02.02.2015 Views

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

56 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM<br />

By Eq. (6.11) we have<br />

( )<br />

b ch k t (D) − b k<br />

˜ch t (D), ch k+1<br />

t (D ∂ ) − ch k−1<br />

t (D ∂ )<br />

(<br />

)<br />

= − T/ch k t (D ∂) ◦ i ∗ , −(b + B) T/ch k t (D ∂)<br />

= (˜b + ˜B) ( )<br />

0, T/ch k t (D ∂) ,<br />

(6.15)<br />

hence the two pairs differ only by a coboundary.<br />

Next let us compute ( b ch k+2<br />

t (D), ch k+3<br />

t (D ∂ ) ) − S ( b ch k t (D), ch k+1<br />

t (D ∂ ) ) in the above<br />

relative cochain complex. Using Eq. (6.4) one checks immediately that<br />

b ch k+2<br />

t (D) − b ch k t (D) = b Ch k+2 (tD) + B b T/ch k+3<br />

t<br />

(D) − B T/ch k+1<br />

t<br />

(D)<br />

= − (b + B) T/ch k+1<br />

t<br />

(D) − T/ch k+2<br />

t<br />

(D ∂ ) ◦ i ∗ .<br />

From the second line of Eq. (6.4) (or from [CoMo93, Sec. 2.1])<br />

one thus gets<br />

ch k+3<br />

t (D ∂ ) − ch k+1<br />

t (D ∂ ) = −(b + B) T/ch k+2<br />

t<br />

(D ∂ ),<br />

( b<br />

ch k+2<br />

t (D), ch k+3<br />

t (D ∂ ) ) − S ( b ch k t (D), ch k+1<br />

t (D ∂ ) )<br />

= (˜b + ˜B) ( − b T/ch k+1<br />

t<br />

(D), T/ch k+2<br />

t<br />

(D ∂ ) ) .<br />

(6.16)<br />

Hence, the relative cocycles ( b ch k+2<br />

t (D), ch k+3<br />

t (D ∂ ) ) <strong>and</strong> S ( b ch k t (D), ch k+1<br />

t (D ∂ ) ) are<br />

cohomologous. Similarly, one gets<br />

b ch k t (D) − ch k τ(D) =<br />

resp.<br />

= ∑ ( b<br />

Ch k−2j (tD) − b Ch k−2j (τD) ) ∫ t<br />

+ B b /ch k+1 (sD, D) ds<br />

j≥0<br />

τ<br />

= − (b + B) ∑ ∫ t<br />

b /ch k−2j−1 (sD, D) ds − ∑ ∫ t<br />

/ch k−2j (sD ∂ , D ∂ ) ds,<br />

j≥0 τ<br />

j≥0 τ<br />

ch k+1<br />

t (D ∂ ) − ch k+1<br />

τ (D ∂ ) = −(b + B) ∑ j≥0<br />

∫ t<br />

τ<br />

/ch k−2j (sD ∂ , D ∂ ) ds,<br />

hence ( b ch k t (D), ch k+1<br />

t (D ∂ ) ) <strong>and</strong> ( b ch k τ(D), ch k+1<br />

τ (D ∂ ) ) are cohomologous in the total<br />

relative complex as well. Thus, we have proved (1)-(3) of the following result.<br />

(<br />

Theorem 6.1. (1) The pairs of retracted cochains b<br />

ch k t (D), ch k+1<br />

t (D ∂ ) ) ,<br />

( k b ˜ch t (D), ch k−1<br />

t (D ∂ ) ) , t > 0, t > 0, k ≥ m = dim M, k − m ∈ 2Z are<br />

cocycles in the relative total complex Tot • ⊕ BC •,• (C ∞ (M), C ∞ (∂M)).<br />

(2) They represent the same class in HC n (C ∞ (M), C ∞ (∂M)) which is independent<br />

of t > 0.<br />

(3) They represent the same class in HP • (C ∞ (M), C ∞ (∂M)) which is independent<br />

of k.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!