02.02.2015 Views

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CONNES-CHERN CHARACTER FOR MANIFOLDS WITH<br />

BOUNDARY AND <strong>ETA</strong> COCHAINS<br />

MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Abstract. We represent the <strong>Connes</strong>-<strong>Chern</strong> character of the Dirac operator associated<br />

to a b-metric on a manifold <strong>with</strong> boundary in terms of a retracted cocycle in<br />

relative cyclic cohomology, whose expression depends on a scaling/cut-off parameter.<br />

Blowing-up the metric one recovers the pair of characteristic currents that represent<br />

the corresponding de Rham relative homology class, while the blow-down yields a<br />

relative cocycle whose expression involves higher eta cochains <strong>and</strong> their b-analogues.<br />

The corresponding pairing <strong>for</strong>mulæ <strong>with</strong> relative K-theory classes capture in<strong>for</strong>mation<br />

about the boundary <strong>and</strong> allow to derive geometric consequences. As a by-product, we<br />

show that the generalized APS pairing introduced by Getzler <strong>and</strong> Wu is necessarily<br />

restricted to almost flat bundles.<br />

Introduction<br />

Let M be a compact smooth m-dimensional manifold <strong>with</strong> boundary ∂M ≠ ∅. Assuming<br />

that M possesses a Spin c structure, the fundamental class in the relative K-<br />

homology group K m (M, ∂M) can be realized analytically in terms of the Dirac operator<br />

D (graded if m is even) associated to a Riemannian metric on M. More precisely, according<br />

to [BDT89, §3], if D e is a closed extension of D satisfying the condition that<br />

either D ∗ eD e or D e D ∗ e has compact resolvent (e.g. both D min <strong>and</strong> D max are such), then the<br />

bounded operator F = D e (D ∗ eD e + 1) −1/2 defines a relative Fredholm module over the<br />

pair of C ∗ -algebras ( C(M), C(∂M) ) , hence an element [D] ∈ K m (M, ∂M). Moreover,<br />

by [BDT89, §4], the connecting homomorphism maps [D] to the fundamental class<br />

[D ∂ ] ∈ K m−1 (∂M) corresponding to the Dirac operator D ∂ associated to the boundary<br />

restriction of the metric <strong>and</strong> of Spin c structure.<br />

The map Index [D] : K m (M, ∂M) → Z, defined by the pairing of K-theory <strong>with</strong> the<br />

K-homology class of [D], can be expressed in cohomological terms by means of <strong>Connes</strong>’<br />

2000 Mathematics Subject Classification. 58Jxx, 46L80; 58B34, 46L87.<br />

Key words <strong>and</strong> phrases. <strong>Manifolds</strong> <strong>with</strong> boundary, b-calculus, noncommutative geometry, <strong>Connes</strong>–<br />

<strong>Chern</strong> character, relative cyclic cohomology, η-invariant.<br />

M. L. was partially supported by the Hausdorff Center <strong>for</strong> Mathematics <strong>and</strong> by Sonder<strong>for</strong>schungsbereich/Transregio<br />

12 “Symmetries <strong>and</strong> Universality in Mesoscopic Systems” (Bochum–Duisburg/Essen–<br />

Köln–Warszawa).<br />

H. M. was partially supported by the US National Science Foundation awards no. DMS-0245481<br />

<strong>and</strong> no. DMS-0652167.<br />

M. J. P. was partially supported by the DFG.<br />

M. L. would like to thank the Department of Mathematics of the University of Colorado <strong>for</strong> hospitality<br />

<strong>and</strong> support.<br />

Both H. M. <strong>and</strong> M. J. P. acknowledge <strong>with</strong> thanks the hospitality <strong>and</strong> support of the Hausdorff<br />

Center <strong>for</strong> Mathematics.<br />

1


2 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

<strong>Chern</strong> character <strong>with</strong> values in cyclic cohomology [Con85]. Indeed, ( the relative K-<br />

homology group K m (M, ∂M), viewed as the Kasparov group KK m C0 (M \ ∂M); C ) ,<br />

can be realized as homotopy classes of Fredholm modules over the Fréchet algebra<br />

J ∞ (∂M, M) of smooth functions on M vanishing to any order on ∂M; J ∞ (∂M, M) is<br />

a local C ∗ -algebra, H-unital <strong>and</strong> dense in C 0 (M \ ∂M) = {f ∈ C(M) | f |∂M = 0}. One<br />

can there<strong>for</strong>e define the <strong>Connes</strong>-<strong>Chern</strong> character of [D] by restricting the operator F =<br />

D e (D ∗ eD e +1) −1/2 , or directly D, to J ∞ (∂M, M) <strong>and</strong> regarding it as a finitely summable<br />

Fredholm module. The resulting periodic cyclic cocycle corresponds, via the canonical<br />

isomorphism between the periodic cyclic cohomology HP ev/odd( J ∞ (∂M, M) ) <strong>and</strong> the<br />

de Rham homology Hev/odd dR (M \ ∂M; C) (cf. [BrPf08]), to the de Rham class of the<br />

current (<strong>with</strong> arbitrary support) associated to the Â-<strong>for</strong>m of the Riemannian metric.<br />

In fact, one can even recover the Â-<strong>for</strong>m itself out of local cocycle representatives<br />

<strong>for</strong> the <strong>Connes</strong>-<strong>Chern</strong> character, as in [CoMo93, Remark 4, p. 119] or [CoMo95,<br />

Remark II.1, p. 231]. However, the boundary ∂M remains conspicuously absent in<br />

such representations.<br />

It is the purpose of this paper to provide cocycle representatives <strong>for</strong> the <strong>Connes</strong>-<strong>Chern</strong><br />

character of the fundamental K-homology class [D] ∈ K m (M, ∂M) that capture <strong>and</strong><br />

reflect geometric in<strong>for</strong>mation about the boundary. Our point of departure is Getzler’s<br />

construction [Get93a] of the <strong>Connes</strong>-<strong>Chern</strong> character of [D]. Cast in the propitious<br />

setting of Melrose’s b-calculus [Mel93], Getzler’s cocycle has however the disadvantage,<br />

from the viewpoint of its geometric functionality, of being realized not in the<br />

relative cyclic cohomology complex proper but in its entire extension. Entire cyclic<br />

cohomology [Con88], devised primarily <strong>for</strong> h<strong>and</strong>ling infinite-dimensional geometries,<br />

is less effective as a tool than ordinary cyclic cohomology when dealing <strong>with</strong> finitedimensional<br />

K-homology cycles. To remedy this drawback we undertook the task of<br />

producing cocycle realizations <strong>for</strong> the <strong>Connes</strong>-<strong>Chern</strong> character directly in the relative<br />

cyclic cohomology complex associated to the pair of algebras ( C ∞ (M), C ∞ (∂M) ) . This<br />

is achieved by adapting <strong>and</strong> implementing in the context of relative cyclic cohomology<br />

the retraction procedure of [CoMo93], which converts the entire <strong>Connes</strong>-<strong>Chern</strong><br />

character into the periodic one. The resulting cocycles automatically carry in<strong>for</strong>mation<br />

about the boundary, which allows to derive geometric consequences.<br />

Here is a quick synopsis of our main results. Throughout the paper, we fix an exact<br />

b-metric g on M, <strong>and</strong> denote by D the corresponding b-Dirac operator. We define <strong>for</strong><br />

each t > 0 <strong>and</strong> any n ≥ m = dim M, n ≡ m (mod 2), pairs of cochains<br />

( b<br />

ch n t (D), ch n+1<br />

t (D ∂ ) ) resp.<br />

( b ˜ch<br />

n<br />

t (D), ch n−1<br />

t (D ∂ ) ) (0.1)<br />

over the pair of algebras ( C ∞ (M), C ∞ (∂M) ) , given by the following expressions<br />

b ch n t (D) := ∑ j≥0<br />

b Ch n−2j (tD) + B b T/ch n+1<br />

t<br />

(D),<br />

ch n+1<br />

t (D ∂ ) := ∑ Ch n−2j+1 (tD ∂ ) + B T/ch n+2<br />

t<br />

(D ∂ ),<br />

j≥0<br />

(0.2)<br />

b ˜ch<br />

n<br />

t (D) := b ch n t (D) + T/ch n t (D ∂) ◦ i ∗ .


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 3<br />

In these <strong>for</strong>mulæ, Ch • (D ∂ ) st<strong>and</strong> <strong>for</strong> the components of the Jaffe-Lesniewski-<br />

Osterwalder cocycle [JLO88] representing the <strong>Connes</strong>-<strong>Chern</strong> character in entire cyclic<br />

cohomology, b Ch • (D) denote the corresponding b-analogue (cf. (2.4)), while the<br />

cochains T/ch • t (D ∂), resp.<br />

b T/ch • t<br />

(D) (see (6.5), are manufactured out of the canonical<br />

transgression <strong>for</strong>mula as in [CoMo93]; i : ∂M → M denotes the inclusion. One<br />

checks that<br />

(b + B) ( b ch n t (D) ) = ch n+1<br />

t (D ∂ ) ◦ i ∗<br />

(b + B) ( b<br />

n<br />

˜ch t (D) ) (0.3)<br />

= ch n−1<br />

t (D ∂ ) ◦ i ∗ ,<br />

which shows that the cochains (0.1) are cocycles in the relative total (b, B)-complex of<br />

(C ∞ (M), C ∞ (∂M)). Moreover, the class of this cocycle in periodic cyclic cohomology is<br />

independent of t > 0 <strong>and</strong> of n = m + 2k, k ∈ Z + . Furthermore, its limit as t → 0 gives<br />

the pair of  currents corresponding to the b-manifold M, that is<br />

(<br />

lim<br />

b ch n t (D), lim ch n+1<br />

t (D ∂ ) ) (∫<br />

∫<br />

)<br />

= Â( b ∇ 2<br />

t↘0 t↘0<br />

g) ∧ −, Â(∇ 2 g ∂<br />

) ∧ − . (0.4)<br />

b M<br />

b M<br />

The notation in the right h<strong>and</strong> side requires an explanation. With<br />

( )<br />

b<br />

∇ 2 1<br />

2<br />

(<br />

g/4πi<br />

∇<br />

2<br />

)<br />

Â( b ∇ 2 g) = det<br />

, Â(∇ 2 g∂<br />

/4πi<br />

1 2<br />

sinh b ∇ 2 g ∂<br />

) = det<br />

, (0.5)<br />

g/4πi<br />

sinh ∇ 2 g ∂<br />

/4πi<br />

∫<br />

<strong>and</strong> :<br />

b Ω m (M) → C denoting the b-integral of b-differential m-<strong>for</strong>ms on M associated<br />

to the trivialization of the normal bundle to ∂M underlying the b-structure,<br />

both terms in the right h<strong>and</strong> side of (0.4) are viewed as (b, B)-cochains associated to<br />

currents. More precisely, incorporating the 2πi factors which account <strong>for</strong> the conversion<br />

of the <strong>Chern</strong> character in cyclic homology into the <strong>Chern</strong> character in de Rham<br />

cohomology, <strong>for</strong> M even-dimensional this identification takes the <strong>for</strong>m<br />

∫<br />

Â( b ∇ 2 g) ∧ ( ∫<br />

) 1<br />

f 0 , . . . , f 2q = Â( b ∇ 2<br />

(2πi) q (2q)!<br />

g) ∧ f 0 df 1 ∧ . . . ∧ f 2q , (0.6)<br />

b M<br />

respectively<br />

∫<br />

Â(∇ 2 g ∂<br />

)∧ ( ∫<br />

) 1<br />

h 0 , . . . , h 2q−1 =<br />

(2πi) q (2q − 1)!<br />

∂M<br />

b M<br />

∂M<br />

∂M<br />

Â(∇ 2 g ∂<br />

)∧h 0 dh 1 ∧. . .∧h 2q−1 . (0.7)<br />

Finally (cf. Theorem 6.1 infra), the limit <strong>for</strong>mula (0.4) implies that both<br />

( b<br />

ch n t (D), ch n+1<br />

t (D ∂ ) ) <strong>and</strong> ( n<br />

b ˜ch t (D), ch n−1<br />

t (D ∂ ) ) represent the <strong>Chern</strong> character of [D] ∈<br />

K m (M, ∂M).<br />

Under the assumption that Ker D ∂ = 0, we next prove (Theorem 6.2 infra) that the<br />

pair of retracted cochains ( n<br />

b ˜ch t (D), ch n−1<br />

t (D ∂ ) ) has a limit as t → ∞. For n even, or<br />

equivalently M even-dimensional, this limit has the expression<br />

b ˜ch<br />

n<br />

∞(D) =<br />

n/2<br />

∑<br />

j=0<br />

ch n−1<br />

∞ (D ∂ ) = B T/ch n ∞ (D ∂),<br />

κ 2j (D) + B b T/ch n+1<br />

∞ (D) + T/chn ∞ (D ∂) ◦ i ∗ ,<br />

(0.8)


4 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

<strong>with</strong> the cochains κ • (D), occurring only when Ker D ≠ {0}, given by<br />

κ 2j (D)(a 0 , . . . , a 2j ) = Str ( ϱ H (a 0 ) ω H (a 1 , a 2 ) · · · ω H (a 2j−1 , a 2j ) ) ; (0.9)<br />

here H denotes the orthogonal projection onto Ker D, <strong>and</strong><br />

ϱ H (a) := HaH ,<br />

ω H (a, b) := ϱ H (ab) − ϱ H (a)ϱ H (b), <strong>for</strong> all a, b ∈ C ∞ (M).<br />

When M is odd-dimensional, the limit cocycle takes the similar but reversed <strong>for</strong>m<br />

b<br />

n<br />

˜ch ∞(D) = B b T/ch n+1<br />

∞ (D) + T/chn ∞ (D ∂) ◦ i ∗ ,<br />

(D ∂ ) = B T/ch n ∞ (D ∂).<br />

ch n−1<br />

∞<br />

(0.10)<br />

The absence of cochains of the <strong>for</strong>m κ • (D ∂ ) in the boundary component is due to the<br />

fact that Ker D ∂ = 0.<br />

The geometric implications become apparent when one inspects the ensuing pairing<br />

<strong>with</strong> K-theory classes. For M even-dimensional, a class in K m (M, ∂M) can be represented<br />

as a triple [E, F, h], where E, F are vector bundles over M, which we will identify<br />

<strong>with</strong> projections p E , p F ∈ Mat N (C ∞ (M)), <strong>and</strong> h : [0, 1] → Mat N (C ∞ (∂M)) is a smooth<br />

path of projections connecting their restrictions to the boundary E ∂ <strong>and</strong> F ∂ . For M<br />

odd-dimensional, a representative of a class in K m (M, ∂M) is a triple (U, V, h), where<br />

U, V : M → U(N) are unitaries <strong>and</strong> h is a homotopy between their restrictions to the<br />

boundary U ∂ <strong>and</strong> V ∂ . In both cases, the <strong>Chern</strong> character of [X, Y, h] ∈ K m (M, ∂M) is<br />

represented by the relative cyclic homology cycle over the algebras ( C ∞ (M), C ∞ (∂M) )<br />

( ) ( )<br />

ch • [X, Y, h] = ch • (Y ) − ch • (X) , − T/ch •<br />

(h) , (0.11)<br />

where ch • , resp. T/ch •<br />

denote the components of the st<strong>and</strong>ard <strong>Chern</strong> character in cyclic<br />

homology resp. of its canonical transgression (see Subsection 1.3).<br />

The pairing 〈 [D], [X, Y, h] 〉 between the classes [D] ∈ K m (M, ∂M) <strong>and</strong> [X, Y, h] ∈<br />

K m (M, ∂M) acquires the cohomological expression<br />

〈 〉 〈(<br />

[D], [X,Y, h] =<br />

b<br />

n<br />

˜ch t (D), ch n−1<br />

t (D ∂ ) ) , ch • [X, Y, h] 〉 =<br />

= 〈 ∑<br />

j≥0<br />

b Ch n−2j (tD) + B b T/ch n+1<br />

t<br />

(D), ch • (Y ) − ch • (X) 〉<br />

+ 〈 T/ch n t (D ∂), ch • (Y ∂ ) − ch • (X ∂ ) 〉<br />

− 〈 ∑<br />

Ch n−2j−1 (tD ∂ ) + B T/ch n t (D ∂), T/ch •<br />

(h) 〉 ,<br />

j≥0<br />

(0.12)<br />

which holds <strong>for</strong> any t > 0. Letting t → 0 yields the local <strong>for</strong>m of the pairing <strong>for</strong>mula<br />

〈 〉<br />

[D], [X, Y, h] =<br />

∫<br />

= Â( b ∇ 2 g) ∧ ( ch • (Y ) − ch • (X) ) ∫<br />

(0.13)<br />

− Â(∇ 2 g ∂<br />

) ∧ T/ch •<br />

(h).<br />

b M<br />

It should be pointed out that (0.13) holds in complete generality, <strong>with</strong>out requiring the<br />

invertibility of D ∂ .<br />

∂M


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 5<br />

When M is even-dimensional <strong>and</strong> D ∂ is invertible, the equality between the above<br />

limit <strong>and</strong> the limit as t → ∞ yields, <strong>for</strong> any n = 2l ≥ m, the identity<br />

∑ 〈<br />

κ 2k (D), ch 2k (p F ) − ch 2k (p E ) 〉 + 〈 B b T/ch n+1<br />

∞ (D), ch n(p F ) − ch n (p E ) 〉 +<br />

0≤k≤l<br />

where<br />

+ 〈 T/ch n ∞ (D ∂), ch n (p F∂ ) − ch n (p E∂ ) 〉 =<br />

∫<br />

= Â( b ∇ 2 g) ∧ ( ch • (p F ) − ch • (p E ) ) ∫<br />

−<br />

b M<br />

+ 〈 B T/ch n ∞ (D ∂), T/ch n−1<br />

(h) 〉 ,<br />

ch 2k (p) =<br />

∂M<br />

Â(∇ 2 g ∂<br />

) ∧ T/ch •<br />

(h)<br />

{<br />

tr 0 (p), <strong>for</strong> k = 0,<br />

(−1) k (2k)!<br />

(<br />

tr<br />

k! 2k (p −<br />

1<br />

) ⊗ p⊗2k) , <strong>for</strong> k > 0.<br />

2<br />

(0.14)<br />

Like the Atiyah-Patodi-Singer index <strong>for</strong>mula [APS75], the equation (0.14) involves<br />

index <strong>and</strong> eta cochains, only of higher order. Moreover, the same type of identity<br />

continues to hold in the odd-dimensional case. Explicitly, it takes the <strong>for</strong>m<br />

(−1) n−1<br />

2<br />

( n−1<br />

2<br />

)<br />

!<br />

( 〈B b T/ch n+1<br />

∞ (D), (V −1 ⊗ V ) ⊗ n+1<br />

〉<br />

2 − (U −1 ⊗ U) ⊗ n+1<br />

2 +<br />

〈<br />

T/ch<br />

n<br />

∞ (D 〉 )<br />

∂), (V −1<br />

∂<br />

⊗ V ∂ ) ⊗ n+1<br />

2 − (U −1<br />

∂<br />

⊗ U ∂ ) ⊗ n+1<br />

2 =<br />

∫<br />

= Â( b ∇ 2 g) ∧ ( ch • (V ) − ch • (U) ) ∫<br />

− Â(∇ 2 g ∂<br />

) ∧ T/ch •<br />

(h)<br />

b M<br />

+ 〈 B T/ch n ∞ (D ∂), T/ch n−1<br />

(h) 〉 .<br />

∂M<br />

(0.15)<br />

The relationship between the relative pairing <strong>and</strong> the Atiyah-Patodi-Singer index<br />

theorem can actually be made explicit, <strong>and</strong> leads to interesting geometric consequences.<br />

Indeed, under the necessary assumption that M is even-dimensional, we show (cf.<br />

Theorem 7.6) that the above pairing can be expressed as follows:<br />

〈[D], [E, F, h]〉 = Ind APS D F − Ind APS D E + SF(h, D ∂ ); (0.16)<br />

here Ind APS st<strong>and</strong>s <strong>for</strong> the APS-index, <strong>and</strong> SF(h, D ∂ ) denotes the spectral flow along<br />

the path of operators ( ) h(s);<br />

D + ∂ D<br />

+<br />

∂<br />

is the restriction of c(dx)−1 D ∂ to the positive half<br />

spinor bundle <strong>and</strong> c(dx) denotes Clif<strong>for</strong>d multiplication by the inward normal vector.<br />

On applying the A-P-S index <strong>for</strong>mula [APS75, Eq. (4.3)], the pairing takes the explicit<br />

<strong>for</strong>m<br />

∫<br />

〈[D], [E, F, h]〉 = Â( b ∇ 2 g) ∧ ( ch • (F ) − ch • (E) )<br />

b M<br />

(<br />

)<br />

(0.17)<br />

− ξ(D +,F ∂<br />

∂<br />

) − ξ(D +,E ∂<br />

∂<br />

) + SF(h, D ∂ ),<br />

where<br />

ξ(D +,E ∂<br />

∂<br />

) = 1 (<br />

2<br />

η(D +,E ∂<br />

∂<br />

)<br />

) + dim Ker D +,E ∂<br />

∂<br />

. (0.18)


6 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Comparing this expression <strong>with</strong> the local <strong>for</strong>m of the pairing (0.13) leads to a generalization<br />

of the A-P-S odd-index <strong>for</strong>mula [APS76, Prop. 6.2, Eq. (6.3)], from trivialized<br />

flat bundles to pairs of equivalent vector bundles in K-theory. Precisely (cf. Corollary<br />

7.9), if E ′ , F ′ are two such bundles on a closed odd-dimensional spin manifold N, <strong>and</strong><br />

h is the homotopy implementing the equivalence of E ′ <strong>with</strong> F ′ , then<br />

∫<br />

ξ(D F ′<br />

g ) − ′ ξ(DE′ g ) = Â(∇ 2 ′ g ′) ∧ T/ch • (h) + SF(h, D g ′) , (0.19)<br />

N<br />

where D g ′ denotes the Dirac operator associated to a Riemannian metric g ′ on N;<br />

equivalently,<br />

∫ 1<br />

0<br />

1 d (<br />

η(ph(t) D g ′ p h(t) ) ) ∫<br />

dt =<br />

2 dt<br />

N<br />

Â(∇ 2 g ′) ∧ T/ch •(h) , (0.20)<br />

where p h(t) is the path of projections joining E ′ <strong>and</strong> F ′ , <strong>and</strong> the left h<strong>and</strong> side is the<br />

natural extension of the real-valued index in [APS76, Eq. (6.1)].<br />

Let us briefly comment on the main analytical challenges encountered in the course<br />

of proving the results outlined above. In order to compute the limit as t ↘ 0 of the<br />

<strong>Chern</strong> character, one needs to underst<strong>and</strong> the asymptotic behavior of expressions of<br />

the <strong>for</strong>m<br />

b 〈A 0 , A 1 , . . . , A k 〉 √ tD<br />

∫<br />

:=<br />

b Tr ( )<br />

A 0 e −σ 0tD 2 A 1 e −σ 1tD 2 . . . A k e −σ (0.21)<br />

ktD 2 dσ,<br />

∆ k<br />

where ∆ k denotes the st<strong>and</strong>ard simplex {σ 0 + . . . + σ k = 1, σ j ≥ 0} <strong>and</strong> A 0 , . . . , A k<br />

are b–differential operators. The difficulty here is twofold. Firstly, the b–trace is a<br />

regularized extension of the trace to b–pseudodifferential operators on the non-compact<br />

manifold M \∂M (recall that the b-metric degenerates at ∂M). Secondly, the expression<br />

inside the b-trace involves a product of operators. The Schwartz kernel of the product<br />

A 0 e −σ 0tD 2 A 1 e −σ 1tD 2 · . . . · A k e −σ ktD 2<br />

does admit a pointwise asymptotic expansion (see<br />

[Wid79], [CoMo90], [BlFo90]), namely<br />

(<br />

A 0 e −σ 0tD 2 A 1 e −σ 1tD 2 · . . . · A k e −σ ktD 2) (p, p)<br />

n∑<br />

j−dim M−a<br />

(0.22)<br />

=: a j (A 0 , . . . , A k , D)(p) t 2 + O p (t (n+1−a−dim M)/2 ),<br />

where a =<br />

k ∑<br />

j=0<br />

j=0<br />

ord A j .<br />

However, this asymptotic expansion is only locally uni<strong>for</strong>m<br />

in p; it is not globally uni<strong>for</strong>m on the non-compact manifold M \ ∂M. A further<br />

complication arises from the fact that the function a j (A 0 , . . . , A k , D) is not necessarily<br />

integrable. Nevertheless, a partie finie-type regularized integral, which we denote by


∫<br />

b M<br />

CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 7<br />

a j (A 0 , . . . , A k , D)d vol, does exist <strong>and</strong> we prove (cf. Theorem 5.3) that the corresponding<br />

b–trace admits an asymptotic expansion of the <strong>for</strong>m<br />

b Tr<br />

(A 0 e −σ 0tD 2 A 1 e −σ 1tD 2 . . . A k e −σ ktD 2)<br />

=<br />

n∑<br />

∫<br />

j=0<br />

b M<br />

j−dim M−a<br />

a j (A 0 , . . . , A k , D)d vol t 2 +<br />

( (<br />

k∏<br />

+ O σ −a )<br />

j/2<br />

j t<br />

(n+1−a−dim M)/2)<br />

.<br />

j=1<br />

(0.23)<br />

When D ∂ is invertible <strong>and</strong> hence D is a Fredholm operator, we can also prove the<br />

following estimate (cf. (3.43))<br />

| b 〈A 0 (I − H), ..., A k (I − H)〉 √ tD |<br />

≤ ˜C δ,ε t −a/2−(dim M)/2−ε e −tδ , <strong>for</strong> all 0 < t < ∞,<br />

(0.24)<br />

<strong>for</strong> any ε > 0 <strong>and</strong> any 0 < δ < inf spec ess D 2 . Here, H is the orthogonal projection onto<br />

Ker D. This estimate allows us to compute the limit as t ↗ ∞ <strong>and</strong> thus derive the<br />

<strong>for</strong>mulæ (0.8) <strong>and</strong> (0.10).<br />

A few words about the organization of the paper are now in order. We start by<br />

recalling, in Section 1, some basic material on relative cyclic cohomology [LMP09], b-<br />

calculus [Mel93] <strong>and</strong> Dirac operators. As an illustration of the usefulness of the relative<br />

cohomology point of view <strong>for</strong> manifolds <strong>with</strong> boundary, in Subsection 1.5 we establish<br />

a cohomological analogue of the well-known McKean-Singer <strong>for</strong>mula in the framework<br />

of relative cyclic cohomology <strong>for</strong> the pseudodifferential b-calculus, <strong>and</strong> employ it to<br />

recast in these terms Melrose’s approach to the proof of the Atiyah-Patodi-Singer index<br />

theorem (cf. [Mel93, Introduction]). In Subsection 1.6, refining an observation due to<br />

Loya [Loy05], we give an effective <strong>for</strong>mula <strong>for</strong> the b-trace, which will turn out to be<br />

quite a useful technical device.<br />

Gerzler’s version of the relative entire <strong>Connes</strong>-<strong>Chern</strong> character in the setting of b-<br />

calculus [Get93a] is discussed in Section 2. Additional material on b-geometry can be<br />

found in Appendix A.<br />

In Section 3 we prove some crucial estimates <strong>for</strong> the heat kernel of a b-Dirac operator,<br />

which are then applied in Section 4 to analyze the short <strong>and</strong> long time behavior of the<br />

components of the b-analogue of the entire <strong>Chern</strong> character. More st<strong>and</strong>ard resolvent<br />

<strong>and</strong> heat kernel estimates are relegated to Appendix B.<br />

Section 5 is devoted to asymptotic expansions <strong>for</strong> the b-analogues of the Jaffe-<br />

Lesniewski-Osterwalder components. The retracted relative cocycle representing the<br />

<strong>Connes</strong>-<strong>Chern</strong> character in relative cyclic cohomology is constructed in Section 6, where<br />

we also compute the expressions of its small <strong>and</strong> large scale limits.<br />

Finally, Section 7 derives the ensuing pairing <strong>for</strong>mulæ <strong>with</strong> the K-theory, establishes<br />

the connection <strong>with</strong> the Atiyah-Patodi-Singer index theorem, <strong>and</strong> discusses the geometric<br />

consequences. The paper concludes <strong>with</strong> an explanatory note (Subsection 7.1)<br />

elucidating the relationship between the results presented here <strong>and</strong> the prior work in this


8 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

direction by Getzler [Get93a] <strong>and</strong> Wu [Wu93], <strong>and</strong> clarifying why their generalized<br />

APS pairing is restricted to almost flat bundles.<br />

Contents<br />

Introduction 1<br />

1. Preliminaries 8<br />

1.1. The general setup 8<br />

1.2. Relative cyclic cohomology 9<br />

1.3. The <strong>Chern</strong>-character 11<br />

1.4. The b-trace 13<br />

1.5. The relative McKean–Singer <strong>for</strong>mula <strong>and</strong> the APS Index Theorem 16<br />

1.6. A <strong>for</strong>mula <strong>for</strong> the b-trace 18<br />

1.7. b-Clif<strong>for</strong>d modules <strong>and</strong> b-Dirac operators 21<br />

1.8. The relative <strong>Connes</strong>-<strong>Chern</strong> character of a Dirac operator over a manifold<br />

<strong>with</strong> boundary 24<br />

2. The b-analogue of the entire <strong>Chern</strong> character 25<br />

2.1. Cocycle <strong>and</strong> transgression <strong>for</strong>mulæ <strong>for</strong> the even/odd b-<strong>Chern</strong> character<br />

(<strong>with</strong>out Clif<strong>for</strong>d covariance) 27<br />

2.2. Sketch of Proof of Theorem 2.2 30<br />

2.3. The transgression <strong>for</strong>mula 33<br />

3. Comparison results <strong>and</strong> estimates on the cylinder 35<br />

3.1. Comparison results 35<br />

3.2. Trace estimates <strong>for</strong> the model heat kernel 38<br />

3.3. Trace class estimates <strong>for</strong> the JLO integr<strong>and</strong> on manifolds <strong>with</strong> cylindrical<br />

ends 41<br />

3.4. Estimates <strong>for</strong> b-traces 42<br />

4. Estimates <strong>for</strong> the components of the entire b-character 43<br />

4.1. Short time estimates 43<br />

4.2. Large time estimates 44<br />

5. Asymptotic b-heat expansions 46<br />

5.1. b-Heat expansion 46<br />

5.2. The b-trace of the JLO integr<strong>and</strong> 48<br />

6. The <strong>Connes</strong>–<strong>Chern</strong> character of the relative Dirac class 51<br />

6.1. Retracted <strong>Connes</strong>–<strong>Chern</strong> character 51<br />

6.2. The large time limit <strong>and</strong> higher η–invariants 57<br />

7. Relative pairing <strong>for</strong>mulæ <strong>and</strong> geometric consequences 57<br />

7.1. Relation <strong>with</strong> the generalized APS pairing 64<br />

Appendix A. The b-calculus <strong>for</strong> manifolds <strong>with</strong> boundaries 65<br />

A.1. Exact b-metrics <strong>and</strong> b-functions on cylinders 65<br />

A.2. Global symbol calculus <strong>for</strong> pseudodifferential operators 67<br />

A.3. Classical b-pseudodifferential operators 68<br />

A.4. Indicial family 72<br />

Appendix B. Basic resolvent <strong>and</strong> heat kernel estimates 72<br />

B.1. Resolvent estimates 72


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 9<br />

B.2. Heat kernel estimates 75<br />

B.3. Estimates <strong>for</strong> the JLO integr<strong>and</strong> 77<br />

References 79<br />

List of Figures<br />

1 The compact manifold M <strong>with</strong> boundary. The picture of the collar does not<br />

capture the b–metric. 12<br />

2 Interior of M <strong>with</strong> cylindrical coordinates on the collar (0, 2) × ∂M ≃<br />

(−∞, ln 2) × ∂M via (r, η) ↦→ (ln r, η). This picture correctly captures the<br />

metric on the collar. 13<br />

3 The cut-off functions ϕ <strong>and</strong> ψ. 36<br />

4 By homotopy invariance the signed sum of the four spectral flows adds up to 0. 61<br />

5 Contour of integration <strong>for</strong> calculating e −tD2 from the resolvent. 75<br />

6 Contour of integration if bottom of the essential spectrum of D 2 is c. 76<br />

1. Preliminaries<br />

1.1. The general setup. Associated to a compact smooth manifold M <strong>with</strong> boundary<br />

∂M, there is a commutative diagram of Fréchet algebras <strong>with</strong> exact rows<br />

0 J ∞ (∂M, M) C ∞ (M)<br />

Id<br />

ϱ<br />

E ∞ (∂M, M)<br />

0 J (∂M, M) C ∞ (M) C ∞ (∂M) 0.<br />

‖∂M<br />

0<br />

(1.1)<br />

J (∂M, M) ⊂ C ∞ (M) is the closed ideal of smooth functions on M vanishing on ∂M,<br />

J ∞ (∂M, M) ⊂ J (∂M, M) denotes the closed ideal of smooth functions on M vanishing<br />

up to infinite order on ∂M, <strong>and</strong> E ∞ (∂M, M) is the algebra of Whitney functions over the<br />

subset ∂M ⊂ M. More generally, <strong>for</strong> every closed subset X ⊂ M the ideal J ∞ (X, M) ⊂<br />

C ∞ (M) is defined as being<br />

:= { f ∈ C ∞ (M) | Df |X = 0 <strong>for</strong> every differential operator D on M } .<br />

By Whitney’s extension theorem (cf. [Mal67, Tou72]), the algebra E ∞ (X, M) of Whitney<br />

functions over X ⊂ M is naturally isomorphic to the quotient of C ∞ (M) by the<br />

closed ideal J ∞ (X, M); we take this as a definition of E ∞ (X, M). The right vertical<br />

arrow in diagram (1.1) is given by the map<br />

E ∞ (X, M) → C ∞ (X),<br />

F ↦→ F ‖X := F + J (X, M),<br />

which is a surjection.<br />

Let us check that the Fréchet algebra J ∞ := J ∞ (∂M, M) is a local C ∗ -algebra.<br />

First, by Faà di Bruno’s <strong>for</strong>mula the unitalization J ∞,+ of J ∞ is seen to be closed under<br />

holomorphic calculus in the unitalization J + of the algebra J := C 0 (M \ ∂M). Since<br />

J ∞,+ is also dense in J + , it follows that J ∞ := J ∞ (∂M, M) is indeed a local C ∗ -algebra


10 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

whose C ∗ -closure is the C ∗ -algebra J. Using this together <strong>with</strong> excision in K-homology<br />

(cf. <strong>for</strong> example [HiRo00]), one can easily check that the space of equivalence classes<br />

of Fredholm modules over J ∞ coincides naturally <strong>with</strong> the K-homology of the pair<br />

of C ∗ -algebras ( C(M), C(∂M) ) . Moreover, by [Con94, p. 298] one has the following<br />

commutative diagram<br />

{ finitely summable Fredholm<br />

modules over J ∞ } ch• <br />

HP • (J ∞ )<br />

(1.2)<br />

K • (J) = KK • (J, C)<br />

Hom(K • (J), C),<br />

where the right vertical arrow is given by natural pairing between periodic cyclic cohomology<br />

<strong>and</strong> K-theory, <strong>and</strong> the lower horizontal arrow by the pairing of K-theory <strong>with</strong><br />

K-homology via the Fredholm index.<br />

A Dirac, resp. a b-Dirac operator on M m determines a Fredholm module over J ∞<br />

<strong>and</strong> there<strong>for</strong>e a class in the K-homology of the pair ( C(M), C(∂M) ) . In this article, we<br />

are concerned <strong>with</strong> geometric representations of the <strong>Connes</strong>-<strong>Chern</strong> character of such a<br />

class <strong>and</strong> of the ensuing pairing <strong>with</strong> the K-theory of the pair ( C(M), C(∂M) ) .<br />

1.2. Relative cyclic cohomology. As in [LMP09], we associate to a short exact<br />

sequence of Fréchet algebras<br />

0 −→ J −→ A σ<br />

−→ B −→ 0, (1.3)<br />

<strong>with</strong> A <strong>and</strong> B unital, a short exact sequence of mixed complexes<br />

0 −→ ( C • (B), b, B ) −→ ( C • (A), b, B ) −→ ( Q • , b, B ) −→ 0, (1.4)<br />

where C • (A) denotes the Hochschild cochain complex of a Fréchet algebra A, b the<br />

Hochschild coboundary, <strong>and</strong> B is the <strong>Connes</strong> coboundary (cf. [Con85, Con94]). Recall<br />

that the Hochschild cohomology of A is computed by the complex ( C • (A), b ) , the cyclic<br />

( cohomology of A is the cohomology of the total complex<br />

Tot<br />

•<br />

⊕ BC •,• (A), b + B ) , where<br />

{<br />

BC p,q C q−p (A) := ( A ˆ⊗q−p+1 ) ∗<br />

, <strong>for</strong> q ≥ p ≥ 0,<br />

(A) =<br />

0, otherwise,<br />

( while the periodic cyclic cohomology of A is the cohomology of the total complex<br />

Tot<br />

•<br />

⊕ BC per(A), •,• b + B ) , where<br />

BC p,q<br />

per(A) =<br />

{<br />

C q−p (A) := ( A ˆ⊗q−p+1 ) ∗<br />

, <strong>for</strong> q ≥ p,<br />

0, else.<br />

In [LMP09] we noted that the relative cohomology theories, or in other words the cohomologies<br />

of the quotient mixed complex ( Q • , b, B ) , can be calculated from a particular<br />

mixed complex quasi-isomorphic to Q • , namely from the direct sum mixed complex<br />

(<br />

C • (A) ⊕ C •+1 (B),˜b, ˜B ) ,


where<br />

CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 11<br />

(<br />

b −σ<br />

∗<br />

˜b =<br />

0 −b<br />

)<br />

, <strong>and</strong> ˜B =<br />

(<br />

B 0<br />

0 −B<br />

)<br />

. (1.5)<br />

In particular, the relative Hochschild cohomology HH • (A, B) is computed by<br />

the complex ( C • (A) ⊕ C •+1 (B),˜b ) , the relative cyclic cohomology HC • (A, B) by<br />

(<br />

Tot<br />

•<br />

⊕ BC •,• (A) ⊕ Tot •+1<br />

⊕ BC •,• (B),˜b + ˜B ) , <strong>and</strong> the relative periodic cyclic cohomology<br />

HP • (A, B) by ( Tot • ⊕BC per(A) •,• ⊕ Tot •+1<br />

⊕ BC per(B),˜b •,• + ˜B ) .<br />

Note that of course (Tot<br />

•<br />

⊕ BC •,• (A) ⊕ Tot •+1<br />

⊕ BC •,• (B),˜b + ˜B )<br />

≃ ( Tot • ⊕BC •,• (A, B),˜b + ˜B ) (1.6)<br />

,<br />

where BC p,q (A, B) := BC p,q (A) ⊕ BC p,q+1 (B).<br />

Dually to relative cyclic cohomology, one can define relative cyclic homology theories.<br />

We will use these throughout this article as well, <strong>and</strong> in particular their pairing <strong>with</strong><br />

relative cyclic cohomology. For the convenience of the reader we recall their definition,<br />

referring to [LMP09] <strong>for</strong> more details. The short exact sequence (1.3) gives rise to the<br />

following short exact sequence of homology mixed complexes<br />

0 → ( K • , b, B ) → ( C • (A), b, B ) → ( C • (B), b, B ) → 0, (1.7)<br />

where here b denotes the Hochschild boundary, <strong>and</strong> B the <strong>Connes</strong> boundary.<br />

kernel mixed complex K • is quasi-isomorphic to the direct sum mixed complex<br />

(<br />

C• (A) ⊕ C •+1 (B),˜b, ˜B ) ,<br />

where<br />

(<br />

b 0<br />

˜b =<br />

−σ ∗ −b<br />

)<br />

, <strong>and</strong> ˜B =<br />

(<br />

B 0<br />

0 −B<br />

The<br />

)<br />

. (1.8)<br />

This implies that the relative cyclic homology HC • (A, B) is the homology of<br />

(<br />

Tot<br />

⊕<br />

• BC •,• (A, B),˜b + ˜B ) , where BC p,q (A, B) = BC p,q (A) ⊕ BC p,q+1 (B). Likewise, the<br />

relative periodic cyclic homology HP • (A, B) is the homology of ( Tot Q • BC•,• per (A, B),˜b +<br />

˜B ) , where BCp,q per (A, B) = BCp,q per (A) ⊕ BCp,q+1(B).<br />

per<br />

By [LMP09, Prop. 1.1], the relative cyclic (co)homology groups inherit a natural<br />

pairing<br />

〈−, −〉 • : HC • (A, B) × HC • (A, B) → C, (1.9)<br />

which will be called the relative cyclic pairing, <strong>and</strong> which on chains <strong>and</strong> cochains is<br />

defined by<br />

(<br />

) (<br />

)<br />

〈−, −〉 : BC p,q (A) ⊕ BC p,q+1 (B) × BC p,q (A) ⊕ BC p,q+1 (B) → C,<br />

( ) (1.10)<br />

(ϕ, ψ), (α, β) ↦→ 〈ϕ, α〉 + 〈ψ, β〉.<br />

This <strong>for</strong>mula also describes the pairing between the relative periodic cyclic (co)homology<br />

groups.<br />

Returning to diagram (1.1), we can now express the (periodic) cyclic cohomology<br />

of the pair ( C ∞ (M), E ∞ (∂M, M) ) resp. of the pair ( C ∞ (M), C ∞ (∂M) ) in terms<br />

of the cyclic cohomology complexes of C ∞ (M) <strong>and</strong> E ∞ (∂M, M) resp. C ∞ (M). We


12 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

note that the ideal J ∞ (∂M, M) is H-unital, since ( J ∞ (∂M, M) ) 2<br />

= J ∞ (∂M, M)<br />

(cf. [BrPf08]). Hence excision holds true <strong>for</strong> the ideal J ∞ (∂M, M), <strong>and</strong> any of the<br />

above cohomology theories of J ∞ (∂M, M) coincides <strong>with</strong> the corresponding relative<br />

cohomology of the pair ( C ∞ (M), E ∞ (∂M, M) ) . In particular, we have the following<br />

chain of quasi-isomorphisms<br />

Tot • ⊕ BC •,•( J ∞ (∂M, M) ) ∼ qism Tot • ⊕BC •,•( C ∞ (M), E ∞ (∂M), M ) ∼ qism<br />

∼ qism Tot • ⊕ BC •,• (C ∞ (M)) ⊕ Tot •+1<br />

⊕ BC •,• (E ∞ (∂M, M)).<br />

Next recall from [BrPf08] that the map<br />

(1.11)<br />

Tot k ⊕ BC per(C •,• ∞ (M)) → Tot k ⊕BC per(E •,• ∞ (∂M, M)),<br />

( (E<br />

ψ ↦→<br />

∞ (∂M, M) ) ˆ⊗k+1<br />

∋ F0 ⊗ . . . ⊗ F k ↦→ ψ ( ) F 0‖X ⊗ . . . ⊗ F k‖X<br />

between the periodic cyclic cochain complexes is a quasi-isomorphism. As a consequence<br />

of the Five Lemma one obtains quasi-isomorphisms<br />

(<br />

Tot • ⊕ BC per<br />

•,• J ∞ (∂M, M) ) ∼ qism Tot • ⊕BC per( •,• C ∞ (M), E ∞ (∂M) ) ∼ qism<br />

(1.12)<br />

∼ qism Tot • ⊕ BC per(C •,• ∞ (M)) ⊕ Tot •+1<br />

⊕ BC per(C •,• ∞ (∂M)).<br />

In this paper we will mainly work <strong>with</strong> the relative complexes over the pair of algebras<br />

(<br />

C ∞ (M), C ∞ (∂M) ) , because its cycles carry geometric in<strong>for</strong>mation about the boundary,<br />

which is lost when considering only cycles over the ideal J ∞ (∂M, M). In this respect we<br />

note that periodic cyclic cohomology satisfies excision by [CuQu93, CuQu94], hence<br />

in the notation of (1.3), HP • (J ) is canonically isomorphic to HP • (A, B).<br />

1.3. The <strong>Chern</strong>-character. For future reference, we recall the <strong>Chern</strong> character <strong>and</strong><br />

its transgression in cyclic homology, both in the even <strong>and</strong> in the odd case.<br />

1.3.1. Even case. The <strong>Chern</strong> character of an idempotent e ∈ Mat ∞ (A) :=<br />

lim<br />

N→∞ Mat N(A) is the class in HP 0 (A) of the cycle given by the <strong>for</strong>mula<br />

ch • (e) := tr 0 (e) +<br />

∞∑<br />

k=1<br />

(−1) k (2k)!<br />

k!<br />

( (e 1) tr 2k − ⊗ e<br />

⊗(2k))<br />

, (1.13)<br />

2<br />

where e ⊗(2k) is an abbreviation <strong>for</strong> the 2k–fold tensor product e ⊗ · · · ⊗ e, <strong>and</strong> tr 2k<br />

denotes the generalized trace map Mat N (A) ⊗j −→ A ⊗j .<br />

If (e s ) 0≤s≤1 is a smooth path of idempotents, then the transgression <strong>for</strong>mula reads<br />

d<br />

ds ch •(e s ) = (b + B) /ch •<br />

(e s , (2e s − 1)ė s ); (1.14)<br />

here the secondary <strong>Chern</strong> character /ch •<br />

is given by<br />

/ch •<br />

(e, h) := ι(h) ch • (e), (1.15)


where the map ι(h) is defined by<br />

CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 13<br />

ι(h)(a 0 ⊗ a 1 ⊗ . . . ⊗ a l )<br />

l∑<br />

= (−1) i (a 0 ⊗ . . . ⊗ a i ⊗ h ⊗ a i+1 ⊗ . . . ⊗ a l ).<br />

i=0<br />

(1.16)<br />

A relative K-theory class in K 0 (A, B) can be represented by a triple (p, q, h) <strong>with</strong><br />

projections p, q ∈ Mat N (A) <strong>and</strong> h : [0, 1] → Mat N (B) a smooth path of projections<br />

<strong>with</strong> h(0) = σ(p), h(1) = σ(q) (cf. [HiRo00, Def. 4.3.3], see also [LMP09, Sec. 1.6]).<br />

The <strong>Chern</strong> character of (p, q, h) is represented by the relative cyclic cycle<br />

( ) )<br />

ch • p, q, h =<br />

(ch • (q) − ch • (p) , − T/ch •<br />

(h) , (1.17)<br />

where<br />

T/ch •<br />

(h) =<br />

∫ 1<br />

0<br />

/ch •<br />

(<br />

h(s), (2h(s) − 1) ḣ(s) ) ds. (1.18)<br />

That the r.h.s. of Eq. (1.17) is a relative cyclic cycle follows from the transgression<br />

<strong>for</strong>mula Eq. (1.14). From a secondary transgression <strong>for</strong>mula [LMP09, (1.43)] one deduces<br />

that (1.17) indeed corresponds to the st<strong>and</strong>ard <strong>Chern</strong> character on K 0 (J ) under<br />

excision.<br />

1.3.2. Odd case. The odd case parallels the even case in many aspects. Given an<br />

element g ∈ GL ∞ (A) := lim GL N(A), the odd <strong>Chern</strong> character is the following normalized<br />

periodic cyclic cycle:<br />

N→∞<br />

∞∑<br />

(<br />

ch • (g) = (−1) k k! tr 2k+1 (g −1 ⊗ g) ⊗(k+1)) . (1.19)<br />

k=0<br />

If (g s ) 0≤s≤1 is a smooth path in GL ∞ (A), the transgression <strong>for</strong>mula (cf. [Get93b,<br />

Prop. 3.3]) reads<br />

d<br />

ds ch •(g s ) = (b + B) /ch •<br />

(g s , ġ s ), (1.20)<br />

where the secondary <strong>Chern</strong> character /ch •<br />

is defined by<br />

/ch •<br />

(g, h) = tr 0 (g −1 h)+ (1.21)<br />

∞∑<br />

k∑ (<br />

+ (−1) k+1 k! tr 2k+2 (g −1 ⊗ g) ⊗(j+1) ⊗ g −1 h ⊗ (g −1 ⊗ g) ⊗(k−j)) .<br />

k=0<br />

j=0<br />

A relative K-theory class in K 1 (A, B) can be represented by a triple (U, V, h), where<br />

U, V ∈ Mat N (A) are unitaries <strong>and</strong> h : [0, 1] → Mat N (B) is a path of unitaries joining<br />

σ(U) <strong>and</strong> σ(V ). Putting<br />

T/ch •<br />

(h) =<br />

∫ 1<br />

0<br />

/ch •<br />

(<br />

hs , ḣs)<br />

ds, (1.22)<br />

the <strong>Chern</strong> character of (U, V, h) is represented by the relative cyclic cycle<br />

( ) )<br />

ch • U, V, h =<br />

(ch • (V ) − ch • (U) , − T/ch •<br />

(h) . (1.23)


14 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

collar Y ≃ [0, 2) × ∂M<br />

M<br />

0 1 2<br />

Figure 1. The compact manifold M <strong>with</strong> boundary. The picture of<br />

the collar does not capture the b–metric.<br />

cylinder Y ◦ ≃ (−∞, ln 2) × ∂M<br />

M ◦<br />

−∞ = ln 0 0 = ln 1 ln 2<br />

Figure 2. Interior of M <strong>with</strong> cylindrical coordinates on the collar<br />

(0, 2) × ∂M ≃ (−∞, ln 2) × ∂M via (r, η) ↦→ (ln r, η). This picture correctly<br />

captures the metric on the collar.<br />

Again the cycle property follows from the transgression <strong>for</strong>mula Eq. (1.20) <strong>and</strong> <strong>with</strong> the<br />

aid of a secondary transgression <strong>for</strong>mula [LMP09, (1.15)] one shows that (1.23) corresponds<br />

to the st<strong>and</strong>ard <strong>Chern</strong> character on K 1 (J ) under excision [LMP09, Thm. 1.7].<br />

1.4. The b-trace. From now on we assume that M is a compact manifold <strong>with</strong> boundary,<br />

r : Y → [0, 2) a boundary defining function, <strong>and</strong> that g b is an exact b-metric on<br />

M (see Figure 1).<br />

These data are the main ingredients of the so-called b-calculus, which we will use<br />

in what follows. The primary source <strong>for</strong> the b-calculus is the monograph [Mel93]<br />

by Melrose, <strong>and</strong> <strong>for</strong> the reader’s convenience we included some basic definitions in<br />

Appendix A.<br />

We do recall here however the definition of the b-trace (cf. [Mel93]), since this notion<br />

plays an essential role in our work. It will often be convenient to choose cylindrical<br />

coordinates (see Figure 2) (x, η) : Y ◦ → (−∞, ln 2) × ∂M over a collar Y ⊂ M <strong>with</strong><br />

a boundary defining function r : Y → [0, 2) (see Appendix A.1 <strong>for</strong> details <strong>and</strong> <strong>for</strong><br />

occasionally unexplained notation used below).<br />

When using these coordinates, we view the interior M ◦ as a manifold <strong>with</strong> cylindrical<br />

ends, <strong>and</strong> have in this picture M ◦ ∼ = (−∞, 0] × ∂M ∪∂M M 1 . All explicit calculations


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 15<br />

will be done in cylindrical coordinates. We also refer to the survey paper by P. Loya<br />

[Loy05] where the b-calculus is developed from this point of view.<br />

Let E be a smooth Hermitian vector bundle over M. Whenever convenient,<br />

we will tacitly identify elements of Γ ∞( (−∞, 0] × ∂M; E ) , the sections of E over<br />

(−∞, 0] × ∂M, <strong>with</strong> Γ ∞ (∂M; E |∂M )–valued smooth functions on (−∞, 0], i.e. elements<br />

of C ∞( (−∞, 0], Γ ∞ (∂M; E |∂M ) ) , in the obvious way; cf. Subsection<br />

)<br />

3.1 <strong>and</strong> Appendix<br />

A.3. Accordingly, we define <strong>for</strong> u ∈ Γcpt( ∞ (−∞, 0] × ∂M; E the Fourier trans<strong>for</strong>m in<br />

the cylinder variable, û(λ) ∈ Γ ∞ (∂M; E |∂E ), by<br />

û(λ, p) :=<br />

∫ ∞<br />

−∞<br />

e −ixλ u(x, p)dx. (1.24)<br />

Now assume that A ∈ b Ψ −∞ (M; E) is a smoothing b-pseudodifferential operator.<br />

In general, A is not trace class in the usual sense. However, since A has a smooth<br />

Schwartz kernel it is locally trace class, in the sense that ψAϕ is trace class <strong>for</strong> any pair<br />

of smooth functions ψ, ϕ : M → R having compact support in M ◦ . Using the notation<br />

from Appendix A.3, let à be the operator induced on the cylinder (−∞, 0] × ∂M.<br />

We define an operator valued symbol A ∂ (x, λ) : Γ ∞ (E |∂M ) → Γ ∞ (E |∂M ) as follows:<br />

<strong>for</strong> v ∈ Γ ∞ (E |∂M ) put<br />

(<br />

A∂ (x, λ)v ) (p) :=<br />

(<br />

e −ixλ Ã ( e i·λ ⊗ v )) (x, p). (1.25)<br />

For v ∈ Γ ∞ (E |∂M ) we have (e i·λ ⊗ v) ∧ = 2πδ λ ⊗ v, hence <strong>for</strong> u ∈ Γ ∞ cpt<br />

one then obtains<br />

(Ãu ) 1 (x, p) =<br />

2π<br />

= 1<br />

2π<br />

∫ ∞<br />

−∞<br />

∫ ∞ ∫ ∞<br />

−∞<br />

e ixλ( A ∂ (x, λ)û(λ, −) ) (p) dλ =<br />

−∞<br />

e i(x−˜x)λ( A ∂ (x, λ)u(˜x, −) ) (p) d˜x dλ.<br />

(<br />

(−∞, 0] × ∂M; E<br />

)<br />

(1.26)<br />

We note in passing that A ∂ (x, λ) can also be constructed from the global symbol ã<br />

as A ∂ (x, λ) = Op ( ã(x, λ, −) ) (cf. Appendices A.2 <strong>and</strong> A.3). For the properties of ã<br />

see [Loy05, Sec. 2.2] <strong>and</strong> Appendix A.3. In the small b-calculus ã(x, λ, −) <strong>and</strong> hence<br />

A ∂ (x, λ) are entire in λ while in the full b-calculus they are meromorphic [Mel93]. In<br />

any case one has<br />

A ∂ (x, λ) = I(A)(λ) + O(e x ), x → −∞, (1.27)<br />

<strong>with</strong> a family I(A)(λ), λ ∈ R, of classical pseudodifferential operators on ∂M in the<br />

parameter dependent calculus; cf. e.g. [LMP09, Sec. 2.1] <strong>for</strong> a brief summary of the<br />

parameter dependent calculus.<br />

The operator valued function λ ∈ R ↦→ I(A)(λ) is called the indicial family of A.<br />

In terms of the global symbol ã, one has I(A)(λ) = Op ( ã 0 (λ, −) ) , where ã 0 (λ, −) is<br />

the first term in the asymptotic expansion of ã <strong>with</strong> respect to x → −∞; cf. Appendix<br />

A.4.


16 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Denote by k(x, ˜x), x, ˜x ≥ 0, the L (L 2 (∂M; E |∂M ))-valued kernel of<br />

A ∂ (x, λ) the kernel k(x, ˜x) is given by<br />

Ã. In terms of<br />

k(x, ˜x) = 1<br />

2π<br />

∫ ∞<br />

−∞<br />

Hence, as R → ∞ one has in view of (1.27)<br />

e i(x−˜x)λ A ∂ (x, λ)dλ. (1.28)<br />

Tr(A |{x≥−R} ) =<br />

= Tr(A |M 1) +<br />

∫ 0<br />

= Tr(A |M 1) + 1<br />

2π<br />

+ R 1 ∫ ∞<br />

2π<br />

−∞<br />

−R<br />

∫ 0<br />

Tr ∂M (k(x, x)) dx<br />

−∞<br />

∫ ∞<br />

−∞<br />

Tr ∂M<br />

(<br />

A∂ (x, λ) − I(A)(λ) ) dλ dx<br />

Tr ∂M<br />

(<br />

I(A)(λ)<br />

)<br />

dλ + O(e −R ), R → ∞.<br />

The finite part of this expansion is called the b-trace of A:<br />

(1.29)<br />

Hence<br />

b Tr(A) := Tr(A |M 1) + 1<br />

2π<br />

Tr(A |{x≥−R} )<br />

= b Tr(A) + R 1<br />

2π<br />

∫ ∞<br />

∫ 0<br />

−∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

Tr ∂M<br />

(<br />

A∂ (x, λ) − I(A)(λ) ) dλ dx. (1.30)<br />

Tr ∂M<br />

(<br />

I(A)(λ)<br />

)<br />

dλ + O(e −R ), R → ∞.<br />

(1.31)<br />

Its name not<strong>with</strong>st<strong>and</strong>ing, the b-trace is not a trace. One has, however, the following<br />

crucial <strong>for</strong>mula.<br />

Proposition 1.1 ([Mel93, Prop. 5.9], [Loy05, Thm. 2.5]). Assume that A ∈<br />

b Ψ m cl (M; E) <strong>and</strong> K ∈ b Ψ −∞<br />

cl (M; E). Then<br />

∫ ∞<br />

)<br />

I(K)(λ) dλ. (1.32)<br />

b Tr(AK − KA) = −1<br />

2πi<br />

−∞<br />

Tr ∂M<br />

( dI(A)(λ)<br />

dλ<br />

Proof in a special case. It is instructive to prove this in the special case that A is a<br />

Dirac operator D. We will see in Subsection 1.7 below that on the cylinder D takes the<br />

<strong>for</strong>m D = Γ d + D dx ∂ <strong>and</strong> that I(D)(λ) = iΓλ + D ∂ .<br />

After choosing cut–off functions w.l.o.g. we may assume that K is supported in the<br />

interior of the cylinder <strong>and</strong> given by<br />

(Ku)(x) = 1<br />

2π<br />

= 1<br />

2π<br />

∫ ∞<br />

−∞<br />

∫ ∞ ∫ ∞<br />

−∞<br />

e ixλ k(x, λ)û(λ)dλ<br />

−∞<br />

e i(x−y)λ k(x, λ)u(y)dydλ<br />

(1.33)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 17<br />

<strong>with</strong> an operator valued symbol k(x, λ). Then<br />

(DKu)(x) = 1<br />

2π<br />

∫ ∞<br />

e ixλ (iλΓ + D ∂ )k(x, λ)û(λ)dλ<br />

−∞<br />

∫ ∞<br />

+ 1<br />

2π<br />

−∞<br />

Furthermore, since (Du) ∧ = ( iΓλ + D ∂ )û we have<br />

Consequently<br />

(KD)u(x) = 1<br />

2π<br />

∫ ∞<br />

−∞<br />

e ixλ Γ∂ x k(x, λ)û(λ)dλ.<br />

(1.34)<br />

e ixλ k(x, λ)(iλΓ + D ∂ )û(λ)dλ. (1.35)<br />

∫<br />

( ) 1 ∞<br />

(<br />

Tr ∂M (DK − KD)(x, x) = Tr ∂M Γ∂x k(x, λ) ) dλ, (1.36)<br />

2π −∞<br />

<strong>and</strong> hence, since by assumption K is supported in (−∞, 0)×∂M <strong>and</strong> taking (1.27) into<br />

account, we find<br />

∫ 0<br />

−R<br />

∫ ∞<br />

( ) −1 ( )<br />

Tr ∂M (DK − KD)(x, x) dx = Tr ∂M Γk(−R, λ) dλ (1.37)<br />

2π −∞<br />

R→∞<br />

−→ −1 ∫ ∞ ( dI(D)(λ)<br />

)<br />

Tr ∂M I(K, λ) dλ.<br />

□<br />

2πi −∞ dλ<br />

Eq. (1.31) immediately entails the following result.<br />

Corollary 1.2. Let A ∈ b Ψ m cl (M; E) be a classical b-pseudodifferential operator of<br />

order m < dim M. If the indicial family I(A) vanishes, then A is trace class, <strong>and</strong><br />

Tr(A) = b Tr(A).<br />

1.5. The relative McKean–Singer <strong>for</strong>mula <strong>and</strong> the APS Index Theorem. In<br />

the introduction to [Mel93], the author explained in detail his elegant approach to<br />

the A-P-S index theorem, based on the b-calculus. The relative cohomology point of<br />

view allows to make this approach even more appealing. Indeed, we will show that the<br />

APS index ca be obtained as the pairing between a natural relative cyclic 0-cocycle,<br />

one of whose components is the b-trace, <strong>and</strong> a relative cyclic 0-cycle constructed out of<br />

the heat kernel. This pairing leads in fact to a relative version of the McKean–Singer<br />

<strong>for</strong>mula.<br />

We start, a bit more abstractly, by considering an exact sequence of algebras<br />

0 −→ J −→ A σ<br />

−→ B −→ 0; (1.38)<br />

A, B are assumed to be unital, σ is assumed to be a unital homomorphism. Let τ be a<br />

hypertrace on J , i.e. τ satisfies<br />

τ(xa) = τ(ax) <strong>for</strong> a ∈ A, x ∈ J . (1.39)<br />

Let τ : A −→ C be a linear extension (regularization) of τ to A, which is not assumed<br />

to be tracial. Nevertheless, τ induces a cyclic 1-cocycle on B as follows:<br />

µ(σ(a 0 ), σ(a 1 )) := τ([a 0 , a 1 ]). (1.40)


18 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Because of Eq. (1.39), µ does indeed depend only on σ(a 0 ), σ(a 1 ). Moreover, the pair<br />

(τ, µ) is a relative cyclic cocycle. Namely, in the notation of (1.5), Eq. (1.40) translates<br />

into ˜b(τ, µ) = 0.<br />

The relevant example <strong>for</strong> this paper is the exact sequence<br />

0 −→ b Ψ −∞<br />

tr (M; E) −→ b Ψ −∞ (M; E) + I<br />

−→ S (R, Ψ −∞ (∂M; E)) + −→ 0, (1.41)<br />

where M is a compact manifold <strong>with</strong> boundary equipped <strong>with</strong> an exact b-metric. The<br />

operator trace Tr on b Ψ −∞<br />

tr (M; E) = Ker I satisfies (1.39), <strong>and</strong> the b-trace b Tr provides<br />

its linear extension to b Ψ −∞ (M; E) + .<br />

Assume now that the algebra A is represented as bounded operators on some Hilbert<br />

space H <strong>and</strong> that J ⊂ L 1 (H) consists of trace class operators. Let D be a self–adjoint<br />

unbounded operator affiliated <strong>with</strong> A, i.e. bounded continuous functions of D belong<br />

to A. Furthermore, we assume that we are in a graded (even) situation <strong>and</strong> denote the<br />

grading operator by α. Finally we assume that D is a Fredholm operator <strong>and</strong> that the<br />

orthogonal projection P Ker D ∈ J .<br />

We note that in the case of a Dirac operator D on the b-manifold M it is well-known<br />

that D is Fredholm if <strong>and</strong> only if the tangential operator D ∂ (see Subsection 1.7 <strong>and</strong><br />

Eq. (3.1) below) is invertible.<br />

Define<br />

A 0 (t) := αDe − 1 2 tD2 , (1.42)<br />

A 1 (t) :=<br />

∫ ∞<br />

Since D is affiliated <strong>with</strong> A, A j (t) ∈ A <strong>for</strong> t > 0.<br />

t<br />

De ( t 2 −s)D2 ds. (1.43)<br />

1.5.1. Case 1: e −tD2 ∈ J , <strong>for</strong> t > 0. Under this assumption A j (t) ∈ J , <strong>for</strong> t > 0.<br />

Moreover, e −tD2 ∈ C λ 0 (J ) = C 0 (J )/((1 − λ)C 0 (J)) defines naturally a class in H λ 0 (J ).<br />

Lemma 1.3. The class of αe −tD2<br />

independent of t.<br />

in H λ 0 (J) equals that of αP Ker D . In particular, it is<br />

Proof. We calculate<br />

b(A 0 ⊗ A 1 ) = 2α<br />

∫ ∞<br />

D 2 e −sD2 ds<br />

t<br />

= 2α ( (1.44)<br />

)<br />

e −tD2 − P Ker D ,<br />

proving that αe −tD2 <strong>and</strong> αP Ker D are cohomologous. □<br />

As an immediate corollary one recovers the classical McKean–Singer <strong>for</strong>mula. Indeed,<br />

since the trace τ defines a class in Hλ 0 (J ) one finds<br />

Ind D = Tr(αP Ker D ) = 〈τ, αP Ker D 〉 = 〈τ, αe −tD2 〉 = Tr(αe −tD2 ). (1.45)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 19<br />

1.5.2. Case 2: The general case. The heat operator e −tD2 gives a class in H0 λ (A). The<br />

pairing of e −tD2 <strong>with</strong> τ cannot be expected to be independent of t since τ is not a trace.<br />

It is however a component of the relative cyclic 0-cocycle (τ, µ). There<strong>for</strong>e, we are led<br />

to construct a relative cyclic homology class from e −tD2 . By Eq. (1.8) the relative cyclic<br />

complex is given by<br />

From (1.44) we infer<br />

hence<br />

(<br />

b 0<br />

Cn(A, λ B) := Cn(A) λ ⊕ Cn+1(B), λ ˜b :=<br />

−σ ∗ −b<br />

)<br />

. (1.46)<br />

σ(αe −tD2 ) = σ(αe −tD2 − αP Ker D ) = 1 2 b( σ(A 0 ) ⊗ σ(A 1 ) ) , (1.47)<br />

(<br />

)<br />

αe<br />

˜b<br />

−tD2<br />

− 1σ(A 2 0) ⊗ σ(A 1 )<br />

= 0, (1.48)<br />

i.e. the pair EXP t (D) := ( αe −tD2 , − 1σ(A 2 0)⊗σ(A 1 ) ) is a relative cyclic homology class.<br />

Furthermore, since<br />

1<br />

˜b( A ) ( )<br />

2 0 ⊗ A 1 α(e<br />

−tD 2 − P Ker D )<br />

=<br />

0 − 1σ(A , (1.49)<br />

2 0) ⊗ σ(A 1 )<br />

the class of EXP t (D) in H λ 0 (A, B) equals that of the pair (αP Ker D , 0) which, via excision,<br />

corresponds to the class of αP Ker D ∈ HP 0 (J ). We have thus proved the following result.<br />

Lemma 1.4. The class of the pair ( αe −tD2 , − 1 2 σ(A 0) ⊗ σ(A 1 ) ) in HC λ 0 (A, B) equals<br />

that of (αP Ker D , 0). In particular, it is independent of t.<br />

Pairing <strong>with</strong> the relative 0-cocycle (τ, µ) we now obtain the following relative version<br />

of the McKean–Singer <strong>for</strong>mula:<br />

Ind D = Tr(αP Ker D ) = 〈(τ, µ), ( αe −tD2 , − 1 2 σ(A 0) ⊗ σ(A 1 ) ) 〉<br />

= τ(αe −tD2 ) − 1 2 µ(σ(A 0), σ(A 1 ))<br />

(1.50)<br />

= τ(αe −tD2 ) − 1 2 τ([A 0, A 1 ]).<br />

Once known, this identity can also be derived quite directly. Indeed, since [A 0 , A 1 ] =<br />

2α ∫ ∞<br />

D 2 e −sD2 ds,<br />

t<br />

τ(αe −tD2 ) − 1 2 τ([A 0, A 1 ]) = τ(αe −tD2 ) − τ ( ∫ ∞<br />

α D 2 e −sD2 ds )<br />

= τ(αe −tD2 ) +<br />

∫ ∞<br />

t<br />

d<br />

ds τ( αe −sD2 )<br />

ds<br />

(1.51)<br />

t<br />

τ ( )<br />

αe −sD2 .<br />

s→∞<br />

= lim<br />

Let us show that in the case of the Dirac operator on a b-manifold the second summ<strong>and</strong><br />

is nothing but the η-invariant of the tangential operator. Indeed, in a collar of


20 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

the boundary D takes the <strong>for</strong>m<br />

(<br />

0 −<br />

d<br />

D =<br />

+ A<br />

)<br />

dx<br />

d<br />

+ A 0 dx<br />

Hence, one calculates using Proposition 1.1<br />

1<br />

2 µ(I(A 0, λ), I(A 1 , λ))<br />

= −1<br />

4πi<br />

= −1<br />

4π<br />

= −1<br />

4 √ π<br />

= 1<br />

2 √ π<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

t<br />

∫ ∞<br />

t<br />

=: Γ d<br />

dx + D ∂, D ∂ =<br />

(dI(A 0 , λ)<br />

Tr ∂M I(A 1 , λ) ) dλ<br />

dλ<br />

∫<br />

( ∞<br />

Tr ∂M αΓ<br />

t<br />

1<br />

√ s<br />

Tr ∂M<br />

( ( −A 0<br />

0 −A<br />

Thus if D is Fredholm we have <strong>for</strong> each t > 0<br />

( )<br />

0 A<br />

.<br />

A 0<br />

(iλΓ + D ∂ )e −s(D2 ∂ +λ2) ds ) dλ<br />

)<br />

)<br />

e −sA2 ds<br />

1 ( )<br />

√ Tr ∂M Ae<br />

−sA 1<br />

2<br />

ds =:<br />

s 2 η t(A).<br />

(1.52)<br />

Ind D = b Tr(αe −tD2 ) − 1 2 η t(A), (1.53)<br />

<strong>and</strong> taking the limit as t ↘ 0 gives the APS index theorem in the b-setting.<br />

1.6. A <strong>for</strong>mula <strong>for</strong> the b-trace. In this subsection we give an explicit <strong>for</strong>mula <strong>for</strong><br />

the b-trace, based on an observation of Loya [Loy05], which provides a convenient tool<br />

<strong>for</strong> subsequent computations.<br />

We first briefly review the Hadamard partie finie integral in the special case of b-<br />

functions. Let f ∈ b C ∞ ((−∞, 0]). From the asymptotic expansion (see Eq. (A.4))<br />

we infer ∫ 0<br />

−R<br />

f(x) ∼ x→−∞ f − 0 + f − 1 e x + f − 2 e 2x + .... (1.54)<br />

f(x)dx = f − 0 R + c + O(e −R ), R → −∞. (1.55)<br />

The partie finie integral of f is then defined to be the constant term in the asymptotic<br />

expansion (1.55), i.e.<br />

∫ 0<br />

∫ 0<br />

f(x)dx =: f0<br />

− R + Pf f(x)dx + O(e −R ), R → −∞. (1.56)<br />

−R<br />

−∞<br />

The definition of the partie finie integral has an obvious extension to b-functions on manifolds<br />

<strong>with</strong> cylindrical ends. Because of its importance, we single it out as a definitionproposition.<br />

Definition <strong>and</strong> Proposition 1.5. Let M ◦ be a Riemannian manifold <strong>with</strong> cylindrical<br />

ends <strong>and</strong> M the (up to diffeomorphism) unique compact manifold <strong>with</strong> boundary having<br />

M ◦ as its interior. For a function f ∈ b C ∞ (M ◦ ) one has<br />

∫<br />

∫<br />

f d vol =: c log R + f d vol +O(e −R ) as R → ∞.<br />

x≥−R<br />

b M


∫<br />

This means that<br />

b M<br />

CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 21<br />

∫<br />

f d vol is the finite part in the asymptotic expansion of<br />

x≥−R<br />

f d vol<br />

as R → ∞. More generally, if ω ∈ b Ω m (M) is∫a (top degree) b-differential <strong>for</strong>m, i.e. a<br />

<strong>for</strong>m whose coefficients are in b C ∞ (M ◦ ), then ω is defined accordingly as the finite<br />

∫<br />

b M<br />

part of ω as R → ∞.<br />

x≥−R<br />

In local coordinates y 1 , . . . , y n on ∂M, b-differential <strong>for</strong>ms are sums of terms of the<br />

<strong>for</strong>m<br />

ω = f(x, y)dx ∧ dy j1 ∧ . . . ∧ dy jp−1 + g(x, y)dy l1 ∧ . . . ∧ dy jp (1.57)<br />

<strong>with</strong> b-smooth functions f, g. Putting ι ∗ ω := g 0 (y)dy l1 ∧. . .∧dy jp extends<br />

∫<br />

to a pullback<br />

ι ∗ : b Ω p (M) → Ω p (∂M). It is easy to see that Stokes’ Theorem holds <strong>for</strong> <strong>and</strong> ι:<br />

∫<br />

b M<br />

∫<br />

dω =<br />

∂M<br />

b M<br />

ι ∗ ω. (1.58)<br />

For a b-pseudodifferential operator A ∈ b Ψ • cl(M; E) of order < − dim M the b-trace<br />

is nothing but the partie finie integral of its kernel over the diagonal:<br />

∫<br />

b Tr(A) = tr p (K A (p, p))d vol(p), (1.59)<br />

b M<br />

where now K A (·, ·) denotes the Schwartz kernel of A <strong>and</strong> tr p denotes the fiber trace on<br />

E p .<br />

Next we mention a useful <strong>for</strong>mula <strong>for</strong> the partie finie integral in terms of a convergent<br />

integral. By Eq. (A.5), the asymptotic expansion (1.54) may be differentiated, hence<br />

∂ x f = O(e x ), x → −∞, is integrable <strong>and</strong> thus integration by parts yields<br />

∫ 0<br />

−R<br />

f(x)dx = Rf(−R) −<br />

= Rf − 0 −<br />

∫ 0<br />

−∞<br />

∫ 0<br />

−R<br />

x∂ x f(x)dx<br />

x∂ x f(x)dx + O(Re −R ),<br />

R → −∞.<br />

(1.60)<br />

Hence<br />

∫ 0 ∫ 0<br />

Pf f(x)dx = x∂ x f(x)dx, (1.61)<br />

−∞<br />

−∞<br />

where the integr<strong>and</strong> on the right h<strong>and</strong> side is summable in the Lebesgue sense. Using<br />

the tools from the previous paragraphs, we can now prove the following theorem about<br />

the representation of the b-trace as a trace of certain trace class operators.<br />

Proposition 1.6. Let M be a compact manifold <strong>with</strong> boundary <strong>and</strong> an exact b-metric<br />

g b . Fix a collar (r, η) : Y → [0, 2) × ∂M of the boundary ∂M as described in Appendix<br />

A.1, <strong>and</strong> let (x, η) : Y 1 → (−∞, 0] × ∂M denote the corresponding diffeomorphism<br />

onto the cylinder (−∞, 0] × ∂M. Assume that A ∈ b Ψ ∞ cl (M; E) is a classical


22 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

b-pseudodifferential operator of order < − dim M, <strong>and</strong> that its kernel is supported <strong>with</strong>in<br />

the cylinder (−∞, 0) × ∂M. Then x [ d<br />

, A] is trace class <strong>and</strong> one has<br />

dx<br />

(<br />

b Tr(A) = − Tr<br />

∫<br />

= −<br />

(−∞,0)×∂M<br />

x [ d<br />

dx , A]) =<br />

where K A denotes the Schwartz kernel of A.<br />

x d<br />

dx tr (<br />

x,q KA (x, q; x, q) ) d vol(x, q),<br />

(1.62)<br />

Proof. The condition on the support of A is necessary since the operators x <strong>and</strong> d are dx<br />

only defined on the cylinder. However, Proposition 1.6 can be extended to arbitrary<br />

A ∈ b 0 the operator e zx A is trace class <strong>and</strong> the function<br />

z ↦→ Tr(e zx A) (1.64)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 23<br />

is holomorphic <strong>for</strong> Rz > 0 <strong>and</strong> it extends meromorphically to Rz > −1, 0 is a simple<br />

pole <strong>and</strong> the residue at 0 equals b Tr(A) (cf. [Loy05]). Hence<br />

b Tr(A) = d dz z Tr(ezx A) ∣<br />

∣<br />

z=0<br />

= d dz Tr ( [ d<br />

dx , ezx] A)∣<br />

∣∣∣z=0<br />

= d ( [<br />

dz Tr d<br />

dx , ezx A ] − e zx[ d<br />

dx , A])∣ ∣<br />

∣∣z=0<br />

(<br />

= − Tr x [ d<br />

dx , A]) ,<br />

(1.65)<br />

since <strong>for</strong> Rz > 0 the trace of the commutator Tr([ d , dx ezx A]), thanks to the decay of e zx ,<br />

does vanish. The last claim follows as above.<br />

□<br />

1.7. b-Clif<strong>for</strong>d modules <strong>and</strong> b-Dirac operators. To treat both the even <strong>and</strong> the<br />

odd cases simultaneously we make use of the Clif<strong>for</strong>d supertrace (cf. e.g. [Get93a,<br />

Appendix]). Denote by Cl q the complex Clif<strong>for</strong>d algebra on q generators, that is Cl q<br />

is the universal C ∗ -algebra on unitary generators e 1 , ..., e q subject to the relations<br />

e j e k + e k e j = −2δ jk . (1.66)<br />

Let H = H + ⊕H − be a Z 2 -graded Hilbert space <strong>with</strong> grading operator α. We assume<br />

additionally that H is a Z 2 -graded right Cl q -module. Denote by c r : H ⊗Cl q → H the<br />

right Cl q -action <strong>and</strong> define operators E j : H → H <strong>for</strong> j = 1, · · · , q by E j := c r( )<br />

−⊗e j .<br />

Then the E j are unitary operators on H which anti-commute <strong>with</strong> α.<br />

The C ∗ -algebra L (H ) of bounded linear operators on H is naturally Z 2 -graded,<br />

too. For operators A, B ∈ L (H ) of pure degree |A|, |B| the supercommutator is<br />

defined by<br />

[A, B] Z2 := AB − (−1) |A||B| BA. (1.67)<br />

Furthermore denote by L Clq (H ) the supercommutant of Cl q in H , that is L Clq (H )<br />

consists of those A ∈ L (H ) <strong>for</strong> which [A, E j ] Z2 = 0, j = 1, ..., q. For K ∈ LCl 1 q<br />

(H ) =<br />

{<br />

A ∈ LClq (H ) ∣ } A trace class one puts<br />

Str q (K) := (4π) −q/2 Tr(αE 1 · ... · E q K). (1.68)<br />

The following properties of Str q are straight<strong>for</strong>ward to verify.<br />

Lemma 1.7. For K, K 1 , K 2 ∈ L 1 Cl q<br />

(H ), one has<br />

(1) Str q K = 0, if |K| + q is odd.<br />

(2) Str q vanishes on super-commutators: Str q ([K 1 , K 2 ] Z2 ) = 0.<br />

Again, let M be a compact manifold <strong>with</strong> boundary, r : Y → [0, 2) a boundary<br />

defining function, <strong>and</strong> g b an exact b-metric on M. Associated to these data is the<br />

bundle b Cl(M) := Cl( b T ∗ M) of Clif<strong>for</strong>d algebras. Its fiber over p ∈ M is given by the<br />

Clif<strong>for</strong>d algebra generated by elements of b Tp ∗ M subject to the relations<br />

ξ · ζ + ζ · ξ = −2g b (ξ, ζ) <strong>for</strong> all ξ, ζ ∈ b T ∗ p M. (1.69)


24 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Definition 1.8 (cf. [Get93a, Sec. 5]). Let q be a natural number. By a degree q b-<br />

Clif<strong>for</strong>d module over M one then underst<strong>and</strong>s a Z 2 -graded complex vector bundle W →<br />

M together <strong>with</strong> a Hermitian metric 〈−, −〉, a Clif<strong>for</strong>d action c = c l : b T ∗ M ⊗W → W ,<br />

<strong>and</strong> an action c r : W ⊗ Cl q → W such that both actions are graded <strong>and</strong> unitary <strong>and</strong><br />

supercommute <strong>with</strong> each other. A b-Clif<strong>for</strong>d superconnection on a degree q b-Clif<strong>for</strong>d<br />

module W over M is a b-superconnection<br />

b A : b Ω • (M, W ) := Γ ∞( M, Λ • ( b T ∗ M) ⊗ W ) → b Ω • (M, W )<br />

which supercommutes <strong>with</strong> the action of Cl q , satisfies<br />

[ b<br />

A, c(ω) ] Z 2<br />

= c (b ∇ω ) <strong>for</strong> all ω ∈ b Ω 1 (M),<br />

<strong>and</strong> is metric in the sense that<br />

〈 b<br />

Aξ, ζ 〉 + 〈 ξ, b Aζ 〉 = d 〈ξ, ζ〉 <strong>for</strong> all ξ, ζ ∈ b Ω • (M, W ).<br />

Here, <strong>and</strong> in what follows, b ∇ denotes the Levi-Civita b-connection belonging to g b . In<br />

the remainder of this article, we assume that a b-Clif<strong>for</strong>d superconnection is always of<br />

product <strong>for</strong>m near the boundary. This means that over Y s <strong>for</strong> some s <strong>with</strong> 0 < s < 2<br />

the superconnection has the <strong>for</strong>m<br />

b A |Y s = η ∗ ∇ ∂ + η ∗ ω ∂ ∧ −,<br />

where η : Y → ∂M is the boundary projection from Appendix A, ∇ ∂ is a metric<br />

connection on the restricted bundle W |∂M <strong>and</strong> ω ∂ ∈ Ω •( ∂M; End ( ))<br />

W |∂M . Recall that<br />

the pull-back covariant derivative ( η ∗ ∇ ∂) on W |Y is uniquely defined by requiring <strong>for</strong><br />

ξ ∈ Γ ∞( Y, W ) that<br />

(<br />

{r η ∗ ∇ ∂) ∂ξ<br />

ξ = , if V = r ∂ ,<br />

∂r ∂r<br />

V<br />

∇ ∂ ξ, if V = Ṽ ◦ η <strong>for</strong> some Ṽ ∈ Ṽ Γ∞ (∂M, T ∂M).<br />

The Dirac operator associated to a degree q b-Clif<strong>for</strong>d module W <strong>and</strong> a b-Clif<strong>for</strong>d<br />

superconnection b A is defined as the b-differential operator<br />

D := c l ◦ b A : Γ ∞ (M, W ) → Γ ∞( M, Λ • ( b T ∗ M) ⊗ W ) → Γ ∞ (M, W ).<br />

In this paper the term “Dirac operator” will always refer to the Dirac operator<br />

associated to a Clif<strong>for</strong>d (super)connection in the above sense. Such Dirac operators<br />

are automatically <strong>for</strong>mally self-adjoint. By a Dirac-type operator we underst<strong>and</strong> a<br />

first order differential operator such that the principal symbol of its square is scalar<br />

(cf. [Tay96]).<br />

Note that the b-metric on M <strong>and</strong> the metric structure on W give rise to the Hilbert<br />

space H = L 2 (M; W ) of square integrable sections of the b-Clif<strong>for</strong>d module. By<br />

assumption,<br />

(<br />

Cl q acts on L 2 (M; W ), hence by Eq. (1.68) one obtains a supertrace Str q :<br />

LCl 1 q L 2 (M; W ) ) → C. Similarly the b-trace gives rise to a b-supertrace<br />

b Str q : b


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 25<br />

Here b Ψ • ( )<br />

cl,Cl q M; W denote the classical b-pseudodifferential operators which lie in the<br />

supercommutant of Cl q in H (cf. (1.67) supra).<br />

Next consider the natural embedding T ∗ ∂M ↩→ b T|∂M ∗ M. By the universal property<br />

of Clif<strong>for</strong>d algebras one obtains an embedding of Clif<strong>for</strong>d bundles Cl ( ∂M ) ↩→<br />

b Cl (b T|∂M ∗ M) . Moreover, the decomposition b T|∂M ∗ M = T ∗ M ⊕ R · r ∂ induced by<br />

∂r<br />

g b even gives rise to a splitting b Cl (b T|∂M ∗ M) → Cl ( ∂M ) . Let now W → M be a<br />

degree q b-Clif<strong>for</strong>d module over M. Then Cl ( ∂M ) acts on W |∂M via the embedding<br />

Cl ( ∂M ) ↩→ b Cl (b T|∂M ∗ M) . We denote the resulting left action of the boundary Clif<strong>for</strong>d<br />

bundle on W |∂M again by c. Moreover, the action W |∂M ⊗ Cl q → W |∂M extends to a<br />

right action c r ∂ : W |∂M ⊗ Cl q+1 → W |∂M by putting<br />

{<br />

E j = c r c r( )<br />

w, e j , <strong>for</strong> w ∈ Wp , p ∈ ∂M, j = 1, · · · , q,<br />

∂(w, e j ) :=<br />

−c l( dr<br />

, w) (1.71)<br />

, <strong>for</strong> w ∈ W<br />

r p , p ∈ ∂M, j = q + 1,<br />

cf. the beginning of this Subsection 1.7. It is now easy to check that W |∂M together<br />

<strong>with</strong> c <strong>and</strong> c r ∂ as Clif<strong>for</strong>d actions becomes a degree q + 1 Clif<strong>for</strong>d-module over ∂M.<br />

Now we have the ingredients <strong>for</strong> the b-supertrace of a supercommutator:<br />

Proposition 1.9 ([Get93a, Cor. 5.5]). Let D be a Dirac operator on a q-graded b-<br />

Clif<strong>for</strong>d bundle W , <strong>and</strong> K ∈ b Ψ −∞ ( )<br />

cl,Cl q M; W . On ∂M put Eq+1 := −c l ( dr)<br />

= r −cl (dx).<br />

Then<br />

∫<br />

( ) b 1 ∞<br />

( )<br />

Str q [D, K]Z2 = √π Str q+1,∂M I(K, λ) dλ. (1.72)<br />

−∞<br />

We do not claim here that I(K, λ) commutes <strong>with</strong> Γ in the graded sense. This is not<br />

necessary <strong>for</strong> the definition of Str q+1,∂M .<br />

Remark 1.10. Another consequence of the previous considerations which we single<br />

out <strong>for</strong> future reference is the structure of a Dirac operator on a cylinder R × ∂M<br />

(cf. (A.3)). Since all structures are product, D takes the <strong>for</strong>m<br />

D = c(dx) d ( d<br />

)<br />

dx + D ∂ =: Γ<br />

dx + A . (1.73)<br />

Here Γ = c(dx) is Clif<strong>for</strong>d multiplication by the normal vector d<br />

dx <strong>and</strong> D ∂ := ΓA is the<br />

tangential operator. D ∂ is a Dirac operator on the boundary. Moreover, one has the<br />

relations<br />

Γ ∗ = −Γ, Γ 2 = −I, A t = A, ΓA + AΓ = ΓD ∂ + D ∂ Γ = 0. (1.74)<br />

Now let u be a section of the Clif<strong>for</strong>d bundle W over the cylinder R × M. Then<br />

(Du)(x, p) = 1<br />

2π<br />

= 1<br />

2π<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

By Eqs. (1.26) <strong>and</strong> (1.27) this proves the following:<br />

( d c(dx)<br />

dx + D )<br />

∂ e<br />

ixλû(λ,<br />

p) dλ =<br />

e ixλ( ic(dx)λ + D ∂<br />

)û(λ,<br />

p) dλ.<br />

(1.75)


26 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Proposition 1.11. Let M be a compact manifold <strong>with</strong> boundary <strong>and</strong> let g b be an exact<br />

b-metric on M. Furthermore, let D be a Dirac operator on M. Then the indicial family<br />

of D is given by I(D)(λ) = iλc(dx) + D ∂ .<br />

1.8. The relative <strong>Connes</strong>-<strong>Chern</strong> character of a Dirac operator over a manifold<br />

<strong>with</strong> boundary. In this section, M is a compact manifold <strong>with</strong> boundary, g 0 is a<br />

Riemannian metric which is smooth up to the boundary, <strong>and</strong> W → M is a degree<br />

q Clif<strong>for</strong>d module. We choose a Hermitian metric h on W together <strong>with</strong> a Clif<strong>for</strong>d<br />

connection which is unitary <strong>with</strong> respect to h. Let D = D(∇, g 0 ) be the associated<br />

Dirac operator; we suppress the dependence on h from the notation. Then D is a<br />

densely defined operator on the Hilbert space H of square-integrable sections of W .<br />

According to [BDT89, Prop. 3.1], as outlined in the introduction, D defines a relative<br />

Fredholm module over the pair of C ∗ -algebras ( C(M), C(∂M) ) . Recall that the relative<br />

Fredholm module is given by F = D e (D ∗ eD e + 1) −1/2 , where D e is a closed extension<br />

of D such that either D ∗ eD e or D e D ∗ e has compact resolvent (e.g. both D min <strong>and</strong> D max<br />

satisfy this condition), <strong>and</strong> that the K-homology class [F ] does not depend on the<br />

particular choice of D e (see [BDT89, Prop. 3.1]). Furthermore, [BDT89, §2] shows<br />

that over the C ∗ -algebra C 0 (M \ ∂M), whose K-homology is by excision isomorphic<br />

to K •( C 0 (M \ ∂M) ) , one has even more freedom to choose closed extensions of D,<br />

<strong>and</strong> in particular the self-adjoint extension D APS obtained by imposing APS boundary<br />

conditions yields the same K-homology class as [F ] in K •( (C 0 (M \ ∂M) ) .<br />

It is well-known that D APS has an m + -summable resolvent (cf. e.g. [GrSe95]).<br />

Moreover, multiplication by f ∈ J ∞ (∂M, M) preserves the domain of D APS <strong>and</strong><br />

[D APS , f] = c(df) is bounded. Thus D APS defines naturally an m + -summable Fredholm<br />

module over the local C ∗ -algebra J ∞ (∂M, M) ⊂ C 0 (M \ ∂M). Since by excision<br />

in K-homology K •( C 0 (M \ ∂M) ) is naturally isomorphic to K •( C(M), C(∂M) ) , one<br />

concludes that the class [F ] of the relative Fredholm module coincides under this isomorphism<br />

<strong>with</strong> the class [D] of the m + -summable Fredholm module over J ∞ (∂M, M).<br />

Let us now consider the <strong>Connes</strong>–<strong>Chern</strong> character of [D]. According to [CoMo93], it<br />

can be represented by the truncated JLO-cocycle of the operator D (<strong>with</strong> n ≥ m of the<br />

same parity as m):<br />

ch n t (D) = ∑ k≥0<br />

Ch n−2k (tD) + BT /ch n+1<br />

t<br />

(D). (1.76)<br />

Recall from [JLO88] that the JLO-cocycle is given by<br />

∫<br />

( )<br />

Ch k (D)(a 0 , . . . , a k ) = Str q a0 e −σ 0D 2 [D, a 1 ] . . . [D, a k ]e −σ kD 2 dσ,<br />

∆ k<br />

<strong>for</strong> a 0 , . . . , a k ∈ J ∞ (∂M, M).<br />

(1.77)<br />

Note that the cyclic cohomology class of ch n t (D) is independent of t, <strong>and</strong> that ch • t<br />

is the <strong>Chern</strong>-<strong>Connes</strong> character as given in Diagram (1.2). To obtain the precise<br />

<strong>for</strong>m of the <strong>Chern</strong>-<strong>Connes</strong> character ch • t (D) ∈ HP •( J ∞ (∂M, M) ) one notes first that<br />

HP •( J ∞ (∂M, M) ) ∼ = H<br />

dR<br />

• (M, ∂M; C) by [BrPf08] <strong>and</strong> then has to calculate the limit<br />

lim t↘0 ch n t (D)(a 0 , . . . , a k ). Since Ch k is continuous <strong>with</strong> respect to the Fréchet topology<br />

on J ∞ (∂M, M), <strong>and</strong> C0 ∞ (M \ ∂M) is dense in J ∞ (∂M, M), it suffices to consider the


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 27<br />

case where all a j have compact support in M \ ∂M. But in that case one can use<br />

st<strong>and</strong>ard local heat kernel analysis or Getzler’s asymptotic calculus as in [CoMo90] or<br />

[BlFo90] to show that <strong>for</strong> n ≥ m <strong>and</strong> same parity as m<br />

∫<br />

[ ]<br />

lim ch<br />

n<br />

t (D)(a t↘0 k 0, . . . , a k ) = ω D ∧ a 0 da 1 ∧ . . . da k . (1.78)<br />

M<br />

Here, [ ]<br />

ch n t denotes the component of k chn t of degree k <strong>and</strong> ω D is the local index <strong>for</strong>m<br />

of D. By Poincaré duality the class of the current (1.78) in H• dR (M, ∂M) depends only<br />

on the absolute de Rham cohomology class of ω D in H dR • (M). By the transgression<br />

<strong>for</strong>mulaæ this cohomology class is independent of ∇ <strong>and</strong> g. Summing up <strong>and</strong> using<br />

Diagram (1.2), we obtain the following statement.<br />

Proposition 1.12. Let M be a compact manifold <strong>with</strong> boundary <strong>and</strong> Riemannian<br />

metric g 0 , <strong>and</strong> let W be a degree q Clif<strong>for</strong>d module over M. For any choice of<br />

a Hermitian metric h <strong>and</strong> unitary Clif<strong>for</strong>d connection ∇ on W the Dirac operator<br />

D = D(∇, g 0 ) defines naturally a class [D] ∈ K m (M \ ∂M). The <strong>Connes</strong>-<strong>Chern</strong> character<br />

of [D] is independent of the choice of ∇ <strong>and</strong> g 0 . In particular the index map<br />

Index [D] : K • (M, ∂M) −→ Z, defined by the pairing <strong>with</strong> K-theory, is independent of<br />

∇ <strong>and</strong> g 0 .<br />

2. The b-analogue of the entire <strong>Chern</strong> character<br />

The degree q Clif<strong>for</strong>d module approach outlined in Subsection 1.7 has advantages<br />

when dealing <strong>with</strong> manifolds <strong>with</strong> boundary, because the <strong>for</strong>mulaæ <strong>for</strong> the JLO cocycle<br />

<strong>and</strong> its transgression (cf. (2.6), (2.7) below) become simpler. To make the connection<br />

to the st<strong>and</strong>ard even <strong>and</strong> odd <strong>Chern</strong> character <strong>with</strong>out Clif<strong>for</strong>d action, from now on<br />

we will also consider ungraded Clif<strong>for</strong>d modules <strong>with</strong>out auxiliary Clif<strong>for</strong>d right action.<br />

There<strong>for</strong>e we assume that either<br />

or<br />

• we are in the graded case <strong>with</strong> q Clif<strong>for</strong>d matrices E 1 , . . . , E q where D is odd,<br />

<strong>and</strong> Str q denotes the Clif<strong>for</strong>d trace defined in Subsection 1.7,<br />

• we are in the ungraded case, when there are no Clif<strong>for</strong>d matrices <strong>and</strong> no grading<br />

operator; this case can be conveniently dealt <strong>with</strong> by putting q = −1 (which is<br />

odd!), α = 1 <strong>and</strong> Str q := Tr = Tr(α·).<br />

From now on, we assume that D t , t ∈ (0, ∞), is a family of self-adjoint differential<br />

operators of the <strong>for</strong>m D t = f(t)D <strong>with</strong> D the Dirac operator of a q-graded b-Clif<strong>for</strong>d<br />

module (q ≥ −1 according to the previous explanation) <strong>with</strong> b-Clif<strong>for</strong>d superconnection<br />

(W, b A) <strong>and</strong> f : (0, ∞) → R a smooth function. D t are Dirac type operators in the sense<br />

of [Tay96].<br />

Following Getzler [Get93a, Sec. 6], we define <strong>for</strong> A 0 , · · · , A k ∈ b Ψ ∞ cl (M, W )<br />

∫<br />

b 〈A 0 , · · · , A k 〉 Dt :=<br />

( ) b Str q A0 e −σ 0D 2 t · · · Ak e −σ kD 2 t dσ<br />

∆ k<br />

(2.1)<br />

( )<br />

= b Str q (A0 , . . . , A k ) Dt ,


28 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

where<br />

∆ k := { σ = (σ 0 , ..., σ k ) ∈ R ∣ k+1 σj ≥ 0, σ 0 + . . . + σ k = 1 } (2.2)<br />

denotes the st<strong>and</strong>ard k-simplex <strong>and</strong><br />

∫<br />

(A 0 , . . . , A k ) D := A 0 e −σ 0D 2 · · · A k e −σ kD 2 dσ. (2.3)<br />

∆ k<br />

Put<br />

b Ch k (D)(a 0 , · · · , a k ) := b 〈a 0 , [D, a 1 ], · · · , [D, a k ]〉, (2.4)<br />

b /ch k (D, V)(a 0 , · · · , a k ) :=<br />

∑<br />

(−1) j deg V b 〈a 0 , [D, a 1 ], · · · , [D, a j ], V, [D, a j+1 ], · · · , [D, a k ]〉.<br />

0≤j≤k<br />

(2.5)<br />

The operation b /ch will mostly be used <strong>with</strong> V = Ḋt as a second argument. Here D t<br />

is considered of odd degree regardless of the value of q.<br />

Remark 2.1. For q = 0, k even resp. q = −1, k odd b Ch k (D), b /ch k (D, Ḋ) are the<br />

b-analogues of the even <strong>and</strong> odd JLO <strong>Chern</strong> character <strong>and</strong> its transgression.<br />

The following result is crucial <strong>for</strong> this paper. It is essentially due to Getzler [Get93a,<br />

Thm. 6.2], although the following version is not stated explicitly in his paper.<br />

Theorem 2.2. For q ≥ 0 we have the following two equations <strong>for</strong> b Ch • (D) <strong>and</strong><br />

b /ch(D, Ḋ): b b Ch k−1 (D t ) + B b Ch k+1 (D t ) = Ch k (D ∂,t ) ◦ i ∗ , (2.6)<br />

d b Ch k (D t ) + b b /ch k−1 (D t ,<br />

dt<br />

Ḋt) + B b /ch k+1 (D t , Ḋt) = − /ch k (D ∂,t , Ḋ∂,t) ◦ i ∗ . (2.7)<br />

These <strong>for</strong>mulæ will be repeatedly used in Section 6 <strong>and</strong> thereafter. For notational<br />

convenience we will omit the symbol ◦i ∗ whenever the context makes clear that this<br />

composition is required.<br />

The theorem can be derived from [Get93a, Thm. 6.2] by introducing the <strong>for</strong>m valued<br />

expression<br />

∫<br />

( b 〈〈A 0 , · · · , A k 〉〉 :=<br />

b Str q A0 e −σ 0(i dD t+D 2 t ) · · · A k e −σ k(i dD t+D 2)) t<br />

dσ, (2.8)<br />

∆ k<br />

<strong>and</strong> the combined <strong>Chern</strong> character Ch • G, defined as<br />

For this, Getzler proves<br />

Ch k G (D t )(a 0 , · · · , a k )<br />

:= b 〈〈a 0 , [D t , a 1 ], · · · , [D t , a k ]〉〉,<br />

a 0 , · · · , a k ∈ C ∞ (M). (2.9)<br />

(−i d + b + B) Ch • G(D t ) = Ch • G(D ∂,t ) ◦ i ∗ . (2.10)<br />

Remark 2.3. Note that in this paper we use self-adjoint Dirac operators while Getzler<br />

uses skew-adjoint ones in [Get93a]. Accordingly, our Dirac operators differ by a factor<br />

−i from the Dirac operators in [Get93a]. This explains the appearance of such i-factors<br />

in our <strong>for</strong>mulæ , which are not present in [Get93a].


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 29<br />

By carefully tracing all the signs <strong>and</strong> i–factors involved in the graded <strong>for</strong>m valued<br />

Clif<strong>for</strong>d calculus, as well as due to the various conventions, it turns out that separating<br />

(2.10) into its scalar <strong>and</strong> 1-<strong>for</strong>m parts, using [Get93a, Lem. 2.5]<br />

b 〈〈A 0 , · · · , A k 〉〉 =<br />

= b 〈A 0 , · · · , A k 〉 − i<br />

k∑<br />

j=0<br />

b 〈A 0 , · · · , A j , dt ∧ Ḋt, A j+1 , · · · , A k 〉,<br />

(2.11)<br />

one obtains Eqs. (2.6) <strong>and</strong> (2.7).<br />

However, <strong>for</strong> completeness, we will give a more direct argument in Subsection 2.2,<br />

<strong>with</strong>out using operator valued <strong>for</strong>ms. The proof below follows the lines of the st<strong>and</strong>ard<br />

proof <strong>for</strong> the JLO cocycle representing the <strong>Chern</strong> character of a θ-summable Fredholm<br />

module (cf. [JLO88], [GeSz89]).<br />

2.1. Cocycle <strong>and</strong> transgression <strong>for</strong>mulæ <strong>for</strong> the even/odd b-<strong>Chern</strong> character<br />

(<strong>with</strong>out Clif<strong>for</strong>d covariance). Recall from Remark 2.1 that <strong>for</strong> q = 0 <strong>and</strong> k even<br />

resp. q = −1 <strong>and</strong> k odd b Ch • (D) is the b-analogue of the even, resp. odd, JLO <strong>Chern</strong><br />

character. We shall relate the ungraded (q = −1) case to the graded case <strong>with</strong> q = 1.<br />

Starting <strong>with</strong> an ungraded Dirac operator D t acting on the Hilbert space H, put<br />

( )<br />

1 0<br />

˜H := H ⊕ H, α := , ˜Dt :=<br />

0 −1<br />

( )<br />

0 Dt<br />

. (2.12)<br />

D t 0<br />

Then ˜D t is odd <strong>with</strong> respect to the grading operator α <strong>and</strong> it anti-commutes <strong>with</strong><br />

E 1 :=<br />

( )<br />

0 1<br />

. (2.13)<br />

−1 0<br />

Note that<br />

˜D t = αE 1<br />

(<br />

Dt ⊗ I 2<br />

)<br />

(2.14)<br />

<strong>with</strong> I 2 being the 2 × 2 identity matrix.<br />

Proposition 2.4. Let D t be ungraded (q = −1) <strong>and</strong> let ˜D t = αE 1 (D t ⊗ I 2 ) be the<br />

associated 1–graded (q = 1) operator. Then <strong>for</strong> k odd<br />

b Ch k (˜D t ) = 1 √ π b Ch k (D t ),<br />

b /ch k−1 (˜D, ˙ ˜D t ) = 1 √ π b /ch k−1 (D t , Ḋt).<br />

(2.15)<br />

Needless to say that these <strong>for</strong>mulæ are valid as well <strong>for</strong> Ch • <strong>and</strong> /ch • .


30 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Proof. Using Proposition 1.9 we find <strong>for</strong> k odd:<br />

b 〈a 0 , [˜D t , a 1 ], . . . , [˜D t , a k ]〉 eDt<br />

= b 〈(αE 1 ) k a 0 , [D t ⊗ I 2 , a 1 ], . . . , [D t ⊗ I 2 , a k ]〉 Dt⊗I2<br />

∫<br />

1<br />

= √ b Tr ( )<br />

(αE 1 ) k+1 a<br />

∆ k 4π } {{ } 0 e −σ 0D 2 t [Dt , a 1 ] . . . [D t a k ]e −σ kD 2 t ⊗ I2<br />

=1<br />

= √ 1 b 〈a 0 , [D t , a 1 ], . . . , [D t , a k ]〉 Dt .<br />

π<br />

The calculation <strong>for</strong> b /ch k−1 (˜D t , ˙ ˜D t ) is completely analogous.<br />

(2.16)<br />

□<br />

Now we are ready to translate (2.6) <strong>and</strong> (2.7) into <strong>for</strong>mulæ <strong>for</strong> the st<strong>and</strong>ard even <strong>and</strong><br />

odd <strong>Chern</strong> character <strong>with</strong>out Clif<strong>for</strong>d action.<br />

2.1.1. q = 0. A priori we are in the st<strong>and</strong>ard even situation <strong>with</strong>out Clif<strong>for</strong>d right<br />

action. However, D ∂ is viewed as Cl 1 covariant <strong>with</strong> respect to the Clif<strong>for</strong>d action given<br />

by E 1 = −Γ. On the boundary, Γ gives a natural identification of the even <strong>and</strong> odd<br />

half spinor bundle <strong>and</strong> <strong>with</strong> respect to the splitting into half spinor bundles D takes the<br />

<strong>for</strong>m:<br />

( ) ( )<br />

0 −1 d 0 A<br />

D =<br />

1 0 dx + A 0<br />

(2.17)<br />

} {{ } } {{ }<br />

Γ<br />

D ∂<br />

;<br />

A is an ungraded Dirac type operator acting on the positive half spinor bundle (it is the<br />

operator whose positive spectral projection gives the APS boundary condition). In the<br />

notation of Eq. (2.12), we have D ∂ = Ã, E 1 = −Γ. Thus, Proposition 2.4 <strong>and</strong> Theorem<br />

2.2 give the following result.<br />

Proposition 2.5. Let M be an even dimensional compact manifold <strong>with</strong> boundary <strong>with</strong><br />

an exact b-metric <strong>and</strong> let D t = f(t)D be as be<strong>for</strong>e. Writing D in a collar of the boundary<br />

(in cylindrical coordinates) in the <strong>for</strong>m<br />

(<br />

0 −<br />

d<br />

D =:<br />

+ A<br />

)<br />

dx<br />

d<br />

+ A , (2.18)<br />

dx<br />

A is an ungraded Dirac type operator acting on the positive half spinor bundle restricted<br />

to the boundary. Furthermore we have <strong>with</strong> A t = f(t)A<br />

b b Ch k−1 (D t ) + B b Ch k+1 (D t ) = 1 √ π<br />

Ch k (A t ) ◦ i ∗ , (2.19)<br />

d b Ch k (D t ) + b b /ch k−1 (D t ,<br />

dt<br />

Ḋt) + B b /ch k+1 (D t , Ḋt)<br />

= −√ 1 /ch k (A t , A ˙ t ) ◦ i ∗ .<br />

π<br />

(2.20)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 31<br />

2.1.2. q = −1. Now let D be ungraded <strong>and</strong> put ˜D, α, E 1 as in Eqs. (2.12), (2.13), (2.14).<br />

Then by Proposition 2.4 we have<br />

b Ch k (D t )(a 0 , . . . , a k ) = √ π b Ch k (˜D t )(a 0 , . . . , a k ), (2.21)<br />

b /ch k (D t , Ḋt)(a 0 , . . . , a k ) = √ π b /ch k (˜D t , ˜D ˙<br />

t )(a 0 , . . . , a k ). (2.22)<br />

In the collar of the boundary, we write as usual D = Γ d + D dx ∂, <strong>and</strong> thus<br />

( ) ( )<br />

0 Γ d 0<br />

˜D =<br />

Γ 0 dx + D∂<br />

. (2.23)<br />

D ∂ 0<br />

} {{ } } {{ }<br />

=: Γ e =: D f ∂<br />

˜D ∂ is 2–graded <strong>with</strong> respect to<br />

( )<br />

0 1<br />

E 1 = , E<br />

−1 0 2 = −˜Γ =<br />

Note that<br />

For even k we have<br />

( )<br />

0 −Γ<br />

. (2.24)<br />

−Γ 0<br />

αE 1 E 2 = −Γ ⊗ I 2 , ˜D∂ = αE 1 (D ∂ ⊗ I 2 ). (2.25)<br />

(<br />

Str 2 a0 e −σ 0D g 2<br />

∂,t<br />

[˜D∂,t , a 1 ] · . . . · [˜D ∂,t , a k ]e −σ kD g 2)<br />

∂,t<br />

= 1<br />

4π Tr( αE 1 E 2 (αE 1 ) k( ) )<br />

a 0 e −σ 0D 2 ∂,t [D∂,t , a 1 ] · . . . · [D ∂,t , a k ]e −σ kD 2 ∂,t ⊗ I2 (2.26)<br />

= − 1<br />

2π Tr( )<br />

Γa 0 e −σ 0D 2 ∂,t [D∂,t , a 1 ] · . . . · [D ∂,t , a k ]e −σ kD 2 ∂,t .<br />

With respect to the grading given by −iΓ we can now write<br />

−1<br />

2π Tr( Γ·) = 1<br />

2πi Str 0 . (2.27)<br />

Together <strong>with</strong> (2.21) <strong>and</strong> (2.22) we have thus proved:<br />

Proposition 2.6. Let M be an odd dimensional compact manifold <strong>with</strong> boundary <strong>with</strong><br />

an exact b-metric <strong>and</strong> let D be an ungraded Dirac operator. Writing D in a collar of<br />

the boundary (in cylindrical coordinates) in the <strong>for</strong>m<br />

D =: Γ d<br />

dx + D ∂, (2.28)<br />

D ∂ is a graded Dirac type operator <strong>with</strong> respect to the grading operator −iΓ. Furthermore,<br />

we have<br />

b b Ch k−1 (D t ) + B b Ch k+1 (D t ) = 1<br />

2 √ πi Chk (D ∂ ) ◦ i ∗ , (2.29)<br />

d b Ch k (D t ) + b b /ch k−1 (D t ,<br />

dt<br />

Ḋt) + B b /ch k+1 (D t , Ḋt)<br />

= − 1<br />

2 √ πi /chk (D ∂ t , Ḋ∂ t ) ◦ i ∗ .<br />

(2.30)


32 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

2.2. Sketch of Proof of Theorem 2.2. Recall that Theorem 2.2 is stated <strong>for</strong> q ≥ 0,<br />

hence in this subsection all Dirac operators will be q–graded <strong>with</strong> q ≥ 0.<br />

Proposition 2.7. Let A 0 , . . . , A k ∈ b Ψ • ( )<br />

cl,Cl q M; W . Assume that <strong>for</strong> all but one index<br />

j 0 the indicial family is independent of λ <strong>and</strong> commutes <strong>with</strong> the actions of E 1 , . . . , E q<br />

<strong>and</strong> E q+1 = −Γ. For the possible exception j 0 we assume that A j0 is proportional to Ḋt.<br />

Then<br />

where ε = |A k |(|A 0 | + . . . + |A k−1 |).<br />

b 〈A 0 , . . . , A k 〉 = (−1) ε b 〈A k , A 0 , . . . , A k−1 〉, (2.31)<br />

b 〈A 0 , . . . , A k 〉 =<br />

=<br />

k∑<br />

b 〈A 0 , . . . , A j , 1, A j+1 , . . . , A k 〉<br />

j=0<br />

k∑<br />

(−1) ε j b 〈1, A j , . . . , A k , A 0 , . . . , A j−1 〉,<br />

j=0<br />

(2.32)<br />

where ε j = (|A 0 | + . . . + |A j−1 |)(|A j | + . . . + |A k |).<br />

For j < k<br />

b 〈A 0 , . . . , A j−1 , [D 2 , A j ], A j+1 , . . . , A k 〉<br />

= b 〈A 0 , . . . , A j−2 , A j−1 A j , A j+1 , . . . , A k 〉<br />

− b 〈A 0 , . . . , A j−1 , A j A j+1 , A j+2 , . . . , A k 〉.<br />

(2.33)<br />

Similarly, <strong>for</strong> j = k<br />

b 〈A 0 , . . . , A k−1 , [D 2 , A k ]〉<br />

= b 〈A 0 , . . . , A k−2 , A k−1 A k 〉<br />

− (−1) |A k|(|A 0 |+...+|A k−1 |) b 〈A k A 0 , . . . , A k−1 〉.<br />

(2.34)<br />

Note that these <strong>for</strong>mulæ are the same as in Getzler-Szenes [GeSz89, Lemma 2.2].<br />

In particular there is no boundary term. The proof proceeds exactly as the proofs of<br />

[Get93a, Lemma 6.3] (1),(2), (4), <strong>and</strong> we omit the details. We only note that one has<br />

to make heavy use of the following lemma in order to show the vanishing of certain<br />

terms:<br />

Lemma 2.8 (Berezin Lemma). Let K ∈ L 1 Cl q<br />

(H ). Then <strong>for</strong> j < q<br />

Tr(αE 1 · . . . · E j K) = 0.<br />

Proof. If j + q is odd then moving α past E 1 · . . . · E j K <strong>and</strong> using the trace property<br />

gives<br />

Tr(αE 1 · . . . · E j K) = − Tr(E 1 · . . . · E j Kα)<br />

= − Tr(αE 1 · . . . · E j K) = 0.<br />

(2.35)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 33<br />

If j + q is even then, since j < q, E q anti commutes <strong>with</strong> αE 1 · . . . · E j K <strong>and</strong> hence<br />

similarly<br />

Tr(αE 1 · . . . · E j K) = − Tr(E 2 q αE 1 · . . . · E j K) = Tr(E q αE 1 · . . . · E j KE q )<br />

= Tr(E 2 q αE 1 · . . . · E j K) = − Tr(αE 1 · . . . · E j K) = 0. □<br />

We will make repeated use of the equations (2.31)–(2.34). Now we can proceed as<br />

<strong>for</strong> a θ–summable Fredholm module. Following [GBVF01, p. 451] we start <strong>with</strong> the<br />

supercommutator<br />

∫<br />

([ ]) b Str q Dt , a 0 e −σ 0D 2 t [Dt , a 1 ] . . . [D t , a k ]e −σ kD 2 t dσ. (2.36)<br />

∆ k<br />

As in [Get93a, bottom of p. 37] one shows, using Proposition 1.9 <strong>and</strong> the fact that<br />

∫<br />

e<br />

−λ 2 dλ = √ π, that this supercommutator equals<br />

〈a 0,∂ , [D ∂ t , a 1,∂ ], . . . , [D ∂ t , a k,∂ ]〉 D ∂<br />

t<br />

. (2.37)<br />

It is important to note that here we are in the case q + 1, where the grading is the<br />

induced grading on the boundary <strong>and</strong> E q+1 = −Γ.<br />

For convenience we will write D instead of D t . Exp<strong>and</strong>ing the supercommutator<br />

(2.36) on the other h<strong>and</strong> gives<br />

b 〈[D, a 0 ], . . . , [D, a k ]〉<br />

k∑<br />

+ (−1) j−1 b 〈a 0 , [D, a 1 ] . . . , [D, a j−1 ], [D 2 , a j ], . . . , [D, a k ]〉,<br />

j=1<br />

(2.38)<br />

where we have used [D 2 , a j ] = [D, [D, a j ]] Z 2.<br />

We can now calculate the effect of b <strong>and</strong> B on b Ch.<br />

B b Ch k+1 (D)(a 0 , . . . , a k )<br />

k∑<br />

= (−1) kj b 〈1, [D, a j ], . . . , [D, a k ], [D, a 0 ], . . . , [D, a j−1 ]〉<br />

j=0<br />

k∑<br />

=<br />

b 〈[D, a 0 ], . . . , [D, a j−1 ], 1, [D, a j ], . . . , [D, a k ]〉<br />

j=0<br />

= b 〈[D, a 0 ], . . . , [D, a k ]〉,<br />

(2.39)<br />

where we used (2.32) twice. Thus, the first summ<strong>and</strong> in (2.38) equals<br />

B b Ch k+1 (D)(a 0 , . . . , a k ).


34 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Furthermore,<br />

b b Ch k−1 (D)(a 0 , . . . , a k )<br />

= b 〈a 0 a 1 , [D, a 2 ], . . . , [D, a k ]〉<br />

∑k−1<br />

+ (−1) j b 〈a 0 , . . . , [D, a j a j+1 ], . . . , [D, a k ]〉<br />

j=1<br />

+ (−1) k b 〈a k a 0 , [D, a 1 ], . . . , [D, a k−1 ]〉<br />

= b 〈a 0 a 1 , [D, a 2 ], . . . , [D, a k ]〉<br />

− b 〈a 0 , a 1 [D, a 2 ], . . . , [D, a k ]〉<br />

(<br />

∑k−2<br />

+ (−1) j b 〈a 0 , [D, a 1 ], . . . , [D, a j ]a j+1 , . . . , [D, a k ]〉<br />

j=1<br />

− b 〈a 0 , . . . , [D, a j ], a j+1 [D, a j+2 ], . . . , [D, a k ]〉<br />

)<br />

(2.40)<br />

=<br />

+ (−1) k−1 b 〈a 0 , [D, a 1 ], . . . , [D, a k−1 ]a k 〉<br />

+ (−1) k b 〈a k a 0 , [D, a 1 ], . . . , [D, a k−1 ]〉<br />

k∑<br />

(−1) j−1 b 〈a 0 , [D, a 1 ], . . . , [D 2 , a j ], . . . , [D, a k ]〉,<br />

j=1<br />

where we have used (2.33) <strong>and</strong> (2.34). The right h<strong>and</strong> side of (2.40) equals the sum in<br />

the second line of (2.38).<br />

Summing up (2.36), (2.37), (2.38), (2.39), <strong>and</strong> (2.40) we arrive at Eq. (2.6).<br />

For additional clarity, let us per<strong>for</strong>m two direct checks, <strong>for</strong> small values of k.<br />

Case 1: k = 0. In this case (2.38) equals<br />

b 〈[D, a 0 ]〉 = b 〈1, [D, a 0 ]〉 = B b Ch 1 (D)(a 0 ), (2.41)<br />

by (2.32) <strong>and</strong> we are done in this case.<br />

Case 2: k = 1. Then (2.38) equals<br />

b 〈[D, a 0 ], [D, a 1 ]〉 + b 〈a 0 , [D 2 , a 1 ]〉. (2.42)<br />

The first summ<strong>and</strong> is B b Ch 2 (a 0 , a 1 ) <strong>and</strong> the second summ<strong>and</strong> equals in view of (2.34)<br />

b 〈a 0 a 1 〉 − b 〈a 1 a 0 〉 = b b Ch 0 (D)(a 0 , a 1 ). (2.43)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 35<br />

2.3. The transgression <strong>for</strong>mula. To prove the transgression <strong>for</strong>mula we proceed<br />

analogously <strong>and</strong> start <strong>with</strong> the supercommutator<br />

k∑<br />

([<br />

(−1)<br />

∫∆ j b Str q Dt , a 0 e −σ 0D 2 t [Dt , a 1 ] . . .<br />

k+1<br />

j=0<br />

. . . [D t , a j ]e −σ jD 2 t Ḋe −σ j+1D 2 t . . . [Dt , a k ]e −σ k+1D 2 t<br />

])<br />

dσ. (2.44)<br />

We compute this supercommutator using Proposition 1.9. Note that I(Ḋt, λ) is<br />

proportional ∫ to iΓλ + D ∂ . The summ<strong>and</strong> iΓλ contributes a term proportional to<br />

∞<br />

−∞ λe−λ2 dλ = 0. The remaining summ<strong>and</strong> gives, since ∫ e −λ2 dλ = √ π,<br />

k∑<br />

(−1) j 〈a 0,∂ , [D ∂ t , a 1,∂ ], . . . , [D ∂ t , a j,∂ ], Ḋ∂ t , . . . , [D ∂ t , a k,∂ ]〉<br />

j=0<br />

= /ch k (D ∂ , ˙ D ∂ )(a 0,∂ , . . . , a k,∂ ).<br />

(2.45)<br />

Let us again emphasize that here we are in the case q + 1, where the grading is the<br />

induced grading on the boundary <strong>and</strong> E q+1 = −Γ.<br />

Next we exp<strong>and</strong> the commutator (2.44). However, we will confine ourselves to small<br />

k. The calculation is basically the same as in [GBVF01, p. 451]. The only difference is<br />

that on a closed manifold (2.44) is a priori 0 while here it coincides <strong>with</strong> the transgressed<br />

<strong>Chern</strong> character on the boundary.<br />

Case 1: k = 0. (2.44) exp<strong>and</strong>s to<br />

On the other h<strong>and</strong><br />

b 〈[D t , a 0 ], Ḋt]〉 + b 〈a 0 , [D t , Ḋt]〉. (2.46)<br />

B b /ch 1 (D t , Ḋt)(a 0 ) = b /ch 1 (D t , Ḋt)(1, a 0 )<br />

= b 〈1, Ḋt, [D t , a 0 ]〉 − b 〈1, [D t , a 0 ], Ḋt〉<br />

= − b 〈[D t , a 0 ], 1, Ḋt〉 − b 〈[D t , a 0 ], Ḋt, 1〉<br />

= − b 〈[D t , a 0 ], Ḋt]〉,<br />

(2.47)<br />

by (2.32). Moreover using the well–known <strong>for</strong>mula<br />

we have<br />

hence altogether<br />

d<br />

dt e−σD2 t<br />

∫ σ<br />

= − e (σ−s)D2 t [Dt , Ḋt]e −sD2 t ds, (2.48)<br />

0<br />

d b Ch 0 (D t )(a 0 ) = − b 〈a 0 , [D t ,<br />

dt<br />

Ḋt]〉, (2.49)<br />

d b Ch 0 (D t ) + B b /ch 1 (D t ,<br />

dt<br />

Ḋt) = − /ch 0 (D ∂ t , Ḋ∂ t ). (2.50)


36 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Case 2: k = 1. To be on the safe side, we also look at an example in the odd case.<br />

We will again make repeated use of the <strong>for</strong>mulæ in Proposition 2.7 <strong>with</strong>out further<br />

mention. Eq. (2.44) now exp<strong>and</strong>s to<br />

b 〈[D t , a 0 ], Ḋt, [D t , a 1 ]〉 − b 〈[D t , a 0 ], [D t , a 1 ], Ḋt〉<br />

+ b 〈a 0 , [D t , Ḋt], [D t , a 1 ]〉 + b 〈a 0 , [D t , a 1 ], [D t , Ḋt]〉<br />

− b 〈a 0 , Ḋt, [D 2 t , a 1 ]〉 − b 〈a 0 , [D 2 t , a 1 ], Ḋt〉.<br />

(2.51)<br />

On the other h<strong>and</strong><br />

B b /ch 2 (D t , Ḋt)(a 0 ) = b /ch 2 (D t , Ḋt)(1, a 0 , a 1 ) − b /ch 2 (D t , Ḋt)(1, a 1 , a 0 )<br />

= b 〈1, Ḋt, [D t , a 0 ], [D t , a 1 ]〉 − b 〈1, [D t , a 0 ], Ḋt, [D t , a 1 ]〉<br />

+ b 〈1, [D t , a 0 ], [D t , a 1 ], Ḋt〉 − b 〈1, Ḋt, [D t , a 1 ], [D t , a 0 ]〉<br />

+ b 〈1, [D t , a 1 ], Ḋt, [D t , a 0 ]〉 − b 〈1, [D t , a 1 ], [D t , a 0 ], Ḋt〉<br />

= b 〈[D t , a 0 ], [D t , a 1 ], 1, Ḋt〉 + b 〈[D t , a 0 ], 1, [D t , a 1 ], Ḋt〉<br />

+ b 〈[D t , a 0 ], [D t , a 1 ], Ḋt, 1〉 − b 〈[D t , a 0 ], Ḋt, [D t , a 1 ], 1〉<br />

− b 〈[D t , a 0 ], Ḋt, 1, [D t , a 1 ]〉 − b 〈[D t , a 0 ], 1, Ḋt, [D t , a 1 ]〉<br />

= b 〈[D t , a 0 ], [D t , a 1 ], Ḋt〉 − b 〈[D t , a 0 ], Ḋt, [D t , a 1 ]〉,<br />

(2.52)<br />

which equals the negative of the first two summ<strong>and</strong>s of (2.51).<br />

Furthermore,<br />

b b /ch 0 (D t , Ḋt)(a 0 , a 1 ) = b /ch 0 (D t , Ḋt)([a 0 , a 1 ]) = b 〈[a 0 , a 1 ], Ḋt〉. (2.53)<br />

Applying (2.33) <strong>and</strong> (2.34) to the last two summ<strong>and</strong>s of (2.51) we find<br />

b 〈a 0 , Ḋt, [D 2 t , a 1 ]〉 + b 〈a 0 , [D 2 t , a 1 ], Ḋt〉<br />

= b 〈a 0 , Ḋta 1 〉 − b 〈a 1 a 0 , Ḋt〉 + b 〈a 0 a 1 , Ḋt〉 − b 〈a 0 , a 1 Ḋ t 〉<br />

= b 〈a 0 , [Ḋt, a 1 ]〉 + b b /ch 0 (D t , Ḋt)(a 0 , a 1 ),<br />

(2.54)<br />

hence adding B b /ch 2 (D t , Ḋt)(a 0 , a 1 ) <strong>and</strong> b b /ch 0 (D t , Ḋt)(a 0 , a 1 ) to the right h<strong>and</strong> side of<br />

(2.51) we obtain<br />

/ch 1 (D ∂ t , Ḋ∂ t )(a 0,∂ , a 1,∂ ) + B b /ch 2 (D t , Ḋt)(a 0 , a 1 ) + b b /ch 0 (D t , Ḋt)(a 0 , a 1 )<br />

= − b 〈a 0 , [Ḋt, a 1 ]〉 + b 〈a 0 , [D t , Ḋt], [D t , a 1 ]〉 + b 〈a 0 , [D t , a 1 ], [D t , Ḋt]〉<br />

= − d b Ch 1 (D t )(a 0 , a 1 )<br />

dt<br />

(2.55)<br />

in view of (2.48).<br />

With more ef<strong>for</strong>t but in a similar manner, the previous considerations can be extended<br />

to arbitrary k, thus proving Eq. (2.7).


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 37<br />

3. Comparison results <strong>and</strong> estimates on the cylinder<br />

This section is devoted to some crucial estimates <strong>for</strong> the heat kernel of a b-Dirac<br />

operator. These estimates will be used to analyze the short <strong>and</strong> long time behavior<br />

of the <strong>Chern</strong> character. Throughout this section it will be convenient to work in the<br />

cylindrical context.<br />

3.1. Comparison results. Let M j , j = 1, 2, be complete Riemannian manifolds<br />

<strong>with</strong> cylindrical ends. Assume that M 1 <strong>and</strong> M 2 share a common cylinder component<br />

(−∞, 0] × N. That is, if M j = (−∞, 0] × N j ∪ Nj X j , j = 1, 2, then N is (after a suitable<br />

identification) a common (union of) connected component(s) of N 1 , N 2 . A typical<br />

example will be M 2 = R × N.<br />

Suppose that D j are <strong>for</strong>mally self–adjoint Dirac operators (cf. Subsection 1.7) on<br />

M j , j = 1, 2 <strong>with</strong> D 1|(−∞,0]×N = D 2|(−∞,0]×N =: D = c(dx) d + D dx ∂. The operators<br />

D j are supposed to act on sections of the Hermitian vector bundles W j such that<br />

W 1|(−∞,0]×N = W 2|(−∞,0]×N . As explained in Appendix A, we identify Γ ∞( (−∞, c] ×<br />

N; W ) , c ∈ R, <strong>with</strong> the completed tensor product C ∞( (−∞, c] ) ( ) ( ) ˆ⊗Γ ∞ (N; W ) <strong>and</strong> accordingly<br />

b Γ ∞ cpt (−∞, c) × N; W <strong>with</strong> b Ccpt ∞ (−∞, c) ˆ⊗Γ ∞ (N; W ). We want to compare<br />

the resolvents <strong>and</strong> heat kernels of D j on the common cylinder (−∞, 0] × N.<br />

To this end, we will make repeated use of Remark 1.10 <strong>with</strong>out mentioning it every<br />

time. Moreover, we also will tacitly use the fact that<br />

inf spec ess D 2 = inf spec D 2 ∂. (3.1)<br />

A proof of this can be found in [Mül94, Sec. 4]. Concerning notation, ‖T ‖ p st<strong>and</strong>s <strong>for</strong><br />

the p-th Schatten norm of an operator T acting on a Hilbert space H unless otherwise<br />

stated.<br />

Proposition 3.1. 1. Fix an open sector Λ := { z ∈ C ∣ } ∗<br />

ε ≤ arg z ≤ 2π − ε ⊂<br />

C \ R + where ε > 0. Then on (−∞, c] × N, c < 0, the difference of the resolvents<br />

(D 2 1 − λ) −1 − (D 2 2 − λ) −1 , λ ∈ Λ, is trace class <strong>and</strong><br />

∥ ( (D 2 1 − λ) −1 − (D 2 2 − λ) −1) ∥<br />

|(−∞,c]×N<br />

∥<br />

1<br />

≤ C(c, n)|λ| −n , as λ → ∞ in Λ, (3.2)<br />

<strong>with</strong> n arbitrarily large.<br />

2. On (−∞, c] × N, c < 0, the difference of the heat kernels<br />

(<br />

D<br />

l<br />

1 e −tD2 1 − D<br />

l<br />

2 e −tD2 2)<br />

|(−∞,c]×N<br />

(3.3)<br />

is trace class <strong>for</strong> t > 0 <strong>and</strong><br />

∥ ( )<br />

D l 1e −tD2 1 − D<br />

l<br />

2 e −tD2 2<br />

|(−∞,c]×N<br />

∥<br />

1<br />

≤ C(c, n, t 0 )t n , 0 < t ≤ t 0 , l ∈ Z + , (3.4)<br />

<strong>with</strong> n arbitrarily large.


38 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

ϕ<br />

ψ<br />

c<br />

supp ϕ<br />

supp dψ<br />

Figure 3. The cut-off functions ϕ <strong>and</strong> ψ.<br />

3. Assume in addition that D 1 , D 2 are Fredholm operators <strong>and</strong> denote by H j the<br />

orthogonal projections onto Ker D j , j = 1, 2. Then <strong>for</strong> 0 < δ < inf spec ess D 2 there is a<br />

constant C(c, δ) such that<br />

∥ ( D l 1e −tD2 1 (I − H1 ) − D l 2e −tD2 2 (I − H2 ) ) ∥ ≤ C(c, δ)e −tδ , (3.5)<br />

|(−∞,c]×N 1<br />

<strong>for</strong> 0 < t < ∞, l ∈ Z + .<br />

Proof. 1.<br />

We choose cut–off functions ϕ, ψ ∈ C ∞ (R) such that<br />

{<br />

{<br />

1, x ≤ 4/5c,<br />

1, x ≤ 2/5c,<br />

ϕ(x) =<br />

ψ(x) =<br />

0, x ≥ 3/5c,<br />

0, x ≥ 1/5c,<br />

(3.6)<br />

see Figure 3.<br />

We have ψϕ = ϕ, supp dψ ∩ supp ϕ = ∅. Consider<br />

R ψ,ϕ (λ) := ψ ( (D 2 1 − λ) −1 − (D 2 2 − λ) −1) ϕ, (3.7)<br />

viewed as an operator acting on sections over M 1 . Then<br />

(D 2 1 − λ)R ψ,ϕ (λ) = [D 2 1, ψ](D 2 1 − λ) −1 ϕ − [D 2 2, ψ](D 2 2 − λ) −1 ϕ, (3.8)<br />

where again [D 2 2, ψ](D 2 2 − λ) −1 ϕ is considered as acting on sections over M 1 . Since the<br />

operators [D 2 j , ψ], j = 1, 2 have compact support which is disjoint from the support of<br />

ϕ we may apply Proposition B.2 to the r.h.s. of (3.8) to infer that R ψ,ϕ (λ) is trace class<br />

<strong>and</strong> that the estimate (3.2) holds.<br />

2. This follows from 1. <strong>and</strong> the contour integral representation (B.12) of the heat<br />

kernel. Cf. Proposition B.5.<br />

3. This follows from 1. <strong>and</strong> (B.12) by taking the contour as in Figure 6, page 76. □<br />

We refer to Appendix A <strong>for</strong> the notation b Diff a cpt((−∞, 0) × N; W ) (A.16). In what<br />

follows, the subscript cpt indicates that the objects are supported away from {0} × N;<br />

it does not indicate compact support. The support of objects in b Diff a cpt, <strong>and</strong> other<br />

spaces having the cpt decoration, may be unbounded towards {−∞} × N.<br />

Theorem 3.2. Let A j ∈ b Diff a ∑<br />

j<br />

cpt((−∞, 0) × N; W ), j = 0, ..., k be given, a := k a j .<br />

j=0


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 39<br />

1. For t 0 , n > 0 there is a constant C(t 0 , n) such that <strong>for</strong> all σ ∈ ∆ k , σ j > 0<br />

∥<br />

( ∥A 0 e −σ 0tD 2 1 · ... · Al e<br />

−σ l tD 2 1 − e<br />

−σ l tD2) 2 Al+1 · ... · A k e −σ ktD 2 1∥ ( 1<br />

k∏<br />

)<br />

≤ C(t 0 , n)<br />

(σ l t) n , 0 < t < t 0 . (3.9)<br />

j=0,j≠l<br />

σ −a j/2<br />

j<br />

2. Assume in addition that D 1 , D 2 are Fredholm operators <strong>and</strong> denote by H j the<br />

orthogonal projections onto Ker D j , j = 1, 2. Then <strong>for</strong> 0 < δ < inf spec ess D 2 <strong>and</strong> all<br />

σ ∈ ∆ k , σ j > 0,<br />

∥<br />

(<br />

∥A 0 e −σ 0tD 2 1 (I − H1 ) · ... · A l e<br />

−σ l tD 2 1 (I − H1 ) − e −σ ltD 2 2 (I − H2 ) ) A l+1 · ...<br />

... · A k e −σ ktD 2 1 (I − H1 ) ∥<br />

( 1<br />

k∏<br />

)<br />

≤ C(δ)<br />

e −tδ , 0 < t < ∞. (3.10)<br />

j=0,j≠l<br />

σ −a j/2<br />

j<br />

( ∏k<br />

)<br />

Remark 3.3. With some more ef<strong>for</strong>ts one can show that the factors<br />

j=0 σ−a j/2<br />

j on<br />

the right h<strong>and</strong> sides of the estimates (3.9), (3.10), <strong>and</strong> also below in (3.34), (3.36) are<br />

obsolete. But since this is not needed <strong>for</strong> our purposes we prefer a less cumbersome<br />

presentation.<br />

Proof. First note that by Proposition A.2 the operator A(i + D) −a is bounded <strong>for</strong><br />

A ∈ b Diff a cpt((−∞, 0) × N; W ) <strong>and</strong> hence the Spectral Theorem implies that <strong>for</strong> t 0 > 0<br />

there is a C(t 0 ) such that<br />

‖Ae −tD2 ‖ ∞ ≤ C(t 0 )t −a/2 , 0 < t < t 0 . (3.11)<br />

If D is Fredholm then <strong>for</strong> 0 < δ < inf spec ess D 2 <strong>and</strong> t 0 > 0 there is a C(t 0 , δ) such that<br />

‖Ae −tD2 (I − H)‖ ∞ ≤ C(δ)e −tδ , t 0 < t < ∞. (3.12)<br />

(3.11) <strong>and</strong> (3.12) together imply that <strong>for</strong> 0 < δ < inf spec ess D 2 there is a C(δ) such<br />

that<br />

‖Ae −tD2 (I − H)‖ ∞ ≤ C(δ)t −a/2 e −tδ , 0 < t < ∞. (3.13)<br />

The first claim now follows from the previous Theorem 3.1, 2.: <strong>with</strong> some c < 0 such<br />

that supp A j ⊂ (−∞, c] × N we find<br />

∥<br />

( ∥A 0 e −σ 0tD 2 1 · ... · Al e<br />

−σ l tD 2 1 − e<br />

−σ l tD2) 2 Al+1 · ... · A k e −σ ktD 2 ∥<br />

1<br />

≤<br />

( k∏<br />

j=0,j≠l<br />

)<br />

∥∥ ‖A j e −σ jtD 2 1 ‖∞ A l (i + D) −a l∥ ∞ ·<br />

· ∥ ( )<br />

(i + D 1 ) a l<br />

e −σ ltD 2 1 − (i + D2 ) a l<br />

e −σ ltD 2 2<br />

( k∏<br />

)<br />

≤ C(t 0 , n)<br />

σl n t n−a/2 , 0 < t < t 0 .<br />

j=0,j≠l<br />

σ −a j/2<br />

j<br />

∥<br />

1<br />

∥<br />

∥<br />

|(−∞,c]×N 1<br />

(3.14)


40 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Here we have used (3.11). Since σ j < 1 an inequality which is valid <strong>for</strong> 0 < σ j t < t 0 is<br />

certainly also valid <strong>for</strong> 0 < t < t 0 . Since n is arbitrary (3.14) proves the first claim.<br />

2. Similarly, using Theorem 3.1, 3. <strong>and</strong> (3.13)<br />

∥<br />

(<br />

∥A 0 e −σ 0tD 2 1 (I − H1 ) · ... · A l e<br />

−σ l tD 2 1 (I − H1 ) − e −σ ltD 2 2 (I − H2 ) ) A l+1 · ...<br />

... · A k e −σ ktD 2 ∥<br />

1 (I − H1 )<br />

≤<br />

( k∏<br />

j=0,j≠l<br />

∥<br />

1<br />

)<br />

∥∥Al ‖A j e −σ jtD 2 1 (I − H1 )‖ ∞ (i + D) −a l∥ ∞·<br />

· ∥ ( (i + D 1 ) a l<br />

e −σ ltD 2 1 (I − H1 ) − (i + D 2 ) a l<br />

e −σ ltD 2 2 (I − H2 ) ) ∥<br />

|(−∞,c]×N<br />

( k∏<br />

)<br />

≤ C(δ)<br />

j=0,j≠l<br />

σ −a j/2<br />

j<br />

t −a/2 e −tδ .<br />

∥<br />

1<br />

(3.15)<br />

Together <strong>with</strong> the proved short time estimate <strong>and</strong> the fact that the H j are of finite rank<br />

<strong>and</strong> thus of trace class we reach the conclusion.<br />

□<br />

3.2. Trace estimates <strong>for</strong> the model heat kernel. We consider the heat kernel of<br />

the Laplacian ∆ R on the real line<br />

k t (x, y) = 1 √<br />

4πt<br />

e −(x−y)2 /4t . (3.16)<br />

By slight abuse of notation we will denote the operator of multiplication by Id R by X.<br />

We want to estimate the Schatten norms of e α|X| e −t∆ R e β|X| . Be<strong>for</strong>e we start <strong>with</strong> this<br />

let us note <strong>for</strong> future reference:<br />

∫<br />

e − z2<br />

λt −βz dz = √ πλt e λβ2t/4 ,<br />

R<br />

∫<br />

e − z2<br />

λt +β|z| dz ≤ 2 √ β ∈ R; λ, t > 0. (3.17)<br />

πλt e λβ2t/4 ,<br />

R<br />

Furthermore, we will need the well-known Schur’s test:<br />

Lemma 3.4 ([HaSu78, Thm. 5.2]). Let K be an integral operator on a measure space<br />

(Ω, µ) <strong>with</strong> kernel k : Ω × Ω → C. Assume that there are positive measurable functions<br />

p, q : Ω → (0, ∞) such that<br />

∫<br />

|k(x, y)|p(y)dµ(y) ≤ C p q(x),<br />

X<br />

∫<br />

(3.18)<br />

|k(x, y)|q(x)dµ(x) ≤ C q p(y).<br />

Then K is bounded in L 2 (Ω, µ) <strong>with</strong> ‖K‖ ≤ √ C p C q .<br />

Now we can prove the following estimate.<br />

X


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 41<br />

Proposition 3.5. Let ∆ R = − d2<br />

dx 2 be the Laplacian on the real line. Then <strong>for</strong> α > β ><br />

0, t > 0, l ∈ Z + , the integral operator e −α|X|( d<br />

dx) le −t∆ Re β|X|<br />

<strong>with</strong> the (not everywhere<br />

smooth) kernel<br />

1<br />

√<br />

4πt<br />

e −α|x| ∂ l xe −(x−y)2 /4t+β|y|<br />

is p-summable <strong>for</strong> 1 ≤ p ≤ ∞ <strong>and</strong> we have the estimate<br />

(3.19)<br />

‖e −α|X|( d ) le −t∆ R<br />

e β|X| ‖ p<br />

dx<br />

≤ ( )<br />

c 1 t − l 2 − 1<br />

2p + c2 t − 1<br />

2p (α − β) −1/p e (α2 +β 2 )t , 0 < t < ∞ (3.20)<br />

<strong>with</strong> (computable) constants c 1 , c 2 independent of α, β, p, t.<br />

Remark 3.6. We are not striving to make these estimates optimal. We chose to<br />

<strong>for</strong>mulate them in such a way that they are sufficient <strong>for</strong> our purposes <strong>and</strong> such that<br />

the proofs do not become too cumbersome.<br />

Proof. We will prove this estimate <strong>for</strong> p = ∞ using Schur’s test Lemma 3.4 <strong>and</strong> <strong>for</strong><br />

p = 2 by estimating the L 2 -norm of the kernel. The case p = 1 will then follow from<br />

the semigroup property of the heat kernel. The result <strong>for</strong> general p follows from the<br />

cases p = 1 <strong>and</strong> p = ∞ <strong>and</strong> the interpolation inequality (B.15).<br />

The case l ≥ 2 can easily be reduced to the case l ∈ {0, 1} in view of the identity<br />

∂ 2k<br />

x e −t∆ R<br />

= (−∆ R ) k e −t∆ R<br />

= ∂ k t e −t∆ R<br />

. (3.21)<br />

p = ∞. We apply Schur’s test <strong>with</strong> p(x) = q(x) = 1. We will make frequent use of<br />

(3.17) <strong>with</strong>out explicitly mentioning it all the time.<br />

∫<br />

1<br />

√ e −α|x|−(x−y)2 /4t+β|y| dy<br />

4πt R<br />

≤ √ 1 ∫<br />

e −α|x| e −z2 /4t+β|x|+β|z| dz<br />

(3.22)<br />

4πt<br />

≤ e (β−α)|x| 2e β2t ≤ 2e β2t .<br />

Reversing the roles of x <strong>and</strong> y one gets similarly<br />

∫<br />

1<br />

√ e β|y|−(x−y)2 /4t−α|x| dx<br />

4πt R<br />

≤ √ 1 ∫<br />

e β|y| e −z2 /4t−α|y|+α|z| dz<br />

4πt<br />

≤ e (β−α)|y| 2e α2t ≤ 2e α2t .<br />

R<br />

R<br />

(3.23)<br />

This proves the result <strong>for</strong> l = 0 <strong>and</strong> p = ∞. In the case l = 1 the integral<br />

∫<br />

1 |x − y|<br />

√ e −α|x|−(x−y)2 /4t+β|y| dy (3.24)<br />

4πt 2t<br />

is estimated similarly.<br />

R


42 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

p = 2. We estimate the L 2 -norm of the kernel on R × R by:<br />

∫ ∫<br />

1<br />

(x−y)2<br />

−2α|x|−<br />

e 2t +2β|y| dxdy<br />

4πt R R<br />

≤ 1 ∫ ∫<br />

e −2α|x| e − z2<br />

2t +2β|z|+2β|x| dzdx<br />

4πt R<br />

R<br />

≤ √ 1 ∫<br />

e −2(α−β)|x| e 2β2t dx<br />

2πt<br />

= √ 1 1<br />

2πt α − β e2β2t ,<br />

proving the result <strong>for</strong> l = 0 <strong>and</strong> p = 2. Again, the case l = 1 is similar.<br />

R<br />

p = 1. Put c = (α + β)/2. Then the semigroup property of the heat kernel gives<br />

‖e −α|X| e −t∆ R<br />

e β|X| ‖ 1<br />

≤ ‖e −α|X| e −t/2∆ R<br />

e c|X| ‖ 2 ‖e −c|X| e −t/2∆ R<br />

e β|X| ‖ 2 ,<br />

<strong>and</strong> using the proved case p = 2 gives the result <strong>for</strong> p = 1.<br />

(3.25)<br />

(3.26)<br />

The previous Proposition <strong>and</strong> st<strong>and</strong>ard estimates <strong>for</strong> the heat kernel on closed manifolds<br />

(cf. the Appendix B) immediately give the following result <strong>for</strong> the heat kernel of<br />

the model Dirac operator on the cylinder.<br />

Proposition 3.7. Let N be a compact closed manifold <strong>and</strong> D = Γ ( d<br />

+ A) a<br />

dx<br />

Dirac operator on the cylinder M = R × N (cf. Remark 1.10). Furthermore, let<br />

Q ∈ b Diff q cpt((−∞, 0) × N; W ) a b-differential operator of order q <strong>with</strong> support in<br />

some cylindrical end (−∞, c) × N. Then <strong>for</strong> α > β > 0, t > 0 the integral operator<br />

e −α|X| Qe −tD2 e β|X| <strong>with</strong> kernel<br />

1<br />

√ e −α|x| Q x e −(x−y)2 /4t+β|y| e −tA2 (3.27)<br />

4πt<br />

is p-summable <strong>for</strong> 1 ≤ p ≤ ∞. Furthermore, <strong>for</strong> ε > 0, t 0 > 0, there is a constant<br />

C(ε, t 0 ), such that <strong>for</strong> 1 ≤ p ≤ ∞, 0 < t < t 0 , 0 < β < α<br />

‖e −α|X| Qe −tD2 e β|X| ‖ p ≤ C(ε, t 0 )(α − β) −1/p dim M+ε<br />

− −<br />

t q 2p 2 . (3.28)<br />

If in addition the operator A is invertible then <strong>for</strong> 0 < δ < inf spec A 2 <strong>and</strong> ε > 0 there<br />

are constants C j (δ, ε), j = 1, 2 such that <strong>for</strong> 1 ≤ p ≤ ∞, 0 < t < ∞, 0 < β < α we<br />

have the estimate<br />

□<br />

‖e −α|X| Qe −tD2 e β|X| ‖ p<br />

≤ ( C 1 (δ, ε)t − q 2 + C2 (δ, ε) ) (α − β) −1/p dim M+ε<br />

−<br />

t<br />

2p<br />

e (α2 +β 2−δ)t . (3.29)<br />

For the definition of b Diff q cpt, b Diff q see Proposition A.1 <strong>and</strong> Eq. (A.16).<br />

Proof. By Proposition A.1 we may write Q as a sum of operators of the <strong>for</strong>m<br />

( d<br />

) l<br />

f(x, p)P<br />

(3.30)<br />

dx<br />

<strong>with</strong>


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 43<br />

• f ∈ b Γ ∞ cpt((−∞, c) × N; End W ),<br />

• P ∈ Diff b−l (N; W |N ) a differential operator of order b − l on N which is constant<br />

in x-direction.<br />

Note that e −α|X| commutes <strong>with</strong> f. Furthermore, f is uni<strong>for</strong>mly bounded. Thus<br />

∥ ∥ ∥<br />

∥<br />

∥e −α|X| fP ∂xe l −tD2 e β|X| ∥∥p ∥∥e<br />

≤ ‖f‖ −α|X| ∞ P ∂xe l −tD2 e β|X| ∥∥p<br />

. (3.31)<br />

Inside the p-norm is now a tensor product of operators<br />

e −α|X| P ∂ l xe −tD2 e β|X| = ( e −α|X| ∂ l xe −t∆ R<br />

e β|X|) ⊗ ( P e −tA2 )<br />

. (3.32)<br />

Since the p-norm of a tensor product is the product of the p-norms the claim follows from<br />

Proposition 3.5 <strong>and</strong> st<strong>and</strong>ard elliptic estimates <strong>for</strong> the closed manifold N (Propositions<br />

B.5, B.6).<br />

□<br />

3.3. Trace class estimates <strong>for</strong> the JLO integr<strong>and</strong> on manifolds <strong>with</strong> cylindrical<br />

ends. The heat kernel estimate <strong>for</strong> the Dirac operator on the model cylinder<br />

Proposition 3.7 together <strong>with</strong> the comparison result in Section 3.1 will now be used<br />

to obtain trace estimates <strong>for</strong> b-differential operators similar to the one in Proposition<br />

B.8 if the indicial operator of at least one of the operators A 0 , ..., A k vanishes. Let us<br />

mention here that in the following we will use the notation introduced in Section 2, in<br />

particular Eq. (2.3).<br />

Proposition 3.8. Let M = (−∞, 0] × N ∪ N X be a complete manifold <strong>with</strong> cylindrical<br />

ends <strong>and</strong> let D be a Dirac operator on M. Let A 0 , ..., A k ∈ b Diff(M; W ) be b-differential<br />

operators of order a 0 , ..., a k . Assume that <strong>for</strong> at least one index l ∈ {0, ..., k} the indicial<br />

family of A l vanishes. Then <strong>for</strong> t > 0, σ ∈ ∆ k the operator<br />

A 0 e −σ 0tD 2 A 1 · . . . · A k e −σ ktD 2 (3.33)<br />

is trace class. Furthermore, there are the following estimates:<br />

1. For t 0 > 0, ε > 0 there is a constant C(t 0 , ε) such that <strong>for</strong> all σ = (σ 0 , ..., σ k ) ∈ ∆ k ,<br />

σ j > 0,<br />

‖A 0 e −σ 0tD 2 A 1 · . . . · A k e −σ ktD 2 ‖ 1<br />

( k∏<br />

)<br />

≤ C(t 0 , ε) σ −a j/2<br />

j t −a/2−(dim M)/2−ε , 0 < t ≤ t 0 .<br />

j=0<br />

(3.34)<br />

In particular, if a j ≤ 1, j = 0, ..., k, then<br />

‖(A 0 , ..., A k ) √ tD ‖ = O(t−a/2−(dim M)/2−0 ), t → 0 + . (3.35)<br />

2. Assume additionally that D is Fredholm <strong>and</strong> denote by H the orthogonal projection<br />

onto Ker D. Then <strong>for</strong> ε > 0 <strong>and</strong> any 0 < δ < inf spec ess D 2 there is a constant C(δ, ε)<br />

such that <strong>for</strong> all σ ∈ ∆ k , σ j > 0<br />

‖A 0 e −σ 0tD 2 (I − H)A 1 · . . . · A k e −σ ktD 2 (I − H)‖ 1<br />

( k∏<br />

)<br />

≤ C(δ, ε) σ −a j/2<br />

j t −a/2−(dim M)/2−ε e −tδ , <strong>for</strong> all 0 < t < ∞.<br />

j=0<br />

(3.36)


44 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

In particular, if a j ≤ 1, j = 0, ..., k, then<br />

‖(A 0 (I − H), ..., A k (I − H)) √ tD ‖<br />

≤ ˜C(ε, δ) t −a/2−(dim M)/2−ε e −tδ , <strong>for</strong> all 0 < t < ∞.<br />

(3.37)<br />

Proof. We first reduce the problem to a problem on the cylinder (−∞, 0] × N.<br />

Write A j = A (0)<br />

j + A (1)<br />

j where A (0)<br />

j has compact support <strong>and</strong> A (1)<br />

j is supported on<br />

(−∞, c] × N <strong>for</strong> some c < 0.<br />

Then we split A 0 e −σ 0tD 2 A 1·. . .·A k e −σ ktD 2 (resp. A 0 e −σ 0tD 2 (I−H)A 1·. . .·A k e −σ ktD 2 (I−<br />

H)) into a sum of terms obtained by decomposing A j = A (0)<br />

j + A (1)<br />

j .<br />

To the summ<strong>and</strong>s involving at least one term A (0)<br />

j we apply Proposition B.8. To<br />

the remaining summ<strong>and</strong> involving only A (1)<br />

j we first apply the comparison Theorem 3.2<br />

= Γ ( d<br />

+ A) , where D<br />

dx 2 acts on sections over the<br />

<strong>with</strong> D 1 = D <strong>and</strong> D 2 = Γ d + D dx ∂<br />

cylinder R × N.<br />

Hence it remains to prove the claim <strong>for</strong> the cylinder M = R × N where each A j is<br />

supported on (−∞, c] × N <strong>for</strong> some c < 0.<br />

For definiteness it is not a big loss of generality if we assume that the indicial family<br />

of A 0 vanishes (I.e. l = 0). Write A 0 = e −|X| Ã 0 <strong>with</strong> A 0 ∈ b Diff a 0<br />

cpt((−∞, 0) × N; W ).<br />

Let β 0 , ..., β k+1 be real numbers <strong>with</strong> 1 ≥ β 0 > β 1 > ... > β k > β k+1 = 0.<br />

Let us assume that D is Fredholm <strong>and</strong> prove the claim 2. The proof of claim 1. is<br />

similar <strong>and</strong> left to the reader. Hölder’s inequality yields<br />

∥ A0 e −σ 0tD 2 (I − H)A 1 · ... · A k e −σ ktD 2 (I − H) ∥ ∥<br />

1<br />

≤ C ∥ e<br />

−β 0 |X| Ã 0 e −σ 0tD 2 (I − H)e ∥ β 1|X| σ<br />

−1·<br />

0<br />

k∏ ∥<br />

· ∥e −βj|X| A j e −σ jtD 2 (I − H)e ∥ β j+1|X| σ<br />

−1. (3.38)<br />

j=1<br />

The individual factors are estimated by Proposition 3.7 <strong>and</strong> we obtain <strong>for</strong> 0 < t < ∞:<br />

k∏ (<br />

... ≤ C1,j (δ, ε, β)(tσ j ) −aj/2 + C 2,j (δ, ε, β) )·<br />

j=0<br />

dim M+ε<br />

− σ<br />

· t 2 j<br />

e (β2 j +β2 j+1 −δ)σ jt<br />

( k∏ )<br />

≤ C(δ, ε, β, γ) σ −a dim M+ε<br />

j/2 −a/2−<br />

j t 2 e (2 P βj 2+γ−δ)t ,<br />

j=0<br />

j<br />

(3.39)<br />

<strong>for</strong> any γ > 0. The γ > 0 is introduced to compensate t −a/2 as t → ∞. Since we may<br />

choose 2 ∑ βj 2 + γ as small as we please, the claim is proved.<br />

The remaining cases are treated similarly.<br />

□<br />

3.4. Estimates <strong>for</strong> b-traces. Now we come to the main result of this section.<br />

Theorem 3.9. In the notation of Proposition 3.8 we now drop the assumption that the<br />

indicial family of one of the A l vanishes. Then the following estimates hold:


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 45<br />

1. For ε > 0, t 0 > 0 there is a constant C(ε, t 0 ) such that <strong>for</strong> all σ = (σ 0 , ..., σ k ) ∈<br />

∆ k , σ j > 0,<br />

b Tr ( A 0 e −σ 0tD 2 A 1 · . . . · A k e −σ ktD 2 )<br />

In particular,<br />

( k∏<br />

≤ C(ε, t 0 )<br />

j=0<br />

σ −a j/2−ε<br />

j<br />

)<br />

t −a/2−(dim M)/2−ε , 0 < t ≤ t 0 .<br />

(3.40)<br />

| b 〈A 0 , ..., A k 〉 √ tD | = O(t−a/2−(dim M)/2−ε ), t → 0 + . (3.41)<br />

2. If D is Fredholm then <strong>for</strong> ε > 0 <strong>and</strong> any 0 < δ < inf spec ess D 2 there is a constant<br />

C(ε, δ) such that <strong>for</strong> all σ ∈ ∆ k , σ j > 0<br />

b Tr ( A 0 e −σ 0tD 2 (I − H)A 1 · . . . · A k e −σ ktD 2 (I − H) )<br />

In particular,<br />

( k∏<br />

≤ C(ε, δ)<br />

j=0<br />

σ −a j/2−ε<br />

j<br />

)<br />

| b 〈A 0 (I − H), ..., A k (I − H)〉 √ tD |<br />

t −a/2−(dim M)/2−ε e −tδ , <strong>for</strong> all 0 < t < ∞.<br />

≤ ˜C δ,ε t −a/2−(dim M)/2−ε e −tδ , <strong>for</strong> all 0 < t < ∞.<br />

(3.42)<br />

(3.43)<br />

Proof. Arguing as in the proof of Proposition 3.8 we may assume that D is the model<br />

Dirac operator <strong>and</strong> that A 0 , . . . , A k ∈ b Diff cpt<br />

(<br />

(−∞, 0) × ∂M; W<br />

)<br />

.<br />

By Proposition 1.6 we have<br />

b Tr ( A 0 e −σ 0tD 2 A 1 · . . . · A k e −σ ktD 2 )<br />

= −<br />

k∑<br />

j=0<br />

Tr ( xA 0 e −σ 0tD 2 . . . [ d<br />

dx , A j] . . . e −σ ktD 2 )<br />

. (3.44)<br />

Although multiplication by x is not a b-differential operator it is easy to see that<br />

Proposition 3.8 still holds true <strong>for</strong> the summ<strong>and</strong>s on the right of (3.44). The reason is<br />

that <strong>for</strong> any fixed ε > 0 the function xe −ε|x| is bounded. In fact any 0 < ε < 1 will do<br />

since the coefficients of [ d , A dx j] are O(e x ) as x → −∞.<br />

□<br />

4. Estimates <strong>for</strong> the components of the entire b-character<br />

In this section we continue to work in the setting of a complete Riemannian manifold<br />

<strong>with</strong> cylindrical ends M, which is equivalent to a compact manifold <strong>with</strong> boundary <strong>with</strong><br />

an exact b-metric, cf. Appendix A. Furthermore, let D be a Dirac operator on M.<br />

4.1. Short time estimates.<br />

Proposition 4.1. The <strong>Chern</strong> characters b Ch k <strong>and</strong> b /ch k defined in (2.4) <strong>and</strong> (2.5)<br />

satisfy the following estimates <strong>for</strong> k ∈ Z + :<br />

b Ch k (tD)(a 0 , · · · , a k ) = O(t k−dim M−0 ),<br />

b /ch k (tD, D)(a 0 , · · · , a k ) = O(t k−dim M−0 ),<br />

t → 0+, (4.1)


46 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

<strong>for</strong> a j ∈ b C ∞ (M), j = 0, ..., k.<br />

In particular,<br />

(1) lim<br />

t→0+ b Ch k (tD) = 0 <strong>for</strong> k > dim M.<br />

(2) The function t ↦→ b /ch k (tD, D)(a 0 , ..., a k ) is integrable on [0, T ] <strong>for</strong> T > 0 <strong>and</strong><br />

k > dim M − 1.<br />

Proof. This follows immediately from Theorem 3.9.<br />

4.2. Large time estimates. Unless otherwise said we assume in this Subsection that<br />

D ∂ is invertible. Then inf spec ess D 2 = inf spec D 2 ∂ (cf. Eq. (3.1)) <strong>and</strong> hence D is a<br />

Fredholm operator. We denote by H the finite rank orthogonal projection onto the<br />

kernel of D.<br />

Lemma 4.2. Let A j ∈ b Diff(M; W ), a j = ord A j . Furthermore let H j = H or H j =<br />

I − H, j = 0, ..., k <strong>and</strong> assume that H j = H <strong>for</strong> at least one index j. Then <strong>for</strong> each<br />

0 < δ < inf spec ess D 2<br />

∥<br />

∥<br />

∥A 0 H 0 e −σ 0tD 2 A 1 H 1 e −σ 1tD 2 . . . A k H k e −σ ktD 2 ∥∥1<br />

( ∏<br />

≤ C(δ)<br />

l∈{j 1 ,...,j q}<br />

σ −a l/2<br />

l<br />

)<br />

t −a/2 e −(σ j 1 +...+σ jq )tδ , 0 < t < ∞,<br />

where j 1 , ..., j q are those indices <strong>with</strong> H j = I − H, a = ∑ l∈{j 1 ,...,j q} a l.<br />

□<br />

(4.2)<br />

Proof. We pick an index l <strong>with</strong> H l = H. Then Hölder’s inequality gives<br />

∥<br />

∥<br />

∥A 0 H 0 e −σ 0tD 2 A 1 H 1 e −σ 1tD 2 . . . A k H k e −σ ktD 2 ∥∥1<br />

≤ ∥ ∥ Al H l e −σ ltD 2 ∥<br />

∥1<br />

∏<br />

∥<br />

∥ Aj H j e −σ jtD 2 ∥∞ .<br />

The individual factors are estimated as follows: if H j = H then<br />

j≠l<br />

(4.3)<br />

‖A j He −σ jtD 2 ‖ p ≤ ‖A j H‖ p , <strong>for</strong> p ∈ {1, ∞}. (4.4)<br />

If H j = I − H then by the Spectral Theorem <strong>and</strong> Proposition A.2 we have <strong>for</strong> 0 < δ <<br />

inf spec ess D 2 ‖A j (I − H)e −σ jtD 2 ‖ ∞ ≤ C(δ, A j )(σ j t) −a j/2 e −σ jtδ , 0 < t < ∞. □<br />

The next Lemma is extracted from the proof of [CoMo93, Prop. 2].<br />

Lemma 4.3. Let f : R q + → C be a (continuous) rapidly decreasing function of q ≤ n<br />

variables. Then<br />

∫<br />

lim<br />

t→∞ t2q f(t 2 σ 1 , ..., t 2 σ q )dσ<br />

∆ n<br />

=<br />

1<br />

(n − q)!<br />

∫<br />

R q +<br />

f(u)du<br />

(4.5)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 47<br />

Proof. Changing variables u j = t 2 σ j , j = 1, ..., q; u j = σ j , j = q + 1, ..., n we find<br />

t<br />

∫∆ 2q f(t 2 σ 1 , ..., t 2 σ j )dσ<br />

n<br />

∫<br />

=<br />

{t −2 (u 1 +...+u q)+u q+1 +...+u n)≤1}<br />

f(u 1 , ..., u q )du<br />

∫<br />

∫<br />

(4.6)<br />

= f(u 1 , ..., u q ) (<br />

du<br />

t 2 ∆ q 1−t −2 (u 1 +...+u q)<br />

)∆ n−q<br />

∫<br />

1 (<br />

=<br />

1 − t −2 (u 1 + ... + u q ) ) n−q<br />

f(u)du.<br />

(n − q)! t 2 ∆ q<br />

By assumption f is rapidly decreasing, hence we may apply the Dominated Convergence<br />

Theorem to reach the conclusion.<br />

□<br />

4.2.1. Estimating the transgressed b-<strong>Chern</strong> character.<br />

Proposition 4.4. For k ≥ 1 <strong>and</strong> a 0 , ..., a k ∈ b C ∞ (M) we have<br />

{<br />

b /ch k O(t −2 ), k even ,<br />

(tD, D)(a 0 , ..., a k ) =<br />

t → ∞. (4.7)<br />

O(t −3 ), k odd ,<br />

Proof. /ch k (tD, D)(a 0 , ..., a k ) is a sum of terms of the <strong>for</strong>m<br />

T = b 〈a 0 , [tD, a 1 ], ..., [tD, a i−1 ], D, [tD, a i ], ..., [tD, a k ]〉 tD . (4.8)<br />

Writing A 0 = a 0 , A j = [D, a j ], j = 1, ..., i − 1, A j = [D, a j−1 ], j = i + 1, ..., k + 1, A i := D<br />

we find<br />

∑<br />

T = t k<br />

b 〈A 0 H 0 , ..., A k+1 H k+1 〉 tD , (4.9)<br />

H j ∈{H,I−H}<br />

where the sum runs over all sequences H 0 , ..., H k+1 <strong>with</strong> H j ∈ {H, I − H}. Since<br />

H[D, a j ]H = 0, HD = DH = 0 (note A i = D !) only terms containing no more than<br />

[k/2] + 1 copies of H can give a non-zero contribution.<br />

Consider such a nonzero summ<strong>and</strong> <strong>with</strong> at least one index j <strong>with</strong> H j = H <strong>and</strong> denote<br />

by q the number of indices l <strong>with</strong> H l = I − H. Then q ≥ [ k+1 ] + 1 <strong>and</strong> we infer from<br />

2<br />

Lemmas 4.2,4.3<br />

{<br />

t k b 〈A 0 H 0 , ..., A k+1 H k+1 〉 tD = O(t k−2q O(t −2 ), k even,<br />

) =<br />

(4.10)<br />

O(t −3 ), k odd .<br />

We infer from Theorem 3.9 that the remaining summ<strong>and</strong> <strong>with</strong> H j = I − H <strong>for</strong> all j<br />

decays exponentially as t → ∞ <strong>and</strong> we are done.<br />

□<br />

4.2.2. The limit as t → ∞ of the b-<strong>Chern</strong> character. As in [CoMo93] we put<br />

<strong>and</strong><br />

ϱ H (A) := HAH, (4.11)<br />

ω H (A, B) := ϱ H (AB) − ϱ H (A)ϱ H (B). (4.12)


48 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Proposition 4.5. Let a 0 , ..., a k ∈ b C ∞ (M). If k is odd then<br />

If k = 2q is even then<br />

lim<br />

b Ch k (tD)(a 0 , ..., a k ) = 0. (4.13)<br />

t→∞<br />

lim<br />

b Ch k (tD)(a 0 , ..., a 2q )<br />

t→∞<br />

= (−1)q Str ( ϱ H (a 0 )ω H (a 1 , a 2 ) . . . ω H (a 2q−1 , a 2q ) )<br />

q!<br />

=: κ 2q (D)(a 0 , . . . , a 2q ).<br />

Of course, since H is of finite rank ϱ H (a j ) <strong>and</strong> ω H (a j , a j+1 ) are of trace class.<br />

(4.14)<br />

Proof. As in the previous proof we abbreviate A 0 = a 0 , A j = [D, a j ], j ≥ 1 <strong>and</strong> decompose<br />

∑<br />

b 〈A 0 , A 1 , ..., A k 〉 tD = t k<br />

b 〈A 0 H 0 , ..., A k H k 〉 tD . (4.15)<br />

H j ∈{H,I−H}<br />

Since H[D, a j ]H = 0 only terms containing no more than [k/2] + 1 copies of H can give<br />

a nonzero contribution.<br />

The term containing no copy of H decreases exponentially in view of Theorem 3.9.<br />

Consider a term containing q copies of I − H. If the number k + 1 − q of copies of H<br />

is at least one but less than k/2 + 1, which is always the case if k is odd, then q > k/2<br />

<strong>and</strong> hence in view of Lemmas 4.2,4.3<br />

t k b 〈A 0 H 0 , ..., A k H k 〉 tD = O(t k−2q ) = O(t −1 ), t → ∞. (4.16)<br />

If n = 2q is even there is exactly one term containing k/2 + 1 copies of H, namely<br />

t 2q<br />

b 〈A 0 H, A 1 (I − H), ..., A 2q H〉 tD<br />

= t 2q ∫∆ 2q<br />

Tr ( γa 0 He −σ 0t 2 D 2 [D, a 1 ](I − H) · ... · e −σ 2qt 2 D 2 H ) dσ.<br />

(4.17)<br />

The integr<strong>and</strong> depends only on the q = k/2 variables σ 1 , σ 3 , ..., σ 2q−1 <strong>and</strong> so we infer<br />

from Lemma 4.3 that the limit as t → ∞ equals<br />

∫<br />

1<br />

Tr ( γa 0 H[D, a 1 ]e −u 1D 2 (I − H)[D, a 2 ]H...e −u 2q−1D 2 (I − H)[D, a 2q ]H ) du. (4.18)<br />

q!<br />

R q +<br />

As in [CoMo93, 2.2] one shows that this equals<br />

(−1) q<br />

Str ( ϱ H (a 0 )ω H (a 1 , a 2 )...ω H (a 2q−1 , a 2q ) ) .<br />

q!<br />

□<br />

5. Asymptotic b-heat expansions<br />

5.1. b-Heat expansion. Let M be a complete Riemannian manifold <strong>with</strong> cylindrical<br />

ends <strong>and</strong> let D be a Dirac operator on M (cf. Remark 1.10).


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 49<br />

Let Q ∈ b Diff q (M; W ) be an auxiliary b-differential operator of order q. It is wellknown<br />

(cf. e.g. [Gil95]) that the Schwartz-kernel of the operator Qe −tD2 has a pointwise<br />

asymptotic expansion<br />

(Qe −tD2 )(x, p; x, p) ∼ t→0+<br />

∞<br />

∑<br />

j=0<br />

j−dim M−q<br />

a j (Q, D)(x, p) t 2 . (5.1)<br />

The problem is that in general neither Qe −tD2 is of trace class nor are the local heat<br />

invariants a j (Q, D) integrable over the manifold. Nevertheless we have the following<br />

theorem, which has been used implicitly by Getzler [Get93a]. However, we could not<br />

find a reference where the result is cleanly stated <strong>and</strong> proved. There<strong>for</strong>e, we provide<br />

here a proof <strong>for</strong> the convenience of the reader.<br />

Theorem 5.1. Under the previously stated assumptions the b-heat trace of Qe −tD2 has<br />

the following asymptotic expansion:<br />

∫<br />

The b-integral<br />

b Tr ( Qe −tD2 )<br />

b M<br />

∼ t→0+<br />

∞<br />

∑<br />

j=0<br />

∫<br />

b M<br />

(<br />

tr p aj (Q, D)(p) ) j−dim M−q<br />

d vol(p) t 2 .<br />

was defined in Subsection 1.6, cf. Definition-Proposition 1.5.<br />

(5.2)<br />

Proof. We first write the operator Q as a sum Q = Q (0) + Q (1) of differential operators<br />

<strong>with</strong> Q (0) ∈ b Diff q cpt((−∞, 0) × ∂M; W ) <strong>and</strong> Q (1) a differential operator supported in<br />

the interior. By st<strong>and</strong>ard elliptic theory ([Gil95]) Q (1) e −tD2 is trace class <strong>and</strong> since the<br />

asymptotic expansion (5.1) is uni<strong>for</strong>m on compact subsets of M the claim follows <strong>for</strong><br />

Q (1) instead of Q.<br />

So it remains to prove the claim <strong>for</strong> an operator Q ∈ b Diff q cpt((−∞, 0) × ∂M; W );<br />

<strong>for</strong> convenience we write from now on again Q instead of Q (0) . Next we apply the<br />

comparison Theorem 3.1 which allows us to assume that M = R × ∂M is the model<br />

cylinder, D = c(dx) d + dx D∂ , <strong>and</strong> Q is supported on (−∞, c) × ∂M <strong>for</strong> some c > 0.<br />

Furthermore, we may assume that Q is of the <strong>for</strong>m (3.30). Since the heat kernel of<br />

the model operator is explicitly known (cf. (3.16)) we have<br />

(<br />

f(x, p)P ∂ l xe −tD2) (x, p; y, q)<br />

= 1 √<br />

4πt<br />

(<br />

∂<br />

l<br />

x e −(x−y)2 /4t )( P e −tA2 )<br />

(p, q), A := ΓD∂ .<br />

(5.3)<br />

If l is odd then by induction one easily shows that this kernel vanishes on the diagonal<br />

<strong>and</strong> hence the b-trace b Tr(Qe −tD2 ) as well as all local heat coefficients vanish, proving<br />

the Theorem in this case. So let l = 2k be even. Then using (3.21) <strong>and</strong> since on the


50 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

diagonal ∂ k t e −t∆ R (x, x) = ∂<br />

k<br />

t (4πt) −1/2 =: c k t −1/2−k , we have<br />

(<br />

f(x, p)P ∂ l xe −tD2) (x, p; x, p)<br />

= f(x, p) ( P e −tA2 )<br />

(p, p)ck t −1/2−k<br />

∼ t→0+<br />

∞<br />

∑<br />

j=0<br />

j−dim M−q<br />

f(x, p)a j (P, A)(p)c k t 2 .<br />

Comparing <strong>with</strong> (5.1) we find <strong>for</strong> the heat coefficients a j (Q, D)<br />

Furthermore, we have using Theorem (1.6)<br />

b Tr ( Qe −tD2 )<br />

=<br />

(5.4)<br />

a j (Q, D)(x, p) = f(x, p)a j (P, A)(p)c k . (5.5)<br />

∫ 0<br />

−∞<br />

∫<br />

∂M<br />

tr x,p<br />

(<br />

x∂ x f(x, p) ( P e −tA2 )<br />

(p, p)<br />

)d vol ∂M (p)dx. (5.6)<br />

(<br />

P e<br />

−tA 2 )<br />

(p, p) has an x-independent asymptotic expansion as t → 0+. Since<br />

x∂ x f(x, p) = O(e (1−δ)x ), x → −∞, uni<strong>for</strong>mly in p, we can plug the asymptotic expansion<br />

(5.4) into (5.6) <strong>and</strong> use (5.5) to find<br />

b Tr ( Qe −tD2 )<br />

∼ t→0+<br />

∼ t→0+<br />

The claim is proved.<br />

∑ ∞ ∫ 0<br />

j=0<br />

−∞<br />

∫<br />

∂M<br />

j−dim M−q<br />

· c k t 2<br />

∫<br />

∞<br />

∑<br />

j=0<br />

b (−∞,0)×∂M<br />

j−dim M−q<br />

· t 2 .<br />

)<br />

tr x,p<br />

(x∂ x f(x, p)a j (P, A)(p) d vol ∂M (p)dx·<br />

tr x,p<br />

(<br />

aj (Q, D)(x, p) ) d vol(x, p)·<br />

(5.7)<br />

5.2. The b-trace of the JLO integr<strong>and</strong>. To ) extend Theorem 5.1 to expressions<br />

of the <strong>for</strong>m b Tr<br />

(A 0 e −σ 0tD 2 A 1 e −σ 1tD 2 ...A k e −σ ktD 2 we use a trick which was already applied<br />

successfully in the proof of the local index <strong>for</strong>mula in noncommutative geometry<br />

[CoMo95]. Namely, we successively commute A j e −σ jtD 2<br />

<strong>and</strong> control the remainder.<br />

We will need the estimates proved in Subsections 3.3 <strong>and</strong> 3.4.<br />

We first need to introduce some notation (cf. [Les99, Lemma 4.2]).<br />

For a b-differential operator B ∈ b Diff(M; W ) we put inductively<br />

∇ 0 DB := B, ∇ j+1<br />

D B := [D2 , ∇ j DB]. (5.8)<br />

Note that since D 2 has scalar leading symbol we have ord(∇ j DB) ≤ j + ord B.<br />


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 51<br />

The following <strong>for</strong>mula can easily be shown by induction.<br />

e −tD2 B =<br />

∑n−1<br />

j=0<br />

(−t) j<br />

j!<br />

+ (−t)n<br />

(n − 1)!<br />

(<br />

∇<br />

j<br />

D B) e −tD2 +<br />

∫ 1<br />

0<br />

(1 − s) n−1 e −stD2 (<br />

∇<br />

n<br />

D B ) e −(1−s)tD2 ds.<br />

(5.9)<br />

The identity (5.9) easily allows to prove the following statement about local heat<br />

invariants, cf. [Wid79], [CoMo90], [BlFo90]:<br />

Proposition 5.2. Let A 0 , ..., A k ∈ b Diff(M; W ) of order a 0 , ..., a k . Then the Schwartz<br />

kernel of A 0 e −σ 0tD 2 A 1 e −σ 1tD 2 ...A k e −σ ktD 2<br />

has a pointwise asymptotic expansion<br />

(<br />

A 0 e −σ 0tD 2 A 1 e −σ 1tD 2 ...A k e −σ ktD 2) (p, p)<br />

= ∑ (−t) |α|<br />

σ α 1<br />

0 (σ 0 + σ 1 ) α 2<br />

...(σ 0 + ... + σ k−1 ) αk·<br />

α!<br />

α∈Z k + ,|α|≤n<br />

=:<br />

· (A<br />

0 ∇ α 1<br />

D A 1...∇ α k<br />

D A )<br />

ke −tD2 (p, p) + Op (t (n+1−a−dim M)/2 ),<br />

n∑<br />

j−dim M−a<br />

a j (A 0 , ..., A k , D)(p) t 2 + O p (t (n+1−a−dim M)/2 ),<br />

j=0<br />

(5.10)<br />

∑<br />

where a = k a j . The asymptotic expansion is locally uni<strong>for</strong>mly in p. Furthermore, it<br />

j=0<br />

is uni<strong>for</strong>m <strong>for</strong> σ ∈ ∆ k .<br />

Again we are facing the problem explained be<strong>for</strong>e Theorem 5.1. Still we will be able<br />

to show that one obtains a correct <strong>for</strong>mula by taking the b-trace on the left <strong>and</strong> partie<br />

finie integrals on the right of (5.10):


52 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Theorem 5.3. Under the assumptions of the previous Proposition 5.2 we have an<br />

asymptotic expansion<br />

b Tr<br />

(A 0 e −σ 0tD 2 A 1 e −σ 1tD 2 ...A k e −σ ktD 2)<br />

= ∑ (−t) |α|<br />

σ α 1<br />

0 (σ 0 + σ 1 ) α 2<br />

...(σ 0 + ... + σ k−1 ) αk·<br />

α!<br />

α∈Z k + ,|α|≤n<br />

=<br />

· bTr ( A 0 ∇ α 1<br />

D A 1...∇ α k<br />

D A )<br />

ke −tD2 +<br />

( (<br />

k∏<br />

+ O σ −a )<br />

j/2<br />

j t<br />

(n+1−a−dim M)/2)<br />

,<br />

n∑<br />

∫<br />

j=0<br />

b M<br />

j=1<br />

j−dim M−a<br />

a j (A 0 , ..., A k , D)d vol t 2 +<br />

( (<br />

k∏<br />

+ O σ −a )<br />

j/2<br />

j t<br />

(n+1−a−dim M)/2)<br />

.<br />

j=1<br />

(5.11)<br />

Remark 5.4. The O-constant in (5.11) is independent of σ ∈ ∆ k . However, the<br />

factor (∏ k<br />

)<br />

j=1 σ−a j/2<br />

j inside the O() causes some trouble because it is integrable over<br />

the st<strong>and</strong>ard simplex ∆ k only if a 1 , ..., a k ≤ 1. We do not claim that this factor is<br />

necessarily there. It might be an artifact of the inefficiency of our method. Cf. also<br />

Remarks 3.3, 3.6.<br />

Proof. The strategy of proof we present here can also be used to prove Proposition 5.2.<br />

Again by the comparison Theorem 3.2 we may assume that D is the model Dirac<br />

operator <strong>and</strong> A 0 , ..., A k ∈ b Diff cpt ((−∞, 0) × ∂M; W ).<br />

Using Proposition 1.6 we have<br />

b Tr<br />

(A 0 e −σ 0tD 2 A 1 ...A k e −σ ktD 2)<br />

(<br />

= − b Tr x [ d<br />

dx , A ] )<br />

0e −σ 0tD 2 A 1 ...A k e −σ ktD 2<br />

= −<br />

k∑ (<br />

Tr<br />

j=0<br />

xA 0 e −σ 0tD 2 A 1 ...[ d<br />

dx , A j]...A k e −σ ktD 2) .<br />

(5.12)<br />

[ d , A dx j] is again in b Diff cpt ((−∞, 0) × ∂M; W ) <strong>and</strong> its indicial family vanishes. Hence<br />

by Proposition 3.8 all summ<strong>and</strong>s on the right are of trace class. Cf. also the comment<br />

at the end of the proof of Theorem 3.9.<br />

It there<strong>for</strong>e suffices to prove the ) claim <strong>for</strong> the summ<strong>and</strong>s on the right of (5.12), i.e.<br />

<strong>for</strong> Tr<br />

(xA 0 e −σ 0tD 2 A 1 ...A k e −σ ktD 2 where at least one of the A j has vanishing indicial<br />

family.


Applying (5.9) to A 1 we get<br />

e −σ 0tD 2 A 1 =<br />

CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 53<br />

∑n−1<br />

j=0<br />

(−σ 0 t) j<br />

j!<br />

+ (−σ 0t) n<br />

(n − 1)!<br />

(<br />

∇<br />

j<br />

D A 1)<br />

e<br />

−σ 0 tD 2 + (5.13)<br />

∫ 1<br />

There<strong>for</strong>e we need to estimate the expression<br />

0<br />

(1 − s) n−1 e −sσ 0tD 2 (<br />

∇<br />

n<br />

D A 1<br />

)<br />

e<br />

−(1−s)σ 0 tD 2 ds.<br />

x(σ 0 t) n (1 − s) n−1 A 0 e −sσ 0tD 2 (<br />

∇<br />

n<br />

D A 1<br />

)<br />

e<br />

−(1−s)σ 0 tD 2 e −σ 1tD 2 ...A k e −σ ktD 2 (5.14)<br />

in the trace norm.<br />

If the index l <strong>for</strong> which the indicial family of A l vanishes is 0 we write A 0 as e x à 0<br />

<strong>with</strong> Ã0 ∈ b Diff cpt ((−∞, 0) × ∂M; W ) <strong>and</strong> move xe x under the trace to the right. This<br />

assures that Proposition 3.8 applies to ( ∇ n D A 1)<br />

e<br />

−(1−s)σ 0 tD 2 e −σ 1tD 2 ...A k e −σ ktD 2 xe x .<br />

If l ≥ 1 we just move x under the trace to the right. After all w.l.o.g. we may assume<br />

that l ≥ 1.<br />

Next we choose an integer β such that A 0 (D 2 + I) −β has order ∈ {0, 1}. Then Hölder<br />

yields<br />

∥<br />

(σ 0 t) n (1 − s) n−1 ∥∥A0<br />

(I + D 2 ) −β e −sσ 0tD 2 (I + D 2 ) β( )<br />

∇ n DA 1 e −(1−s)σ 0tD 2 e −σ 1tD 2 ...A k e −σ ktD 2 x∥ 1<br />

≤ (σ 0 t) n (1 − s) n−1 (sσ 0 t) −a 0/2+β∥<br />

∥(I + D 2 ) β( )<br />

∇ n DA 1 e −(1−s)σ 0tD 2 e −σ 1tD 2 ...A k e −σ ktD 2 x∥ (5.15)<br />

1<br />

To the remaining trace we apply Proposition 3.8 <strong>and</strong> obtain<br />

... ≤ σ n 0 t n (1 − s) n−1 (sσ 0 t) −a 0/2+β C(t 0 , ε) ( (1 − s)σ 0<br />

) −β−n/2−a1 /2<br />

( k ∏<br />

j=2<br />

σ −a )<br />

j/2<br />

j t<br />

−a/2+a 0 /2−dim M/2−ε−n/2−β<br />

≤ C(t 0 , ε)s −1/2 (1 − s) n/2−1−β−a1/2 σ n−a 0 −a 1<br />

2<br />

0<br />

( k ∏<br />

j=2<br />

σ −a ) n−a−dim M<br />

j/2<br />

j t 2 −ε .<br />

(5.16)<br />

If we choose n large enough the right h<strong>and</strong> side is integrable in s <strong>and</strong> we obtain the<br />

desired estimate.<br />

In the next step we apply (5.9) to e −(σ 0+σ 1 )tD 2<br />

<strong>and</strong> A 2 . Continuing this way we reach<br />

the conclusion after k steps.<br />

□<br />

6. The <strong>Connes</strong>–<strong>Chern</strong> character of the relative Dirac class<br />

6.1. Retracted <strong>Connes</strong>–<strong>Chern</strong> character. In this section we assume that D is a<br />

Dirac operator on a b-Clif<strong>for</strong>d bundle W → M over the b-manifold M <strong>and</strong> D t = tD is a<br />

family of Dirac type operators. We now have all tools to apply the method of [CoMo93]


54 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

to convert the entire relative <strong>Connes</strong>–<strong>Chern</strong> character, which was constructed using the<br />

b-trace, into a finitely supported cocycle.<br />

By integrating Eq. (2.7), one obtains <strong>for</strong> 0 < ε < t<br />

b Ch k (εD) − b Ch k (tD) = b<br />

+ B<br />

∫ t<br />

ε<br />

∫ t<br />

b /ch k+1 (sD, D)ds +<br />

ε<br />

b /ch k−1 (sD, D)ds<br />

∫ t<br />

ε<br />

/ch k (sD ∂ , D ∂ ) ◦ i ∗ ds.<br />

(6.1)<br />

Of course Ch • (D ∂ ) satisfies a cocycle <strong>and</strong> transgression <strong>for</strong>mula as Eq. (2.6), (2.7) <strong>with</strong><br />

0 in the r.h.s. Integrating this we obtain<br />

Ch k (εD ∂ ) − Ch k (tD ∂ ) = b<br />

+ B<br />

∫ t<br />

ε<br />

∫ t<br />

/ch k+1 (sD ∂ , D ∂ )ds.<br />

ε<br />

/ch k−1 (sD ∂ , D ∂ )ds<br />

By Proposition 4.1 (1), the limit ε ↘ 0 exists <strong>for</strong> k > dim M, <strong>and</strong><br />

lim<br />

b Ch k (εD) = 0,<br />

ε↘0<br />

lim<br />

ε↘0 Chk−1 (εD ∂ ) = 0,<br />

(6.2)<br />

<strong>for</strong> all k > dim M. (6.3)<br />

The second limit statement follows either from an obvious adaption of our calculations<br />

to the ordinary trace or from [CoMo93]. Hence one gets <strong>for</strong> k > dim M<br />

where<br />

− b Ch k (tD) = b b T/ch k−1<br />

t<br />

(D) + B b T/ch k+1<br />

t<br />

(D) + T/ch k t (D ∂) ◦ i ∗ ,<br />

− Ch k−1 (tD ∂ ) = b T/ch k−2<br />

t<br />

(D ∂ ) + B T/ch k t (D ∂),<br />

∫ t<br />

b T/ch k t (D) := /ch k (sD, D) ds,<br />

T/ch k−1<br />

t<br />

(D ∂ ) :=<br />

0<br />

∫ t<br />

0<br />

/ch k−1 (sD ∂ , D ∂ ) ds.<br />

(6.4)<br />

(6.5)<br />

The above integrals exist in view of Proposition 4.1 (2) even <strong>for</strong> k ≥ dim M. From<br />

Eq. (6.2) <strong>and</strong> Theorem 2.2 we obtain <strong>for</strong> k ≥ dim M:<br />

(<br />

∫ t<br />

)<br />

b<br />

b Ch k (tD) + B<br />

b /ch k+1 (sD, D)ds<br />

Thus<br />

b<br />

(<br />

b<br />

(<br />

ε<br />

= −B b Ch k+2 (εD) + Ch k+1 (εD ∂ ) ◦ i ∗ − b<br />

−→ −b T/ch k t (D ∂) ◦ i ∗ , ε → 0 + .<br />

b Ch k (tD) + B b T/ch k+1<br />

t<br />

)<br />

(D)<br />

)<br />

Ch k−1 (tD ∂ ) + B b T/ch k t (D ∂)<br />

∫ t<br />

= −b T/ch k t (D ∂) ◦ i ∗ ,<br />

= 0,<br />

ε<br />

/ch k (sD ∂ , D ∂ )ds<br />

(6.6)<br />

k ≥ dim M. (6.7)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 55<br />

Following <strong>Connes</strong>-Moscovici [CoMo93], we define <strong>for</strong> k ≥ dim M the <strong>Chern</strong> characters<br />

b ch k t (D), b k<br />

˜ch (D) <strong>and</strong> ch<br />

k−1<br />

t (D ∂ ) by<br />

b ch k t (D) = ∑ j≥0<br />

b Ch k−2j (tD) + B b T/ch k+1<br />

t<br />

(D), (6.8)<br />

ch k−1<br />

t (D ∂ ) = ∑ j≥0<br />

Ch k−2j−1 (tD ∂ ) + B T/ch k t (D ∂), (6.9)<br />

b ˜ch<br />

k<br />

t (D) = b ch k t (D) + T/ch k t (D ∂) ◦ i ∗ . (6.10)<br />

Let us now compute (b + B) b ch • t (D). Using Eq. (2.6) <strong>and</strong> Eq. (6.7) above, we write<br />

b b ch k t (D) + B b ch k t (D) =<br />

= ∑ (<br />

)<br />

b b Ch k−2j (tD) + B b Ch k−2j+2 (tD)<br />

j≥1<br />

(<br />

)<br />

+ b<br />

b Ch k (tD) + B b T/ch k+1<br />

t<br />

(D)<br />

= ∑ j≥1<br />

Ch k−2j+1 (tD ∂ ) ◦ i ∗ − b T/ch k t (D ∂) ◦ i ∗<br />

(6.11)<br />

= ∑ j≥0<br />

Ch k−2j−1 (tD ∂ ) ◦ i ∗ − b T/ch k t (D ∂) ◦ i ∗<br />

= ch k−1<br />

t (D ∂ ) ◦ i ∗ − B T/ch k t (D ∂) ◦ i ∗ − b T/ch k t (D ∂) ◦ i ∗<br />

= ch k+1<br />

t (D ∂ ) ◦ i ∗ ,<br />

where the last equality follows from the second line of Eq. (6.4).<br />

In conclusion<br />

(b + B) b ch k t (D) = ch k+1<br />

t (D ∂ ) ◦ i ∗<br />

(b + B) b ˜ch<br />

k<br />

t (D) = ch k−1<br />

t (D ∂ ) ◦ i ∗ .<br />

(6.12)<br />

Denoting by ˜b, ˜B the relative Hochschild resp. <strong>Connes</strong>’ coboundaries, cf. Eq. (1.5), we<br />

thus infer<br />

(˜b + ˜B) ( b ch k t (D), ch k+1<br />

t (D ∂ ) ) = 0,<br />

(˜b + ˜B) ( b ˜ch<br />

k<br />

t (D), ch k−1<br />

t (D ∂ ) ) = 0,<br />

(6.13)<br />

i.e. the pairs ( b ch k t (D), ch k+1<br />

t (D ∂ )) <strong>and</strong> ( b k<br />

˜ch t (D), ch k−1<br />

t (D ∂ )) are relative cocycles in the<br />

direct sum of total complexes<br />

Tot k ⊕ BC •,• (C ∞ (M), C ∞ (∂M)) :=<br />

:= Tot k ⊕ BC •,• (C ∞ (M)) ⊕ Tot k+1<br />

⊕ BC •,• (C ∞ (∂M)).<br />

(6.14)


56 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

By Eq. (6.11) we have<br />

( )<br />

b ch k t (D) − b k<br />

˜ch t (D), ch k+1<br />

t (D ∂ ) − ch k−1<br />

t (D ∂ )<br />

(<br />

)<br />

= − T/ch k t (D ∂) ◦ i ∗ , −(b + B) T/ch k t (D ∂)<br />

= (˜b + ˜B) ( )<br />

0, T/ch k t (D ∂) ,<br />

(6.15)<br />

hence the two pairs differ only by a coboundary.<br />

Next let us compute ( b ch k+2<br />

t (D), ch k+3<br />

t (D ∂ ) ) − S ( b ch k t (D), ch k+1<br />

t (D ∂ ) ) in the above<br />

relative cochain complex. Using Eq. (6.4) one checks immediately that<br />

b ch k+2<br />

t (D) − b ch k t (D) = b Ch k+2 (tD) + B b T/ch k+3<br />

t<br />

(D) − B T/ch k+1<br />

t<br />

(D)<br />

= − (b + B) T/ch k+1<br />

t<br />

(D) − T/ch k+2<br />

t<br />

(D ∂ ) ◦ i ∗ .<br />

From the second line of Eq. (6.4) (or from [CoMo93, Sec. 2.1])<br />

one thus gets<br />

ch k+3<br />

t (D ∂ ) − ch k+1<br />

t (D ∂ ) = −(b + B) T/ch k+2<br />

t<br />

(D ∂ ),<br />

( b<br />

ch k+2<br />

t (D), ch k+3<br />

t (D ∂ ) ) − S ( b ch k t (D), ch k+1<br />

t (D ∂ ) )<br />

= (˜b + ˜B) ( − b T/ch k+1<br />

t<br />

(D), T/ch k+2<br />

t<br />

(D ∂ ) ) .<br />

(6.16)<br />

Hence, the relative cocycles ( b ch k+2<br />

t (D), ch k+3<br />

t (D ∂ ) ) <strong>and</strong> S ( b ch k t (D), ch k+1<br />

t (D ∂ ) ) are<br />

cohomologous. Similarly, one gets<br />

b ch k t (D) − ch k τ(D) =<br />

resp.<br />

= ∑ ( b<br />

Ch k−2j (tD) − b Ch k−2j (τD) ) ∫ t<br />

+ B b /ch k+1 (sD, D) ds<br />

j≥0<br />

τ<br />

= − (b + B) ∑ ∫ t<br />

b /ch k−2j−1 (sD, D) ds − ∑ ∫ t<br />

/ch k−2j (sD ∂ , D ∂ ) ds,<br />

j≥0 τ<br />

j≥0 τ<br />

ch k+1<br />

t (D ∂ ) − ch k+1<br />

τ (D ∂ ) = −(b + B) ∑ j≥0<br />

∫ t<br />

τ<br />

/ch k−2j (sD ∂ , D ∂ ) ds,<br />

hence ( b ch k t (D), ch k+1<br />

t (D ∂ ) ) <strong>and</strong> ( b ch k τ(D), ch k+1<br />

τ (D ∂ ) ) are cohomologous in the total<br />

relative complex as well. Thus, we have proved (1)-(3) of the following result.<br />

(<br />

Theorem 6.1. (1) The pairs of retracted cochains b<br />

ch k t (D), ch k+1<br />

t (D ∂ ) ) ,<br />

( k b ˜ch t (D), ch k−1<br />

t (D ∂ ) ) , t > 0, t > 0, k ≥ m = dim M, k − m ∈ 2Z are<br />

cocycles in the relative total complex Tot • ⊕ BC •,• (C ∞ (M), C ∞ (∂M)).<br />

(2) They represent the same class in HC n (C ∞ (M), C ∞ (∂M)) which is independent<br />

of t > 0.<br />

(3) They represent the same class in HP • (C ∞ (M), C ∞ (∂M)) which is independent<br />

of k.


lim<br />

t→0+<br />

CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 57<br />

(4) Denote by b ω D , ω D∂ the local index <strong>for</strong>ms of D resp. D ∂ [BGV92, Thm. 4.1], see<br />

Eq. (6.17) below. Then one has a pointwise limit<br />

( b<br />

k<br />

˜ch t (D), ch k−1<br />

t (D ∂ ) ) ∫ )<br />

=<br />

b ω D ∧ −, ω D∂ ∧ − .<br />

( ∫b M<br />

Moreover, ( k<br />

b ˜ch t (D), ch k−1<br />

t (D ∂ ) ) represents the <strong>Connes</strong>–<strong>Chern</strong> character of [D] ∈<br />

KK m (C 0 (M); C) = K m (M, ∂M).<br />

The pointwise limit will be explained in the proof below. Up to normalization constants<br />

b ω D is the  <strong>for</strong>m Â(b ∇ 2 g) <strong>and</strong> ω D∂ is the  <strong>for</strong>m Â(∇2 g ∂<br />

) on the boundary. Note<br />

also that ι ∗ ω D = ω D∂ .<br />

Proof. It remains to prove (4). So consider a 0 , a 1 , · · · ∈ b C ∞ (M ◦ ). Using Getzler’s<br />

asymptotic calculus (cf. [Get83], [CoMo90, §3], <strong>and</strong> [BlFo90, Thm. 4.1]) one shows<br />

that the local heat invariants of a 0 e −σ 0tD 2 [D, a 1 ]e −σ 1tD 2 . . . [D, a j ]e −σ jtD 2 (cf. Proposition<br />

5.2) satisfy<br />

∫ (<br />

t j str q,Wp a 0 e −σ 0tD 2 [D, a 1 ]e −σ 1tD 2 . . . [D, a j ]e −σ jtD 2) (p, p) d vol gb (p)<br />

∆ j<br />

= 1 (6.17)<br />

( b<br />

)<br />

ω D ∧ a 0 da 1 · · · ∧ da j<br />

j!<br />

+ |p O(t1/2 ), t → 0 + .<br />

Here str q,Wp denotes the fiber supertrace in W p , q indicates the Clif<strong>for</strong>d degree of D,<br />

cf. Subsection 1.7, the factor 1 j!<br />

is the volume of the simplex ∆ j . This statement holds<br />

locally on any Riemannian manifold <strong>for</strong> any choice of a self-adjoint extension of a Dirac<br />

operator. So it holds <strong>for</strong> D <strong>and</strong> accordingly <strong>for</strong> D ∂ .<br />

From Theorem 5.3 <strong>and</strong> its well-known analogue <strong>for</strong> closed manifolds, cf. [CoMo93,<br />

Sec. 4], we thus infer<br />

∂M<br />

lim<br />

b Ch j (tD)(a 0 , . . . , a j )<br />

t→0+<br />

resp.<br />

= 1 ∫<br />

b ω D ∧ a 0 da 1 · · · ∧ da j , a j ∈ b C ∞ (M ◦ ), (6.18)<br />

j!<br />

b M<br />

lim<br />

t→0+ Chj−1 (tD ∂ )(a 0 , . . . , a j−1 )<br />

=<br />

1<br />

(j − 1)!<br />

Furthermore, in view of (6.5) we have <strong>for</strong> k ≥ dim M − 1<br />

∫<br />

∂M<br />

ω D∂ ∧ a 0 da 1 · · · ∧ da j , a j−1 ∈ C ∞ (M). (6.19)<br />

lim<br />

b T/ch k+1<br />

t→0+<br />

t<br />

(D)(a 0 , . . . , a k+1 ) = 0, a j ∈ b C ∞ (M ◦ ),<br />

lim<br />

t→0+ T/chk t (D ∂)(a 0 , . . . , a k ) = 0,<br />

a j ∈ C ∞ (M).<br />

(6.20)<br />

To interpret these limit results we briefly recall the relation between de Rham currents<br />

<strong>and</strong> relative cyclic cohomology classes over ( b C ∞ (M), C ∞ (M)), cf. also [LMP08,<br />

Sec. 2.2].


58 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Given a de Rham current C of degree j then C defines naturally a cochain ˜C ∈<br />

C j ( b C ∞ (M)) by putting ˜C(a 0 , . . . , a j ) := 1 j! 〈C, a 0da 1 ∧ · · · ∧ da j 〉. One has b ˜C = 0 <strong>and</strong><br />

B ˜C = ˜∂C, where ∂ is the codifferential. Because of this identification we will from now<br />

on omit the ∼ from the notation if no confusion is possible.<br />

Given a closed b-differential <strong>for</strong>m ω on M of even degree. By C ω we denote the de<br />

Rham current ∫b ω ∧ −. There is a natural pullback M ι∗ ω at ∞ (cf. Definition <strong>and</strong><br />

Propostion 1.5), which is a closed even degree <strong>for</strong>m on ∂M. We now find<br />

∫<br />

∫<br />

∫<br />

〈∂C ω , α〉 = ω ∧ dα = d(ω ∧ α) = ι ∗ (ω ∧ α) =<br />

b M<br />

b M<br />

∂M<br />

∫<br />

(6.21)<br />

= ι ∗ (ω) ∧ ι ∗ (α) = 〈C ι ∗ ω, ι ∗ (α)〉.<br />

∂M<br />

In view of Subsection 1.2 this means that the pair (C ω , C ι ∗ ω) is a relative de Rham cycle<br />

or via the above mentioned identification between de Rham currents <strong>and</strong> cochains that<br />

(˜C ω , ˜C ι ∗ ω) is a relative cocycle in the relative total complex Eq. (6.14).<br />

If ω = ∑ j≥0 ω 2j <strong>with</strong> closed b-differential <strong>for</strong>ms of degree 2j then the pair (ω, ι ∗ ω)<br />

still gives rise to a relative cocycle of degree dim M in the relative total complex.<br />

These considerations certainly apply to the even degree <strong>for</strong>ms b ω D , ω D∂ which satisfy<br />

ι ∗ ( b ω) = ω D∂ . The limit results (6.18), (6.19), (6.5) can then be summarized as<br />

lim<br />

t→0+<br />

( b ˜ch<br />

k<br />

t (D), ch k−1<br />

t (D ∂ ) ) =<br />

( ∫b M<br />

∫<br />

b ω D ∧ −,<br />

∂M<br />

)<br />

ω D∂ ∧ − . (6.22)<br />

The limit on left is understood pointwise <strong>for</strong> each component of pure degree.<br />

Finally we need to relate ( k<br />

b ˜ch t (D), ch k−1<br />

t (D ∂ ) ) to the <strong>Chern</strong> character of [D] ∈<br />

K m (M, ∂M). First recall from Eq. (1.11) that HP •( C ∞ (M), C ∞ (∂M) ) is naturally<br />

isomorphic to HP •( J ∞ (∂M, M) ) . Under this isomorphism, the class of the<br />

pair ( k<br />

b ˜ch t (D), ch k−1<br />

t (D ∂ ) ) is mapped to b k<br />

˜ch t (D) |J ∞ (∂M,M), just because elements of<br />

J ∞ (∂M, M) vanish on ∂M. We note in passing that by (A.5) a smooth function f<br />

on M ◦ lies in J ∞ (∂M, M) iff in cylindrical coordinates one has <strong>for</strong> all l, R <strong>and</strong> every<br />

differential operator P on ∂M<br />

∂ l xDf(x, p) = O(e Rx ),<br />

x ↦→ −∞.<br />

In view of (6.17), the class of ( k<br />

b ˜ch t (D), ch k−1<br />

t (D ∂ ) ) in HP •( J ∞ (∂M, M) ) equals<br />

that of ˜Cb ω D<br />

. As explained in Section 1.8, HP •( J ∞ (∂M, M) ) is naturally isomorphic<br />

to H• dR (M, ∂M; C). Under this isomorphism, ˜Cb ω D<br />

corresponds to the relative<br />

de Rham cycle ( ) Cb ω D<br />

, C ωD∂ . Finally, note that under the Poincaré duality isomorphism<br />

H• dR (M, ∂M; C) ∼ = H dR • (M \ ∂M; C), the relative de Rham cycle ( )<br />

Cb ω D<br />

, C ωD∂<br />

is mapped onto the closed <strong>for</strong>m b ω D . This line of argument shows that the class of<br />

( k b ˜ch t (D), ch k−1<br />

t (D ∂ ) ) depends only on the absolute de Rham cohomology class of the<br />

closed <strong>for</strong>m b ω D = c·Â(b ∇g) 2 on the open manifold M \∂M. The transgression <strong>for</strong>mula<br />

in <strong>Chern</strong>–Weil theory shows that the (absolute) de Rham cohomology class of  ( )<br />

∇ 2 g<br />

is independent of the metric g on M ◦ . Thus the de Rham class of b ω D equals that of


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 59<br />

ω D = c·Â( )<br />

∇ 2 g 0 <strong>for</strong> any smooth metric g0 . Choosing g 0 to be smooth up to the boundary<br />

we infer from Section 1.8 <strong>and</strong> Proposition 1.12 that the class of ( k<br />

b ˜ch t (D), ch k−1<br />

t (D ∂ ) )<br />

in HP •( C ∞ (M), C ∞ (∂M) ) ∼ ( = HP<br />

•<br />

J ∞ (∂M, M) ) equals that of the <strong>Connes</strong>–<strong>Chern</strong><br />

character of [D].<br />

□<br />

6.2. The large time limit <strong>and</strong> higher η–invariants. Let us now assume that the<br />

boundary Dirac D ∂ is invertible. In view of Proposition 4.4 <strong>and</strong> Proposition 4.1 we can<br />

now, <strong>for</strong> k ≥ dim M, <strong>for</strong>m the transgressed cochain<br />

b T/ch k ∞ (D)(a 0, ..., a k ) =<br />

In view of Eq. (2.52) we arrive at<br />

∫ ∞<br />

0<br />

b /ch k (sD, D) ds. (6.23)<br />

B b T/ch k+1<br />

∞ (D)(a 0, ..., a k )<br />

k∑<br />

∫ ∞<br />

= (−1) j+1 s k+1 b 〈[D, a 0 ], . . . , [D, a j ], D, [D, a j+1 ], . . . , [D, a k ]〉 ds<br />

j=0<br />

0<br />

k∑<br />

∫ (6.24)<br />

∞<br />

(<br />

= (−1) j+1 s k+1<br />

j=0<br />

0<br />

∫∆ b Str q [D, a0 ]e −σ 0s 2 D 2 . . .<br />

k+1<br />

)<br />

[D, a j ]e −σ js 2 D 2 De −σ j+1s 2 D 2 . . . [D, a k ]e −σ k+1s 2 D 2 dσ ds.<br />

Together <strong>with</strong> Proposition 4.5 we have proved the analogue of [CoMo93, Thm. 1]<br />

in the relative setting:<br />

Theorem 6.2. Let k ≥ dim M be of the same parity as q <strong>and</strong> assume that D ∂ is<br />

invertible. Then the pair of retracted cochains ( b ch k t (D), ch k+1<br />

t (D ∂ ) ) , t > 0, has a limit<br />

as t → ∞. For k = 2l even we have<br />

l∑<br />

b ch k ∞(D) = κ 2j (D) + B b T/ch k+1<br />

∞ (D) ,<br />

(6.25)<br />

j=0<br />

ch k+1<br />

∞ (D ∂ ) = B T/ch k+2<br />

∞ (D ∂) .<br />

If k = 2l + 1 is odd then<br />

b ch k ∞(D) = B b T/ch k+1<br />

∞ (D) ,<br />

ch k+1<br />

∞ (D ∂ ) = B T/ch k+2<br />

∞ (D ∂) .<br />

7. Relative pairing <strong>for</strong>mulæ <strong>and</strong> geometric consequences<br />

(6.26)<br />

Let us briefly recall some facts from the theory of boundary value problems <strong>for</strong> Dirac<br />

operators [BBWo93]. Given a Dirac operator D acting on sections of the bundle W on<br />

a compact Riemannian manifold <strong>with</strong> boundary (M, g). In contrast to the rest of the<br />

paper g is a ”true” Riemannian metric, smooth <strong>and</strong> non-degenerate up to the boundary,<br />

<strong>and</strong> not a b-metric. We assume that all structures are product near the boundary, that<br />

is there is a collar U = [0, ε) × ∂M of the boundary such that g |U = dx 2 ⊕ g |∂M is a<br />

product metric. In particular the <strong>for</strong>mulæ of Remark 1.10 hold.


60 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

We assume furthermore that we are in the even situation. That is, D is odd <strong>with</strong><br />

respect to a Z 2 -grading. Then in a collar of the boundary D takes the <strong>for</strong>m<br />

[ ] [<br />

0 D<br />

−<br />

0 −<br />

D =<br />

D + =<br />

d + ]<br />

dx A+<br />

d<br />

0 + = c(dx) d<br />

dx A+ 0<br />

dx + D ∂. (7.1)<br />

In ( the matrix ) notation we have identified W + <strong>and</strong> W − via c(dx) <strong>and</strong> put A + :=<br />

c(dx) −1 D ∂ . A + is a first order self-adjoint elliptic differential operator.<br />

|W +<br />

Let P ∈ Ψ 0 (∂M; W + ) be a pseudodifferential projection <strong>with</strong> P −1 [0,∞) (A + ) of order<br />

−1. Then we denote by D P the operator D acting on the domain { u ∈ L 2 1(M; W + ) ∣ P (u |∂M ) = 0 } .<br />

D P is a Fredholm operator. The Agranovich–Dynin <strong>for</strong>mula [BBWo93, Prop. 21.4]<br />

Ind D + P − Ind D+ Q = Ind(P, Q) =: Ind( P : Im Q −→ Im P ) (7.2)<br />

expresses the difference of two such indices in terms of the relative index of the two<br />

projections P, Q.<br />

Choosing <strong>for</strong> P the positive spectral projection P + (A + ) = 1 [0,∞) (A + ) of A + we obtain<br />

the APS index<br />

Ind APS D + = Ind D + P + (A + ) . (7.3)<br />

We shortly comment on the relative index introduced above (cf. [ASS94], [BBWo93,<br />

Sec. 15], [BrLe01, Sec. 3]). Two orthogonal projections P, Q in a Hilbert space are<br />

said to <strong>for</strong>m a Fredholm pair if P Q : Im Q −→ Im P is a Fredholm operator. The<br />

index of this Fredholm operator is then called the relative index, Ind(P, Q), of P <strong>and</strong><br />

Q. It is easy to see that P, Q <strong>for</strong>m a Fredholm pair if the difference P − Q is a compact<br />

operator. Furthermore, the relative index is additive<br />

Ind(P, R) = Ind(P, Q) + Ind(Q, R) (7.4)<br />

if P − Q or P − R is compact [BBWo93, Prop. 15.15], [ASS94, Thm. 3.4]. In general,<br />

just assuming that all three pairs (P, Q), (Q, R) <strong>and</strong> (Q, R) are Fredholm is not sufficient<br />

<strong>for</strong> (7.4) to hold.<br />

Sometimes the spectral flow of a path of self-adjoint operators can be expressed as a<br />

relative index. The following proposition is a special case of [Les05, Thm. 3.6]:<br />

Proposition 7.1. Let T s = T 0 + ˜T s , 0 ≤ s ≤ 1, be a path of self-adjoint Fredholm<br />

operators in the Hilbert space H. Assume that ˜T s is a continuous family of bounded<br />

T 0 -compact operators. Then the spectral flow of (T s ) 0≤s≤1 is given by<br />

where P + (T s ) := 1 [0,∞) (T s ).<br />

SF(T s ) 0≤s≤1 = − Ind(P + (T 1 ), P + (T 0 )),<br />

Remark 7.2. If T 0 is bounded then the condition of T 0 -compactness just means that<br />

the T s are compact operators. If T 0 is unbounded <strong>with</strong> compact resolvent then any<br />

bounded operator is automatically T 0 -compact. The second case is the one of relevance<br />

<strong>for</strong> us.<br />

In [Les05, Thm. 3.6] Proposition 7.1 is proved <strong>for</strong> Riesz continuous paths of unbounded<br />

Fredholm operators. Since s ↦→ ˜T s is continuous the map s ↦→ T 0 + ˜T s is<br />

automatically Riesz continuous [Les05, Prop. 3.2].


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 61<br />

Note that our sign convention <strong>for</strong> the relative index differs from that of loc. cit.<br />

There<strong>for</strong>e our <strong>for</strong>mulation of Proposition 7.1 differs from [Les05, Thm. 3.6] by a sign,<br />

too.<br />

Proposition 7.3. Let (D s ) 0≤s≤1 be a smooth family of self-adjoint Z 2 -graded (cf.(7.1))<br />

Dirac operators on a compact Riemannian manifold <strong>with</strong> boundary. We assume that D s<br />

is in product <strong>for</strong>m near the boundary <strong>and</strong> that D s = D 0 +Φ s <strong>with</strong> a bundle endomorphism<br />

Φ s ∈ Γ ∞ (M; End V ). Then<br />

Ind APS D + 1 − Ind APS D + 0 = − SF(A + s ) 0≤s≤1 . (7.5)<br />

Here, as explained above, A + s = (c(dx) −1 D ∂,s ) |W +.<br />

Proof. The family s ↦→ D s,APS is not necessarily continuous. The reason is that if<br />

eigenvalues of A + s cross 0 the family P + (A + s ) of APS projections jump.<br />

However, since A + s − A + 0 is 0 th order, the corresponding APS projections P + (A + s ) all<br />

have the same leading symbol <strong>and</strong> hence P + (A + s ) − P + (A + s<br />

) is compact <strong>for</strong> all s, s ′ ∈<br />

′<br />

[0, 1].<br />

Hence we can consider the family D s,P+ (A + 0<br />

), 0 ≤ s ≤ 1. Now the boundary condition<br />

is fixed <strong>and</strong> thus s ↦→ D s,P+ (A + 0 )<br />

is a graph continuous family of Fredholm operators<br />

[Nic95, BBFu98, BBLZ09]. There<strong>for</strong>e, its index is independent of s.<br />

Applying the Agranovich–Dynin <strong>for</strong>mula (7.2) <strong>and</strong> Proposition 7.1 we find<br />

Ind APS (D + 1 ) = Ind D + + Ind( P<br />

1,P + (A + 0 ) + (A + 1 ), P + (A + 0 ) )<br />

= Ind D + 0,P + (A + 0 ) + Ind( P + (A + 1 ), P + (A + 0 ) ) (7.6)<br />

= Ind APS D + 0 − SF(A + s ) 0≤s≤1 . □<br />

Recall that a smooth idempotent p : M −→ Mat N (C) corresponds to a smooth vector<br />

bundle E ≃ Im p <strong>and</strong> using the Grassmann connection the twisted Dirac operator D E<br />

equals p(D ⊗ Id N )p. To simplify notation we will write pDp <strong>for</strong> p(D ⊗ Id N )p whenever<br />

confusions are unlikely.<br />

We would like to extend Proposition 7.3 to families of twisted Dirac operators of the<br />

<strong>for</strong>m D s = p s Dp s , where p s : M −→ Mat N (C) is a family of orthogonal projections.<br />

The difficulty is that not only the leading symbol of D s but even the Hilbert space<br />

of sections, on which the operator acts, varies.<br />

Proposition 7.4. Let D be a self-adjoint Z 2 -graded (cf. (7.1)) Dirac operator on a<br />

compact Riemannian manifold <strong>with</strong> boundary M. Let p s : M −→ Mat N (C) be a smooth<br />

family of orthogonal projections. Assume furthermore, that in a collar neighborhood<br />

U = [0, ε) × ∂M of ∂M we have p s |U = p ∂ s , i.e. p s |U is independent of the normal<br />

variable. Then<br />

Ind APS p 1 D + p 1 − Ind APS p 0 D + p 0 = − SF(p s A + p s ) 0≤s≤1 . (7.7)<br />

Proof. By a st<strong>and</strong>ard trick often used in operator K-theory [Bla86, Prop. 4.3.3] we<br />

may choose a smooth path of unitaries u : M −→ Mat N (C) such that p s = u s p 0 u ∗ s, u 0 =<br />

Id N . Furthermore, we may assume<br />

(<br />

that u<br />

) |[0,ε)×∂M = u ∂ is also independent of the normal<br />

variable. Then p s D + p s = u s p0 u ∗ sD + u s p 0 u<br />

∗<br />

s <strong>and</strong> ( p s D + p s<br />

)APS = u ( )<br />

s p0 u ∗ sD + u s p 0<br />

APS u∗ s.


62 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Since u ∗ sD + u s = D + +u ∗ sc(du s ) Proposition 7.3 applies to the family p 0 u ∗ sDu s p 0 . Since<br />

the spectral flow is invariant under unitary conjugation we reach the conclusion. □<br />

Definition 7.5. In the sequel we will write somewhat more suggestively <strong>and</strong> <strong>for</strong> brevity<br />

SF(p·, D ∂ ) instead of SF(p s A + p s ) 0≤s≤1 .<br />

Theorem 7.6. Let M be a compact manifold <strong>with</strong> boundary <strong>and</strong> W a degree q Clif<strong>for</strong>d<br />

module on M. Let g be a smooth Riemannian metric on M, h a Hermitian metric <strong>and</strong><br />

∇ a unitary Clif<strong>for</strong>d connection on W . Assume that all structures are product near the<br />

boundary. Let D = D(∇, g) be the Dirac operator.<br />

Let [p, q, γ] ∈ K 0 (M, ∂M) be a relative K-cycle . That is p, q : M −→ Mat N (C) are<br />

orthogonal projections <strong>and</strong> γ : [0, 1] × ∂M −→ Mat N (C) is a homotopy of orthogonal<br />

projections <strong>with</strong> γ(0) = p ∂ , γ(1) = q ∂ . Then<br />

〈[D], [p, q, γ]〉<br />

= − Ind APS pD + p + Ind APS qD + q + SF(γ, D ∂ ),<br />

∫<br />

= ω D(∇,g) ∧ ( ch • (q) − ch • (p) ) ∫<br />

− ω D∂ (∇,g) ∧ T/ch •<br />

(h),<br />

M<br />

∂M<br />

(7.8)<br />

in particular the right h<strong>and</strong> side of (7.8) depends only on the relative K-theory class<br />

[p, q, γ] ∈ K 0 (M, ∂M) <strong>and</strong> the degree q Clif<strong>for</strong>d module W . It is independent of ∇ <strong>and</strong><br />

g.<br />

In case all structures are b-structures, <strong>and</strong> D = D( b ∇, g b ) is the b-Dirac operator,<br />

then we still have<br />

∫<br />

〈[D], [p, q, γ]〉 =<br />

b ω D ∧ ( ch • (q) − ch • (p) ) ∫<br />

− ω D∂ ∧ T/ch •<br />

(h). (7.9)<br />

b M<br />

For the fact that relative K-cycles can be represented by triples [p, q, γ] as above we<br />

refer to [Bla86, Thm. 5.4.2], [HiRo00, Sec. 4.3], see also [LMP09, Sec. 1.6].<br />

Proof. Denote the right h<strong>and</strong> side of (7.8) by I(p, q, γ). We first show that I(p, q, γ)<br />

depends indeed only on the relative K-theory class of (p, q, γ). By the stability of the<br />

Fredholm index we may assume that in a collar neighborhood of ∂M the projections<br />

p, q do not depend on the normal variable.<br />

After stabilization we need to show the homotopy invariance of I(p, q, γ). Now consider<br />

a homotopy (p t , q t , γ t ) of relative K-cycles. Then by Proposition 7.4 we have<br />

(cf. Figure 4, page 61)<br />

I(p 1 , q 1 , γ 1 ) − I(p 0 , q 0 , γ 0 )<br />

= Ind APS (p 1 D + p 1 ) − Ind APS (q 1 D + q 1 ) − SF ( γ 1 (·), D ∂<br />

)<br />

− Ind APS (p 0 D + p 0 ) + Ind APS (q 0 D + q 0 ) + SF ( γ 0 (·), D ∂<br />

)<br />

= − SF ( γ·(0), D ∂<br />

)<br />

+ SF<br />

(<br />

γ·(1), D ∂<br />

)<br />

− SF<br />

(<br />

γ1 (·), D ∂<br />

)<br />

+ SF<br />

(<br />

γ0 (·), D ∂<br />

)<br />

= 0,<br />

by the homotopy invariance of the Spectral Flow.<br />

So the l.h.s <strong>and</strong> the r.h.s. of (7.8) depend only on the relative K-theory class of<br />

[p, q, γ]. By excision in K-theory (it can of course be shown elementary exploiting<br />

∂M


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 63<br />

t<br />

1<br />

SF ( γ·(0), D ∂<br />

)<br />

SF ( γ 1 (·), D ∂<br />

)<br />

SF ( γ·(1), D ∂<br />

)<br />

0 1<br />

SF ( )<br />

γ 0 (·), D ∂<br />

s<br />

Figure 4. By homotopy invariance the signed sum of the four spectral<br />

flows adds up to 0.<br />

Swan’s Theorem) every relative K-theory class can even be represented by a triple<br />

(p, q, p |∂M ) such that p |[0,ε)×∂M = q |[0,ε)×∂M <strong>and</strong> hence γ(s) = p |∂M is constant.<br />

Then the twisted version of the APS Index Theorem gives<br />

∫<br />

Ind APS qD + q − Ind APS pD + p = ω D ∧ ( ch • (q) − ch • (p) ) , (7.10)<br />

where ω D denotes the local index density of D. Note that since the tangential operators<br />

of pD + p <strong>and</strong> of qD + q coincide the η-terms cancel.<br />

As outlined in Section 1.8 (cf. also the proof of Theorem 6.1) the <strong>Connes</strong>–<strong>Chern</strong><br />

character of [D] in HP •( J ∞ (∂M, M) ) ≃ H• dR (M \ ∂M; C) is represented by ∫ ω M D.<br />

By construction, the <strong>for</strong>m ch • (q) − ch • (p) is compactly supported in M \ ∂M. Thus<br />

the right h<strong>and</strong> side of (7.10) equals the pairing 〈[D], [p, q, p |∂M ]〉 <strong>and</strong> the first equality<br />

in (7.8) is proved.<br />

To prove the second equality in (7.8) we note that it represents the Poincaré duality<br />

pairing between the de Rham cohomology class of ω D(∇,g) (note ι ∗ ω D = ω D∂ ) <strong>and</strong> the<br />

relative de Rham cohomology class of the pair of <strong>for</strong>ms (ch • (q)−ch • (p), T/ch •<br />

(h)). Hence<br />

it depends only on the class [p, q, h] ∈ K 0 (M, ∂M) <strong>and</strong> on [D]. In the situation above<br />

where p <strong>and</strong> q coincide in a collar of the boundary it equals 〈[D], [p, q, γ]〉 <strong>and</strong> hence by<br />

homotopy invariance the claim is proved in general up to Eq. (7.9).<br />

For the proof of Eq. (7.9) note first that <strong>for</strong> a closed even b-differential <strong>for</strong>m ω the<br />

map (cf. Definition <strong>and</strong> Proposition 1.5)<br />

∫ ∫<br />

Ω k (M) ⊕ Ω k−1 (∂M) → C, (η, τ) ↦→ ω ∧ η − ι ∗ ω ∧ τ<br />

descends naturally to a linear <strong>for</strong>m on HdR k (M, ∂M; C). Hence the right h<strong>and</strong> side of<br />

Eq. (7.9) is well-defined <strong>and</strong> depends only on the class of [p, q, h] ∈ K 0 (M, ∂M). As<br />

be<strong>for</strong>e we may there<strong>for</strong>e specialize to (p, q, p |∂M ) such that p |[0,ε)×∂M = q |[0,ε)×∂M . Then<br />

ch • (q) − ch • (p) has compact support in M \ ∂M <strong>and</strong> the remaining claim follows from<br />

Theorem 6.1 (4).<br />

□<br />

We now proceed to express the pairing between relative K-theory classes <strong>and</strong> the<br />

fundamental relative K-homology class in cohomological terms. We assume here that<br />

we are in the b-setting.<br />

M<br />

b M<br />

∂M


64 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Recall that a relative K-theory class in K 0 (M, ∂M) is represented by a pair of bundles<br />

(E, F ) over M whose restrictions E ∂ , F ∂ to ∂M are related by a homotopy h. We will<br />

explicitly write the <strong>for</strong>mulæ in the even dimensional case <strong>and</strong> only point out where the<br />

odd dimensional case is different.<br />

The <strong>Chern</strong> character of [E, F, h] ∈ K 0 (M, ∂M) is then represented by the relative<br />

cyclic homology class<br />

( ) ( )<br />

ch • [E, F, h] = ch • (p F ) − ch • (p E ) , − T/ch •<br />

(h) , (7.11)<br />

cf. Eq. (1.17).<br />

By Theorem 6.1 we have <strong>for</strong> any t > 0<br />

〈 〉 〈(<br />

[D], [E, F, h] =<br />

b<br />

ch n t (D), ch n+1<br />

t (D ∂ ) ) , ch • ([E, F, h]) 〉<br />

= 〈 ∑<br />

b Ch n−2j (tD) + B b T/ch n+1<br />

t<br />

(D), ch • (p F ) − ch • (p E ) 〉<br />

j≥0<br />

− 〈 ∑<br />

j≥0<br />

Ch n−2j+1 (tD ∂ ) + B T/ch n+2<br />

t<br />

(D ∂ ), T/ch •<br />

(h) 〉 .<br />

Letting t ↘ 0 yields, again by Theorem 6.1, the local <strong>for</strong>m of the pairing:<br />

〈<br />

[D], [E, F, h]<br />

〉<br />

∫<br />

=<br />

b M<br />

ω D ∧ ( ch • (p F ) − ch • (p E ) ) ∫<br />

−<br />

∂M<br />

ω D∂ (∂M) ∧ T/ch •<br />

(h).<br />

(7.12)<br />

(7.13)<br />

If D ∂ is invertible then, at the opposite end, letting t ↗ ∞ gives in view of Theorem<br />

6.2<br />

〈 〉 〈 ∑<br />

[D], [E, F, h] = κ 2k (D) + B b T/ch n+1<br />

∞ (D), ch •(p F ) − ch • (p E ) 〉<br />

0≤k≤l<br />

− 〈 B T/ch n+2<br />

∞ (D ∂), T/ch •<br />

(h) 〉 ,<br />

(7.14)<br />

where 2l = n.<br />

By equating the above two limit expressions (7.13) <strong>and</strong> (7.14) one obtains the following<br />

identity:<br />

Corollary 7.7. Let n = 2l ≥ m <strong>and</strong> assume that D ∂ is invertible. Then<br />

〈<br />

κ 0 (D), p F − p E<br />

〉<br />

+<br />

+ ∑<br />

(−1) k (2k)! 〈<br />

κ 2k (D), (p F − 1 k!<br />

2 ) ⊗ p⊗2k F<br />

1≤k≤l<br />

∫<br />

= ω D ∧ ( ch • (p F ) − ch • (p E ) ) ∫<br />

− ω D∂ ∧ T/ch •<br />

(h)<br />

b M<br />

− (−1) n/2 n!<br />

(n/2)!<br />

+ 〈 B T/ch n+2<br />

∞ (D ∂), T/ch n+1<br />

(h) 〉 .<br />

∂M<br />

〈<br />

B b T/ch n+1<br />

∞<br />

(D), (p F − 1 2 ) ⊗ p⊗n F<br />

− (p E − 1 2 ) ⊗ 〉<br />

p⊗2k E<br />

− (p E − 1 2 ) ⊗ 〉<br />

p⊗n E<br />

(7.15)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 65<br />

The left h<strong>and</strong> side plays the role of a ‘higher’ relative index, while the right h<strong>and</strong><br />

side contains local geometric terms <strong>and</strong> ‘higher’ eta cochains.<br />

The pairing <strong>for</strong>mula acquires a simpler <strong>for</strong>m if one chooses special representatives <strong>for</strong><br />

the class [E, F, h]. For example, one can always assume that E ∂ = F ∂ , in which case<br />

one obtains 〈[D],<br />

[E, F, h0 ] 〉 = 〈 ∑<br />

κ 2k (D) + B b T/ch n+1<br />

∞ (D), ch •(p F ) 〉<br />

0≤k≤l<br />

− 〈 ∑<br />

0≤k≤l<br />

κ 2k (D) + B b T/ch n+1<br />

∞ (D), ch •(p E ) 〉 .<br />

(7.16)<br />

Specializing even more, one can assume F = C N . Then the pairing <strong>for</strong>mula becomes<br />

〈<br />

[D], [E, C N , h 0 ] 〉 = − 〈 ∑<br />

κ 2k (D) + B b T/ch n+1<br />

∞ (D), ch •(p E ) 〉<br />

0≤k≤l<br />

+ N(dim Ker D + − dim Ker D − ).<br />

On the other h<strong>and</strong>, applying Theorem 7.6<br />

〈<br />

[D], [E, C N , h 0 ] 〉 = − Ind APS (p E D + p E ) + N Ind APS D + ,<br />

(7.17)<br />

one obtains an index <strong>for</strong>mula <strong>for</strong> the b-Dirac operator which is the direct analogue of<br />

Eq. (3.4) in [CoMo93]:<br />

Corollary 7.8. Let E be a vector bundle on M whose restriction to ∂M is trivial <strong>and</strong><br />

assume D ∂ to be invertible. Then <strong>for</strong> any n = 2l ≥ m<br />

Ind APS (p E D + p E ) = 〈 ∑<br />

κ 2k (D) + B b T/ch n+1<br />

∞ (D), ch •(p E ) 〉 .<br />

(7.18)<br />

0≤k≤l<br />

The expression Ind APS (p E D + p E ) is to be understood as follows: if p ∂ E D ∂p ∂ E is invertible,<br />

then it is the Fredholm index of p E D + p E . If p E D + p E is not Fredholm, then<br />

chose a metric ˜g smooth up to the boundary <strong>and</strong> construct on the Clif<strong>for</strong>d module<br />

of D the Dirac operator ˜D to the Riemannian metric ˜g. Then, by Theorem. 6.1 the<br />

<strong>Connes</strong>–<strong>Chern</strong> characters of ˜D <strong>and</strong> D coincide <strong>and</strong> thus<br />

〈<br />

[D], [E, C N , h 0 ] 〉 = − Ind APS p ˜D+ E p E + N Ind ˜D+ APS .<br />

As a by-product of the above considerations, we can now establish the following<br />

generalization of the Atiyah-Patodi-Singer odd-index theorem <strong>for</strong> trivialized flat bundles<br />

(comp. [APS76, Prop. 6.2, Eq. (6.3)].<br />

Corollary 7.9. Let N be a closed odd dimensional spin manifold, <strong>and</strong> let E ′ , F ′ be two<br />

vector bundles which are equivalent in K-theory via a homotopy h. With D g ′ denoting<br />

the Dirac operator associated to a Riemannian metric g ′ on N, one has<br />

∫<br />

ξ(D F ′<br />

g ) − ′ ξ(DE′ g ) = Â(∇ 2 ′ g ′) ∧ T/ch • (h) + SF(h, D g ′) , (7.19)<br />

N<br />

or equivalently,<br />

∫ 1<br />

1 d (<br />

η(ph(t) D g ′ p h(t) ) ) ∫<br />

dt = Â(∇ 2 g<br />

2 dt<br />

′) ∧ T/ch •(h) , (7.20)<br />

0<br />

N


66 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

where p h(t) ) is the path of projections joining E ′ <strong>and</strong> F ′ .<br />

Proof. This follows from equating the local pairing (7.8) <strong>and</strong> the relative APS index<br />

<strong>for</strong>mula (0.17) after the following modifications. We recall that Eq. (7.8) holds in complete<br />

generality <strong>with</strong>out invertibility hypothesis on D ∂ . First by passing to a multiple<br />

one can assume that N = ∂M. Then by adding a complement G ′ we can replace F ′<br />

by a trivial bundle. Then both E ′ ⊕ G ′ <strong>and</strong> F ′ ⊕ G ′ extend to M. It remains to notice<br />

that both sides of the <strong>for</strong>mula (7.19) are additive.<br />

The alternative <strong>for</strong>mulation (7.20) follows immediately from the known relation (see<br />

e.g. [KiLe04, Lemma 3.4])<br />

ξ(D F ′<br />

g ′ ) − ξ(DE′ g ′ ) = SF(h, D ∂) +<br />

∫ 1<br />

0<br />

1 d (<br />

η(ph(t) D g ′ p h(t) ) ) dt. □<br />

2 dt<br />

In the odd dimensional case the pairing <strong>for</strong>mulæ are similar, except that the contribution<br />

from the kernel of D does not occur. Let (U, V, h) be a representative of an<br />

odd relative K-theory class where U, V : M → U(N) are unitaries <strong>and</strong> h is a homotopy<br />

between U ∂M <strong>and</strong> V ∂M . Then<br />

〈 〉 〈<br />

[D], [U, V, h] = B b T/ch n+1<br />

∞ (D), ch n(U) − ch n (V ) 〉<br />

− 〈 B T/ch n+2<br />

∞ (D ∂), T/ch n+1<br />

(h) 〉 (7.21)<br />

.<br />

Choosing a representative of the class <strong>with</strong> U ∂M = V ∂M , the above <strong>for</strong>mula simplifies to<br />

〈<br />

[D], [U, V, h0 ] 〉 = 〈 B b T/ch n+1<br />

∞ (D), ch n(U) − ch n (V ) 〉 , (7.22)<br />

<strong>and</strong> if moreover one takes V = Id, it reduces to<br />

〈<br />

[D], [U, Id, h0 ] 〉 = 〈 B b T/ch n+1<br />

∞ (D), ch n(U) 〉 . (7.23)<br />

Finally, the equality between the local <strong>for</strong>m of the pairing (7.13) <strong>and</strong> the expression<br />

(7.21) gives the following odd analogue of Corollary 7.7.<br />

Corollary 7.10. Let n ≥ m, both odd <strong>and</strong> assume that D ∂ is invertible. Then<br />

〈<br />

B b T/ch n+1<br />

∞ (D), ch n(U) 〉 − 〈 B b T/ch n+1<br />

∞ (D), ch n(V ) 〉 =<br />

∫<br />

= Â( b ∇ 2 g) ∧ ( ch • (U) − ch • (V ) ) ∫<br />

− Â(∇ 2 g ′) ∧ T/ch • (h)<br />

b M<br />

− 〈 B T/ch n+2<br />

∞ (D ∂), T/ch n+1<br />

(h) 〉 .<br />

∂M<br />

(7.24)<br />

7.1. Relation <strong>with</strong> the generalized APS pairing. Wu [Wu93] showed that the full<br />

cochain η • (D ∂ ) has a finite radius of convergence, proportional to the lowest eigenvalue<br />

of |D ∂ | (assumed to be invertible). Both Wu <strong>and</strong> Getzler [Get93a] proved, by different<br />

methods, the following generalized Atiyah-Patodi-Singer index <strong>for</strong>mula :<br />

∫<br />

Ind APS D E = Â( b ∇ 2 g) ∧ ch • (p E ) + 〈 η • (D ∂ ) ◦ i ∗ , ch • (p E ) 〉 , (7.25)<br />

b M<br />

<strong>for</strong> any vector bundle E = Im p E over M whose restriction to the boundary satisfies<br />

the almost ∂-flatness condition ‖[D ∂ , r ∂ (p E )]‖ < λ 1 (|D ∂ |). Their result does provide<br />

a decoupled index pairing, but only <strong>for</strong> those classes in K m (M, ∂M) which can be


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 67<br />

represented by pairs of almost ∂-flat bundles. Furthermore, if (E, F, h) is such a triple,<br />

on applying (7.25) <strong>and</strong> Theorem 7.6 one obtains<br />

∫<br />

〈[D], [E, F, h]〉 = Â( b ∇ 2 g) ∧ ( ch • (p F ) − ch • (p E ) )<br />

b M<br />

+ 〈 η • (D ∂ ), i ∗( ch • (p F ) − ch • (p E ) )〉 (7.26)<br />

+ SF(h, D ∂ ),<br />

where SF(h, D ∂ ) is an abbreviation <strong>for</strong> SF ( h(s)A + h(s) ) , cf. also Eq. (7.1). By<br />

0≤s≤1<br />

[Wu93, Proof of Thm. 3.1],<br />

∫<br />

(b + B)η • (D ∂ ) = − Â(∇ 2 g ′) ∧ − .<br />

At the <strong>for</strong>mal level<br />

〈<br />

η • (D ∂ ) ◦ i ∗ , ch • (p F ) − ch • (p E ) 〉 = 〈 η • (D ∂ ), (b + B) T/ch •<br />

(h) 〉<br />

∂M<br />

= 〈 (b + B)η • (D ∂ ), T/ch •<br />

(h) 〉 ∫<br />

= − Â(∇ 2 g ′) ∧ T/ch • (h). (7.27)<br />

∂M<br />

However, to ensure that the pairing 〈 η • (D ∂ ), (b + B) T/ch •<br />

(h) 〉 makes sense one has to<br />

assume that p h(t) satisfy the same almost ∂-flatness condition. Then<br />

Ker(p h(t) D ∂ p h(t) ) = 0,<br />

hence there is no spectral flow along the path.<br />

Thus, the total eta cochain disappears <strong>and</strong> (7.27) together <strong>with</strong> (7.26) just lead to<br />

the known local pairing <strong>for</strong>mula, cf. Eq. (7.8),<br />

〈[D],[E, F, h]〉<br />

∫<br />

= Â( b ∇ 2 g) ∧ ( ch • (p F ) − ch • (p E ) ) ∫<br />

−<br />

b M<br />

∂M<br />

Â(∇ 2 g ′) ∧ T/ch • (h) .<br />

The above considerations also show that the total eta cochain necessarily has a finite<br />

radius of convergence. If it was entire, then SF(h, D) = 0 <strong>for</strong> any h(t), which is easy to<br />

disprove by a counterexample.<br />

Appendix A. The b-calculus <strong>for</strong> manifolds <strong>with</strong> boundaries<br />

For the convenience of the reader we provide here a brief review of the basic elements<br />

of the b-calculus <strong>for</strong> manifolds <strong>with</strong> boundaries invented by Melrose. For further details<br />

we refer the reader to the monograph [Mel93] <strong>and</strong> the article [Loy05].<br />

A.1. Exact b-metrics <strong>and</strong> b-functions on cylinders. Let M be a compact manifold<br />

<strong>with</strong> boundary of dimension m, let ∂M be its boundary, <strong>and</strong> denote by M ◦ its interior<br />

M \ ∂M. Then choose a collar <strong>for</strong> M which means a diffeomorphism of the <strong>for</strong>m<br />

(r, η) : Y → [0, 2) × ∂M, where Y ⊂ M is an open neighborhood of ∂M = r −1 (0). The<br />

map r : Y → [0, 2) is called the boundary defining function of the collar, the submersion<br />

η : Y → ∂M its boundary projection. For s ∈ (0, 2) denote by Y s the open subset<br />

r −1( [0, s) ) , put Y ◦s := r −1( (0, s) ) <strong>and</strong> finally let M s := M \ Y s <strong>and</strong> M s := M \ Y ◦s ;<br />

likewise Y ◦ := Y \ ∂M. Next, let x : Y → R be the smooth function x := ln ◦r. Then<br />

(x, η) : Y ◦3/2 → (−∞, ln 3) × ∂M is a diffeomorphism of Y 3/2 onto a cylinder.<br />

2


68 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

After having fixed these data <strong>for</strong> M, we choose the most essential ingredient <strong>for</strong> the<br />

b-calculus, namely an exact b-metric <strong>for</strong> M. Following [Mel93], one underst<strong>and</strong>s by<br />

this a Riemannian metric g b on M ◦ such that on Y ◦ , the metric can be written in the<br />

<strong>for</strong>m<br />

g b |Y = 1 (dr ⊗ dr) ◦<br />

r|Y 2 |Y ◦ + η|Y ∗ ◦g ∂,<br />

(A.1)<br />

◦<br />

where g ∂ is a Riemannian metric on the boundary ∂M. Clearly, one then has in the<br />

cylindrical coordinates (x, η)<br />

g b |Y ◦ = (dx ⊗ dx) |Y ◦ + η∗ |Y ◦g ∂.<br />

Now consider the cylinder R × ∂M := R × ∂M together <strong>with</strong> the product metric<br />

g cyl = dx ⊗ dx + pr ∗ 2 g ∂ ,<br />

(A.2)<br />

(A.3)<br />

where here (<strong>with</strong> a slight abuse of language), x denotes the first coordinate of the<br />

cylinder, <strong>and</strong> pr 2 : R × ∂M → ∂M the projection onto the second factor.<br />

Next we introduce various algebras of so-called b-functions on R × ∂M. For c ∈ R<br />

define b C ( ∞ (−∞, c)×∂M ) resp. b C ( ∞ (c, ∞)×∂M ) as the algebra of smooth functions<br />

f on (−∞, c)×∂M resp. on (c, ∞)×∂M <strong>for</strong> which there exist functions f0 − , f1 − , f2 − , . . . ∈<br />

C ∞ (∂M) resp. f 0 + , f 1 + , f 2 + , . . . ∈ C ∞ (∂M) such that the following asymptotic expansions<br />

hold true:<br />

f ∼ x→−∞ f0 − + f1 − e x + f2 − e 2x + . . . resp.<br />

(A.4)<br />

f ∼ x→∞ f 0 + + f 1 + e −x + f 2 + e −2x + . . . .<br />

More precisely, this means that there exists <strong>for</strong> every k, l ∈ N <strong>and</strong> every differential<br />

operator D on ∂M a constant C > 0 such that<br />

∣<br />

∣<br />

∣∂xDf(x, l p) − 0 l Df0 − (p) − . . . − k l Df − ∣∣<br />

k (p)ekx ≤ Ce<br />

(k+1)x<br />

<strong>for</strong> all x ≤ c − 1 <strong>and</strong> p ∈ ∂M resp.<br />

∣<br />

∣<br />

∣∂xDf(x, l p) − 0 l Df 0 + (p) − . . . − (−k) l Df + ∣∣<br />

k (p)e−kx ≤ Ce<br />

−(k+1)x<br />

<strong>for</strong> all x ≥ c + 1 <strong>and</strong> p ∈ ∂M.<br />

(A.5)<br />

The asymptotic expansion guarantees that f ∈ b C ∞ ( (−∞, c) × ∂M ) if <strong>and</strong> only if the<br />

trans<strong>for</strong>med function [0, e c [×∂M ∋ (r, p) ↦→ f ( ln r, p ) is a smooth function on the collar<br />

[0, e c [×∂M.<br />

The algebra b C ∞ ( R × ∂M ) of b-functions on the full cylinder consists of all smooth<br />

functions f on R × ∂M such that<br />

f |(−∞,0)×∂M ∈ b C ∞ ( (−∞, 0) × ∂M ) <strong>and</strong> f |(0,∞)×∂M ∈ b C ∞ ( (0, ∞) × ∂M ) .<br />

Next, we define the algebras of b-functions <strong>with</strong> compact support on the cylindrical<br />

ends by b C ∞ cpt<br />

(<br />

(−∞, c) × ∂M<br />

)<br />

:=<br />

{<br />

f ∈ b C ∞ ( (−∞, c) × ∂M ) | f(x, p) = 0 <strong>for</strong> x ≥ c − ε, p ∈ ∂M <strong>and</strong> some ε > 0 }<br />

resp. by b C ∞ cpt<br />

(<br />

(c, ∞) × ∂M<br />

)<br />

:=<br />

{<br />

f ∈ b C ∞ ( (c, ∞) × ∂M ) | f(x, p) = 0 <strong>for</strong> x ≤ c + ε, p ∈ ∂M <strong>and</strong> some ε > 0 } .


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 69<br />

The essential property of the thus defined algebras of b-functions is that the coordinate<br />

system (x, η) : Y ◦3/2 → (−∞, ln 3/2) × ∂M induces an isomorphism<br />

(x, η) ∗ : b C ∞ ( (−∞, ln 3/2) × ∂M ) → C ∞( Y 3 2<br />

)<br />

, (A.6)<br />

which is defined by putting<br />

{<br />

(x, η) ∗ f :=<br />

(Y 3 f ( x(p), η(p) ) )<br />

, if p /∈ ∂M,<br />

2 ∋ p ↦→<br />

f0 − ,<br />

(η(p)), if p ∈ ∂M.<br />

<strong>for</strong> all f ∈ b C ( ∞ (−∞, ln 3/2)×∂M ) ( )<br />

. Under this isomorphism, b Ccpt<br />

∞ (−∞, 3/2)×∂M<br />

(<br />

is mapped onto Ccpt<br />

∞ 3 )<br />

Y 2 . In this article, we will use the isomorphism (x, η) ∗ to obtain<br />

essential in<strong>for</strong>mation about solutions of boundary value problems on M by trans<strong>for</strong>ming<br />

the problem to the cylinder over the boundary <strong>and</strong> then per<strong>for</strong>ming computations there<br />

<strong>with</strong> b-functions on the cylinder.<br />

The final class of b-functions used in this work is the algebra b S ( R × ∂M ) of<br />

exponentially fast decreasing functions or b-Schwartz test functions on the cylinder<br />

defined as the space of all smooth functions f ∈ C ∞( R × ∂M ) such that <strong>for</strong> all l, n ∈ N,<br />

D ∈ Diff(∂M) there exists a C l,D,n > 0 such that<br />

∣ ∂<br />

l<br />

x Df(x, p) ∣ ≤ Cl,D,N e −n|x| <strong>for</strong> all x ∈ R <strong>and</strong> p ∈ ∂M. (A.7)<br />

Obviously, (x, y) ∗ maps b S ( R × ∂M ) ( )<br />

∩ b Ccpt ∞ (−∞, ln 3/2) × ∂M onto the function<br />

space J ∞( ) (<br />

∂M, Y 3 3 )<br />

2 ∩ C<br />

∞<br />

cpt Y 2 .<br />

A.2. Global symbol calculus <strong>for</strong> pseudodifferential operators. In this section,<br />

we briefly recall the global symbol <strong>for</strong> pseudodifferential operators which was introduced<br />

by Widom in [Wid80] (see also [FuKe88, Pfl98]). We assume that (M 0 , g) is a<br />

Riemannian manifold (<strong>with</strong>out boundary), <strong>and</strong> that π E : E → M 0 <strong>and</strong> π F : F → M 0<br />

are smooth vector bundle carrying a Hermitian metric µ E resp. µ F . In later applications,<br />

M 0 will be the interior of a given manifold <strong>with</strong> boundary M.<br />

Recall that there exists an open neighborhood Ω 0 of the diagonal in M 0 × M 0 such<br />

that each two points p, q ∈ M 0 can be joined by a unique geodesic. Let α 0 be a cut-off<br />

function <strong>for</strong> Ω 0 which means a smooth map M 0 × M 0 → [0, 1] which has support in Ω 0<br />

<strong>and</strong> is equal to 1 on a neighborhood of the diagonal. These data give rise to the map<br />

{<br />

α 0 (p, q) exp −1<br />

p (q) if (p, q) ∈ Ω 0 ,<br />

Φ : M × M → T M, (p, q) ↦→<br />

(A.8)<br />

0 else,<br />

which is called a connection-induced linearization (cf. [FuKe88]). Next denote <strong>for</strong><br />

(p, q) ∈ Ω 0 by τp,q E : E p → E q the parallel transport in E along the geodesic joining p<br />

<strong>and</strong> q. This gives rise to the map<br />

{ (<br />

τ E α 0 πE (e), q ) τ E π<br />

: E × M → E, (e, q) ↦→<br />

E (e),q (e), if (π E(e), q) ∈ Ω 0 ,<br />

(A.9)<br />

0 else,<br />

which is called a connection-induced local transport on E. (cf. [FuKe88]).


70 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Next let us define the symbol spaces S m( T ∗ M 0 ; πT ∗ ∗ M E) . For fixed m ∈ R this<br />

space consists of all smooth sections a : T ∗ M 0 → πT ∗ ∗ M 0<br />

E such that in local coordinates<br />

x : U → R dim M 0<br />

of over U ⊂ M 0 open <strong>and</strong> vector bundle coordinates<br />

(x, η) : E |U → R dim M 0+dim R E the following estimate holds true <strong>for</strong> each compact K ⊂ U<br />

<strong>and</strong> appropriate C K > 0 depending on K:<br />

∥ ∂<br />

α<br />

x ∂ β ξ (η ◦ a)(ξ)∥ ∥ ≤ CK (1 + ‖T ∗ x(ξ)‖) m−|β| <strong>for</strong> all ξ ∈ T|KM ∗<br />

0 . (A.10)<br />

Given a symbol a ∈ S m( T ∗ M 0 ; πT ∗ ∗ M Hom(E, F )) one defines now a pseudodifferential<br />

operator Op(a) ∈ Ψ m( M 0 ; E, F ) by<br />

( )<br />

Op(a) u (p) :=<br />

∫<br />

1<br />

:=<br />

α<br />

(2π) dim M<br />

0 (p, exp v) e −i〈v,ξ〉 a(p, ξ)τ E (u(exp v), p) dv dξ, (A.11)<br />

T pM 0 ×T ∗ p M 0<br />

where u ∈ Γ ∞ cpt(E) <strong>and</strong> p ∈ M 0 . Moreover, there is a quasi-inverse, the symbol map<br />

σ : Ψ m( M 0 ; E, F ) → S m( T ∗ M 0 ; πT ∗ ∗ M Hom(E, F )) which is defined by<br />

(<br />

) (π(ξ) )<br />

σ(A)(ξ)(e) := A α 0 (p, −) τ E (e, −) e i〈ξ,Φ(p,−)〉 , (A.12)<br />

where p ∈ M 0 , ξ ∈ Tp ∗ M 0 , e ∈ E p . It is a well-known result from global symbol calculus<br />

(cf. [Wid80, FuKe88, Pfl98]) that the map Op maps S −∞( T ∗ M 0 ; πT ∗ ∗ M Hom(E, F ))<br />

onto Ψ −∞( M 0 ; E, F ) <strong>and</strong> that up to these spaces, Op <strong>and</strong> σ are inverse to each other.<br />

A.3. Classical b-pseudodifferential operators. Let us explain in the following the<br />

basics of the (small) calculus of b-pseudodifferential operators on a manifold <strong>with</strong><br />

boundary M. In our presentation, we lean on the approach [Loy05]. For more details<br />

on the original approach confer [Mel93].<br />

In this section, we assume that M carries a b-metric denoted by g b . Furthermore,<br />

let π E : E → M <strong>and</strong> π F : F → M be two smooth Hermitian vector bundles over M,<br />

<strong>and</strong> fix metric connections ∇ E <strong>and</strong> ∇ F . Then observe that by the Schwartz Kernel<br />

Theorem there is an isomorphism between bounded linear maps<br />

A : J ∞( ∂M, M; E ) → J ∞( ∂M, M; F ′) ′<br />

<strong>and</strong> the strong dual J ∞( ∂(M × M), M × M; E ⊠ F ′) ′ ( , where J<br />

∞<br />

∂M, M; E ) :=<br />

J ∞( ∂M, M ) · C ∞ (M; E). This isomorphism is given by<br />

(<br />

A ↦→ K A := J ∞( ∂M, M; E ) ˆ⊗J ∞( ∂M, M; F ′) )<br />

∋ (u ⊗ v) ↦→ 〈Au, v〉 , (A.13)<br />

where we have used that<br />

J ∞( ∂(M × M), M × M; E ⊠ F ′) = J ∞( ∂M, M; E ) ˆ⊗J ∞( ∂M, M; F ′)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 71<br />

<strong>with</strong> ˆ⊗ denoting the completed bornological tensor product. The b-volume <strong>for</strong>m µ b<br />

associated to g b gives rise to an embedding<br />

M ∞( ∂M, M; E ′ ⊗ F ) ↩→ J ∞( ∂(M × M), M × M; E ⊠ F ′) ′<br />

,<br />

( ∫<br />

k ↦→ u ⊗ v ↦→ 〈k(p, q), u(p) ⊗ v(q)〉 d ( )<br />

)<br />

µ b ⊗ µ b (p, q) ,<br />

M×M<br />

(A.14)<br />

which we use implicitly throughout this work. In the <strong>for</strong>mula <strong>for</strong> the embedding,<br />

〈−, −〉 denotes the natural pairing of an element of a vector bundle <strong>with</strong> an element<br />

of the dual bundle over the same base point, u, v are elements of J ∞( ∂M, M; E ) <strong>and</strong><br />

J ∞( ∂M, M; F ′) respectively, <strong>and</strong> M ∞( X, M; E) denotes <strong>for</strong> X ⊂ M closed the space<br />

of all sections u ∈ Γ ∞ (M \ X; E) such that in local coordinates (y, η) : π −1<br />

E (U) →<br />

R dim M+dim E <strong>with</strong> U ⊂ M open one has <strong>for</strong> every compact K ⊂ U, p ∈ K \ X, <strong>and</strong><br />

α ∈ N dim M an estimate of the <strong>for</strong>m<br />

∥ ∂<br />

α<br />

y<br />

(<br />

η ◦ u<br />

)<br />

(p)<br />

∥ ∥ ≤ C<br />

1<br />

(d ( y(p), y(X ∩ U) )) λ ,<br />

where C > 0 <strong>and</strong> λ > 0 depend only on the local coordinate system, K, <strong>and</strong> α. The<br />

fundamental property of M ∞( X, M; E) is that<br />

J ∞ (X, M) · M ∞( X, M; E) ⊂ J ∞ (X, M; E).<br />

Note that the vector bundle E (<strong>and</strong> likewise the vector bundle F ) gives rise to a<br />

pull-back vector bundle pr ∗ ∂M E |∂M on the cylinder, where pr ∂M : R × ∂M → ∂M is<br />

the canonical projection. This pull-back vector bundle will be denoted by E (resp. F ),<br />

too. As further preparation we introduce two auxiliary functions ψ : M → [0, 1] <strong>and</strong><br />

ϕ : M → [0, 1] on M which are smooth <strong>and</strong> satisfy supp ψ ⊂⊂ M 1 , ψ(p) = 1 <strong>for</strong><br />

p ∈ M 3/2 , supp ϕ ⊂⊂ Y 1 , <strong>and</strong> finally ϕ(p) = 1 <strong>for</strong> p ∈ Y 1/2 . Such a pair of functions<br />

will be called a pair of auxiliary cut-off functions.<br />

By a b-pseudodifferential operator of order m ∈ R we now underst<strong>and</strong> a continuous<br />

operator A : J ∞ (∂M, M; E) → J ∞ (∂M, M; F ) ′ such that <strong>for</strong> one (<strong>and</strong> hence <strong>for</strong> all)<br />

pair(s) of auxiliary cut-off functions the following is satisfied:<br />

( b Ψ1) The operator (1 − ϕ)A(1 − ϕ) is a compactly supported pseudodifferential operator<br />

of order m in the interior M ◦ .<br />

( b Ψ2) The operator ϕAψ is smoothing. Its integral kernel K ϕAψ has support in<br />

supp ϕ × M <strong>and</strong> lies in J ∞( ∂(M × M), M × M; E ′ ⊠ F ) .<br />

( b Ψ3) The operator ψAϕ is smoothing. Its integral kernel K ψAϕ has support in M ×<br />

supp ϕ <strong>and</strong> lies in J ∞( ∂(M × M), M × M; E ′ ⊠ F ) .<br />

( b Ψ4) Consider the induced operator on the cylinder<br />

à : b S ( R × ∂M; E ) → b S ( R × ∂M; F ) ′<br />

,<br />

(<br />

u ↦→ (t, p) ↦→ [ (1 − ψ)A(1 − ψ) ( (x, η) ∗ u )]( (x, η) −1 (t, p) )) ,<br />

where b S ( R × ∂M; E ) := b S (R) ˆ⊗C ∞( ∂M; E ) . Denote by ã := σ(Ã) ∈<br />

S m( T ∗ (R×∂M); π ∗ Hom(E, F ) ) the complete symbol of à defined by Eq. (A.12)


72 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

<strong>with</strong> respect to the product metric on R × ∂M. Then the following conditions<br />

hold true:<br />

(i) Let y denote local coordinates of ∂M, (y, ξ) the corresponding local coordinates<br />

of T ∗ ∂M, <strong>and</strong> τ the cotangent variable of the cylinder variable<br />

t ∈ R. Then the symbol ã(t, τ, y, ξ) can be (uniquely) extended to an entire<br />

function in τ ∈ C such that uni<strong>for</strong>mly in t, uni<strong>for</strong>mly in a strip | Im τ| ≤ R<br />

<strong>with</strong> R > 0 <strong>and</strong> locally uni<strong>for</strong>mly in y<br />

∥<br />

∥∂t k ∂τ∂ l y α ∂ β ξ ã<br />

∥ ≤ C k,l,α,β (1 + |τ| + ‖ξ‖) m−l−|β|<br />

<strong>for</strong> l ∈ N, β ∈ N dim M−1 .<br />

(ii) There exist symbols ã k (τ, y, ξ) ∈ S m( C × T ∗ ∂M; π ∗ Hom(E, F ) ) , k ∈ N,<br />

<strong>and</strong> r n (t, τ, y, ξ) ∈ S m( R × C × T ∗ ∂M); π ∗ Hom(E, F ) ) , n ∈ N, which all<br />

are entire in τ <strong>and</strong> fulfill growth conditions as in (i) such that <strong>for</strong> every<br />

n ∈ N the following asymptotic expansion holds:<br />

n∑<br />

ã(t, τ, y, ξ) = e kt ã k (τ, y, ξ) + e (n+1)t r n (t, τ, y, ξ).<br />

k=0<br />

(iii) The Schwartz kernel K eB of the operator ˜B := Ã−Op(ã) <strong>with</strong> Op(ã) defined<br />

by Eq. (A.11) can be represented in the <strong>for</strong>m<br />

∫<br />

K eB (t, p, t ′ , p ′ ) = e i(t−t′ )τ ˜b(t, τ, p, p ′ ) dτ<br />

<strong>with</strong> a symbol<br />

R<br />

˜b(t, τ, p, p ′ ) ∈ S −∞( T ∗ R × ∂M × ∂M; π ∗ Hom(E, F ) )<br />

which is entire in τ <strong>and</strong> which <strong>for</strong> every ˜m ∈ N, k, l ∈ N <strong>and</strong> every pair of<br />

differential operators D p <strong>and</strong> D p ′ on ∂M (acting on the variable p resp. ′ p′ )<br />

satisfies the following estimate uni<strong>for</strong>mly in t, p, p ′ <strong>and</strong> uni<strong>for</strong>mly in a strip<br />

| Im τ| ≤ R <strong>with</strong> R > 0<br />

∥<br />

∥∂t k ∂τD l p D p ′ ˜b<br />

∥ ≤ C ′ ˜m,k,l,D,D ′ (1 + |τ|) ˜m .<br />

(iv) There exist symbols<br />

˜bk (τ, p, p ′ ) ∈ S −∞( C × ∂M × ∂M; π ∗ Hom(E, F ) ) ,<br />

<strong>for</strong> k ∈ N <strong>and</strong> symbols<br />

r n (t, τ, p, p ′ ) ∈ S m( R × C × ∂M × ∂M; π ∗ Hom(E, F ) ) ,<br />

<strong>for</strong> n ∈ N which all are entire in τ <strong>and</strong> fulfill growth conditions as in (iii)<br />

such that <strong>for</strong> every n ∈ N the following asymptotic expansion holds:<br />

n∑<br />

˜b(t, τ, p, p ′ ) = e kt ˜bk (τ, p, p ′ ) + e (n+1)t r n (t, τ, p, p ′ ).<br />

k=0


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 73<br />

If in addition to the above conditions the operators (1 − ϕ)A(1 − ϕ) <strong>and</strong> Ã are<br />

both classical pseudodifferential operators, then A is a classical b-pseudodifferential<br />

operator of order m. We denote the space of classical b-pseudodifferential operators<br />

on (M, g b ) of order m between E <strong>and</strong> F by b Ψ m (M; E, F ), <strong>and</strong> put as usual<br />

b Ψ ∞ (M; E, F ) := ⋃ m∈Z b Ψ m (M; E, F ). It is straight<strong>for</strong>ward (though somewhat tedious)<br />

to check that b Ψ ∞ (M; E) := b Ψ ∞ (M; E, E) even <strong>for</strong>ms an algebra. Obviously,<br />

b Ψ ∞ (M; E, F ) contains as a natural subspace the space b Diff(M; E, F ) of<br />

all b-differential operators on M from E to F which means of all local classical b-<br />

pseudodifferential operators. The following is immediate to check.<br />

Proposition A.1. Let A ∈ b Ψ ∞ ( )<br />

M; E, F . Using the notation from above the following<br />

propositions are then equivalent:<br />

(1) A ∈ b Diff ( M; E, F ) .<br />

(2) The operators (1 − ϕ)A(1 − ϕ) <strong>and</strong> Ã are differential operators, <strong>and</strong> both the<br />

operators ϕAψ <strong>and</strong> ψAϕ vanish.<br />

(3) The operator A acts as a differential operator over the interior, i.e. as a local<br />

operator on Γ ∞( E |M ◦)<br />

. In addition, over the cylinder (−∞, 0)×∂M the operator<br />

à can be written locally in the <strong>for</strong>m<br />

∑<br />

à = a j,α ∂y α ∂x,<br />

j (A.15)<br />

j+|α|≤ord A<br />

where a j,α ∈ b C ∞( (−∞, 0) × U ) , U ⊂ ∂M open <strong>and</strong> y : U → R dim M−1 are local<br />

coordinates of ∂M.<br />

Over a cylinder (−∞, c) × N <strong>with</strong> c ∈ R <strong>and</strong> N a compact manifold, we sometimes<br />

use the notation b Ψ ∞ cpt(<br />

(−∞, c) × N; E, F<br />

)<br />

to denote the space of all pseudodifferential<br />

operators in b Ψ ∞ (<br />

(−∞, c) × N; E, F<br />

)<br />

having support in some cylinder (−∞, c − ε] × N<br />

<strong>with</strong> ε > 0. We also put<br />

b Diff cpt<br />

(<br />

(−∞, c) × N; E, F<br />

)<br />

:=<br />

b Diff ( (−∞, c) × N; E, F ) ∩ b Ψ ∞ cpt<br />

(<br />

(−∞, c) × N; E, F<br />

)<br />

.<br />

(A.16)<br />

Note that in condition ( b Ψ4) above, the operator à is an element of b Ψ ∞ cpt(<br />

(−∞, 3/2) ×<br />

∂M; E, F ) .<br />

Throughout this work, we also need the b-versions of Sobolev-spaces. For m ∈ N,<br />

the b-Sobolev space b H m (M; E) is defined by<br />

b H m (M, E) := { u ∈ L 2 (M, E) | Du ∈ L 2 (M, E) <strong>for</strong> all D ∈ b Diff m (M, E) } .<br />

(A.17)<br />

For the definition of b H m (M, E) <strong>for</strong> arbitrary m ∈ R we refer the reader to [Mel93].<br />

The following result is straight<strong>for</strong>ward.<br />

Proposition A.2. Let A ∈ b Ψ l (M; E, F ) be a b-pseudodifferential operator. Then the<br />

following holds true:<br />

(1) A has a natural extension<br />

A : b H m (M; E) → b H m−l (M; F ),<br />

(A.18)


74 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

which we denote by the same symbol like the original operator.<br />

(2) The b-Sobolev-space b H 1 (M, E) is the natural domain of any elliptic first order<br />

b-pseudodifferential operator acting on sections of E.<br />

(3) If A has order l = 0, then A is bounded.<br />

A.4. Indicial family. Assume A ∈ b Ψ m (M; E, F ). Denote by à <strong>and</strong> ã the induced<br />

operator <strong>and</strong> its complete symbol on the cylinder R × ∂M as above in condition ( b Ψ4).<br />

Consider the zeroth order term ã 0 in the asymptotic expansion ( b Ψ4)(ii) <strong>and</strong> put <strong>for</strong><br />

τ ∈ C, u ∈ Γ ∞ (∂M; E) <strong>and</strong> p ∈ ∂M<br />

I(A)(τ)u(p) := Op ( ã 0 (τ, −) ) u(p) =<br />

∫<br />

1<br />

=<br />

(2π)<br />

dim M−1<br />

T p∂M×T ∗ p ∂M<br />

α 0 (p, exp v) e −i〈v,ξ〉 ã 0 (τ, p, ξ) τ E( u(exp v), p ) dv dξ,<br />

(A.19)<br />

where, as explained in Section A.2, α 0 : M × M → [0, 1] is a cut-off function vanishing<br />

outside the injectivity radius <strong>and</strong> τ E is a connection induced parallel transport on E.<br />

One thus obtains an entire family I(A) of pseudodifferential operators on the boundary<br />

∂M which is called the indicial family of A. The indicial family plays a crucial role in<br />

deriving the Atiyah–Patodi–Singer index <strong>for</strong>mula <strong>with</strong>in the b-calculus (cf. [Mel93]).<br />

Appendix B. Basic resolvent <strong>and</strong> heat kernel estimates<br />

For the convenience of the reader we are going to summarize some basic estimates <strong>for</strong><br />

the resolvent <strong>and</strong> the heat operator associated to an elliptic operator. These estimates<br />

are an essential tool <strong>for</strong> the investigation of the asymptotics of the <strong>Chern</strong> character in<br />

Section 3.<br />

During the whole section M will be a Riemannian manifold <strong>with</strong>out boundary <strong>and</strong><br />

D 0 : Γ ∞ (M; W ) −→ Γ ∞ (M; W ) will denote a first order <strong>for</strong>mally self–adjoint elliptic<br />

differential operator acting between sections of the Hermitian vector bundle W . We<br />

assume that there exists a self–adjoint extension, D, of D 0 . E.g. if M is complete <strong>and</strong><br />

D 0 is of Dirac type then D 0 is essentially self–adjoint; if M is the interior of a compact<br />

manifold <strong>with</strong> boundary then D can be obtained by imposing an appropriate boundary<br />

condition. For the following considerations it is irrelevant which self–adjoint extension<br />

is chosen. We just fix one.<br />

B.1. Resolvent estimates. We fix an open sector Λ := { z ∈ C \ {0} ∣ 0 < ε ≤<br />

arg z ≤ 2π − ε } ⊂ C \ R + in the complex plane.<br />

We introduce the following notation: <strong>for</strong> a function f : Λ → C we write f(λ) =<br />

O(|λ| α+0 ), λ → ∞, λ ∈ Λ if <strong>for</strong> every δ > 0, λ 0 ∈ Λ, there is a constant C δ,λ0 such that<br />

|f(λ)| ≤ C δ |λ| α+δ <strong>for</strong> λ ∈ Λ, |λ| ≥ |λ 0 |.<br />

We write f(λ) = O(|λ| −∞ ), λ → ∞, λ ∈ Λ if f(λ) = O(|λ| −N ) <strong>for</strong> every N; the<br />

O–constant may depend on N.<br />

L 2 s(M; W ) denotes the Hilbert space of sections of W which are of Sobolev class<br />

s. The Sobolev norm of an element f ∈ L 2 s(M; W ) is denoted by ‖f‖ s . For a linear<br />

operator T : L 2 s(M; W ) → L 2 t (M; W ) its operator norm is denoted by ‖T ‖ s,t .


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 75<br />

For an operator T in a Hilbert space H we denote by ‖T ‖ p the p–th Schatten norm.<br />

To avoid confusions the letter p will not be used <strong>for</strong> Sobolev orders. Note that the<br />

operator norm of T in H coincides <strong>with</strong> ‖T ‖ ∞ .<br />

Proposition B.1. Let A, B ∈ Ψ • (M, W ) be pseudodifferential operators of order a, b<br />

<strong>with</strong> compact support. 1<br />

1. If k > (dim M)/4 + a/2 then A(D 2 − λ) −k , (D 2 − λ) −k A are Hilbert–Schmidt<br />

operators <strong>for</strong> λ ∉ spec D 2 <strong>and</strong> we have<br />

‖A(D 2 − λ) −k ‖ 2 = O(|λ| a/2+(dim M)/4−k+0 ), as λ → ∞ in Λ. (B.1)<br />

The same estimate holds <strong>for</strong> ‖(D 2 − λ) −k A‖ 2 .<br />

2. If k > (dim M + a + b)/2 then A(D 2 − λ) −k B is of trace class <strong>for</strong> λ ∉ spec D 2 <strong>and</strong><br />

‖A(D 2 − λ) −k B‖ 1 = O(|λ| (dim M+a+b)/2−k+0 ), as λ → ∞ in Λ. (B.2)<br />

3. Denote by π 1 , π 2 : M × M → M the projection onto the first resp. second factor<br />

<strong>and</strong> assume that π 2 (supp A) ∩ π 1 (supp B) = ∅. Then A(D 2 − λ) −k B is a trace class<br />

operator <strong>for</strong> any k ≥ 1 <strong>and</strong><br />

‖A(D 2 − λ) −k B‖ 1 = O(|λ| −∞ ), as λ → ∞ in Λ. (B.3)<br />

Proof. 1. Sobolev embedding <strong>and</strong> elliptic regularity implies that <strong>for</strong> f ∈ L 2 (M; W ) the<br />

section A(D 2 − λ) −k f is continuous. Moreover, <strong>for</strong> r > dim M/2, |λ| ≥ |λ 0 |, <strong>and</strong> x in<br />

the compact set supp A =: K<br />

‖ ( A(D 2 − λ) −k f ) (x)‖ ≤ C‖(D 2 − λ) −k ‖ a+r,K<br />

≤ C‖(D 2 + I) (a+r)/2 (D 2 − λ) −k f‖ 0<br />

≤ C|λ| −k+(a+r)/2 ‖f‖.<br />

For the Schwartz–kernel this implies the estimate<br />

∫<br />

‖A(D 2 − λ) −k (x, y)‖ 2 d vol(y) ≤ C|λ| −2k+a+r ,<br />

sup<br />

x∈supp A<br />

M<br />

<strong>and</strong> since A has compact support, integration over x yields<br />

‖A(D 2 − λ) −k ‖ 2 2<br />

∫ ∫<br />

≤ ‖A(D 2 − λ) −k (x, y)‖ 2 d vol(x)d vol(y)<br />

supp A<br />

M<br />

≤ C|λ| −2k+a+r ,<br />

(B.4)<br />

(B.5)<br />

(B.6)<br />

proving the estimate (B.1). The estimate <strong>for</strong> (D 2 −λ) −k A follows by taking the adjoint.<br />

2. The second claim follows from the first one using the Hölder inequality.<br />

3. To prove the third claim we choose cut–off functions ϕ, ψ ∈ C ∞ 0 (M) <strong>with</strong> ϕ = 1<br />

on π 2 (supp A), ψ = 1 on π 1 (supp B) <strong>and</strong> supp ϕ ∩ supp ψ = ∅.<br />

1 This means that their Schwartz kernels are compactly supported in M × M.


76 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Then A(D 2 − λ) −k B = Aϕ(D 2 − λ) −k ψB <strong>and</strong> ϕ(D 2 − λ) −k ψ is a smoothing operator<br />

in the parameter dependent calculus (cf. Shubin [Shu01, Chap. II]). Hence <strong>for</strong> any real<br />

numbers s, t, N we have<br />

‖ϕ(D 2 − λ) −k ψ‖ s,t ≤ C(s, t, N) |λ| −N , as λ → ∞ in Λ. (B.7)<br />

Since the Sobolev orders s, t are arbitrary this implies the claim.<br />

Proposition B.2. Let A ∈ Ψ a (M, W ) be a pseudodifferential operator <strong>with</strong> compact<br />

support.<br />

1. Let ϕ ∈ C ∞ (M) be a smooth function such that supp dϕ is compact, i.e. outside<br />

a compact set ϕ is locally constant. Moreover suppose that supp ϕ ∩ π 1 (supp A) = ∅.<br />

Then ϕ(D 2 −λ) −k A is a trace class operator <strong>for</strong> any k ≥ 1 <strong>and</strong> the estimate (B.3) holds<br />

<strong>for</strong> ϕ(D 2 − λ) −k A.<br />

2. If k > (dim M + a)/2 then A(D 2 − λ) −k , (D 2 − λ) −k A are trace class operators<br />

<strong>and</strong> the estimate (B.2) holds <strong>with</strong> B = I.<br />

Proof. From<br />

(D 2 − λ)ϕ(D 2 − λ) −k A = [D 2 , ϕ](D 2 − λ) −k A + ϕ(D 2 − λ) −k+1 A (B.8)<br />

we infer since ϕA = 0<br />

ϕ(D 2 − λ) −k A<br />

= (D 2 − λ) −1 {<br />

[D 2 , ϕ](D 2 − λ) −k A, k = 1,<br />

[D 2 , ϕ](D 2 − λ) −k A + ϕ(D 2 − λ) −k+1 A, k > 1.<br />

□<br />

(B.9)<br />

Applying Proposition B.1.3 to the right h<strong>and</strong> side we inductively obtain the first assertion.<br />

To prove the second assertion we choose a cut–off function ϕ ∈ C0 ∞ (M) <strong>with</strong> ϕ = 1<br />

on π 1 (supp A). Then we apply Proposition B.1.2 to ϕ(D 2 − λ) −k A <strong>and</strong> the proved first<br />

assertion to (1 − ϕ)(D 2 − λ) −k A to reach the conclusion.<br />

□<br />

For the following Proposition it is crucial that we are precise about domains of operators:<br />

Definition B.3. Given a differential operator A ∈ Diff a (M, W ) we say that the commutator<br />

[D 2 , A] has compact support if<br />

(1) A <strong>and</strong> A t map dom(D k ) into dom(D k−a ) <strong>for</strong> k ≥ a <strong>and</strong><br />

(2) the differential expression [D 2 , A] has compact support.<br />

The main example we have in mind is where D is a Dirac type operator on a complete<br />

manifold <strong>and</strong> A is multiplication by a smooth function ϕ such that dϕ has compact<br />

support. Then [D 2 , ϕ] has compact support in the above sense.<br />

Proposition B.4. Let A ∈ Diff a (M, W ) be a differential operator such that [D 2 , A]<br />

has compact support <strong>and</strong> is of order ≤ a + 1. Then <strong>for</strong> k > dim M + a the commutator<br />

[A, (D 2 − λ) −k ] is trace class <strong>and</strong><br />

‖[A, (D 2 − λ) −k ]‖ 1 = O(|λ| (dim M+a−1)/2−k+0 ), as λ → ∞ in Λ. (B.10)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 77<br />

spectrum<br />

Figure 5. Contour of integration <strong>for</strong> calculating e −tD2 from the resolvent.<br />

Proof. Note first that since A <strong>and</strong> A t map dom(D k ) into dom(D k−a ) the commutator<br />

[A, (D 2 − λ) −k ] is defined as a linear operator on L 2 (M; W ) <strong>and</strong> we have the identity<br />

[A, (D 2 − λ) −k ] =<br />

k∑<br />

(D 2 − λ) −j [D 2 , A](D 2 − λ) −k+j−1 . (B.11)<br />

j=1<br />

Since k > dim M + a we have in each summ<strong>and</strong> j > (dim M + a + 1)/2 or k − j + 1 ><br />

(dim M +1+1)/2. Say in the first case we apply Proposition B.2 to ‖(D 2 −λ) −j [D 2 , A]‖ 1<br />

<strong>and</strong> the Spectral Theorem to estimate ‖(D 2 − λ) −k+j−1 ‖ <strong>and</strong> find<br />

‖(D 2 − λ) −j [D 2 , A](D 2 − λ) −k+j−1 ‖ 1<br />

≤ ‖(D 2 − λ) −j [D 2 , A]‖ 1 ‖(D 2 − λ) −k+j−1 ‖ ∞<br />

≤ O(|λ| (dim M+a+1)/2−j+0 ) · O(|λ| −k+j−1 )<br />

= O(|λ| (dim M+a−1)/2−k+0 ). □<br />

B.2. Heat kernel estimates. From Propositions B.1, B.2 we can derive short <strong>and</strong><br />

large times estimates <strong>for</strong> the heat operator e −tD2 . We write<br />

e −tD2 = 1 ∫<br />

e −tλ (D 2 − λ) −1 dλ<br />

2πi γ<br />

∫<br />

(B.12)<br />

= t−k k!<br />

e −tλ (D 2 − λ) −k−1 dλ,<br />

2πi<br />

γ<br />

where integration is over the contour sketched in Figure 5. The notation O(t α−0 ), O(t ∞ )<br />

as t → 0+ resp. O(t α−0 ), O(t −∞ ) as t → ∞ is defined analogously to the corresponding<br />

notation <strong>for</strong> λ ∈ Λ in the previous Subsection.<br />

We infer from Propositions B.1, B.2<br />

Proposition B.5. Let A, B ∈ Ψ • (M, W ) be pseudodifferential operators of order a, b<br />

<strong>with</strong> compact support.<br />

1. For t > 0 the operators Ae −tD2 , e −tD2 A are trace class operators. For t 0 , ε > 0<br />

there is a constant C(t 0 , ε) > 0 such that <strong>for</strong> all 1 ≤ p ≤ ∞ we have the following


78 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

c<br />

• • •<br />

discrete<br />

essential spectrum<br />

Figure 6.<br />

of D 2 is c.<br />

Contour of integration if bottom of the essential spectrum<br />

estimate in the Schatten p–norm<br />

‖Ae −tD2 dim M+ε<br />

−a/2−<br />

‖ p ≤ C(t 0 , ε) t<br />

2p<br />

, 0 < t ≤ t 0 . (B.13)<br />

Note that C(t 0 , ε) is independent of p. The same estimate holds <strong>for</strong> ‖e −tD2 A‖ p .<br />

2. Denote by π 1 , π 2 : M × M → M the projection onto the first resp. second factor<br />

<strong>and</strong> assume that π 2 (supp A) ∩ π 1 (supp B) = ∅. Then<br />

‖Ae −tD2 B‖ 1 = O(t ∞ ), 0 < t < t 0 , (B.14)<br />

<strong>with</strong> N arbitrarily large.<br />

3. Let ϕ ∈ C ∞ (M) be a smooth function such that supp dϕ is compact. Moreover<br />

suppose that supp ϕ∩π 1 (supp A) = ∅. Then the estimate (B.14) also holds <strong>for</strong> ϕe −tD2 A.<br />

Proof. 1. From Proposition B.2 <strong>and</strong> the contour integral (B.12) we infer the inequality<br />

(B.13) <strong>for</strong> p = 1. For p = ∞ it follows from the Spectral Theorem. The Hölder<br />

inequality implies the following interpolation inequality <strong>for</strong> Schatten norms<br />

‖T ‖ p = Tr(|T | p ) 1/p ≤ ‖T ‖ 1−1/p<br />

∞ ‖T ‖ 1/p<br />

1 , 1 ≤ p ≤ ∞. (B.15)<br />

From this we infer (B.13).<br />

The remaining claims follow immediately from the contour integral (B.12) <strong>and</strong> the<br />

corresponding resolvent estimates.<br />

□<br />

For the next result we assume additionally that D is a Fredholm operator <strong>and</strong> we<br />

denote by H the orthogonal projection onto Ker D. H is a finite rank smoothing<br />

operator. Put c := inf spec ess D 2 . Then e −tD2 (I − H) = e −tD2 − H can again be<br />

expressed in terms of a contour integral as in (B.12) where the contour is now depicted<br />

in Figure 6.<br />

This allows to make large time estimates. The result is as follows:<br />

Proposition B.6. Assume that D is Fredholm <strong>and</strong> let A ∈ Ψ a (M, W ) be a pseudodifferential<br />

operator <strong>with</strong> compact support. Then <strong>for</strong> any 0 < δ < inf spec ess D 2 <strong>and</strong> any<br />

ε > 0 there is a constant C(δ, ε) such that <strong>for</strong> 1 ≤ p ≤ ∞<br />

‖Ae −tD2 dim M+ε<br />

−a/2−<br />

(I − H)‖ p ≤ C(δ, ε) t<br />

2p<br />

e −tδ , 0 < t < ∞. (B.16)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 79<br />

Proof. For t → 0+ the estimate follows from Proposition B.5.1.<br />

For t → ∞ <strong>and</strong> p = 1 the estimate follows from Proposition B.1 <strong>and</strong> (B.12) by<br />

taking the contour as in Figure 6. For p = ∞ the estimate is a simple consequence<br />

of the Spectral Theorem. The general case then follows again from the interpolation<br />

inequality (B.15).<br />

□<br />

Finally we state the analogue of Proposition B.4 <strong>for</strong> the heat kernel.<br />

Proposition B.7. Let A ∈ Diff a (M, W ) be a differential operator such that [D 2 , A] has<br />

compact support (in the sense of Definition B.3) <strong>and</strong> is of order ≤ a + 1.<br />

Then <strong>for</strong> t > 0 the operator [A, e −tD2 ] is of trace class. For t 0 , ε > 0 there is a<br />

constant C(t 0 , ε) such that <strong>for</strong> all 1 ≤ p ≤ ∞ we have the following estimate in the<br />

Schatten p–norm<br />

‖[A, e −tD2 dim M−1+ε<br />

−a/2−<br />

]‖ p ≤ C(t 0 , ε) t<br />

2p<br />

, 0 < t ≤ t 0 ; (B.17)<br />

C(t 0 , ε) is independent of p.<br />

If D is a Fredholm operator then <strong>for</strong> any 0 < δ < inf spec ess D 2 <strong>and</strong> any ε > 0 there<br />

is a constant C(δ, ε) such that <strong>for</strong> 1 ≤ p ≤ ∞<br />

‖[A, e −tD2 dim M−1+ε<br />

−a/2−<br />

(I − H)]‖ p ≤ C(δ, ε) t<br />

2p<br />

e −tδ , 0 < t < ∞. (B.18)<br />

Proof. For p = 1 this follows from Proposition B.4 <strong>and</strong> the contour integral representation<br />

(B.12) by taking the contours as in Figure 5 <strong>for</strong> t → 0+ <strong>and</strong> as in Figure 6 in<br />

the Fredholm case as t → ∞. For p = ∞ the estimates are a simple consequence of<br />

the Spectral Theorem. The general case then follows from the interpolation inequality<br />

(B.15).<br />

□<br />

B.3. Estimates <strong>for</strong> the JLO integr<strong>and</strong>. Recall that we denote the st<strong>and</strong>ard k–<br />

simplex by ∆ k := { (σ 0 , ..., σ k ) ∈ R k+1 ∣ ∣ σ j ≥ 0, σ 0 + ... + σ k = 1 } . Furthermore, recall<br />

the notation (2.3).<br />

Proposition B.8. Let A j ∈ Diff a j<br />

(M; W ), j = 0, ..., k, be D a j<br />

–bounded differential<br />

∑<br />

operators on M, a := k a j . Furthermore, assume that supp A j0 is compact <strong>for</strong> at least<br />

j=0<br />

one index j 0 .<br />

1. For t 0 , ε > 0 there is a constant C(t 0 , ε) such that <strong>for</strong> all σ = (σ 0 , ..., σ k ) ∈<br />

∆ k , σ j > 0,<br />

‖A 0 e −σ 0tD 2 A 1 · . . . · A k e −σ ktD 2 ‖ 1<br />

( k∏<br />

)<br />

≤ C(t 0 , ε) σ −a j/2<br />

j t −a/2−(dim M)/2−ε , 0 < t ≤ t 0 .<br />

j=0<br />

(B.19)<br />

In particular, if a j ≤ 1, j = 0, ..., k, then<br />

‖(A 0 , ..., A k ) √ tD ‖ = O(t−a/2−(dim M)/2−0 ), t → 0 + . (B.20)<br />

2. Assume additionally that D is Fredholm <strong>and</strong> denote by H the orthogonal projection<br />

onto Ker D. Then <strong>for</strong> ε > 0 <strong>and</strong> any 0 < δ < inf spec ess D 2 there is a constant C(δ, ε)


80 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

such that <strong>for</strong> all σ ∈ ∆ k , σ j > 0<br />

‖A 0 e −σ 0tD 2 (I − H)A 1 · . . . · A k e −σ ktD 2 (I − H)‖ 1<br />

( k∏<br />

)<br />

≤ C(δ, ε) σ −a j/2<br />

j t −a/2−(dim M)/2−ε e −tδ , <strong>for</strong> all 0 < t < ∞.<br />

j=0<br />

(B.21)<br />

In particular, a j ≤ 1, j = 0, ..., k, then<br />

‖(A 0 (I − H), ..., A k (I − H)) √ tD ‖<br />

= O(t −a/2−(dim M)/2−0 e −tδ ), <strong>for</strong> all 0 < t < ∞.<br />

(B.22)<br />

Proof. We first reduce the problem to the case that all A j are compactly supported. To<br />

this end choose ϕ j0 −1, ϕ j0 ∈ C ∞ 0 (M) such that supp ϕ j0 ∩ supp(1 − ϕ j0 −1) = ∅ <strong>and</strong> such<br />

that ϕ j0 A j0 = A j0 ϕ j0 = A j0 . Decompose A j0 −1 = A j0 −1ϕ j0 −1 + A j0 −1(1 − ϕ j0 −1).<br />

First we show that the estimates (B.19), (B.21) hold if we replace A j0 −1 by A j0 −1(1−<br />

ϕ j0 −1):<br />

Case 1. Proposition B.5.3 gives<br />

‖A j0 −1(1 − ϕ j0 −1)e −σ j 0 −1tD 2 ϕ j0 ‖ 1 ≤ C t0 σ N j 0 −1t N , <strong>for</strong> σ j0 −1t ≤ t 0 . (B.23)<br />

The operator norm of the other factors can be estimated using the Spectral Theorem,<br />

taking into account the D a j<br />

–boundedness of A j :<br />

Hence by the Hölder inequality<br />

‖A j e −σ jtD 2 ‖ ≤ C t0 (σ j t) −a j/2 , <strong>for</strong> σ j t ≤ t 0 . (B.24)<br />

‖A 0 e −σ 0tD 2 A 1 · . . . · A j0 −1(1 − ϕ j0 −1)e −σ j 0 −1tD 2 · A k e −σ ktD 2 ‖ 1<br />

( k∏<br />

≤ C t0 σ −a j/2<br />

j<br />

)t − P k a j +N<br />

j=0 , 0 < t ≤ t0 ,<br />

j=0<br />

(B.25)<br />

which is even better than (B.19).<br />

Case 2 (D Fredholm). From (B.23), Proposition B.6 <strong>and</strong> the fact that H is a finite<br />

rank operator <strong>with</strong> e −ξD2 H = H we infer<br />

‖A j0 −1(1 − ϕ j0 −1)e −σ j 0 −1tD 2 (I − H)ϕ j0 ‖ 1<br />

≤ C δ e −σ j 0 −1tδ , <strong>for</strong> all 0 < t < ∞.<br />

(B.26)<br />

To the other factors we apply Proposition B.6 <strong>with</strong> p = ∞:<br />

‖A j e −σ jtD 2 (I − H)‖ ≤ C δ (σ j t) −a j/2 e −σ jtδ , 0 < t < ∞. (B.27)<br />

The Hölder inequality combined <strong>with</strong> (B.26),(B.27) gives (B.21).<br />

Altogether we are left to consider A 0 , ..., A j0 −1ϕ j0 −1, A j0 , ...A k where now A j0 −1ϕ j0 −1<br />

<strong>and</strong> A j0 are compactly supported. Continuing this way, also to the right of j 0 , it remains<br />

to treat the case where each A j has compact support.


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 81<br />

Case 1. We apply Hölder’s inequality <strong>for</strong> Schatten norms <strong>and</strong> Proposition B.5:<br />

‖A 0 e −σ 0tD 2 A 1 · . . . · A k e −σ ktD 2 ‖ 1<br />

k∏<br />

≤ ‖A j e −σ jtD 2 ‖ σ<br />

−1<br />

j<br />

j=0<br />

≤ C(t 0 , ε)<br />

≤ C(t 0 , ε)<br />

k∏<br />

(σ j t) −a j/2−<br />

j=0<br />

( k∏<br />

j=0<br />

σ −a j/2<br />

j<br />

)<br />

dim M+ε<br />

2 σ j<br />

dim M+ε<br />

−a/2−<br />

t 2 , 0 < t ≤ t 0 ,<br />

(B.28)<br />

dim M+ε<br />

−<br />

thanks to the fact that σ ↦→ σ 2 σ is bounded as σ → 0.<br />

Case 2. If D is Fredholm we estimate<br />

‖A 0 e −σ 0tD 2 (I − H)A 1 · . . . · A k e −σ ktD 2 (I − H)‖ 1<br />

using Hölder as in (B.28) <strong>and</strong> apply Proposition B.6 to the individual factors:<br />

‖A j e −σ jtD 2 (I − H)‖ σ<br />

−1<br />

j<br />

≤ C δ (σ j t) −a dim M+ε<br />

j/2− σ 2 j<br />

e −σjtδ , 0 < t < ∞, (B.29)<br />

to reach the conclusion.<br />

Finally we remark that the inequalities (B.20), (B.22) follow by integrating the<br />

inequalities (B.19), (B.21) over the st<strong>and</strong>ard simplex ∆ k . Note that ∫ ∆ k<br />

(σ 0 · . . . ·<br />

σ k ) −1/2 dσ < ∞.<br />

□<br />

[APS75]<br />

[APS76]<br />

[ASS94]<br />

[BBFu98]<br />

References<br />

M. F. Atiyah, V. K. Patodi, <strong>and</strong> I. M. Singer, Spectral asymmetry <strong>and</strong> Riemannian<br />

geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 0397797 (53<br />

#1655a)<br />

, Spectral asymmetry <strong>and</strong> Riemannian geometry. III, Math. Proc. Cambridge Philos.<br />

Soc. 79 (1976), no. 1, 71–99. MR 0397799 (53 #1655c)<br />

J. Avron, R. Seiler, <strong>and</strong> B. Simon, The index of a pair of projections, J. Funct. Anal.<br />

120 (1994), no. 1, 220–237. MR 1262254 (95b:47012)<br />

B. Booss-Bavnbek <strong>and</strong> K. Furutani, The Maslov index: a functional analytical definition<br />

<strong>and</strong> the spectral flow <strong>for</strong>mula, Tokyo J. Math. 21 (1998), no. 1, 1–34. MR 1630119<br />

(99e:58172)<br />

[BBLZ09] B. Booß-Bavnbek, M. Lesch, <strong>and</strong> C. Zhu, The Calderón projection:<br />

new definition <strong>and</strong> applications, J. Geom. Phys. 59 (2009), no. 7, 784–826.<br />

arXiv:0803.4160v1 [math.DG] , DOI: 10.1016/j.geomphys.2009.03.012,<br />

http://dx.doi.org/10.1016/j.geomphys.2009.03.012, MR 2536846<br />

[BBWo93] B. Booß-Bavnbek <strong>and</strong> K. P. Wojciechowski, Elliptic boundary problems <strong>for</strong> Dirac<br />

operators, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA,<br />

1993. MR 1233386 (94h:58168)<br />

[BDT89]<br />

P. Baum, R. G. Douglas, <strong>and</strong> M. E. Taylor, Cycles <strong>and</strong> relative cycles in analytic<br />

K-homology, J. Differential Geom. 30 (1989), no. 3, 761–804. MR 1021372 (91b:58244)<br />

[BGV92] N. Berline, E. Getzler, <strong>and</strong> M. Vergne, Heat kernels <strong>and</strong> Dirac operators,<br />

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical<br />

Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720 (94e:58130)


82 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

[Bla86] B. Blackadar, K-theory <strong>for</strong> operator algebras, Mathematical Sciences Research Institute<br />

Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867 (88g:46082)<br />

[BlFo90] J. Block <strong>and</strong> J. Fox, Asymptotic pseudodifferential operators <strong>and</strong> index theory, Geometric<br />

<strong>and</strong> topological invariants of elliptic operators (Brunswick, ME, 1988), Contemp.<br />

Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990, pp. 1–32. MR 1047274<br />

(91e:58186)<br />

[BrLe01] J. Brüning <strong>and</strong> M. Lesch, On boundary value problems <strong>for</strong> Dirac type operators. I. Regularity<br />

<strong>and</strong> self-adjointness, J. Funct. Anal. 185 (2001), no. 1, 1–62. arXiv:math/9905181<br />

[math.FA], MR 1853751 (2002g:58034)<br />

[BrPf08] J.-P. Brasselet <strong>and</strong> M. J. Pflaum, On the homology of algebras of Whitney functions<br />

over subanalytic sets, Ann. of Math. (2) 167 (2008), no. 1, 1–52. MR 2373151<br />

[CoMo90] A. <strong>Connes</strong> <strong>and</strong> H. Moscovici, Cyclic cohomology, the Novikov conjecture <strong>and</strong> hyperbolic<br />

groups, Topology 29 (1990), no. 3, 345–388. MR 1066176 (92a:58137)<br />

[CoMo93] , Transgression <strong>and</strong> the <strong>Chern</strong> character of finite-dimensional K-cycles, Comm.<br />

Math. Phys. 155 (1993), no. 1, 103–122. MR 1228528 (95a:46091)<br />

[CoMo95] A. <strong>Connes</strong> <strong>and</strong> H. Moscovici, The local index <strong>for</strong>mula in noncommutative geometry,<br />

Geom. Funct. Anal. 5 (1995), no. 2, 174–243. MR 1334867 (96e:58149)<br />

[Con85] A. <strong>Connes</strong>, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math.<br />

62 (1985), 257–360. MR 823176 (87i:58162)<br />

[Con88] , Entire cyclic cohomology of Banach algebras <strong>and</strong> characters of θ-summable Fredholm<br />

modules, K-Theory 1 (1988), no. 6, 519–548. MR MR953915 (90c:46094)<br />

[Con94] , Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994.<br />

MR 1303779 (95j:46063)<br />

[CuQu93] J. Cuntz <strong>and</strong> D. Quillen, On excision in periodic cyclic cohomology, C. R. Acad. Sci.<br />

Paris Sér. I Math. 317 (1993), no. 10, 917–922. MR 1249360 (94i:19002)<br />

[CuQu94] , On excision in periodic cyclic cohomology. II. The general case, C. R. Acad. Sci.<br />

Paris Sér. I Math. 318 (1994), no. 1, 11–12. MR 1260526 (94m:19001)<br />

[FuKe88] S. A. Fulling <strong>and</strong> G. Kennedy, The resolvent parametrix of the general elliptic linear<br />

differential operator: a closed <strong>for</strong>m <strong>for</strong> the intrinsic symbol, Trans. Amer. Math. Soc. 310<br />

(1988), no. 2, 583–617. MR 973171 (90b:58260)<br />

[GBVF01] J. M. Gracia-Bondía, J. C. Várilly, <strong>and</strong> H. Figueroa, Elements of noncommutative<br />

geometry, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts:<br />

Basel Textbooks], Birkhäuser Boston Inc., Boston, MA, 2001. MR 1789831 (2001h:58038)<br />

[GeSz89] E. Getzler <strong>and</strong> A. Szenes, On the <strong>Chern</strong> character of a theta-summable Fredholm<br />

module, J. Funct. Anal. 84 (1989), no. 2, 343–357. MR 1001465 (91g:19007)<br />

[Get83] E. Getzler, Pseudodifferential operators on supermanifolds <strong>and</strong> the Atiyah-Singer index<br />

theorem, Comm. Math. Phys. 92 (1983), no. 2, 163–178. MR 728863 (86a:58104)<br />

[Get93a] , Cyclic homology <strong>and</strong> the Atiyah-Patodi-Singer index theorem, Index theory <strong>and</strong><br />

operator algebras (Boulder, CO, 1991), Contemp. Math., vol. 148, Amer. Math. Soc.,<br />

Providence, RI, 1993, pp. 19–45. MR 1228498 (94j:58162)<br />

[Get93b] , The odd <strong>Chern</strong> character in cyclic homology <strong>and</strong> spectral flow, Topology 32<br />

(1993), no. 3, 489–507. MR 1231957 (95c:46118)<br />

[Gil95] P. B. Gilkey, Invariance theory, the heat equation, <strong>and</strong> the Atiyah-Singer index theorem,<br />

second ed., Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.<br />

MR 1396308 (98b:58156)<br />

[GrSe95] G. Grubb <strong>and</strong> R. T. Seeley, Weakly parametric pseudodifferential operators <strong>and</strong> Atiyah-<br />

Patodi-Singer boundary problems, Invent. Math. 121 (1995), no. 3, 481–529. MR 1353307<br />

(96k:58216)<br />

[HaSu78] P. R. Halmos <strong>and</strong> V. S. Sunder, Bounded integral operators on L 2 spaces, Ergebnisse<br />

der Mathematik und ihrer Grenzgebiete [Results in Mathematics <strong>and</strong> Related Areas],<br />

vol. 96, Springer-Verlag, Berlin, 1978. MR 517709 (80g:47036)


CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 83<br />

[HiRo00] N. Higson <strong>and</strong> J. Roe, Analytic K-homology, Ox<strong>for</strong>d Mathematical Monographs, Ox<strong>for</strong>d<br />

University Press, Ox<strong>for</strong>d, 2000, Ox<strong>for</strong>d Science Publications. MR 1817560 (2002c:58036)<br />

[JLO88] A. Jaffe, A. Lesniewski, <strong>and</strong> K. Osterwalder, Quantum K-theory. I. The <strong>Chern</strong><br />

character, Comm. Math. Phys. 118 (1988), no. 1, 1–14. MR 954672 (90a:58170)<br />

[KiLe04] P. Kirk <strong>and</strong> M. Lesch, The η-invariant, Maslov index, <strong>and</strong> spectral flow <strong>for</strong> Diractype<br />

operators on manifolds <strong>with</strong> boundary, Forum Math. 16 (2004), no. 4, 553–629.<br />

arXiv:math/0012123 [math.DG], MR 2044028 (2005b:58029)<br />

[Les99] M. Lesch, On the noncommutative residue <strong>for</strong> pseudodifferential operators <strong>with</strong> logpolyhomogeneous<br />

symbols, Ann. Global Anal. Geom. 17 (1999), no. 2, 151–187.<br />

arXiv:dg-ga/9708010, MR 1675408 (2000b:58050)<br />

[Les05]<br />

, The uniqueness of the spectral flow on spaces of unbounded self-adjoint Fredholm<br />

operators, Spectral geometry of manifolds <strong>with</strong> boundary <strong>and</strong> decomposition of manifolds,<br />

Contemp. Math., vol. 366, Amer. Math. Soc., Providence, RI, 2005, pp. 193–224.<br />

arXiv:math/0401411 [math.FA], MR 2114489 (2005m:58049)<br />

[LMP08] M. Lesch, H. Moscovici, <strong>and</strong> M. J. Pflaum, Regularized traces <strong>and</strong> K-theory invariants<br />

of parametric pseudodifferential operators, Traces in number theory, geometry<br />

<strong>and</strong> quantum fields, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008, pp. 161–177.<br />

www.matthiaslesch.de publications, MR 2427595<br />

[LMP09] , Relative pairing in cyclic cohomology <strong>and</strong> divisor flows, J. K-Theory 3 (2009),<br />

no. 2, 359–407. arXiv:math/0603500 [math.KT], MR 2496452<br />

[Loy05] P. Loya, Dirac operators, boundary value problems, <strong>and</strong> the b-calculus, Spectral geometry<br />

of manifolds <strong>with</strong> boundary <strong>and</strong> decomposition of manifolds, Contemp. Math., vol. 366,<br />

Amer. Math. Soc., Providence, RI, 2005, pp. 241–280. MR 2114491 (2005k:58038)<br />

[Mal67] B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research<br />

Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay, 1967.<br />

MR 0212575 (35 #3446)<br />

[Mel93] R. B. Melrose, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics,<br />

vol. 4, A K Peters Ltd., Wellesley, MA, 1993. MR 1348401 (96g:58180)<br />

[Mül94] W. Müller, Eta invariants <strong>and</strong> manifolds <strong>with</strong> boundary, J. Differential Geom. 40 (1994),<br />

no. 2, 311–377. MR 1293657 (96c:58165)<br />

[Nic95] L. I. Nicolaescu, The Maslov index, the spectral flow, <strong>and</strong> decompositions of manifolds,<br />

Duke Math. J. 80 (1995), no. 2, 485–533. MR 1369400 (96k:58208)<br />

[Pfl98] M. J. Pflaum, The normal symbol on Riemannian manifolds, New York J. Math. 4<br />

(1998), 97–125 (electronic). MR 1640055 (99e:58181)<br />

[Shu01] M. A. Shubin, Pseudodifferential operators <strong>and</strong> spectral theory, second ed., Springer-<br />

Verlag, Berlin, 2001, Translated from the 1978 Russian original by Stig I. Andersson.<br />

MR 1852334 (2002d:47073)<br />

[Tay96] M. E. Taylor, Partial differential equations. II, Applied Mathematical Sciences, vol. 116,<br />

Springer-Verlag, New York, 1996, Qualitative studies of linear equations. MR 1395149<br />

(98b:35003)<br />

[Tou72] J.-C. Tougeron, Idéaux de fonctions différentiables, Springer-Verlag, Berlin, 1972,<br />

Ergebnisse der Mathematik und ihrer Grenzgebiete, B<strong>and</strong> 71. MR 0440598 (55 #13472)<br />

[Wid79] H. Widom, Szegő’s theorem <strong>and</strong> a complete symbolic calculus <strong>for</strong> pseudodifferential operators,<br />

Seminar on Singularities of Solutions of Linear Partial Differential Equations (Inst.<br />

Adv. Study, Princeton, N.J., 1977/78), Ann. of Math. Stud., vol. 91, Princeton Univ.<br />

Press, Princeton, N.J., 1979, pp. 261–283. MR 547022 (81b:58043)<br />

[Wid80] , A complete symbolic calculus <strong>for</strong> pseudodifferential operators, Bull. Sci. Math. (2)<br />

104 (1980), no. 1, 19–63. MR 560744 (81m:58078)<br />

[Wu93] F. Wu, The <strong>Chern</strong>-<strong>Connes</strong> character <strong>for</strong> the Dirac operator on manifolds <strong>with</strong> boundary,<br />

K-Theory 7 (1993), no. 2, 145–174. MR 1235286 (95f:58076)


84 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany<br />

E-mail address: ml@matthiaslesch.de, lesch@math.uni-bonn.de<br />

URL: www.matthiaslesch.de, www.math.uni-bonn.de/people/lesch<br />

Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA<br />

E-mail address: henri@math.ohio-state.edu<br />

Department of Mathematics, University of Colorado UCB 395, Boulder, CO 80309,<br />

USA<br />

E-mail address: markus.pflaum@colorado.edu<br />

URL: http://euclid.colorado.edu/∼pflaum

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!