02.02.2015 Views

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

where<br />

CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 11<br />

(<br />

b −σ<br />

∗<br />

˜b =<br />

0 −b<br />

)<br />

, <strong>and</strong> ˜B =<br />

(<br />

B 0<br />

0 −B<br />

)<br />

. (1.5)<br />

In particular, the relative Hochschild cohomology HH • (A, B) is computed by<br />

the complex ( C • (A) ⊕ C •+1 (B),˜b ) , the relative cyclic cohomology HC • (A, B) by<br />

(<br />

Tot<br />

•<br />

⊕ BC •,• (A) ⊕ Tot •+1<br />

⊕ BC •,• (B),˜b + ˜B ) , <strong>and</strong> the relative periodic cyclic cohomology<br />

HP • (A, B) by ( Tot • ⊕BC per(A) •,• ⊕ Tot •+1<br />

⊕ BC per(B),˜b •,• + ˜B ) .<br />

Note that of course (Tot<br />

•<br />

⊕ BC •,• (A) ⊕ Tot •+1<br />

⊕ BC •,• (B),˜b + ˜B )<br />

≃ ( Tot • ⊕BC •,• (A, B),˜b + ˜B ) (1.6)<br />

,<br />

where BC p,q (A, B) := BC p,q (A) ⊕ BC p,q+1 (B).<br />

Dually to relative cyclic cohomology, one can define relative cyclic homology theories.<br />

We will use these throughout this article as well, <strong>and</strong> in particular their pairing <strong>with</strong><br />

relative cyclic cohomology. For the convenience of the reader we recall their definition,<br />

referring to [LMP09] <strong>for</strong> more details. The short exact sequence (1.3) gives rise to the<br />

following short exact sequence of homology mixed complexes<br />

0 → ( K • , b, B ) → ( C • (A), b, B ) → ( C • (B), b, B ) → 0, (1.7)<br />

where here b denotes the Hochschild boundary, <strong>and</strong> B the <strong>Connes</strong> boundary.<br />

kernel mixed complex K • is quasi-isomorphic to the direct sum mixed complex<br />

(<br />

C• (A) ⊕ C •+1 (B),˜b, ˜B ) ,<br />

where<br />

(<br />

b 0<br />

˜b =<br />

−σ ∗ −b<br />

)<br />

, <strong>and</strong> ˜B =<br />

(<br />

B 0<br />

0 −B<br />

The<br />

)<br />

. (1.8)<br />

This implies that the relative cyclic homology HC • (A, B) is the homology of<br />

(<br />

Tot<br />

⊕<br />

• BC •,• (A, B),˜b + ˜B ) , where BC p,q (A, B) = BC p,q (A) ⊕ BC p,q+1 (B). Likewise, the<br />

relative periodic cyclic homology HP • (A, B) is the homology of ( Tot Q • BC•,• per (A, B),˜b +<br />

˜B ) , where BCp,q per (A, B) = BCp,q per (A) ⊕ BCp,q+1(B).<br />

per<br />

By [LMP09, Prop. 1.1], the relative cyclic (co)homology groups inherit a natural<br />

pairing<br />

〈−, −〉 • : HC • (A, B) × HC • (A, B) → C, (1.9)<br />

which will be called the relative cyclic pairing, <strong>and</strong> which on chains <strong>and</strong> cochains is<br />

defined by<br />

(<br />

) (<br />

)<br />

〈−, −〉 : BC p,q (A) ⊕ BC p,q+1 (B) × BC p,q (A) ⊕ BC p,q+1 (B) → C,<br />

( ) (1.10)<br />

(ϕ, ψ), (α, β) ↦→ 〈ϕ, α〉 + 〈ψ, β〉.<br />

This <strong>for</strong>mula also describes the pairing between the relative periodic cyclic (co)homology<br />

groups.<br />

Returning to diagram (1.1), we can now express the (periodic) cyclic cohomology<br />

of the pair ( C ∞ (M), E ∞ (∂M, M) ) resp. of the pair ( C ∞ (M), C ∞ (∂M) ) in terms<br />

of the cyclic cohomology complexes of C ∞ (M) <strong>and</strong> E ∞ (∂M, M) resp. C ∞ (M). We

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!