02.02.2015 Views

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

50 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

diagonal ∂ k t e −t∆ R (x, x) = ∂<br />

k<br />

t (4πt) −1/2 =: c k t −1/2−k , we have<br />

(<br />

f(x, p)P ∂ l xe −tD2) (x, p; x, p)<br />

= f(x, p) ( P e −tA2 )<br />

(p, p)ck t −1/2−k<br />

∼ t→0+<br />

∞<br />

∑<br />

j=0<br />

j−dim M−q<br />

f(x, p)a j (P, A)(p)c k t 2 .<br />

Comparing <strong>with</strong> (5.1) we find <strong>for</strong> the heat coefficients a j (Q, D)<br />

Furthermore, we have using Theorem (1.6)<br />

b Tr ( Qe −tD2 )<br />

=<br />

(5.4)<br />

a j (Q, D)(x, p) = f(x, p)a j (P, A)(p)c k . (5.5)<br />

∫ 0<br />

−∞<br />

∫<br />

∂M<br />

tr x,p<br />

(<br />

x∂ x f(x, p) ( P e −tA2 )<br />

(p, p)<br />

)d vol ∂M (p)dx. (5.6)<br />

(<br />

P e<br />

−tA 2 )<br />

(p, p) has an x-independent asymptotic expansion as t → 0+. Since<br />

x∂ x f(x, p) = O(e (1−δ)x ), x → −∞, uni<strong>for</strong>mly in p, we can plug the asymptotic expansion<br />

(5.4) into (5.6) <strong>and</strong> use (5.5) to find<br />

b Tr ( Qe −tD2 )<br />

∼ t→0+<br />

∼ t→0+<br />

The claim is proved.<br />

∑ ∞ ∫ 0<br />

j=0<br />

−∞<br />

∫<br />

∂M<br />

j−dim M−q<br />

· c k t 2<br />

∫<br />

∞<br />

∑<br />

j=0<br />

b (−∞,0)×∂M<br />

j−dim M−q<br />

· t 2 .<br />

)<br />

tr x,p<br />

(x∂ x f(x, p)a j (P, A)(p) d vol ∂M (p)dx·<br />

tr x,p<br />

(<br />

aj (Q, D)(x, p) ) d vol(x, p)·<br />

(5.7)<br />

5.2. The b-trace of the JLO integr<strong>and</strong>. To ) extend Theorem 5.1 to expressions<br />

of the <strong>for</strong>m b Tr<br />

(A 0 e −σ 0tD 2 A 1 e −σ 1tD 2 ...A k e −σ ktD 2 we use a trick which was already applied<br />

successfully in the proof of the local index <strong>for</strong>mula in noncommutative geometry<br />

[CoMo95]. Namely, we successively commute A j e −σ jtD 2<br />

<strong>and</strong> control the remainder.<br />

We will need the estimates proved in Subsections 3.3 <strong>and</strong> 3.4.<br />

We first need to introduce some notation (cf. [Les99, Lemma 4.2]).<br />

For a b-differential operator B ∈ b Diff(M; W ) we put inductively<br />

∇ 0 DB := B, ∇ j+1<br />

D B := [D2 , ∇ j DB]. (5.8)<br />

Note that since D 2 has scalar leading symbol we have ord(∇ j DB) ≤ j + ord B.<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!