01.02.2015 Views

Low Energy Electromagnetic Physics - Geant4 - CERN

Low Energy Electromagnetic Physics - Geant4 - CERN

Low Energy Electromagnetic Physics - Geant4 - CERN

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Low</strong> <strong>Energy</strong> <strong>Electromagnetic</strong> <strong>Physics</strong><br />

Maria Grazia Pia, INFN Genova<br />

on behalf of the <strong>Low</strong>E WG<br />

http://www.ge.infn.it/geant4/lowE/index.html<br />

<strong>Geant4</strong> Workshop and <strong>Geant4</strong> ∆ Review, <strong>CERN</strong>, October 2002<br />

Maria Grazia Pia, INFN Genova


The process in a nutshell<br />

We have and maintain a URD<br />

– Regular contacts with users<br />

We have a process for requirements<br />

management<br />

– But we would like to have a tool for it!<br />

We do analysis and design<br />

– We validate our designs against use cases<br />

We do design and code reviews<br />

– not enough, however…<br />

– main problem: geographical spread<br />

Unit, package integration, system tests<br />

+ validation (acceptance)<br />

– we do a lot… but we would like to do more<br />

– Limited by availability of resources for core<br />

testing<br />

– Need a more systematic approach and better<br />

toolsè Test & Analysis Project<br />

– Close collaboration with users<br />

Ample requirements traceability<br />

– Still improving it: added documentation<br />

and validation results as traceability items<br />

– in progress: traceability documentation<br />

from simple matrix to Rose model<br />

We regularly hold WG meetings to<br />

discuss and agree together our project<br />

planning (GDPM approach)<br />

We have a SPI process<br />

– With some spells of SPD sometimes…<br />

– Collaboration with Anaphe for a common<br />

(tailored) process<br />

We keep everything in CVS<br />

(not in our head…)<br />

– Code, designs, tests, documents etc.<br />

We maintain a web site<br />

– <strong>Low</strong>E, advanced examples, WG projects<br />

More details: see talk on Software Process in <strong>Physics</strong>, <strong>Geant4</strong> Review 2001<br />

Maria Grazia Pia, INFN Genova


Recent physics activities<br />

Electron processes<br />

– New parameterisations of LLNL data<br />

– Various bug fixes<br />

– Tests against NIST database (range)<br />

– Tests against Sandia database<br />

Photon processes<br />

– Rather stable<br />

– Tests of angular distributions in<br />

progress<br />

Polarisation<br />

– Improvement of Compton<br />

– γ conversion in progress<br />

– Contacts with experiments for<br />

common validation tests<br />

Auger effect<br />

– New<br />

Fluorescence<br />

– Small fixes and improvements while reimplementing<br />

in a design iteration<br />

– Test beam validation in collaboration with<br />

ESA Science Payload Division<br />

PIXE<br />

– Toy model<br />

– Established contacts for databases, plans for<br />

new model<br />

Protons, ions<br />

– Stable, minor improvements<br />

– Bragg peak tests in progress<br />

Antiprotons<br />

– Paper in progress, very close to submission<br />

Maria Grazia Pia, INFN Genova


Photons: mass attenuation coefficient<br />

Comparison against NIST data<br />

Tests by IST - Natl. Inst. for Cancer<br />

Research, Genova (F. Foppiano et al.)<br />

<strong>Low</strong>E accuracy ~ 1%<br />

E (%)<br />

UR 1.1<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

-18<br />

E = (NIST-G4EMStandard)/NIST<br />

E = (NIST-G4<strong>Low</strong>En)/NIST<br />

0.01 0.1 1 10<br />

Photon <strong>Energy</strong> (MeV)<br />

Fe<br />

This test will be introduced into the Test & Analysis project<br />

for a systematic verification<br />

Also water, Pb<br />

Maria Grazia Pia, INFN Genova


µ /ρ (cm 2 /g) in water<br />

10<br />

1<br />

0.1<br />

Photon attenuation: <strong>Geant4</strong> vs. NIST data<br />

Test and validation by IST - Natl. Inst. for Cancer Research, Genova<br />

<strong>Geant4</strong> <strong>Low</strong>En<br />

NIST<br />

1000<br />

100<br />

100<br />

water Fe Pb<br />

10<br />

µ /ρ (cm 2 /g) in iron<br />

10<br />

1<br />

0.1<br />

UR 1.1<br />

<strong>Geant4</strong> <strong>Low</strong>En<br />

NIST<br />

µ/ρ (cm 2 / g in lead<br />

1<br />

0.1<br />

0.01<br />

<strong>Geant4</strong> <strong>Low</strong>En<br />

NIST<br />

0.01 0.1 1 10<br />

Photon <strong>Energy</strong> (MeV)<br />

0.01<br />

0.01 0.1 1 10<br />

Photon <strong>Energy</strong> (MeV)<br />

0.01 0.1 1<br />

Photon energy (MeV)<br />

Delta (%)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

Delta = (NIST-G4EMStand) / NIST<br />

Delta = (NIST-G4<strong>Low</strong>En) / NIST<br />

0.01 0.1 1 10<br />

Photon <strong>Energy</strong> (MeV)<br />

E (%)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

-18<br />

• <strong>Low</strong> <strong>Energy</strong> EM<br />

• Standard EM<br />

w.r.t. NIST data<br />

E = (NIST-G4EMStandard)/NIST<br />

E = (NIST-G4<strong>Low</strong>En)/NIST<br />

accuracy within 1%<br />

0.01 0.1 1 10<br />

Photon <strong>Energy</strong> (MeV)<br />

E (%)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

E = (NIST - G4EM Standard)/NIST<br />

E = (NIST- G4<strong>Low</strong>En)/NIST<br />

0.01 0.1 1<br />

Photon <strong>Energy</strong> (MeV)<br />

Maria Grazia Pia, INFN Genova


Photons: angular distributions<br />

UR 1.1<br />

Maria Grazia Pia, INFN Genova<br />

Rayleigh scattering: <strong>Geant4</strong>-<strong>Low</strong>E and expected distribution<br />

(more work in progress)


Photons, evidence of shell effects<br />

UR 1.1<br />

Photon transmission, 1 µm Pb<br />

Photon transmission, 1 µm Al<br />

Maria Grazia Pia, INFN Genova


Electron Bremsstrahlung<br />

UR 1.1<br />

New parameterisations of<br />

EEDL data library<br />

– in response to problem reports<br />

from various users<br />

– precision is now ~ 1.5 %<br />

Plans<br />

– Systematic verification over Z<br />

and energy<br />

– Need Test & Analysis Project<br />

for automated verification<br />

Maria Grazia Pia, INFN Genova


Electron ionisation<br />

UR 1.1<br />

New parameterisations<br />

of EEDL data library<br />

– in response to problem<br />

reports from various users<br />

– precision is now better than<br />

5 % for ~ 50% of the shells,<br />

poorer for the 50% left<br />

Plans<br />

– Systematic verification over<br />

shell, Z and energy<br />

– Need Test & Analysis Project<br />

for automated verification<br />

(all shells, 99 elements!)<br />

Maria Grazia Pia, INFN Genova


Electrons: range<br />

UR 1.1<br />

Range in various simple and<br />

composite materials<br />

Compared to NIST database<br />

Al<br />

Also Be, Fe, Au, Pb, Ur, air,<br />

water, bone, muscle, soft tissue<br />

Testbed for<br />

Test&Analysis prototype<br />

Maria Grazia Pia, INFN Genova


Electrons: dE/dx<br />

UR 1.1<br />

Ionisation energy loss in<br />

various materials<br />

Compared to Sandia database<br />

More systematic verification<br />

planned (for publication)<br />

Maria Grazia Pia, INFN Genova<br />

Also Fe, Ur


Electrons, transmitted<br />

20 keV electrons, 0.32 and 1.04 µm Al<br />

UR 1.1<br />

Maria Grazia Pia, INFN Genova


UR 2.1<br />

Protons<br />

Stopping power<br />

Z dependence for various energies<br />

Ziegler and ICRU models Ziegler and ICRU, Fe Ziegler and ICRU, Si<br />

Straggling<br />

UR 2.5<br />

Nuclear stopping power<br />

Maria Grazia Pia, INFN Genova<br />

Bragg peak (with hadronic interactions)


Antiprotons<br />

UR 2.3<br />

New: comparison with another<br />

theoretical model<br />

– Non-linear calculation by Arista<br />

and Lifschitz<br />

Dashed<br />

– <strong>Geant4</strong> <strong>Low</strong>E proton<br />

Solid<br />

– <strong>Geant4</strong> <strong>Low</strong>E Quantal Harmonic<br />

Oscillator model<br />

Dotted-dashed<br />

– Calculation by Arista and Lifschitz<br />

Points<br />

– Data from ASACUSA<br />

Maria Grazia Pia, INFN Genova


Ions<br />

Deuterons<br />

UR 2.2<br />

Ar and C ions<br />

Maria Grazia Pia, INFN Genova


Polarisation<br />

x<br />

250 eV -100 GeV<br />

ξ φ<br />

hν<br />

hν<br />

ε A<br />

0 θ<br />

O α<br />

C<br />

Cross section:<br />

UR 4.1, D.1<br />

z<br />

d<br />

dΩ<br />

σ 1<br />

2<br />

=<br />

' ⎛<br />

ε||<br />

= ⎜Nî−<br />

⎝<br />

θ Polar angle<br />

φ Azimuthal angle<br />

ε Polarization vector<br />

2<br />

2 hν<br />

⎡hν0<br />

hν<br />

2<br />

r0 ⎢ + − 2sin θ cos<br />

2<br />

2 hν0<br />

⎣ hν<br />

hν0<br />

1<br />

N<br />

cosξ = sinθcosφ<br />

Scattered Photon Polarization<br />

'<br />

ε ⊥<br />

=<br />

⇒<br />

1<br />

N<br />

2<br />

sin θ sinφ<br />

cosφĵ−<br />

1<br />

N<br />

sinξ =<br />

⎤<br />

φ⎥<br />

⎦<br />

2 2<br />

1−sin<br />

θcos<br />

φ = N<br />

( cosθ<br />

ĵ − sin θsin<br />

φ kˆ ) sinβ<br />

⎞<br />

sinθ<br />

cosθ<br />

cosφkˆ<br />

⎟cosβ<br />

⎠<br />

<strong>Low</strong> <strong>Energy</strong><br />

Polarised Compton<br />

y<br />

100 keV<br />

1 MeV<br />

10 MeV<br />

small ϑ<br />

small ϑ<br />

More details: talk on<br />

small ϑ<br />

<strong>Geant4</strong> <strong>Low</strong> <strong>Energy</strong><br />

<strong>Electromagnetic</strong> <strong>Physics</strong><br />

large ϑ<br />

large ϑ<br />

large ϑ<br />

Maria Grazia Pia, INFN Genova<br />

Other polarised processes under development


Fluorescence<br />

Microscopic validation:<br />

against reference data<br />

UR 3.1<br />

Experimental validation:<br />

test beam data, in collaboration with<br />

ESA Science Payload Division<br />

Fe lines<br />

Spectrum from<br />

a Mars-simulant<br />

rock sample<br />

GaAs lines<br />

Scattered<br />

photons<br />

Maria Grazia Pia, INFN Genova


Auger effect<br />

UR 3.1<br />

New process,<br />

validation in progress<br />

Auger electron emission<br />

from various materials<br />

Sn, 3 keV photon beam,<br />

electron lines w.r.t. published<br />

experimental results<br />

Maria Grazia Pia, INFN Genova


Contribution from users<br />

Many valuable contributions to the validation of <strong>Low</strong>E<br />

physics from users all over the world<br />

– excellent relationship with our user community<br />

User comparisons with data usually involve the effect<br />

of several physics processes of the <strong>Low</strong>E package<br />

A small sample in the next slides<br />

– no time to show all!<br />

Maria Grazia Pia, INFN Genova


GEANT4 Workshop, 2002<br />

30 September – 4 October<br />

GEANT4 Medical Applications at LIP<br />

P. Rodrigues, A. Trindade, L.Peralta, J. Varela<br />

LIP – Lisbon<br />

Maria Grazia Pia, INFN Genova


Homogeneous Phantom<br />

P. Rodrigues, A. Trindade, L.Peralta, J. Varela, LIP<br />

• Simulation of photon beams produced by a Siemens<br />

Mevatron KD2 clinical linear accelerator<br />

• Phase-space distributions interface with GEANT4<br />

• Validation against experimental data: depth dose and<br />

profile curves<br />

Differences<br />

LIP – Lisbon<br />

10x10 cm 2<br />

15x15 cm 2<br />

10x10 cm 2 15x15 cm 2<br />

Maria Grazia Pia, INFN Genova


Electron Transport at <strong>Low</strong> Energies<br />

P. Rodrigues, A. Trindade, L.Peralta, J. Varela, LIP<br />

• Evaluation of electron range for different GEANT4 GEANT4 releases (<strong>Low</strong>+Std)<br />

Styrophoam<br />

Lead<br />

Maria Grazia Pia, INFN Genova


Dose Calculations with 12 12 C<br />

P. Rodrigues, A. Trindade, L.Peralta, J. Varela, LIP<br />

• Bragg peak localization calculated with GEANT4 (stopping powers<br />

from ICRU49 and Ziegler85) and GEANT3 in a water phantom<br />

• Comparison with GSI data<br />

Maria Grazia Pia, INFN Genova


<strong>Geant4</strong> low energy validation<br />

Jean-Francois Carrier, Louis Archambault, Rene Roy and Luc Beaulieu<br />

Service de radio-oncologie, Hotel-Dieu de Quebec, Quebec, Canada<br />

Departement de physique, Universite Laval, Quebec, Canada<br />

The following results will be published soon. They are part<br />

of a general <strong>Geant4</strong> low energy validation project.<br />

Maria Grazia Pia, INFN Genova


• Using <strong>Geant4</strong>, we calculated depth-dose curves for many<br />

different electron or photon sources:<br />

•Beams<br />

•monoenergetic beam<br />

•realistic clinical accelerator beam<br />

•Point sources<br />

•monoenergetic source<br />

•source with real nuclide energy spectra<br />

•and different irradiated media:<br />

•Homogeneous<br />

•water, Be, Mo or U<br />

•Heterogeneous<br />

•water/Al/lung/water<br />

•water/air/steel/air/water<br />

Maria Grazia Pia, INFN Genova<br />

Jean-Francois Carrier, Louis Archambault, Rene Roy and Luc Beaulieu


Uranium irradiated by electron beam<br />

Jean-Francois Carrier, Louis Archambault, Rene Roy and Luc Beaulieu<br />

Fig 1. Depth-dose curve for a semi-infinite uranium slab irradiated by a 0.5<br />

MeV broad parallel electron beam<br />

Maria Grazia Pia, INFN Genova<br />

1 Chibani O and Li X A, Med. Phys. 29 (5), May 2002


Multi-slab medium irradiated by photons<br />

Jean-Francois Carrier, Louis Archambault, Rene Roy and Luc Beaulieu<br />

Fig 2. Depth-dose curve for a multi-slab medium irradiated by a 18 MV<br />

realistic clinical accelerator photon beam<br />

2 Rogers D W O and Mohan<br />

R,http://www.irs.inms.nrc.ca/inms/irs/papers/iccr00/iccr00.html<br />

Maria Grazia Pia, INFN Genova


Water phantom irradiated by clinac beam<br />

Jean-Francois Carrier, Louis Archambault, Rene Roy and Luc Beaulieu<br />

Fig 3. Relative dose distribution for a water phantom irradiated by a 6<br />

MeV Clinac 2100C electron beam<br />

Maria Grazia Pia, INFN Genova<br />

3 Ding G X and Rogers D W O<br />

http://gold.sao.nrc.ca/inms/papers/PIRS439/pirs439.html


Ions<br />

Independent validation at<br />

Univ. of Linz (H. Paul et al.)<br />

<strong>Geant4</strong>-<strong>Low</strong>E reproduces the right<br />

side of the distribution precisely,<br />

but about 10-20% discrepancy is<br />

observed at lower energies<br />

Maria Grazia Pia, INFN Genova


Dose distribution: TG 43 protocol,<br />

experimental data (S. Paolo Hospital, Savona), G4-<strong>Low</strong>E<br />

o Protocol<br />

ê Data (SV)<br />

m G4-<strong>Low</strong>E<br />

Maria Grazia Pia, INFN Genova<br />

S. Guatelli’s thesis


Application<br />

Cosmic rays,<br />

jovian electrons<br />

Solar X-rays, e, p<br />

and more!<br />

Courtesy SOHO EIT<br />

Maria Grazia Pia, INFN Genova<br />

Courtesy of S. Magni, Borexino<br />

Not only<br />

“space and medical”!


Team work!<br />

<strong>Geant4</strong> <strong>Low</strong> <strong>Energy</strong> <strong>Electromagnetic</strong> Working Group<br />

+<br />

users all over the world<br />

The validation plots in this presentation<br />

have been contributed by<br />

19 people from 9 countries<br />

Thanks to all!<br />

Students<br />

Jean-Francois Carrier<br />

Stephane Chauvie<br />

Elena Guardincerri<br />

Susanna Guatelli<br />

Alfonso Mantero<br />

Pedro Rodrigues<br />

Andreia Trindade<br />

Matteo Tropeano<br />

Maria Grazia Pia, INFN Genova


Further physics improvements and extensions<br />

Various projects in progress<br />

– all motivated by requirements in the URD<br />

Some examples in the following slides<br />

– no time to show all!<br />

Maria Grazia Pia, INFN Genova


Bremsstrahlung Models<br />

UR A.5<br />

• Current bremstrahlung polar angle generation scheme is independent<br />

of both atomic number, Z, and emitted photon momentum, k<br />

• Does not account variations due to the screening of the nucleus by<br />

the atomic electrons<br />

• At generator level, for 50 keV incident electrons with k/T=0.7 in Ag<br />

New model (2BN) to be<br />

implemented by LIP group<br />

Maria Grazia Pia, INFN Genova


Polarisation<br />

UR 1.4, 4.1<br />

theory<br />

500 million events<br />

simulation<br />

Polarisation of a non-polarised photon<br />

beam, simulation and theory<br />

Maria Grazia Pia, INFN Genova<br />

Ratio between intensity with perpendicular and parallel polarisation<br />

vector w.r.t. scattering plane, linearly polarised photons


Ongoing significant effort in OOAD<br />

Maria Grazia Pia, INFN Genova


Other activities in the WG<br />

Advanced examples<br />

Simulation + analysis in a distributed computing environment<br />

Test & Analysis<br />

Technology transfer<br />

Training<br />

Maria Grazia Pia, INFN Genova


Technology transfer<br />

Particle physics<br />

software aids space<br />

and medicine<br />

M.G. Pia and J. Knobloch<br />

<strong>Geant4</strong> is a showcase example of<br />

technology transfer from particle<br />

physics to other fields such as<br />

space and medical science […].<br />

<strong>CERN</strong> Courier, June 2002<br />

Maria Grazia Pia, INFN Genova


Talks<br />

since last<br />

workshop<br />

in WG web<br />

1. The <strong>Geant4</strong> Toolkit: simulation capabilities and application results<br />

M.G. Pia et al., 8th Topical Seminar on Innovative Particle and Radiation Detectors, Siena, 2002<br />

2. <strong>Geant4</strong>: a powerful tool for medical physics<br />

E.Lamanna et al., 8th Topical Seminar on Innovative Particle and Radiation Detectors, Siena, 2002<br />

3. Dose calculation for radiotherapic treatment on a distributed computing environment<br />

S.Chauvie et al., 8th Topical Seminar on Innovative Particle and Radiation Detectors, Siena, 2002<br />

4. Parallel <strong>Geant4</strong> simulation in medical and space science applications<br />

J. Moscicki et al., 8th Topical Seminar on Innovative Particle and Radiation Detectors, Siena, 2002<br />

5. Simulation and analysis for astroparticle experiments<br />

A. Howard et al., 8th Topical Seminar on Innovative Particle and Radiation Detectors, Siena, 2002<br />

6. Leipzig applicators Montecarlo simulations: results and comparison with experimental and manufacturer's data<br />

M. Tropeano et al., 21st ESTRO Meeting, Prague, 2002<br />

7. Tools for simulation and analysis<br />

A. Pfeiffer and M.G. Pia (for the <strong>Geant4</strong> and Anaphe Collaborations), ICHEP02, Amsterdam, 2002<br />

8. The <strong>Geant4</strong> Simulation Toolkit and Its <strong>Low</strong> <strong>Energy</strong> <strong>Electromagnetic</strong> <strong>Physics</strong> Package<br />

S.Chauvie et al., 44th Annual Meeting of the American Ass. of Physicists in Medicine, Montreal, 2002<br />

9. The <strong>Geant4</strong> Toolkit: Overview<br />

M. G. Pia, Invited lecture at the MCNEG Workshop, Stoke-on-Trent, UK, 2002<br />

10. Medical applications of the <strong>Geant4</strong> Simulation Toolkit<br />

M. G. Pia, Invited lecture at the MCNEG Workshop, Stoke-on-Trent, UK, 2002<br />

11. Simulation software: applications and results in the bio-medical domain<br />

M. G. Pia et al., VII International Conference on Advanced Technologies and Particle <strong>Physics</strong>, Como, 2001<br />

12. From HEP computing to bio-medical research and vice-versa: technology transfer and application results<br />

M. G. Pia et al., Plenary talk at CHEP 2001, Beijing, China, 2001<br />

13. Architecture of Collaborating Frameworks<br />

A.Pfeiffer et al., CHEP2001, Beijing, China, 2001<br />

14. Simulation For Astroparticle Experiments And Planetary Explorations<br />

A.Brunengo (for the <strong>Geant4</strong> <strong>Low</strong> <strong>Energy</strong> <strong>Electromagnetic</strong> Group), CHEP2001, Beijing, China, 2001<br />

15. <strong>Geant4</strong> <strong>Low</strong> <strong>Energy</strong> <strong>Electromagnetic</strong> <strong>Physics</strong><br />

M. G. Pia (for the <strong>Geant4</strong> <strong>Low</strong> <strong>Energy</strong> <strong>Electromagnetic</strong> Group), CHEP2001, Beijing, China, 2001<br />

16. The GEANT4 simulation toolkit<br />

G. Santin, Monte Carlo Workshop for Nuclear Medicine applications, July 2001<br />

17. <strong>Geant4</strong>: simulation capabilities and application results<br />

M.G. Pia (for the <strong>Geant4</strong> Collaboration), EPS-HEP Conference, Budapest, July 2001<br />

Maria Grazia Pia, INFN Genova


Training<br />

National School on Detector Technologies, Torino, Feb. 2002<br />

– Lectures + “<strong>Geant4</strong> through an example”<br />

<strong>Geant4</strong> & Anaphe mini-workshop, Gran Sasso Lab, July 2002<br />

– Tutorials + “<strong>Geant4</strong> through an example” +demo<br />

<strong>Geant4</strong> User Workshop, Salamanca, July 2002<br />

– Lectures + exercises<br />

<strong>Geant4</strong> & Anaphe mini-workshop, INFN-LNS Lab, November 2002<br />

– Tutorials + + “<strong>Geant4</strong> through an example” +demo “<strong>Geant4</strong> through an<br />

example” +demo<br />

User-centric approach:<br />

– Introduction to “advanced” software engineering concepts<br />

– Complete (from the user’s view) training: simulation + analysis<br />

Maria Grazia Pia, INFN Genova


Resources<br />

New collaborators:<br />

– Pablo Cirrone (INFN-LNS)<br />

– Luis Peralta, Pedro Rodrigues, Andreia Trindade (LIP, Lisbon)<br />

– Interest expressed by small group at INFN-Gran Sasso Lab<br />

Status on 1 September 2002<br />

Maria Grazia Pia, INFN Genova


We do a lot of work<br />

– and we do our best to do it well…<br />

– a rigorous software process, continuous SPI<br />

Conclusions<br />

– very effective team-work<br />

work, several brilliant and motivated young collaborators<br />

We have plenty of interesting physics results in a new (and difficult)<br />

simulation domain<br />

– significant progress in the last year in a few problematic areas<br />

– don’t forget in what status we inherited the package, when the WG was created!<br />

A huge user community worldwide<br />

– excellent, constructive relationship between users and developers<br />

– more support for our activities outside the Collaboration than inside<br />

Many projects in the WG, not only physics<br />

– Testing system, analysis, advanced examples, general electromagnetic OOAD,<br />

distributed computing, technology transfer<br />

More information in http://www.ge<br />

ge.infn.it/geant4/<br />

.it/geant4/lowE<br />

Maria Grazia Pia, INFN Genova

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!