02.02.2015 Views

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

54 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

to convert the entire relative <strong>Connes</strong>–<strong>Chern</strong> character, which was constructed using the<br />

b-trace, into a finitely supported cocycle.<br />

By integrating Eq. (2.7), one obtains <strong>for</strong> 0 < ε < t<br />

b Ch k (εD) − b Ch k (tD) = b<br />

+ B<br />

∫ t<br />

ε<br />

∫ t<br />

b /ch k+1 (sD, D)ds +<br />

ε<br />

b /ch k−1 (sD, D)ds<br />

∫ t<br />

ε<br />

/ch k (sD ∂ , D ∂ ) ◦ i ∗ ds.<br />

(6.1)<br />

Of course Ch • (D ∂ ) satisfies a cocycle <strong>and</strong> transgression <strong>for</strong>mula as Eq. (2.6), (2.7) <strong>with</strong><br />

0 in the r.h.s. Integrating this we obtain<br />

Ch k (εD ∂ ) − Ch k (tD ∂ ) = b<br />

+ B<br />

∫ t<br />

ε<br />

∫ t<br />

/ch k+1 (sD ∂ , D ∂ )ds.<br />

ε<br />

/ch k−1 (sD ∂ , D ∂ )ds<br />

By Proposition 4.1 (1), the limit ε ↘ 0 exists <strong>for</strong> k > dim M, <strong>and</strong><br />

lim<br />

b Ch k (εD) = 0,<br />

ε↘0<br />

lim<br />

ε↘0 Chk−1 (εD ∂ ) = 0,<br />

(6.2)<br />

<strong>for</strong> all k > dim M. (6.3)<br />

The second limit statement follows either from an obvious adaption of our calculations<br />

to the ordinary trace or from [CoMo93]. Hence one gets <strong>for</strong> k > dim M<br />

where<br />

− b Ch k (tD) = b b T/ch k−1<br />

t<br />

(D) + B b T/ch k+1<br />

t<br />

(D) + T/ch k t (D ∂) ◦ i ∗ ,<br />

− Ch k−1 (tD ∂ ) = b T/ch k−2<br />

t<br />

(D ∂ ) + B T/ch k t (D ∂),<br />

∫ t<br />

b T/ch k t (D) := /ch k (sD, D) ds,<br />

T/ch k−1<br />

t<br />

(D ∂ ) :=<br />

0<br />

∫ t<br />

0<br />

/ch k−1 (sD ∂ , D ∂ ) ds.<br />

(6.4)<br />

(6.5)<br />

The above integrals exist in view of Proposition 4.1 (2) even <strong>for</strong> k ≥ dim M. From<br />

Eq. (6.2) <strong>and</strong> Theorem 2.2 we obtain <strong>for</strong> k ≥ dim M:<br />

(<br />

∫ t<br />

)<br />

b<br />

b Ch k (tD) + B<br />

b /ch k+1 (sD, D)ds<br />

Thus<br />

b<br />

(<br />

b<br />

(<br />

ε<br />

= −B b Ch k+2 (εD) + Ch k+1 (εD ∂ ) ◦ i ∗ − b<br />

−→ −b T/ch k t (D ∂) ◦ i ∗ , ε → 0 + .<br />

b Ch k (tD) + B b T/ch k+1<br />

t<br />

)<br />

(D)<br />

)<br />

Ch k−1 (tD ∂ ) + B b T/ch k t (D ∂)<br />

∫ t<br />

= −b T/ch k t (D ∂) ◦ i ∗ ,<br />

= 0,<br />

ε<br />

/ch k (sD ∂ , D ∂ )ds<br />

(6.6)<br />

k ≥ dim M. (6.7)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!