F ψ ρ ψ<br />

= =<br />

triplet<br />

F > 0.3 garanties non-separability<br />

triplet<br />

0.54 (0.03)<br />

see also: Sacket et al. Science 288, 2024 (2000)<br />

preparation of a 4 ions GHZ state in one step<br />

Florence, Mai 2004 309


A complex experimental sequence<br />

A timing nightmare<br />

Features<br />

Experiment II<br />

Stark Voltage (V)<br />

-4 -3 -2 -1 0 1 2<br />

R1 gi<br />

R2 R2<br />

gi ei<br />

A3: 100 µs<br />

100<br />

A2: 25 µs<br />

100<br />

A small "<strong>quantum</strong> program": 6<br />

operations on 4 individual qubits (two<br />

<strong>atoms</strong>, the cavity <strong>and</strong> an extra atom<br />

used to read-out the cavity state).<br />

Time (µs)<br />

0<br />

-100<br />

A1: 0 µs<br />

1.757 V<br />

0.62 V<br />

0<br />

-100<br />

In principle, could be extended to<br />

generate a more complex entangled<br />

state<br />

-3 -2 -1 0 1 2 3 4 5 6<br />

Position (cm)<br />

Florence, Mai 2004 310


IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• 1) A reminder on <strong>quantum</strong> computing<br />

• 2) Quantum entanglement knitting stitches<br />

• 3) Cavity assisted collisions<br />

Florence, Mai 2004 311


Towards more complex sequences<br />

Present limitations <strong>and</strong> possible<br />

solutions<br />

• Single qubit gate fidelity<br />

– Improve field homogeneity<br />

• R<strong>and</strong>om atom preparation: long data<br />

acquisition times<br />

– Deterministic atom pistol <strong>with</strong><br />

cold atom techniques<br />

• Cavity losses<br />

– New cavity design<br />

• Higher Q's<br />

• No ring<br />

• Encouraging preliminary<br />

results<br />

– "Remove" the cavity <br />

Entanglement <strong>with</strong>out cavity<br />

Van der Waals resonant collision in free<br />

space:<br />

Resonant energy exchange between two<br />

Rydberg <strong>atoms</strong>.<br />

Full entanglement for b=10µm. Efficient<br />

<strong>quantum</strong> gate (Lukin, Zoller)<br />

b<br />

van der<br />

Waals<br />

eg , ⎯⎯→ cos θ eg , + sin θ ge ,<br />

2<br />

2<br />

θ α c ⎛an<br />

⎞ 0<br />

= ⎜ ⎟<br />

v⎝<br />

b ⎠<br />

Requires excellent control of atomic<br />

position.<br />

Florence, Mai 2004 312


Cavity-assisted van der Waals collision<br />

Two <strong>atoms</strong> interact in a non-resonant cavity<br />

2<br />

⎛ω<br />

⎞c<br />

an<br />

0<br />

Mixing angle: = ⎜ ⎟ ⎜ ⎟ ω transition freq., δ atom-cavity detuning<br />

⎝ ⎠v⎝ bc<br />

⎠<br />

θ α δ<br />

⎛ ⎞<br />

Effective impact parameter b c ~cavity size (mm)<br />

Considerable enhancement factor ω/δ (up to 10 6 )<br />

2<br />

Resonant coupling between |e 1<br />

,g 2<br />

,0> <strong>and</strong><br />

|g 1<br />

,e 2<br />

,0> involving a virtual photon<br />

exchange <strong>with</strong> the cavity (state |g 1<br />

,g 2<br />

,1>)<br />

|g 1<br />

,g 2<br />

;1><br />

δ<br />

e 1<br />

,g 2<br />

;0> |g 1<br />

,e 2<br />

;0><br />

Actual cavity has two modes (orthogonal polarizations) separation 130 kHz:<br />

– Enhancement factor η=ω(1/δ 1 +1/δ 2 )<br />

Zheng <strong>and</strong> Guo, Phys. Rev. Lett. 85, 2392 (2000); Osnaghi et al. Phys. Rev. Lett. 87, 037902 (2001)<br />

Florence, Mai 2004 313


Advantage of non-resonant method of entanglement:<br />

Sensitivity to cavity damping<br />

Ω =<br />

R<br />

Ω<br />

2<br />

0<br />

2δ<br />

• effect of cavity damping:<br />

projection on |g,g,0><br />

Full loss of entanglement<br />

• probability of error:<br />

eg , ,0<br />

Ω<br />

R ge , ,0<br />

gg , ,1<br />

P<br />

col<br />

err<br />

⎛Ω<br />

⎞<br />

≈⎜<br />

⎟<br />

⎝δ<br />

⎠<br />

2<br />

• Resonant case:<br />

P<br />

res<br />

err<br />

≈Γ<br />

Γ<br />

cav<br />

cav<br />

. T<br />

int<br />

. T<br />

res<br />

int<br />

Ω . = π 2<br />

T R int<br />

res<br />

Ω . T = π 2<br />

int<br />

δ Γ cav<br />

• error rate reduced as:<br />

P<br />

P<br />

col<br />

err<br />

res<br />

err<br />

≈<br />

Ω<br />

δ<br />

gg , ,0<br />

efficient <strong>with</strong> slower <strong>atoms</strong><br />

Florence, Mai 2004 314


Advantage of non-resonant method of entanglement:<br />

Sensitivity to blackbody radiation<br />

• coupling in the presence of N photons:<br />

egN , ,<br />

Ω N + 1<br />

eeN− , , 1<br />

Ω R<br />

ggN+ , , 1<br />

Ω<br />

N<br />

g, eN ,<br />

Due to destructive interference<br />

between two probability amplitudes,<br />

the effective coupling is to first<br />

order independent of N:<br />

2<br />

( )<br />

2 2<br />

Ω<br />

0. N + 1 Ω0.<br />

N Ω0<br />

ΩR<br />

≈ − =<br />

2δ 2δ 2δ<br />

The method works even in the presence of blackbody radiation<br />

Similar to "hot" gate for ions:<br />

Moelmer et al PRL 82 1835 (2000)<br />

Florence, Mai 2004 315


Experimental realization<br />

•Both <strong>atoms</strong> simultaneously present in the empty cavity<br />

mode<br />

•Minimum distance: about 1 mm (atomic beam diameter)<br />

•Ramsey pulses to detect atomic spins along a tunable<br />

direction<br />

Florence, Mai 2004 316


Tests of entanglement<br />

Population transfer<br />

1.0<br />

0.8<br />

"longitudinal entanglement"<br />

P(e 1<br />

,g 2<br />

)<br />

P(g 1<br />

,e 2<br />

)<br />

Test of "transverse" entanglement<br />

0.8<br />

<br />

Probability<br />

0.6<br />

0.4<br />

0.2<br />

0.4<br />

0.0<br />

-0.4<br />

-0.8<br />

0.0<br />

0 1 2 3 4<br />

η(x10 -6 )<br />

Up to 2π Rabi rotation<br />

Good agreement <strong>with</strong> simple model up<br />

to π/2 (solid lines)<br />

Qualitative agreement <strong>with</strong> numerical<br />

integration for larger mixing angles<br />

Features:<br />

-1 0 1 2 3<br />

• Insensitive to cavity damping<br />

• Insensitive to cavity residual thermal<br />

field<br />

• Easily transformed in a CNOT gate<br />

Very promising for <strong>quantum</strong> information<br />

processing <strong>with</strong> moderate Q <strong>cavities</strong><br />

Florence, Mai 2004 317<br />

φ/π


Application of controlled collision<br />

• A simple proposed implementation of the two qubit Grover search<br />

algorithm<br />

Florence, Mai 2004 318


Next step: solve the simplest <strong>quantum</strong> algorithms<br />

PROBLEM: Finding a known item in an unsorted list of size N<br />

Classical Solution: Check all the items until the one we look for is found!<br />

Number of trials: Order of N/2<br />

Complete list<br />

( )<br />

x<br />

1,...,x N<br />

x o<br />

( )<br />

δ x − x o<br />

Equivalent to an oracle corresponding to a function in a blackbox which<br />

gives the answer yes or no (0 or 1) to the question: « is it the marked item »<br />

x3<br />

0<br />

x 102 δ( x− x o<br />

) 0<br />

x o<br />

1<br />

Florence, Mai 2004 319


QUANTUM SEARCH:<br />

O ( N ) queries !!<br />

L.K.Grover, Phys. Rev. Lett. 79, 325 (1997)<br />

0 1<br />

n qubits: <strong>and</strong><br />

n<br />

( N = 2 states)<br />

•1st<br />

step: put all the qubits in a superposition<br />

1<br />

2<br />

( 0 + 1 )<br />

Hadamard gate,<br />

performed via a classical<br />

p/2 microwave pulse<br />

Ψ<br />

=<br />

1<br />

N<br />

( 0 + 1 ) × ( 0 + 1 ) × ... × ( 0 + 1 ) = ∑<br />

1<br />

N<br />

N<br />

i<br />

i<br />

Superposition of all possible states<br />

Florence, Mai 2004 320


We are looking for a particular state<br />

x o =10100<br />

...0<br />

• 2nd step: Inverse the amplitude of the searched item.<br />

O<br />

o<br />

= I − 2<br />

x<br />

x<br />

o<br />

x<br />

o<br />

This step corresponds to the action of<br />

the « oracle » <strong>and</strong> is the only one where<br />

information about the searched item is used.<br />

« - » sign = answer « yes ». « + » sign = answer « no »<br />

• 3rd step: Symmetrisation about the average:<br />

U s<br />

= 2 Ψ Ψ − I = H ( 2 0 0 − I )H<br />

( H = H H ... )<br />

φ<br />

1<br />

2<br />

H n<br />

= ∑ i<br />

ai i<br />

a<br />

I 0<br />

=<br />

1<br />

N<br />

Florence, Mai 2004 321<br />

∑<br />

i<br />

a<br />

i<br />

( a )<br />

U φ = 2 Ψ Ψ φ − φ = ∑ 2a −<br />

s<br />

This step does not use<br />

Information about the searched<br />

item<br />

i<br />

i<br />

i


Repeating this sequence leads to the marked<br />

item.<br />

An example: : N=16 ( 4 qubits ).)<br />

The first operation reverses the amplitude of<br />

the marked item, lowering the average.<br />

Then, the reversal about the average<br />

increases the probability amplitude of<br />

finding the marked item.<br />

After iterating the same procedure 3 times<br />

we find<br />

the marked item <strong>with</strong> a 96% probability.<br />

Case n=2 qubits ( N = 4 items ) Only one iteration !!<br />

Florence, Mai 2004 322


• CAVITY QED: (N=4)<br />

= H = SI QPG HI QPG P<br />

Q HI0<br />

HO xo<br />

Oracle<br />

qubits: two electronic levels of a three level atom<br />

Hadamard gates: Classical microwave<br />

pulses combining two<br />

electronic levels.<br />

.<br />

cavity<br />

|e><br />

|g><br />

H<br />

⎧<br />

⎪<br />

0<br />

: ⎨<br />

⎪ 1<br />

⎩<br />

→<br />

→<br />

1<br />

2<br />

1<br />

2<br />

( 0 + 1 )<br />

( 0 − 1 )<br />

|i><br />

Florence, Mai 2004 323


Quantum phase gate:<br />

(dispersive interaction)<br />

I QPG<br />

00<br />

⎛1<br />

⎜<br />

⎜0<br />

= ⎜0<br />

⎜<br />

⎝0<br />

01<br />

0<br />

1<br />

0<br />

0<br />

10<br />

0<br />

0<br />

1<br />

0<br />

11<br />

0 ⎞<br />

⎟<br />

0 ⎟<br />

0 ⎟<br />

⎟<br />

−1<br />

⎠<br />

e<br />

Two <strong>atoms</strong> interact dispersively <strong>with</strong> the cavity field (detuning d >> W )<br />

δ<br />

cavity<br />

|e 1 〉|g 2 〉|0〉 |g 1 〉|e 2 〉|0〉<br />

δ<br />

Ω<br />

|g 1 〉|g 2 〉|1〉<br />

Ω<br />

g<br />

H<br />

2<br />

Ω ⎡<br />

= ⎢ ∑<br />

4δ<br />

⎣ j = 1,<br />

Cavity field shift Two atom collision<br />

e<br />

e<br />

+<br />

e<br />

eff<br />

j j 1 2 1 2 1 2 1 2<br />

2<br />

S.-B. Zheng <strong>and</strong> G.-C. Guo, Phys. Rev. Lett. 85, 2392 (2000)<br />

S. Osnaghi et al., Phys. Rev. Lett. 85, 2392 (2000)<br />

Florence, Mai 2004 324<br />

g<br />

g<br />

e<br />

+<br />

g<br />

e<br />

e<br />

g<br />

⎤<br />

⎥<br />


e<br />

e<br />

g<br />

t<br />

=<br />

e<br />

iλt<br />

[ cos ( λt<br />

) e g − i sin ( λt<br />

) g e ]<br />

cavity<br />

g<br />

i<br />

Qubit encoding:<br />

0 → g<br />

1st atom: : 2nd atom:<br />

1 → e<br />

Action of effective Hamiltonian for a time<br />

0<br />

1<br />

→<br />

→<br />

i<br />

g<br />

t<br />

=<br />

π<br />

λ<br />

e<br />

g<br />

g<br />

i<br />

t<br />

g<br />

i<br />

t<br />

=<br />

t<br />

e<br />

iλt<br />

= g<br />

= g<br />

e<br />

i<br />

g<br />

i<br />

0<br />

0<br />

1<br />

1<br />

0<br />

1<br />

0<br />

1<br />

= g<br />

= g<br />

= e1<br />

= e<br />

1<br />

1<br />

1<br />

i<br />

i<br />

g<br />

2<br />

g<br />

2<br />

2<br />

2<br />

→<br />

→ g<br />

→ e<br />

→ − e<br />

g<br />

1<br />

1<br />

1<br />

1<br />

i<br />

i<br />

2<br />

g<br />

2<br />

g<br />

2<br />

2<br />

I QPG<br />

00<br />

⎛1<br />

⎜<br />

⎜0<br />

= ⎜0<br />

⎜<br />

⎝0<br />

01<br />

0<br />

1<br />

0<br />

0<br />

10<br />

0<br />

0<br />

1<br />

0<br />

11<br />

0 ⎞<br />

⎟<br />

0 ⎟<br />

0 ⎟<br />

⎟<br />

−1<br />

⎠<br />

Florence, Mai 2004 325


Sequence of operations:<br />

Q =<br />

SI<br />

QPG<br />

HI<br />

S <strong>and</strong> P: Performed by microwave pulses<br />

QPG<br />

P<br />

P contains the<br />

information about<br />

the marked item.<br />

It plays the role of<br />

the oracle.<br />

S 1 S 2<br />

P = P1 ( θ1)<br />

P2<br />

( θ2)<br />

θ = 0<br />

⎧<br />

⎪<br />

0 →<br />

S : ⎨<br />

⎪ 1 →<br />

⎩<br />

π<br />

S = i<br />

⎧<br />

( − 0 − 1 )<br />

0 ( )<br />

2<br />

i<br />

2<br />

( 0 − 1 )<br />

⎪<br />

Pi<br />

( θi) : ⎨<br />

⎪ 1<br />

⎩<br />

or determines the marked item<br />

→<br />

→<br />

1<br />

2<br />

1<br />

2<br />

e<br />

−iθ<br />

/ 2<br />

i<br />

0<br />

+ e<br />

iθ<br />

/ 2<br />

1<br />

−iθi<br />

/ 2 iθi<br />

/ 2<br />

( e 0 − e 1 )<br />

θ<br />

i<br />

state<br />

( 0 ,0 ) 1 1<br />

( 0 , π ) 1 0<br />

( π ,0 ) 0 1<br />

( π , π ) 0 0<br />

Florence, Mai 2004 326


• The search algorithm:<br />

Q<br />

=<br />

SI<br />

QPG<br />

HI<br />

QPG<br />

P<br />

P QPG H QPG S detection<br />

Action of the oracle:<br />

Application of P determines<br />

the output<br />

Access <strong>atoms</strong> independently:<br />

Stark effect<br />

Florence, Mai 2004 327


Simulations made considering the<br />

experiment as the ideal one: the only<br />

source of imperfections, responsible for<br />

the non perfect fidelity, is the effective<br />

Hamiltonian.<br />

We consider here imperfection in the<br />

pulse duration. When they are of the<br />

order of 5 %, the fidelity decreases to<br />

82%.<br />

Simulations:<br />

Probability<br />

Probability<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

96%<br />

eg ei gg gi<br />

5% pulse error<br />

δ = 4Ω<br />

(a)<br />

(b)<br />

0,0<br />

eg<br />

ei<br />

gg<br />

gi<br />

Evolution of the fidelity <strong>with</strong> pulse<br />

imperfections.<br />

Fidelity<br />

0,9<br />

0,8<br />

0,7<br />

(c)<br />

0,6<br />

0,00 0,02 0,04 0,06 0,08 0,10<br />

Pulse Imperfections<br />

Florence, Mai 2004 328


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 329


V) Schrödinger cats <strong>and</strong> decoherence<br />

• 1) A direct study of a meter’s decoherence process in a <strong>quantum</strong><br />

measurement<br />

• 2) Breeding Schrödinger lions <strong>with</strong> resonant interaction<br />

• 3) Other applications of field homodyne detection<br />

Florence, Mai 2004 330


V) Schrödinger cats <strong>and</strong> decoherence<br />

• 1) A direct study of a meter’s decoherence process in a <strong>quantum</strong><br />

measurement<br />

• 2) Breeding Schrödinger lions <strong>with</strong> resonant interaction<br />

• 3) Other applications of field homodyne detection<br />

Florence, Mai 2004 331


Quantum/classical boundary <strong>and</strong> decoherence<br />

No macroscopic superpositions at our<br />

scale<br />

Decoherence<br />

The "Schrödinger cat"<br />

1<br />

2<br />

( )<br />

+ ⇔<br />

Environment<br />

A macroscopic system is strongly<br />

coupled to a complex environment<br />

In all models, a few states only are<br />

stable ("preferred basis").<br />

No entangled states neither.<br />

We only observe a very small fraction of<br />

all possible <strong>quantum</strong> states<br />

WHY <br />

All <strong>quantum</strong> superpositions of these<br />

states evolve very rapidly into<br />

statistical mixtures.<br />

Decoherence<br />

Florence, Mai 2004 332


Main features of decoherence<br />

Very fast process<br />

An essential process<br />

superposition lifetime<br />

=<br />

relaxation time<br />

separation betweenstates<br />

• Rules <strong>quantum</strong> superpositions out of<br />

the classical world.<br />

Depends upon the initial <strong>quantum</strong> state<br />

(distance between states or<br />

"macroscopicity" parameter)<br />

• Essential to underst<strong>and</strong> <strong>quantum</strong><br />

measurement process (no<br />

superpositions of meter's states)<br />

Not a trivial relaxation mechanism<br />

(but explained by st<strong>and</strong>ard relaxation<br />

theory for simple models)<br />

-<br />

0<br />

∆x<br />

+<br />

Strong link <strong>with</strong> complementarity <strong>and</strong><br />

entanglement: environment acquires<br />

a which path information <strong>and</strong> gets<br />

entangled <strong>with</strong> the system<br />

• Main obstacle for a large scale use of<br />

<strong>quantum</strong> weirdness (<strong>quantum</strong><br />

computing)<br />

Florence, Mai 2004 333


Another experiment on complementarity<br />

e<br />

Cavity as an external detector in the<br />

Ramsey interferometer<br />

Cavity contains initially a coherent field<br />

Non-resonant atom-field interaction:<br />

e<br />

g<br />

R 1<br />

R 2<br />

α<br />

C<br />

Atom modifies the cavity field phase<br />

Phase shift α 1/δ<br />

S<br />

(index of refraction effect)<br />

⎯⎯→<br />

⎯⎯→<br />

e<br />

g<br />

(δ:atom-cavity detuning)<br />

1<br />

g<br />

D<br />

φ<br />

"Which path" information:<br />

• Small phase shift (large δ)<br />

(smaller than <strong>quantum</strong> phase noise)<br />

– field phase almost unchanged<br />

– No which path information<br />

– St<strong>and</strong>ard Ramsey fringes<br />

• Large phase shift (small δ)<br />

(larger than <strong>quantum</strong> phase noise)<br />

– Cavity fields associated to the<br />

two paths distinguishable<br />

– Unambiguous which path<br />

information<br />

– No Ramsey fringes<br />

Florence, Mai 2004 334


1.0<br />

0.5<br />

0.0<br />

Fringes <strong>and</strong> field state<br />

Complementarity<br />

712 kHz<br />

Vacuum<br />

State transformations<br />

R1<br />

C<br />

1<br />

e → e + g<br />

2<br />

Before R1<br />

( )<br />

R2<br />

1<br />

iϕ<br />

e → ( e + e g )<br />

2<br />

1<br />

g → − e e + g<br />

2<br />

( − iϕ<br />

)<br />

e, α →e e, αe g, α → g,<br />

αe<br />

iΦ iΦ −iΦ<br />

e,<br />

α<br />

Ramsey Fringe Signal<br />

1.0<br />

0.5<br />

0.0<br />

712 kHz,<br />

9.5 phot ons<br />

347 kHz<br />

Before C<br />

After C<br />

After R2<br />

1<br />

2<br />

1<br />

( )<br />

2 e + g α<br />

i i i<br />

( e Φ e, αe Φ + g,<br />

αe<br />

− Φ<br />

)<br />

1<br />

2<br />

Detection probabilities<br />

( ϕ )<br />

{ α − α }<br />

ee e e e<br />

iΦ iΦ − i +Φ −iΦ<br />

ϕ<br />

{ α<br />

α }<br />

1<br />

+ g e e + e e<br />

2<br />

i( ϕ+Φ) iΦ − i( +Φ)<br />

−iΦ<br />

104 kHz<br />

0 2 4 6 8 10<br />

ν (kHz) PRL 77, 4887 (96)<br />

1<br />

Pge<br />

,<br />

= ⎡ 1 ± Re e αe αe<br />

2 ⎣<br />

− i( ϕ +Φ ) i Φ − i Φ<br />

Ramsey fringes signal multiplied by<br />

Florence, Mai 2004 335<br />

αe<br />

iΦ<br />

⎤<br />

⎦<br />

αe<br />

−Φ i


Signal analysis<br />

Fringe signal multiplied by<br />

αe<br />

iΦ<br />

αe<br />

−Φ i<br />

Fringes contrast <strong>and</strong> phase<br />

• Modulus<br />

e<br />

2 2<br />

=<br />

e<br />

−2nsin Φ −D<br />

/2<br />

60<br />

n=9.5 (0.1)<br />

6<br />

– Contrast reduction<br />

• Phase<br />

2n<br />

sin<br />

Φ<br />

– Phase shift corresponding to<br />

cavity light shifts<br />

Phase leads to a precise (<strong>and</strong> QND)<br />

measurement of the average photon<br />

number<br />

D<br />

Fringe Cont r ast (%)<br />

40<br />

20<br />

0<br />

0.0 0.2 0.4 0.6 0.8<br />

φ (radians)<br />

• Excellent agreement <strong>with</strong> theoretical<br />

predictions.<br />

• Not a trivial fringes washing out effect<br />

Calibration of the cavity field<br />

9.5 (0.1) photons<br />

0.0 0.2 0.4 0 2<br />

φ (radians)<br />

4<br />

Fringe Shift (rd)<br />

Florence, Mai 2004 336


A laboratory version of the Schrödinger cat<br />

Field state after atomic detection<br />

1<br />

2<br />

( + )<br />

A coherent superposition of two<br />

'classical' states.<br />

Very similar to the Schrödinger cat<br />

An atom to probe field coherence<br />

Quantum interferences involving the<br />

cavity state<br />

First atom<br />

Φ<br />

−Φ<br />

D<br />

Second atom<br />

Decoherence will transform this<br />

superposition into a statistical mixture<br />

Slow relaxation: possible to study the<br />

decoherence dynamics<br />

Decoherence caught in the act<br />

Two indistinguishable <strong>quantum</strong> paths to<br />

the same final state:<br />

Quantum interferences<br />

2Φ<br />

−2Φ<br />

Florence, Mai 2004 337


Atomic correlations<br />

A correlation signal<br />

η =Πee<br />

,<br />

−Πge<br />

,<br />

P<br />

ee ,<br />

= −<br />

ge ,<br />

ee , eg , g, e gg ,<br />

• Independent of Ramsey<br />

interferometer phase φ (when Φ is<br />

neither 0 nor π/2)<br />

P<br />

P + P P + P<br />

Principle of the experiment<br />

• Send a first atom to prepare the cat<br />

• Wait for a delay τ<br />

• Send a second probe atom<br />

• Measure η versus τ<br />

Raw correlation signals<br />

• 0.5 for a <strong>quantum</strong> superposition<br />

0.3<br />

τ=40 µs<br />

η =<br />

1 Re<br />

2<br />

αα<br />

• 0 for a statistical mixture<br />

• 0 for an empty cavity<br />

correlation signal<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

0 2 4 6 8 10 12<br />

ν (kHz)<br />

15000 coincidences<br />

Florence, Mai 2004 338


A decoherence study<br />

Atomic correlation signal<br />

Decoherence versus size of the cat<br />

Two-Atom Correlation Signal<br />

0.0 0.1 0.2<br />

n=3.3 δ/2π =70 <strong>and</strong> 170 kHz<br />

0 1 2<br />

t/T<br />

r<br />

0 1 2 PRL 77, 4887 (1996)<br />

τ/T<br />

r<br />

Florence, Mai 2004 339<br />

correlation signal<br />

correlation signal<br />

δ/2π =70 kHz<br />

20<br />

16<br />

n=5.5<br />

12<br />

8<br />

4<br />

0<br />

0 1 2<br />

20<br />

t/T<br />

r<br />

16<br />

12<br />

n=3.3<br />

8<br />

4<br />

0


Decoherence <strong>and</strong> complementarity<br />

A simple theoretical approach<br />

Without relaxation:<br />

η =<br />

1 Re<br />

2<br />

Simple relaxation model: a bath of<br />

harmonic oscillators i.e. cavity modes<br />

C<br />

αα<br />

Linear couplings: amplitude β i<br />

(t) in mode<br />

i is proportional to the amplitude α(t)<br />

in the cavity mode<br />

A cat in the cavity: tiny cats in the<br />

environment<br />

C i<br />

Complete wavefunction at τ<br />

∏<br />

ατ ( ) e β( τ) e + ατ ( ) e β( τ)<br />

e<br />

i Φ i Φ −Φ i −Φ i<br />

i<br />

i<br />

i<br />

i<br />

Interfering states after the second atom<br />

(does not affect the environment)<br />

∏<br />

Final correlation<br />

Energy conservation<br />

∏<br />

iΦ<br />

ατ ( ) β( τ) e + ατ ( ) β( τ)<br />

e<br />

i<br />

i<br />

1 Re ( )<br />

iΦ<br />

η = ∏ βi<br />

τ e βi<br />

( τ ) e<br />

2<br />

i<br />

∏<br />

1 ⎛<br />

= Re exp βi<br />

( τ ) 1<br />

2<br />

⎜−∑<br />

−<br />

⎝ i<br />

∑<br />

i<br />

i<br />

−iΦ<br />

iΦ<br />

( e )<br />

2 2<br />

i<br />

⎞<br />

⎟<br />

⎠<br />

(<br />

− T<br />

e τ<br />

)<br />

2 /<br />

r<br />

β ( τ) = n 1−<br />

i<br />

PRL, 79, 1964 (1997)<br />

−Φ i<br />

Florence, Mai 2004 340


Theoretical decoherence signal<br />

Atomic correlation versus τ<br />

1<br />

2<br />

−2n[ 1−exp( −τ<br />

/ T r )] sin Φ<br />

η = e cos n[ 1−exp( −τ<br />

/ T )]<br />

r<br />

sin 2Φ<br />

2<br />

At short times<br />

T<br />

D<br />

Tr<br />

=<br />

n<br />

Excellent agreement <strong>with</strong> the<br />

experimental data<br />

A very simple description of<br />

decoherence in terms of<br />

complementarity.<br />

The environment 'measures' the<br />

field phase <strong>and</strong> gets a "which<br />

path" information<br />

Two-Atom Correlation Signal<br />

{ }<br />

0 1 2<br />

τ/T<br />

r<br />

Florence, Mai 2004 341<br />

0.0 0.1 0.2<br />

n=3.3 δ/2π =70 <strong>and</strong> 170 kHz


Decoherence features<br />

• Faster than cavity relaxation<br />

• Faster when distance between states increases<br />

• Decoherence time scale depends upon a "macroscopicity" parameter<br />

Not a trivial relaxation mechanism even if described by st<strong>and</strong>ard relaxation<br />

theory<br />

Essential for <strong>quantum</strong> measurement<br />

meters are not in superposition states<br />

Difficulty for applications of QM<br />

the more complex the entangled state, the faster the decoherence<br />

Towards decoherence "metrology" …. With much larger Schrödinger cats<br />

Florence, Mai 2004 342


V) Schrödinger cats <strong>and</strong> decoherence<br />

• 1) A direct study of a meter’s decoherence process in a <strong>quantum</strong><br />

measurement<br />

• 2) Breeding Schrödinger lions <strong>with</strong> resonant interaction<br />

• 3) Other applications of field homodyne detection<br />

Florence, Mai 2004 343


Rabi oscillation in a classical field<br />

Ωr<br />

Oscillation in a large coherent field H<br />

I<br />

= σ<br />

Y<br />

Ω<br />

r<br />

=Ω0<br />

n ∝ E<br />

2<br />

1 −Ω i clt/2 iΩclt/2<br />

| Ψ ( t) >= ⎡ (| | ) (| | )<br />

2 ⎣<br />

e e>+ i g > + e e>− i g > ⎤<br />

⎦<br />

⊗ α<br />

Atomic eigenstates<br />

In terms of Bloch sphere<br />

1<br />

± = ⎡ Z<br />

Y ⎣<br />

2<br />

e ± i g ⎤⎦<br />

In-phase <strong>and</strong> π-out-of-phase<br />

<strong>with</strong> respect to field<br />

Quantum beat between<br />

eigenstates:<br />

• Sinusoidal Rabi oscillation<br />

between e <strong>and</strong> g<br />

X<br />

Y<br />

Florence, Mai 2004 344


Rabi oscillation in a mesoscopic field<br />

A much more interesting situation<br />

⎛ Ω n+ 1t Ω n+<br />

1t<br />

Ψ = ∑<br />

+ +<br />

⎝<br />

1+ cosΩ 0<br />

n+<br />

1t<br />

2<br />

Pe()<br />

t = ∑ pn pn = cn<br />

2<br />

0 0<br />

() t cn<br />

⎜<br />

cos e, n sin g, n 1<br />

n<br />

2 2<br />

n<br />

⎞<br />

⎟<br />

⎠<br />

|e,n><br />

|+,n><br />

Ω+<br />

0<br />

n 1<br />

|-,n><br />

|g,n+1><br />

A complex Rabi oscillation signal<br />

1<br />

P e<br />

(t)<br />

0.8<br />

• Collapse:<br />

– Dispersion of Rabi frequencies<br />

• Revivals:<br />

– Finite number of frequencies<br />

– Direct consequence of field<br />

quantization<br />

0.6<br />

0.4<br />

0.2<br />

Ω 0 t/2π<br />

50 100 150 200<br />

Florence, Mai 2004 345


An insightful quasi-exact solution<br />

• Get more physical insight on the collapse-revival phenomenon<br />

• Get information on the field evolution<br />

• Rewrite the exact atom-field wavefunction<br />

Florence, Mai 2004 (Gea Banacloche PRL 65, 3385, Buzek et al PRA 45, 8190) 346


An insightful quasi-exact solution<br />

• Factor the two terms in an atom <strong>and</strong> field parts. Redefinition of running<br />

index n<br />

• Large coherent field<br />

• Product of atom <strong>and</strong> field states<br />

Florence, Mai 2004 347


An insightful quasi-exact solution<br />

• Exp<strong>and</strong> the sqrt(n) term<br />

• Neglect for the time being the second order phase spreading terms<br />

• Same treatment for Ψ 2<br />

Florence, Mai 2004 348


An insightful quasi-exact solution<br />

+ + − −<br />

Ψ () t = ⎡ Ψa() t Ψ<br />

c() t + Ψa() t Ψc()<br />

t<br />

2 ⎣<br />

1<br />

1<br />

2<br />

Ω<br />

Ψ = ∓<br />

±Ω i 0 nt/2<br />

i<br />

Ψ ± a<br />

= e ⎣e ± Φ e ∓ i g ⎦<br />

⎡<br />

n<br />

– Atomic states slowly ( times slower than Rabi oscillation) rotating in<br />

the equatorial plane of the Bloch sphere<br />

c<br />

e αe<br />

± i 0 nt/4<br />

± iΦ<br />

– A slowly rotating field state in the Fresnel plane<br />

⎤<br />

Φ=<br />

Ω<br />

0<br />

t<br />

4 n<br />

⎤<br />

⎦<br />

• Graphical representation of the joint atom-field evolution in a plane<br />

• t=0:<br />

– both field states coincide <strong>with</strong> original coherent state<br />

– Atomic states are the classical eigenstates<br />

Florence, Mai 2004 349


Atom-field states evolution<br />

+<br />

Ψ<br />

c<br />

1 + +<br />

− −<br />

Ψ ( t) = ⎡ Ψa () t Ψc () t + Ψa () t Ψc<br />

( t)<br />

2 ⎣<br />

−<br />

Ψ<br />

c<br />

⎤<br />

⎦<br />

+<br />

Ψ<br />

a<br />

−<br />

Ψ<br />

a<br />

+ −<br />

•At most times: Ψ Ψ = 0 an atom-field entangled state<br />

c<br />

c<br />

•In spite of large photon number: considerable reaction of the atom on the field<br />

Florence, Mai 2004 350


‘Automatic’ preparation of a Schrödinger cat<br />

• At time<br />

• Atom-field disentanglement<br />

• The fastest <strong>and</strong> most efficient way to prepare large Schrödinger cat states<br />

Florence, Mai 2004 351


Quantum Rabi signal<br />

• Retrieve the <strong>quantum</strong> Rabi signal<br />

• The Rabi oscillation signal has an amplitude modulated by the scalar<br />

products of the cavity field components: another manifestation of<br />

complementarity<br />

Florence, Mai 2004 352


Link <strong>with</strong> Rabi oscillation<br />

+<br />

Rabi oscillation: <strong>quantum</strong> interference between Ψ <strong>and</strong><br />

+ −<br />

• Contrast vanishes when Ψ Ψ = 0 :<br />

c<br />

1 + +<br />

− −<br />

Ψ ( t) = ⎡ Ψa () t Ψc () t + Ψa () t Ψc<br />

( t)<br />

2 ⎣<br />

– A direct link between Rabi collapse <strong>and</strong> complementarity<br />

c<br />

a<br />

−<br />

Ψ<br />

a<br />

⎤<br />

⎦<br />

1<br />

P e<br />

(t)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Ω 0<br />

t/2π<br />

•Fast preparation Atom-field Field of decorrelation:<br />

large state Schrödinger merge again: cat states<br />

Quantum Rabi oscillation<br />

•Another Unconditional illustration preparation<br />

<strong>and</strong> Quantum progressive of complementarity<br />

revival collapse of<br />

of the field<br />

•A surprising In a insight « phase Rabi in oscillation Schrödinger the simple Rabi cat state oscillation » phenomenon<br />

10 20 30 40 50<br />

Florence, Mai 2004 353


An expression at short times (collapse)<br />

• A time of the order of the vacuum Rabi oscillation period<br />

• Classical Rabi oscillations <strong>with</strong> a gaussian envelope. Collapse time<br />

• Revival time (half a complete rotation in phase space)<br />

• Why only a finite number of revivals <br />

Florence, Mai 2004 354


Field states phase spreading<br />

• One order more in the expansion:<br />

Ψ =∑<br />

c<br />

e<br />

+ i nΩ<br />

c<br />

n<br />

n<br />

2<br />

0 t / 4 n −Ω i 0 ( n − n) t/<br />

16<br />

– Phase rotation + Phase spreading of field states<br />

– Contrast of revivals decreases <strong>and</strong> width increases<br />

– Complete overlap of revivals after a few turns in phase space<br />

• Snapshots of field Q function for 15 photons<br />

e<br />

n<br />

3/2<br />

n<br />

Im(β)<br />

6<br />

4<br />

2<br />

(a)<br />

6<br />

4<br />

2<br />

(b)<br />

6<br />

4<br />

2<br />

(c)<br />

0<br />

0<br />

0<br />

-2<br />

-2<br />

-2<br />

-4<br />

-4<br />

-4<br />

-6<br />

-6<br />

-6<br />

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6<br />

Re(β) Re(β) Re(β)<br />

Florence, Mai 2004 355


Field phase spreading<br />

• At long times: take into account higher order terms in phases<br />

• Average of a goes to zero: complete phase information loss. Occurs for<br />

• To be compared <strong>with</strong> revival time<br />

• About revivals observable<br />

Florence, Mai 2004 356


Direct observation of field phase evolution<br />

• Rabi oscillation in mesoscopic field<br />

– High atom-field coupling<br />

– Low atom <strong>and</strong> field relaxation<br />

• Cavity QED tools <strong>with</strong> circular Rydberg <strong>atoms</strong> <strong>and</strong><br />

superconducting <strong>cavities</strong><br />

• A method to probe field phase distribution:<br />

– Homodyne field measurement<br />

Florence, Mai 2004 357


Field phase distribution measurement<br />

Homodyning a coherent field<br />

S<br />

•Inject a coherent field |α><br />

•Add a coherent amplitude –αe iφ<br />

•Resulting field (<strong>with</strong>in global phase) |α(1-e iφ )><br />

•Zero final amplitude for φ=0<br />

•Probe final field amplitude <strong>with</strong> atom in g<br />

•P g<br />

=1 for a zero amplitude<br />

•P g<br />

=1/2 for a large amplitude<br />

•More generally: P g<br />

(φ) reveals field phase distribution<br />

•In technical terms, P g<br />

(φ)=Q distribution<br />

Florence, Mai 2004 358


Experimental coherent field phase distribution<br />

Transfert<br />

0,85 120 photons<br />

75 photons<br />

0,80<br />

45 photons<br />

20 photons<br />

0,75<br />

0,70<br />

0,65<br />

0,60<br />

0,55<br />

Largeur (°)<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

0,50<br />

18<br />

0,45<br />

0,40<br />

-80 -60 -40 -20 0 20 40 60 80<br />

Phase<br />

16<br />

14<br />

0,08 0,10 0,12 0,14 0,16 0,18 0,20 0,22 0,24 0,26 0,28<br />

1/sqrt(n)<br />

Florence, Mai 2004 359


Phase splitting in <strong>quantum</strong> Rabi oscillation<br />

• Timing<br />

S<br />

•Inject a coherent field<br />

•Send a first atom: Rabi oscillation <strong>and</strong> phase shift<br />

•Inject a phase tunable coherent amplitude<br />

•Send an atom in g: final amplitude read out<br />

Florence, Mai 2004 360


Phase splitting in <strong>quantum</strong> Rabi oscillation<br />

Experimental phase distributions<br />

0,80<br />

0,75<br />

29 injected photons<br />

Reference: no Rabi atom<br />

Rabi atom at 335m/s T i<br />

=32 µs<br />

Rabi atom at 200m/s T i<br />

=53 µs<br />

0,70<br />

0,65<br />

0,60<br />

0,55<br />

0,50<br />

0,45<br />

-200 -150 -100 -50 0 50 100 150<br />

Phase(°)<br />

Florence, Mai 2004 361


Phase splitting in <strong>quantum</strong> Rabi oscillation<br />

Summary of results<br />

335 m/s 200 m/s<br />

40<br />

40<br />

S g<br />

(φ)<br />

30<br />

35<br />

30<br />

35<br />

0,7<br />

0,6<br />

0,5<br />

25<br />

20<br />

-150 0 150<br />

φ (degrees)<br />

0 150 15 20<br />

φ (degrees)<br />

25<br />

n<br />

Auffèves et al. PRL 91, 230405 (2003)<br />

Florence, Mai 2004 362


Phase (degrees)<br />

Phase splitting in <strong>quantum</strong> Rabi oscillation<br />

Observed phase versus theoretical phase<br />

60<br />

40<br />

20<br />

4<br />

2<br />

0<br />

β y<br />

0<br />

-20<br />

-40<br />

-2<br />

-4<br />

0 2 4 6 8<br />

β x<br />

-60<br />

15 20 25 30 35 40 45 50 55 60<br />

Φ + (degrees)<br />

Large Shrödinger cat states (up to 40 photons separation)<br />

Florence, Mai 2004 363


Selective preparation of<br />

+<br />

Ψ<br />

a<br />

Use a Stark shift pulse on the e/g transition (equivalent to a Z rotation) to<br />

+ 1<br />

prepare from +<br />

Ψ<br />

a<br />

( )<br />

Z<br />

2 e g<br />

X<br />

Rabi Fast Stark rotation pulse: for a p/2 π/2 rotation pulse:<br />

around Z axis.<br />

1 +<br />

Preparation of Ψ ( )<br />

2 e + g<br />

a<br />

Y<br />

From this time on, slow evolution only<br />

N.B. Starting from g prepares<br />

−<br />

Ψ<br />

a<br />

Florence, Mai 2004 364


Stopped Rabi oscillation<br />

1,0<br />

Rabi<br />

Z rotation<br />

0,8<br />

0,6<br />

Slow<br />

evolution<br />

Transfert<br />

0,4<br />

Evolution<br />

resumes<br />

0,2<br />

Z rotation<br />

0,0<br />

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45<br />

Killer (µs)<br />

Florence, Mai 2004 365


A single, slowly rotating phase component<br />

S g (φ)<br />

0,65<br />

0,60<br />

0,55<br />

0,50<br />

0,45<br />

−<br />

Ψ<br />

a<br />

+<br />

Ψ<br />

a<br />

-150 -100 -50 0 50 100 150 200<br />

φ (degrees)<br />

Florence, Mai 2004 366


Test of coherence: induced <strong>quantum</strong> revivals<br />

Initial Rabi rotation,<br />

Stark pulse (duration short<br />

compared to phase Collapse rotation).<br />

Reverse phase rotation<br />

Equivalent And to slow a Z rotation phase rotation by π<br />

Recombine field components <strong>and</strong><br />

resume Rabi oscillation<br />

Morigi et al PRA 65, 040102<br />

Florence, Mai 2004 367


Induced <strong>quantum</strong> revivals<br />

1,0<br />

Π Pulse<br />

Transfert<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

22 µs<br />

0,0<br />

-20 -10 0 10 20 30 40 50 60<br />

Interaction time<br />

1,0<br />

1,0<br />

0,8<br />

0,8<br />

Tranfer<br />

0,6<br />

0,4<br />

0,2<br />

18.5 µs<br />

Transfer<br />

0,6<br />

0,4<br />

0,2<br />

23.5 µs<br />

0,0<br />

-20 -10 0 10 20 30 40 50 60<br />

Interaction time<br />

0,0<br />

-20 -10 0 10 20 30 40 50 60<br />

Interaction time<br />

Florence, Mai 2004 368


Induced <strong>quantum</strong> revivals<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

Transfert<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

22 µs<br />

0,0<br />

0 5 10 15 20 25 30 35 40 45 50 55 60 65<br />

Temps effectif<br />

Transfert<br />

0,80<br />

0,75<br />

0,70<br />

0,65<br />

0,60<br />

0,55<br />

0,50<br />

transfert<br />

0,80<br />

0,75<br />

0,70<br />

0,65<br />

0,60<br />

0,55<br />

0,50<br />

0,45<br />

0,45<br />

-100 -80 -60 -40 -20 0 20 40 60 80 100<br />

0,40<br />

phase(°) -100 -80 -60 -40 -20 0 20 40 60 80<br />

phase(°)<br />

Florence, Mai 2004 369


V) Schrödinger cats <strong>and</strong> decoherence<br />

• 1) A direct study of a meter’s decoherence process in a <strong>quantum</strong><br />

measurement<br />

• 2) Breeding Schrödinger lions <strong>with</strong> resonant interaction<br />

• 3) Other applications of field homodyne detection<br />

Florence, Mai 2004 370


Phase shift <strong>with</strong> dispersive atom-field interaction<br />

• Non resonant atom: no energy exchange but cavity mode frequency shift<br />

(atomic index of refraction effect).<br />

– Phase shift of the cavity field (slower than in the resonant case)<br />

0,70<br />

0,65<br />

0,60<br />

Atom in g<br />

0,70<br />

No atom<br />

1 atom in g<br />

Atom in g<br />

0,55<br />

2 <strong>atoms</strong> in g<br />

0,50<br />

0,65<br />

0,45<br />

-150 -100 -50 0 50 100 150<br />

0,75<br />

0,70<br />

0,60<br />

No atom<br />

0,65<br />

0,60<br />

0,55<br />

No atom<br />

0,55<br />

0,50<br />

0,45<br />

-150 -100 -50 0 50 100 150<br />

0,70<br />

0,50<br />

0,65<br />

Atom in e<br />

0,60<br />

0,55<br />

Atom in e<br />

0,45<br />

0,50<br />

0,45<br />

-200 -150 -100 -50 0 50 100 150<br />

-150 -100 -50 0 50 100 150<br />

Phase (°)<br />

Opposite values for e <strong>and</strong> g<br />

Proportional to atom number<br />

Florence, Mai 2004 371


Absolute measurement of atomic detection efficiency<br />

• Histogram of field phase reveals exact atom count<br />

• Comparison <strong>with</strong> detected atom counts provides field ionization detectors<br />

efficiency in a precise <strong>and</strong> absolute way<br />

– 0.4 <strong>atoms</strong> samples:<br />

70 % detection efficiency<br />

(close to the expected<br />

optimum of 80 %)<br />

Florence, Mai 2004 372


Towards a 100% efficiency atomic detection<br />

• Inject a very large coherent field in the cavity<br />

• Send an atomic sample<br />

– Different phase shifts for e, g or no atom<br />

Im(α)<br />

φ<br />

−φ<br />

e<br />

g<br />

Re(α)<br />

• Inject homodyning amplitude<br />

– Zero amplitude for e.<br />

• Larger for no atom.<br />

• Still larger for g<br />

g<br />

e<br />

• Read final field amplitude by sending a large number of <strong>atoms</strong> in g<br />

– Final number of <strong>atoms</strong> in e proportional to photon number<br />

Florence, Mai 2004 373


Preliminary experimental results<br />

0,18<br />

Probability<br />

0,16<br />

0,14<br />

0,12<br />

0,10<br />

0,08<br />

Atom 1 prepared in g<br />

no atom<br />

1 atom in g<br />

Atom1 prepared in e<br />

no atom<br />

1 atom in e<br />

Experimental conditions:<br />

• 75 photons initially<br />

• v=200 m/s<br />

• d=50 kHz<br />

• 70 absorber <strong>atoms</strong><br />

0,06<br />

0,04<br />

0,02<br />

0,00<br />

0 10 20 30 40<br />

• detection efficiency: 87%<br />

• error probability: 0 atom detected as 1: 10% (main present limitation)<br />

– e in g: 1.6%<br />

– g in e: 3%<br />

Total number of excited <strong>atoms</strong><br />

• 100% detection efficiency <strong>with</strong>in reach <strong>with</strong> slower <strong>atoms</strong>: v=150 m/s<br />

….experiment in progress.<br />

Florence, Mai 2004 374


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 375


CQED <strong>with</strong> silica microspheres<br />

High Q whispering gallery modes in a silica microsphere<br />

(a ~ 25-100µm)<br />

a<br />

Mode Volume : V mode<br />

~ 300 µm 3<br />

Field per photon : E ~ few kV/m<br />

(for the most confined mode)<br />

Very low losses : Γ cav<br />

/2π ~ 300 kHz<br />

Absorption limited Q = ω / Γ cav<br />

> 10 9<br />

t cav = 1µs<br />

.....Coupled to Dipole emitters<br />

N SiO 2 = 1.45<br />

Ions (Nd 3+ ; Er 3+ ) ⇒⇒⇒ cf. Poster Session<br />

Atom Chips ⇒⇒⇒ cf. Romain Long (Session V)<br />

Excitons confined in <strong>quantum</strong> dots d ~ 15 e.a 0<br />

‘Atom like system’ Γ hom<br />

/2π ~200 MHz<br />

@ 10K<br />

Florence, Mai 2004 376


Historical reference<br />

St Paul's Cathedral<br />

(Lord Rayleigh,1870)<br />

Wall<br />

Sound waves<br />

Florence, Mai 2004 377


Whispering Gallery Modes<br />

Light guided by total internal reflection<br />

at grazing incidence <strong>and</strong> resonance<br />

condition<br />

ν<br />

TE/<br />

TM<br />

n,,<br />

m<br />

-|m|=0<br />

-|m|=1<br />

θ<br />

a<br />

n=2<br />

n=1<br />

TE/TM polarization<br />

n : number of anti-nodes<br />

l : angular momentum<br />

m : azimuthal number<br />

(degenerate for a perfect sphere)<br />

Coupling zone<br />

(Evanescent wave)<br />

Florence, Mai 2004 378


Production of microspheres<br />

Preparation of the fiber:<br />

Pulling a fiber from a<br />

rod of pure silica<br />

SiO 2<br />

Production of the sphere:<br />

Melting the tip of the fiber<br />

using a 10W CO 2<br />

Laser<br />

120 µm<br />

⇒<br />

Surface Tension<br />

Spherical Shape<br />

Florence, Mai 2004 379


Excitation of WGM’s<br />

Light coupled into the sphere<br />

by frustrated total internal reflection<br />

N p = 1.75<br />

I Out<br />

ν<br />

• Incident angle<br />

θ i < θ c ≡ Arcsin(N S /N P )<br />

Tunable LD<br />

@ 780nm<br />

θ i<br />

N P<br />

• Losses due to coupling back to the prism can be<br />

adjusted through the Gap g<br />

Linewidth (MHz)<br />

300<br />

200<br />

100<br />

0<br />

0<br />

100 200 300 400<br />

Gap Shere-Prism g (nm)<br />

Florence, Mai 2004 380<br />

25%<br />

20<br />

15<br />

10<br />

5<br />

0<br />

g<br />

Coupling Rate<br />

N S<br />

N s = 1.45


The core of the experiment<br />

Florence, Mai 2004 381


Tuning Devices : Tweezers<br />

Preformed sphere is glued<br />

into stretching device<br />

Soldering of the fiber onto<br />

glass arms <strong>and</strong> then<br />

production of the sphere<br />

Florence, Mai 2004 382


Tuning WGM´s<br />

TE<br />

TM<br />

• FSR = 810 GHz (80 µm)<br />

• ν TM - ν TE = 580 GHz<br />

slope TM ≈ 1.6 slope TE<br />

• ν l, m – ν l, m-1 = 375 GHz<br />

ellipticity ~ 50 %<br />

Florence, Mai 2004 383


Maximum Tuning<br />

Tuning TM = 405 GHz = 0.5 × FSR<br />

Tuning TE = 260 GHz = 0.3 × FSR<br />

Fracture of the fiber<br />

Florence, Mai 2004 384


Reversibility <strong>and</strong> Stability<br />

Tuning is reversible : No plastic deformation observed<br />

At fixed voltage : Frequency fluctuations come<br />

from temperature fluctuations<br />

Florence, Mai 2004 385


Identifying WGM’s<br />

GM Spectrum<br />

Free Spectral Range ∆l = 1 ∆ν = c/2πNa ~ 500 GHz<br />

Radial order : ∆n = 1 ∆ν ≈ 20 FSR<br />

Polarization TE-TM ∆ν ≈ 0.7 FSR<br />

Ellipticity (e ~ 1%) ∆m = 1 ∆ν = e FSR ~ 5 GHz<br />

r p<br />

> r e<br />

Prolate Sphere<br />

e > 0<br />

r p<br />

r e<br />

• Step 1 : Pick |m|= mode<br />

• Step 2: Assign radial number<br />

1.0<br />

shift<br />

⇒ n = 1<br />

width ≤ 1% 8<br />

0.8<br />

Reflection<br />

0.6<br />

0.4<br />

|m|=<br />

|m|=-1<br />

|m|=-2<br />

|m|=-3<br />

g<br />

0.2<br />

0.0<br />

25 20<br />

15 10<br />

Frequency (GHz)<br />

5 0<br />

2 4<br />

Frequency (GHz)<br />

Florence, Mai 2004 386<br />

0<br />

6


Which experiments <br />

• Non linearity <strong>with</strong> low thresholds<br />

– Eg. Kerr bistability using silica non-linearity<br />

• Lasers <strong>with</strong> doped silica spheres<br />

– Extremely low thresholds<br />

– Efficient frequency conversion Er laser<br />

– Towards a thresholdless laser<br />

• Towards cavity QED <strong>with</strong> silica microspheres. Two routes<br />

– Atoms in the sphere’s evanescent field<br />

– Quantum dots permanently coupled to the sphere<br />

Florence, Mai 2004 387


Atom chips <strong>and</strong> microspheres<br />

• Use <strong>atoms</strong> trapped in a mesoscopic conductor cavity field <strong>and</strong> conveyed<br />

to the sphere mode<br />

• Work performed in T. Hänsch <strong>and</strong> J. Reichel group in Munich<br />

Florence, Mai 2004 388


Atom-Chip : Conveyor-Belt<br />

Florence, Mai 2004 389


Lateral Confinement<br />

• Simple Scheme<br />

• Side-wires Configuration<br />

Single wire field<br />

+<br />

External bias field<br />

= 2D Confinement<br />

Single wire field<br />

+<br />

Field from the side-wires<br />

= 2D Confinement<br />

Florence, Mai 2004 390


Longitudinal Confinement<br />

• Multiple Crossing Conductors • Modulation of the Current<br />

Atoms trapped between<br />

two local maxima<br />

of the longitudinal field<br />

Modulation of the Current<br />

<br />

Shift the potential minimum<br />

Transport the <strong>atoms</strong><br />

Florence, Mai 2004 391


The “LDC” Chip<br />

New conveyor<br />

First 2 layers Generation Conveyor :<br />

“6 Strokes 1 layer Engine”<br />

“2 Strokes Engine”<br />

Transport direction<br />

Florence, Mai 2004 392


Long Distance Transport<br />

23,5 cm in 2.9 s<br />

Average Speed = 8 cm/s<br />

Maximum Speed = 10 cm/s<br />

Florence, Mai 2004 393


Atom Touch<br />

Detection of a “single” microsphere<br />

Florence, Mai 2004 394


Quantum dots <strong>and</strong> microspheres<br />

• An artificial atom directly coupled to the sphere’s mode<br />

Florence, Mai 2004 395


Self Assembled Q-Dots<br />

(J.M. Gérard)<br />

Self Assembled isl<strong>and</strong>s of InAs embedded in GaAs<br />

4 nm<br />

Q-Dots<br />

3D Confinement leads to an atom like system<br />

20nm<br />

Mesa 4×4 µm<br />

HF selective attack<br />

250nm<br />

GaAs<br />

InAs<br />

GaAs<br />

Detected Power (fW)<br />

800<br />

600<br />

400<br />

200<br />

0<br />

950 1000 1050 1100<br />

Wavelength (nm)<br />

(MBE)<br />

Q-Dots Photoluminescence @ 300K<br />

Pump Power<br />

@850nm<br />

900<br />

7.2mW<br />

4 mW<br />

3 mW<br />

2 mW<br />

1 mW<br />

1150<br />

1200<br />

Florence, Mai 2004 396


Effects of Sample on WGM’s<br />

Gap g2<br />

Sphere-Sample<br />

GaAs<br />

GaAs<br />

Gap g1<br />

Sphere-Prism<br />

Ns<br />

Sphere<br />

Prism<br />

Line Broadening<br />

Resonance Shift<br />

i<br />

Np 4.0<br />

3.5<br />

3.0<br />

Prism SF 11<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Frequency (GHz)<br />

0<br />

Coupling rate<br />

Shift<br />

linewidth<br />

100 200 300 400 500<br />

GAP g2 SPHERE - GaAs (nm)<br />

16%<br />

14%<br />

12%<br />

10%<br />

8%<br />

6%<br />

4%<br />

2%<br />

0%<br />

Florence, Mai 2004 397


Effects of Mesa (4×4 µm) on WGM’s<br />

Frequency (MHz)<br />

Frequency (MHz)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0<br />

0<br />

2<br />

5 10<br />

Position Y (µm)<br />

4 6<br />

Position Z (µm)<br />

15<br />

8<br />

Florence, Mai 2004 398<br />

6%<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

6%<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Line Broadening<br />

Resonance Shift<br />

Coupling rate<br />

|m|= WGM<br />

Mesa<br />

Y<br />

Z


Q-Dots Laser<br />

Experimental Set Up<br />

Emission<br />

1000 – 1100 nm<br />

LD Probe @ 1080 nm<br />

Transmission @<br />

780nm<br />

I Out<br />

ν<br />

PD<br />

PD<br />

Prism SF11<br />

LD @ 780 nm<br />

Pump<br />

Linewidth ~ 700MHz<br />

Coupling rate ~10%<br />

Gap g 2 Sphere-Sample<br />

Sphere<br />

Gap g 1 Sphere-Prism<br />

Mesa<br />

Q-Dots<br />

PZT controlled<br />

X-Y-Z motion<br />

Florence, Mai 2004 399


Q-Dots Laser at Room temperature<br />

30<br />

Detected Power (pW)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

TE<br />

TM<br />

0<br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

Absorbed Pump Power (mW)<br />

Power at threshold ~ 200 µW<br />

0.6<br />

Active Q-dots ~ 10 4<br />

Florence, Mai 2004 400


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 401


Two main directions<br />

• A two-cavity experiments for non-locality, decoherence <strong>and</strong> <strong>quantum</strong><br />

information<br />

• A Rydberg atom chip experiment for deterministic preparation <strong>and</strong><br />

manipulation of cold trapped Rydberg <strong>atoms</strong><br />

Florence, Mai 2004 402


Two main directions<br />

• A two-cavity experiments for non-locality, decoherence <strong>and</strong> <strong>quantum</strong><br />

information<br />

• A Rydberg atom chip experiment for deterministic preparation <strong>and</strong><br />

manipulation of cold trapped Rydberg <strong>atoms</strong><br />

Florence, Mai 2004 403


A two-cavity experiment<br />

• Rydberg <strong>atoms</strong> <strong>and</strong> superconducting <strong>cavities</strong>:<br />

– Towards a two-cavity experiment<br />

• Creation of non-local mesoscopic Schrödinger cat states<br />

– Non-locality <strong>and</strong> decoherence (real time monitoring of W<br />

function)<br />

• Complex <strong>quantum</strong> information manipulations<br />

– Quantum feedback<br />

– Simple algorithms<br />

– Three-qubit <strong>quantum</strong> error correction code<br />

Florence, Mai 2004 404


C<br />

Teleportation of an atomic state<br />

R 2<br />

P b<br />

beam 3<br />

R R<br />

P 3<br />

a<br />

1<br />

C 1<br />

C 2<br />

1'<br />

1<br />

2<br />

D a<br />

beam 2<br />

D b<br />

A<br />

3'<br />

3<br />

0<br />

beam 1<br />

Davidovich et al,<br />

PHYS REV A 50 R895 (1994)<br />

B<br />

EPR pair<br />

D c<br />

• This scheme works for massive particles<br />

• Detection of the 4 Bell states <strong>and</strong> application of the<br />

"correction" to the target is possible using a C-Not gate<br />

(beam 2 <strong>and</strong> 3)<br />

• The scheme can be compacted to 1 cavity <strong>and</strong> 1 atomic beam<br />

Florence, Mai 2004 405


Implementation of 3 qubit error correction<br />

0<br />

0<br />

0<br />

R<br />

encoding<br />

S<br />

R R ’<br />

R<br />

R’<br />

R<br />

R’<br />

Error<br />

R’<br />

decoding<br />

S<br />

σ z2<br />

σ z3<br />

Détection<br />

Correction Correction<br />

error detection<br />

α 0 + β 1<br />

Détection<br />

Ramsey π/2 pulses<br />

Error<br />

encoding <strong>and</strong> decoding: preparation of a GHz triplet<br />

all the tools exist!<br />

Florence, Mai 2004 406


Quantum feedback<br />

• Preserve a Schrödinger cat by giving him “<strong>quantum</strong> food”<br />

• Use a <strong>atoms</strong> <strong>and</strong> QND arrangement to detect cat parity jum<br />

• A cat jump prepares a single photon in a second cavity. Used to excite a<br />

feedback atom which gives back the photon to the cat<br />

• A parity preservation scheme which makes the cat coherence live much<br />

longer than the natural decoherence time<br />

• Fortunato et al PRA 60, 1687<br />

Florence, Mai 2004 407


Feedback loop<br />

• C quasi resonant <strong>with</strong> e/g <strong>and</strong> C’ <strong>with</strong> g/i<br />

• Probe (QND) atom exits in g when parity jump<br />

• Feedback atom<br />

– Promoted to e when in g by a microwave pulse in R 2<br />

– Undergoes an adiabatic passage in C to restore the lost photon<br />

Florence, Mai 2004 408


Feedback efficiency<br />

Florence, Mai 2004 409


Towards feedback<br />

• Needs a deterministic source of <strong>atoms</strong><br />

• A simpler version <strong>with</strong> two modes of the same cavity <strong>and</strong> no deterministic<br />

atom source<br />

– Zippili et al PRA 67 052101<br />

• Realistic preservation of cats <strong>with</strong> about one photon<br />

• Very good preservation of single photon Fock state<br />

Florence, Mai 2004 410


New non-locality explorations<br />

• Use a single atom to entangle two mesoscopic fields in the cavity<br />

– A non-local Schrödinger cat or a mesoscopic EPR pair<br />

– Easily prepared via dispersive atom-cavity interaction<br />

Florence, Mai 2004 411


Mesoscopic Bell inequalities<br />

• A Bell inequality form adapted to this situation<br />

• Here, Π is the parity operator average. Dichotomic variable for which the<br />

Bell inequalities argument can be used (transforms the continuous<br />

variable problem in a spin-like problem)<br />

• Maximum violation for parity entangled states:<br />

Florence, Mai 2004 412


Bell inequalities violation<br />

• Optimum Bell signal versus γ<br />

• A compromise between violation amplitude <strong>and</strong> decoherence: γ²=2<br />

Florence, Mai 2004 413


Probing the Wigner function<br />

• A second atom to read out both <strong>cavities</strong> (same scheme as for single<br />

mode Wigner function)<br />

Florence, Mai 2004 414


A difficult but feasible experiment<br />

• Bell signal versus time T c =30 <strong>and</strong> 300 ms<br />

Florence, Mai 2004 415


Two main directions<br />

• A two-cavity experiments for non-locality, decoherence <strong>and</strong> <strong>quantum</strong><br />

information<br />

• A Rydberg atom chip experiment for deterministic preparation <strong>and</strong><br />

manipulation of cold trapped Rydberg <strong>atoms</strong><br />

Florence, Mai 2004 416


What we want<br />

• Long State Lifetime (> 30 ms in free space)<br />

• Control of External Degrees of Freedom<br />

• Single Rydberg Atom Excitation on Dem<strong>and</strong><br />

• Integrated Atom-Chip<br />

• Coherence preserving scheme<br />

Florence, Mai 2004 417


Inhibition of Spontaneous Emission<br />

Principle<br />

F 0<br />

No available<br />

Emitted<br />

zmode<br />

Perfect, infinite<br />

photon must<br />

→ xemissionmirrors<br />

be σ polarized<br />

inhibited<br />

d < λ/2<br />

τ → ∞<br />

Limiting Factors<br />

F<br />

τ >> τ 0<br />

• Imperfect <strong>and</strong> finite<br />

mirrors<br />

• Angle between F 0 <strong>and</strong> z<br />

• Residual Thermal Field<br />

Hulet, Hilfer, Kleppner, PRL,<br />

55, 20, 2137 : Factor 20<br />

1986: Jhe, Anderson, Hinds,<br />

Meschede, Moi, Haroche,<br />

PRL, 58, 666: Factor 13<br />

Florence, Mai 2004 418


Rydberg Atom Trapping<br />

C<strong>and</strong>idate Techniques<br />

• Magnetic Trap – Zeeman Effect<br />

• Electric Trap – Stark Effect<br />

Better suited to<br />

Inhibition of<br />

Spontaneous<br />

Emission scheme<br />

• Ponderomotive Trap – Electron Micro-motion<br />

Required Laser Dutta, Intensity Guest, Feldbaum, (200 Wcm Walz-Flannigan, -2 ) incompatible Raithel <strong>with</strong><br />

PRL, 85, 26, 5551<br />

Cryogenic Environment<br />

Florence, Mai 2004 419


Electric Dipole Trap<br />

Quadratic Stark Effect ~ 2.2 MHz/(V/cm) 2<br />

E ~ - α |F| 2<br />

High Field Seeker<br />

Energy E<br />

Electric Field |F|<br />

n = 51<br />

n = 50<br />

Maxwell<br />

Maximum of |F|<br />

Dynamic (Paul-like) Trap<br />

Florence, Mai 2004 420


Trap Geometry<br />

U V(t) U V(t) U V(t)<br />

+ - + - + -<br />

1mm F 0 = 30 V/cm<br />

(< λ/2) 1mm<br />

z<br />

x<br />

U = 1.5 V<br />

V(t) = 0.5 V . Cos(ω V t)<br />

ω V = 20,000 s -1<br />

-U V(t) -U V(t) -U V(t)<br />

+ - + - + -<br />

Florence, Mai 2004 421


Trapping Simulation<br />

Atomic Trajectories<br />

•T load = 300 µK<br />

• ∆x load = 5 µm<br />

• ω V = 20,000 s -1<br />

• Trapping volume ~ (100µm) 3<br />

z (mm)<br />

80<br />

40<br />

0<br />

-40<br />

Macro-motion<br />

-80<br />

-80 -40 0 40 80<br />

Micromotion<br />

x (mm)<br />

Trapping Efficiency<br />

• ω V < ω c → atom escapes<br />

along anti-trapping axis<br />

• ω V >> ω c → field variations<br />

average to zero: no trapping<br />

1,0<br />

0.5<br />

ω c<br />

0<br />

ω V (s -1 )<br />

0 10000 20000<br />

Florence, Mai 2004 422


Electric Field Tilt<br />

F 0 (x,y,z)<br />

F loc<br />

z<br />

F loc<br />

F loc<br />

ϑ(t)<br />

F loc<br />

Trapping Region<br />

Results<br />

ϑ < 10 -2 τ→10 4 τ 0<br />

• Not limiting factor<br />

• τ ~ 1s envisageable<br />

Florence, Mai 2004 423


Micro-Trap<br />

U – V(t)<br />

U + V(t)<br />

U – V(t)<br />

U + V(t)<br />

U – V(t)<br />

1mm<br />

z 100µm<br />

U = 1.5 V<br />

100µmTrapping x Region<br />

F<br />

V = 0.5 V . Cos(ωt)<br />

0 = 30 V/cm<br />

ω = 150 000 s -1<br />

-U + V(t)<br />

• Greater Confinement<br />

• Surface Interactions<br />

• Integration<br />

• Extension to Conveyor Belt, Guide…<br />

Florence, Mai 2004 424


A Tighter Trap<br />

Same field variations + Spatial scale / 10 → Confinement x 10<br />

Atomic Trajectories Trapping Efficiency<br />

•T load = 300 µK<br />

• ∆x load = 5 µm<br />

• ω V = 150 000 s -1<br />

• Trapping volume ~ (10µm) 3<br />

• z symmetry broken<br />

1,0<br />

• ω c x 10<br />

• Trapping less perfect…<br />

• …but still very good<br />

z (µm)<br />

5<br />

0<br />

-5<br />

-10<br />

x (µm)<br />

-10 -5 0 5 10<br />

ω (s -1 )<br />

0 10000 20000<br />

Florence, Mai 2004 425<br />

0.5<br />

0<br />

ω c


Rydberg Atom Source<br />

Dipole Blockade Lukin et al, PRL 87, 037901<br />

∆x ~ 1µm<br />

~ 1GHz<br />

ω<br />

| N-2:g ; 2: ><br />

| N-1:g ; 1: ><br />

ω<br />

Rydberg Excitation Laser<br />

ω<br />

| N :g ; 0: ><br />

One <strong>and</strong> Only One Circular Rydberg Atom Excited<br />

Florence, Mai 2004 426


Ground-State Atoms Trapping<br />

Requirements:<br />

• Highly Confining (Dipole (∆x < 10µm) Blockade)<br />

• Close to Surfaces (Surface-Trap (Micro-Trap, Dipole- Distance<br />

Surface R trap < 100µm) Interactions)<br />

• Compatible <strong>with</strong> Cryogenics<br />

(Dissipation (Rydberg Stability) < 1mW)<br />

• Integrable (On-Chip Wires <strong>and</strong> Electrodes)<br />

Hänsel et al, Nature 413, 498<br />

B bias I ~ 1A SiO 2 or Sapphire substrate<br />

Superconducting Niobium Wires<br />

100x1 µm 2 wide<br />

Florence, Mai 2004 427


Filling the Magnetic Trap<br />

Cryogenic vacuum → no background pressure → external<br />

source<br />

2D MOT – High Flux Atomic Jet<br />

300K<br />

1K<br />

Cryostat<br />

Magnetic Trapping Region<br />

Jet Extracted from<br />

Atom Cloud<br />

2D MOT<br />

mm<br />

6<br />

4<br />

2<br />

0 2 4<br />

mm<br />

Characteristics of our jet<br />

•Flux = 10 7 s -1<br />

• Divergence = 10 mRad<br />

Florence, Mai 2004 428


Coherence preservation scheme<br />

• Use a microwave dressing to equalize e <strong>and</strong> g Stark polarizabilities<br />

Florence, Mai 2004 429


Coherence preservation scheme<br />

• Residual phase drift almost linear <strong>with</strong> time<br />

• Can be corrected by an echo technique<br />

Florence, Mai 2004 430


Very long coherence times<br />

Coherence preserved for seconds or minutes!!!<br />

Florence, Mai 2004 431


An extremely promising scheme for<br />

• Spontaneous emission inhibition studies<br />

• Atom-surface <strong>and</strong> atom-atom dipole-dipole interaction studies<br />

• Cavity QED <strong>with</strong> transmission line resonators<br />

• Quantum information processing<br />

• Coupling of Rydberg <strong>atoms</strong> to mesoscopic circuits<br />

Florence, Mai 2004 432


The team<br />

PhD<br />

• Frédérick .Bernardot<br />

• Paulo Nussenzweig<br />

• Abdelhamid Maali<br />

• Jochen Dreyer<br />

• Xavier Maître<br />

• Gilles Nogues<br />

• Arno Rauschenbeutel<br />

• Patrice Bertet<br />

• Stefano Osnaghi<br />

• Alexia Auffeves<br />

• Paolo Maioli<br />

• Tristan Meunier<br />

• Sébastien Gleyzes<br />

• Philippe Hyafil *<br />

• Jack Mozley *<br />

Post doc<br />

• Ferdin<strong>and</strong> Schmidt-Kaler<br />

• Edward Hagley<br />

• Christof Wunderlich<br />

• Perola Milman<br />

Colaboration<br />

• Luiz Davidovich<br />

• Nicim Zagury<br />

• Wojtek Gawlik<br />

Permanent<br />

• Gilles Nogues *<br />

• Michel Brune<br />

• Jean-Michel Raimond<br />

• Serge Haroche<br />

*: atom chip team<br />

Florence, Mai 2004 433


References (1)<br />

• Strong coupling regime in CQED experiments:<br />

– F. Bernardot, P. Nussenzveig, M. Brune, J.M. Raimond <strong>and</strong> S. Haroche. "Vacuum Rabi Splitting<br />

Observed on a Microscopic atomic sample in a Microwave cavity". Europhys. lett. 17, 33-38<br />

(1992).<br />

– P. Nussenzveig, F. Bernardot, M. Brune, J. Hare, J.M. Raimond, S. Haroche <strong>and</strong> W. Gawlik.<br />

"Preparation of high principal <strong>quantum</strong> number "circular" states of rubidium". Phys. Rev. A48,<br />

3991 (1993).<br />

– M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond <strong>and</strong> S. Haroche:<br />

"Quantum Rabi oscillation: a direct test of field quantization in a cavity". Phys. Rev. Lett. 76,<br />

1800 (1996).<br />

Florence, Mai 2004 434


References (2)<br />

• QND measurement in microwave CQED experiments:<br />

– M. Brune, S. Haroche, V. Lefevre-Seguin, J.M. Raimond <strong>and</strong> N. Zagury: "Quantum nondemolition<br />

measurement of small photon numbers by Rydberg-atom phase sensitive detection",<br />

Phys. Rev. Lett. 65, 976 (1990).<br />

– M.Brune, S. Haroche, J.M. Raimond,L. Davidovich <strong>and</strong> N. Zagury. "Manipulation of photons in<br />

a cavity by dispersive atom-field coupling: QND measurement <strong>and</strong> generation of "Schrödinger<br />

cat"states". Phys Rev A45, 5193, (1992).<br />

– S. Haroche, M. Brune <strong>and</strong> J.M. Raimond. "Manipulation of optical fields by atomic<br />

interferometry: <strong>quantum</strong> variations on a theme by Young".Appl. Phys. B, 54, 355, (1992).<br />

– S. Haroche, M. Brune <strong>and</strong> J.M. Raimond. "Measuring photon numbers in a cavity by atomic<br />

interferometry: optimizing the convergence procedure". Journal de Physique II 2, 659<br />

Florence, Mai 2004 435


References (3)<br />

• Gates: QPG or C-Not, algorithm:<br />

– M. Brune et al., Phys. Rev. Lett, 72, 3339(1994).<br />

– Q.A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995).<br />

– C. Monroe et al., Phys. Rev. Lett. 75, 4714 (1995).<br />

– A. Reuschenbeutel et al. submitted PRL. G. Nogues et al. Nature 400, 239 (1999).<br />

– S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J.M. Raimond <strong>and</strong> S. Haroche, Phys.<br />

Rev. Lett. 87, 037902 (2001)<br />

– F. Yamaguchi, P. Milman, M. Brune, J-M. Raimond, S. Haroche: "Quantum search <strong>with</strong> twoatom<br />

collisions in cavity QED", PRA 66, 010302 (2002).<br />

• Q. memory:<br />

– X. Maître et al., Phys. Rev. Lett. 79, 769 (1997).<br />

– Atom EPR pairs:<br />

– CQED: E. Hagley et al., Phys. Rev. Lett. 79, 1 (1997).<br />

– Ions: Q.A. Turchette et al., Phys. Rev. Lett. 81, 3631 (1998).<br />

• Teleportation:<br />

– L. Davidovich, N. Zagury, M. Brune, J.M. Raimond <strong>and</strong> S. Haroche. "Teleportation of an<br />

atomic state between two <strong>cavities</strong> using non-local microwave fields". Phys Rev A50, R895<br />

(1994).<br />

Florence, Mai 2004 436


References (4)<br />

• Reviews on CQED<br />

Florence, Mai 2004 437


References (5)<br />

• A few useful textbooks<br />

Florence, Mai 2004 438


• THANK YOU …..<br />

Florence, Mai 2004 439

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!