30.01.2015 Views

Active and Driven Soft Matter Lecture 3 - Boulder School for ...

Active and Driven Soft Matter Lecture 3 - Boulder School for ...

Active and Driven Soft Matter Lecture 3 - Boulder School for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

<strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong><br />

<strong>Lecture</strong> 3: Self-Propelled Hard Rods<br />

M. Cristina Marchetti<br />

Syracuse University<br />

<strong>Boulder</strong> <strong>School</strong> 2009<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

<strong>Lecture</strong> 1: Table of Contents<br />

1 The Model<br />

<strong>Active</strong> Hard Rod Nematic<br />

Plan <strong>and</strong> Results<br />

2 A Tutorial: From Langevin equation to Hydrodynamics<br />

Langevin dynamics<br />

From Langevin to Fokker-Planck dynamics<br />

Low density limit & Smoluchowski equation<br />

Hydrodynamics<br />

Summary <strong>and</strong> Plan<br />

3 Smoluchowski equation <strong>for</strong> SP rods<br />

Langevin dynamics of SP Rods<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

4 Hydrodynamics<br />

Hydrodynamics Fields<br />

Hydrodynamics Equations<br />

5 Results<br />

Homogeneous States <strong>and</strong> Enhanced Nematic Order<br />

Stability <strong>and</strong> Novel Properties of Bulk States<br />

6 Summary <strong>and</strong> Outlook<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

<strong>Active</strong> Hard Rod Nematic<br />

<strong>Active</strong> Hard Rod Nematic<br />

Plan <strong>and</strong> Results<br />

•2d hard rods<br />

•Excluded volume interaction<br />

•Overdamped dynamics<br />

•Non-thermal white noise<br />

hard rod nematic<br />

+ self-propulsion v 0<br />

along long axis<br />

v 0<br />

1. Start with Langevin dynamics of coupled orientational <strong>and</strong><br />

translational degrees of freedom plus hard core collisions<br />

SP yields anisotropic enhancement of<br />

ˆk <br />

momentum transferred in a hard core<br />

1<br />

collision<br />

v 1<br />

v2<br />

2. Derive continuum theory<br />

2<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Plan <strong>and</strong> Results<br />

<strong>Active</strong> Hard Rod Nematic<br />

Plan <strong>and</strong> Results<br />

The lecture illustrates how to use the tools of statistical physics to derive<br />

hydrodynamics from microscopic dynamics <strong>for</strong> a minimal model of a<br />

self-propelled system.<br />

Inspired by Vicsek model of SP point particles that align with neighbors<br />

according to prescribed rules in the presence of noise. This rule-based<br />

model orders in polar (moving) states below a critical value of the noise.<br />

Hard rods order in nematic states due to steric effects: can excluded<br />

volume interactions, plus self-propulsion, yield a polar state<br />

Result: no homogeneous polar state, but other nonequilibrium effects:<br />

SP enhances nematic order<br />

SP enhances longitudinal diffusion ("persistent" r<strong>and</strong>om walk)<br />

SP yields propagating sound-like waves in the isotropic state<br />

SP destabilizes the nematic state<br />

SP+boundary effects can yield a polar state<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Langevin dynamics<br />

Langevin dynamics<br />

From Langevin to Fokker-Planck dynamics<br />

Low density limit & Smoluchowski equation<br />

Hydrodynamics<br />

Summary <strong>and</strong> Plan<br />

Spherical particle of radius a <strong>and</strong> mass m, in one dimension<br />

m dv<br />

dt<br />

= −ζv + η(t) ζ = 6πηa friction<br />

noise is uncorrelated in 〈η(t)〉 = 0<br />

time <strong>and</strong> Gaussian: 〈η(t)η(t ′ )〉 = 2∆δ(t − t ′ )<br />

Noise strength ∆<br />

In equilibrium ∆ is determined by requiring<br />

lim t→∞ < [v(t)] 2 >=< v 2 > eq = k BT<br />

m<br />

⇒ ∆ = ζk BT<br />

m 2<br />

Mean square displacement is diffusive<br />

< [∆x(t)] 2 >= 2k [<br />

BT<br />

t − m (<br />

1 − e −ζt/m)] → 2k BT<br />

t = 2Dt<br />

ζ ζ<br />

ζ<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Fokker-Plank equation<br />

Langevin dynamics<br />

From Langevin to Fokker-Planck dynamics<br />

Low density limit & Smoluchowski equation<br />

Hydrodynamics<br />

Summary <strong>and</strong> Plan<br />

Many-particle systems<br />

In this case it is convenient to work with phase-space distribution<br />

functions:<br />

ˆfN (x 1 , p 1 , x 2 , p 2 , ..., x N , p N , t) ≡ ˆf N (x N , p N , t)<br />

These are useful when dealing with both Hamiltonian dynamics <strong>and</strong><br />

Langevin (stochastic) dynamics.<br />

First step:<br />

Trans<strong>for</strong>m the Langevin equation into a Fokker-Plank equation <strong>for</strong> the<br />

noise-average distribution function<br />

f 1 (x, p, t) =< ˆf 1 (x, p, t) ><br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Fokker-Plank equation - 2<br />

Langevin dynamics<br />

From Langevin to Fokker-Planck dynamics<br />

Low density limit & Smoluchowski equation<br />

Hydrodynamics<br />

Summary <strong>and</strong> Plan<br />

Compact notation<br />

dv<br />

dt<br />

dx<br />

= p/m<br />

dt<br />

= −ζv − dU<br />

dx + η(t)<br />

⇒ dX<br />

dt<br />

= V + η(t)<br />

„ « x<br />

X =<br />

p<br />

„<br />

«<br />

p/m<br />

V =<br />

−ζv − U<br />

„ «<br />

′ 0<br />

η =<br />

η<br />

Conservation law <strong>for</strong> probability distribution<br />

∫ (<br />

dX ˆf (X, t) = 1 ⇒ ∂tˆf +<br />

∂<br />

∂X · ∂X ˆf<br />

)<br />

∂t<br />

= 0<br />

( ) ( )<br />

( )<br />

∂ tˆf +<br />

∂<br />

∂X · Vˆf + ∂<br />

∂X · ηˆf = 0 ⇒ ∂ tˆf + Lˆf +<br />

∂<br />

∂X · ηˆf = 0<br />

∫ t<br />

ˆf (X, t) = e −Lt f (X, 0) − ds e −L(t−s) ∂<br />

0<br />

∂X η(s)ˆf (x, s)<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Fokker-Plank equation - 3<br />

Langevin dynamics<br />

From Langevin to Fokker-Planck dynamics<br />

Low density limit & Smoluchowski equation<br />

Hydrodynamics<br />

Summary <strong>and</strong> Plan<br />

Use properties of Gaussian noise to carry out averages<br />

∂ t < ˆf > +<br />

∂<br />

∂X · V < ˆf > + ∂<br />

∂X · < η(t)e−Lt f (X, 0) ><br />

− ∂ Z t<br />

∂X · < η(t) ds e −L(t−s) ∂<br />

0<br />

∂X η(s)ˆf (X, s) > = 0<br />

∂ t f = − p m ∂ xf − ∂ p [−U ′ (x) − ζp/m]f + ∆∂ 2 pf<br />

Fokker-Plank eq. easily generalized to many interacting particles<br />

dp α<br />

= −ζv α − X ∂ xα V (x α − x β ) + η α(t)<br />

dt<br />

β<br />

Z<br />

∂ t f 1 (1, t) = −v 1 ∂ x1 f 1 (1) + ζ∂ p1 v 1 f 1 (1) + ∆∂p 2 1<br />

f 1 (1) + ∂ p1 d2 ∂ x1 V (x 12 )f 2 (1, 2, t)<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Smoluchowski equation<br />

Langevin dynamics<br />

From Langevin to Fokker-Planck dynamics<br />

Low density limit & Smoluchowski equation<br />

Hydrodynamics<br />

Summary <strong>and</strong> Plan<br />

1<br />

One obtains a hierarchy of Fokker-Planck equations <strong>for</strong> f 1 (1),<br />

f 2 (1, 2), f 3 (1, 2, 3), ... To proceed we need a closure ansatz. Low<br />

density (neglect correlations) f 2 (1, 2, t) ≃ f 1 (1, t)f 1 (2, t)<br />

2<br />

It is instructive to solve the FP equation by taking moments<br />

c(x, t) = R dp f (x, p, t)<br />

J(x, t) = R dp (p/m)f (x, p, t)<br />

concentration of particles<br />

density current<br />

Eqs. <strong>for</strong> the moments obtained by integrating the FP equation.<br />

∂ t c(x, t) = −∂ x J(x, t)<br />

∂ t J(x 1 ) = −ζJ(x 1 ) − m∆<br />

ζ ∂x 1 c(x 1) − R dx 2 [∂ x1 V (x 12 )]c(x 1 , t)c(x 2 , t)<br />

For t >> ζ −1 , we eliminate J to obtain a Smoluchowski eq. <strong>for</strong> c<br />

∂ t c(x 1 , t) = D∂ 2 x 1<br />

c(x 1 , t) + 1 ζ ∂ x 1<br />

∫x 2<br />

[∂ x1 V (x 12 )]c(x 1 , t)c(x 2 , t)<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Hydrodynamics<br />

Langevin dynamics<br />

From Langevin to Fokker-Planck dynamics<br />

Low density limit & Smoluchowski equation<br />

Hydrodynamics<br />

Summary <strong>and</strong> Plan<br />

Due to the interaction with the substrate, momentum is not<br />

conserved. The only conserved field is the concentration of particles<br />

c(x, t). This is the only hydrodynamic field.<br />

To obtain a hydrodynamic equation <strong>for</strong>m the Smoluchowski equation we recall that we<br />

are interested in large scales. Assuming the pair potential has a finite range R 0 , we<br />

consider spatial variation of c(x, t) on length scales x >> R 0 <strong>and</strong> exp<strong>and</strong> in gradients<br />

∂ t c(x 1 , t) = D∂x 2 1<br />

c(x 1 , t) + 1 Z<br />

ζ ∂x 1<br />

V (x ′ )[∂ x ′c(x 1 + x ′ , t)]c(x 1 , t)<br />

x ′<br />

= D∂x 2 1<br />

c(x 1 , t) + 1 Z<br />

ζ ∂x 1<br />

V (x ′ )[∂ x1 c(x 1 , t) + x ′ ∂ 2<br />

x ′ x 1<br />

c(x 1 , t) + ...]c(x 1 , t)<br />

The result is the expected diffusion equation, with a microscopic<br />

expression <strong>for</strong> D ren which is renormalized by interactions<br />

∂ t c(x, t) = ∂ x [D ren ∂ x c(x, t)] ≃ D ren ∂ 2 x c(x, t)<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Summary of Tutorial <strong>and</strong> Plan<br />

Langevin dynamics<br />

From Langevin to Fokker-Planck dynamics<br />

Low density limit & Smoluchowski equation<br />

Hydrodynamics<br />

Summary <strong>and</strong> Plan<br />

Microscopic Langevin dynamics of interacting particles<br />

Approximations: noise average; low density: f 2 (1, 2) ≃ f 1 (1)f 1 (2)<br />

⇓<br />

Fokker Planck equation<br />

⇓<br />

Overdamped limit: t >> 1/ζ Smoluchowski equation<br />

[<br />

∂ t c(x 1 , t) = ∂ x1 D∂ x1 c(x 1 , t) − 1 ∫<br />

]<br />

F (x 12 )c(x 2 , t)c(x 1 , t<br />

ζ x 2<br />

Pair interaction F (x 12 ):<br />

steric repulsion → SP rods<br />

short-range active interactions → cross-linkers in motor-filaments mixtures<br />

medium-mediated hydrodynamic interactions → swimmers<br />

Smoluchowski → Hydrodynamic equations<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


SP Rods<br />

The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Langevin dynamics of SP Rods<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

The algebra is quite a bit more involved <strong>for</strong> a number of reasons:<br />

1<br />

translational <strong>and</strong> rotational degrees of freedom are coupled<br />

∂v α<br />

∂t<br />

= v 0 ˆν α − ζ(ˆν α) · v α − P β T (α, β) vα + ηα (t)<br />

∂ω α<br />

∂t<br />

= −ζ R ω α − P β T (α, β) ωα + ηR α (t)<br />

where ˙η αi (t)η βj (t ′ )¸ = 2k B T a ζ ij (ˆν α)δ ij δ (t − t ′ )<br />

D<br />

E<br />

ηα R (t) ηβ R (t′ ) = 2k B T a (ζ R /I) δ αβ δ (t − t ′ ), I = l 2 /12<br />

ζ ij (ˆν α) = ζ ‖ˆν αi ˆν αj + ζ ⊥ (δ ij − ˆν αi ˆν αj )<br />

2<br />

hard core interactions must be treated with care to h<strong>and</strong>le<br />

properly the instantaneous momentum transfer<br />

3<br />

coupling of self-propulsion <strong>and</strong> collisional dynamics yields<br />

angular correlations<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Langevin dynamics of SP Rods<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

The Smoluchowski equation <strong>for</strong> c(r, ˆν, t) is given by<br />

∂ t c + v 0 ∂ ‖ c = D R ∂ 2 θc + (D ‖ + D S )∂ 2 ‖ c + D ⊥∂ 2 ⊥c<br />

−(Iζ R ) −1 ∂ θ (τ ex + τ SP ) − ∇ · ζ −1 · (F ex + F SP )<br />

∂ ‖ = ˆν · ∇<br />

D S = v0 2/ζ ‖ enhancement of<br />

∂ ⊥ = ∇ − ˆν(ˆν · ∇)<br />

longitudinal diffusion<br />

Torques <strong>and</strong> <strong>for</strong>ces exchanged upon collision as the sum of Onsager<br />

excluded volume terms <strong>and</strong> contributions from self-propulsion:<br />

τ ex = −∂ θ V ex<br />

V<br />

F ex = −∇V<br />

ex (1) = k B T ac(1, t) R R<br />

ξ ex<br />

12 ˆν |ˆν<br />

2<br />

1 × ˆν 2 | c (r 1 + ξ 12 , ˆν 2 , t)<br />

ξ 12 = ξ 1 − ξ 2<br />

„ « Z !<br />

′<br />

FSP<br />

= v<br />

τ 0<br />

2 b k<br />

SP ẑ · (ξ 1 × b [ẑ · (ˆν 1 × ˆν 2 )] 2<br />

k)<br />

s 1 ,s 2<br />

Z2,ˆk<br />

×Θ(−ˆν 12 · bk)c(1, t)c(2, t)<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

SP terms in Smoluchowski Eq.<br />

Langevin dynamics of SP Rods<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Convective term describes mass flux along the rod’s long axis.<br />

Longitudinal diffusion enhanced by self-propulsion:<br />

D ‖ → D ‖ + v 2 0 /ζ ‖. Longitudinal diffusion of SP rod as persistent<br />

r<strong>and</strong>om walk with bias ∼ v 0 towards steps along the rod’s long<br />

axis.<br />

The SP contributions to <strong>for</strong>ce <strong>and</strong> torque describe, within<br />

mean-field, the additional anisotropic linear <strong>and</strong> angular<br />

momentum transfers during the collision of two SP rods.<br />

D E<br />

√<br />

∆pcoll<br />

Mean-field Onsager: ∼ v th<br />

∼<br />

∆t τ √ kB T a<br />

∼ k BT a<br />

coll l/ k B T a<br />

l<br />

D E<br />

∆pcoll<br />

SP rods: ∆t ∼ v 0| ˆν 1 × ˆν 2 |<br />

SP<br />

l/v 0 | ˆν 1 × ˆν 2 | ∼ v 0 2|ˆν 1 × ˆν 2 | 2<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Hydrodynamics Fields<br />

Hydrodynamics Fields<br />

Hydrodynamics Equations<br />

Conserved density: ρ(r, t) = ∫ c(r, ˆν, t)<br />

ˆν<br />

Order parameter fields:<br />

Polarization vector:<br />

P(r, t) = ∫ ˆν c(r, ˆν, t)<br />

ˆν<br />

Polar order<br />

p -p <br />

fish, bacteria,<br />

motor-filaments<br />

p<br />

Nematic alignment tensor:<br />

Q ij (r, t) = ∫ ˆν (ˆν i ˆν j − 1 2 δ ij)c(r, ˆν, t)<br />

Nematic<br />

order<br />

n -n<br />

<br />

melanocytes,<br />

granular rods<br />

n<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Hydrodynamics Equations<br />

Hydrodynamics Fields<br />

Hydrodynamics Equations<br />

∂ t ρ + v 0 ∇ · P = D ρ∇ 2 ρ + D Q ∇∇ : ρQ<br />

∂ t P = −D R P + λP · Q − v 0 ∇ · Q − λ 1 (P · ∇)P − λ 2 ∇P 2 − λ 3 P(∇ · P)<br />

− v 0<br />

2 ∇ρ + D bend ∇ 2 P + (D splay − D benb )∇(∇ · P)<br />

∂ t Q = −4D R<br />

„<br />

1 − ρ<br />

ρ IN<br />

«<br />

Q − v 0 [∇P] ST − λ 4 [P∇Q] ST − λ 5 [Q∇P] ST − λ 6 [∇P] ST<br />

[T] ST<br />

ij = 1 2 (T ij + T ji − 1 2 δ ij T kk )<br />

+ D Q<br />

4 (∇∇ − 1 2 1)ρ + D′ Q ∇2 Q<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Homogeneous States<br />

Homogeneous States <strong>and</strong> Enhanced Nematic Order<br />

Stability <strong>and</strong> Novel Properties of Bulk States<br />

Neglecting all gradients, the equations are given by<br />

Bulk states:<br />

∂ t ρ = 0<br />

∂ t P = −D R P + λP · Q<br />

Isotropic State: ρ = ρ 0 , P = Q = 0<br />

No bulk uni<strong>for</strong>m polar state: P = 0<br />

Nematic state P = 0, Q ≠ 0 <strong>for</strong><br />

ρ > ρ IN<br />

SP enhances nematic order:<br />

ρ IN =<br />

ρ N<br />

1+ v2 0<br />

5k B T<br />

∂ t Q = −4D R [1 − ρ/ρ IN (v 0 )] Q<br />

with ρ N = 3/(πl 2 )<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Homogeneous States <strong>and</strong> Enhanced Nematic Order<br />

Stability <strong>and</strong> Novel Properties of Bulk States<br />

Enhanced Nematic order in Simulations of Actin<br />

Motility Assay<br />

-<br />

+<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Homogeneous States <strong>and</strong> Enhanced Nematic Order<br />

Stability <strong>and</strong> Novel Properties of Bulk States<br />

Hydrodynamic Modes Stability of Bulk States<br />

We examine the dynamics of the fluctuations of the hydrodynamic<br />

fields about their mean values <strong>and</strong> analyze the hydrodynamic modes<br />

of the system.<br />

ρ = ρ<br />

Isotropic state (neglect Q)<br />

0 + δρ<br />

P = 0 + δP<br />

Linearized equations:<br />

Fourier modes:<br />

∂ t δρ = D ρ ∇ 2 δρ + v 0 ρ 0 ∇ · δP<br />

∂ t δP = −D R δP + (v 0 /2ρ 0 )∇δρ<br />

δρ(r, t) = ∑ k δρ k(t)e ik·r<br />

δP(r, t) = ∑ k δP k(t)e ik·r<br />

z ± = − 1 2 (D R + D ρ k 2 ) ± 1 2<br />

√<br />

(D R − D ρ k 2 ) 2 − 2v 2 0 k 2<br />

δρ k (t) ∼ e −z(k)t<br />

δP k (t) ∼ e −z(k)t<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Sound Waves in Isotropic State<br />

Homogeneous States <strong>and</strong> Enhanced Nematic Order<br />

Stability <strong>and</strong> Novel Properties of Bulk States<br />

Propagating density waves in isotropic<br />

state of overdamped SP rods<br />

<br />

t<br />

= D <br />

2 + v 0<br />

0P<br />

<br />

tP = DRP + v0 0<br />

fluctuations:<br />

<br />

= 0<br />

+ , P = P 0<br />

0<br />

+ P<br />

<br />

v 0<br />

Above a critical v 0 the<br />

system supports sound-like<br />

waves in a range of<br />

wavevectors<br />

v 0c<br />

v 0c<br />

D R<br />

Ramaswamy & Mazenko, 1982: fluid on frictional substrate<br />

--> movie of fluidized rods by Durian’s lab<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Instability of Nematic State<br />

Homogeneous States <strong>and</strong> Enhanced Nematic Order<br />

Stability <strong>and</strong> Novel Properties of Bulk States<br />

The nematic state is unstable<br />

<strong>for</strong> v 0 > v c (φ, S), as shown in<br />

the figure <strong>for</strong> S = 1 (red line)<br />

<strong>and</strong> S < 1 (dashed blue line).<br />

The instability arises from a<br />

subtle interplay of splay <strong>and</strong><br />

bend de<strong>for</strong>mations.<br />

cosφ = ˆn 0 · ˆk<br />

φ = 0 pure bend<br />

φ = π/2 pure splay<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Homogeneous States <strong>and</strong> Enhanced Nematic Order<br />

Stability <strong>and</strong> Novel Properties of Bulk States<br />

Enhanced polar order near boundaries<br />

SP can enhance the size of correlated polar regions, as seen in<br />

simulations [F. Peruani, A. Deutsch <strong>and</strong> M. Bär, Phys. Rev. E 74,<br />

030904 (2006).].<br />

Polarization profile across<br />

channel (P x (±L/2) = P 0 )<br />

P x (y) = P 0 cosh(y/δ)/ cosh(L/2δ)<br />

√<br />

δ = l/2 5/2 + v0 2/k BT<br />

δ(v 0 = 0) ∼ l<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3


The Model<br />

A Tutorial: From Langevin equation to Hydrodynamics<br />

Smoluchowski equation <strong>for</strong> SP rods<br />

Hydrodynamics<br />

Results<br />

Summary <strong>and</strong> Outlook<br />

Summary <strong>and</strong> Outlook<br />

A minimal model of interacting SP hard rods exhibits several<br />

novel nonequilibrium phenomena at large scales<br />

No bulk polar state<br />

enhancement of nematic order<br />

enhancement of longitudinal diffusion<br />

sound waves in isotropic state<br />

enhanced polarization correlations<br />

We will consider in the last lecture a richer model that<br />

incorporates the role of fluid flow.<br />

References<br />

1 R. Zwanzig, Nonequilibrium Statistical Mechanics (Ox<strong>for</strong>d University Press,<br />

2001), Chapters 1 <strong>and</strong> 2.<br />

2 A. Baskaran <strong>and</strong> M. C. Marchetti, Hydrodynamics of Self-Propelled Hard<br />

Rods, Phys. Rev. E 77, 011920 (2008).<br />

3 A. Baskaran <strong>and</strong> M. C. Marchetti, Enhanced Diffusion <strong>and</strong> Ordering of<br />

Self-Propelled Rods, Phys. Rev. Lett. 101, 268101 (2008).<br />

Marchetti <strong>Active</strong> <strong>and</strong> <strong>Driven</strong> <strong>Soft</strong> <strong>Matter</strong>: <strong>Lecture</strong> 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!