02.02.2015 Views

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

lim<br />

t→0+<br />

CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 57<br />

(4) Denote by b ω D , ω D∂ the local index <strong>for</strong>ms of D resp. D ∂ [BGV92, Thm. 4.1], see<br />

Eq. (6.17) below. Then one has a pointwise limit<br />

( b<br />

k<br />

˜ch t (D), ch k−1<br />

t (D ∂ ) ) ∫ )<br />

=<br />

b ω D ∧ −, ω D∂ ∧ − .<br />

( ∫b M<br />

Moreover, ( k<br />

b ˜ch t (D), ch k−1<br />

t (D ∂ ) ) represents the <strong>Connes</strong>–<strong>Chern</strong> character of [D] ∈<br />

KK m (C 0 (M); C) = K m (M, ∂M).<br />

The pointwise limit will be explained in the proof below. Up to normalization constants<br />

b ω D is the  <strong>for</strong>m Â(b ∇ 2 g) <strong>and</strong> ω D∂ is the  <strong>for</strong>m Â(∇2 g ∂<br />

) on the boundary. Note<br />

also that ι ∗ ω D = ω D∂ .<br />

Proof. It remains to prove (4). So consider a 0 , a 1 , · · · ∈ b C ∞ (M ◦ ). Using Getzler’s<br />

asymptotic calculus (cf. [Get83], [CoMo90, §3], <strong>and</strong> [BlFo90, Thm. 4.1]) one shows<br />

that the local heat invariants of a 0 e −σ 0tD 2 [D, a 1 ]e −σ 1tD 2 . . . [D, a j ]e −σ jtD 2 (cf. Proposition<br />

5.2) satisfy<br />

∫ (<br />

t j str q,Wp a 0 e −σ 0tD 2 [D, a 1 ]e −σ 1tD 2 . . . [D, a j ]e −σ jtD 2) (p, p) d vol gb (p)<br />

∆ j<br />

= 1 (6.17)<br />

( b<br />

)<br />

ω D ∧ a 0 da 1 · · · ∧ da j<br />

j!<br />

+ |p O(t1/2 ), t → 0 + .<br />

Here str q,Wp denotes the fiber supertrace in W p , q indicates the Clif<strong>for</strong>d degree of D,<br />

cf. Subsection 1.7, the factor 1 j!<br />

is the volume of the simplex ∆ j . This statement holds<br />

locally on any Riemannian manifold <strong>for</strong> any choice of a self-adjoint extension of a Dirac<br />

operator. So it holds <strong>for</strong> D <strong>and</strong> accordingly <strong>for</strong> D ∂ .<br />

From Theorem 5.3 <strong>and</strong> its well-known analogue <strong>for</strong> closed manifolds, cf. [CoMo93,<br />

Sec. 4], we thus infer<br />

∂M<br />

lim<br />

b Ch j (tD)(a 0 , . . . , a j )<br />

t→0+<br />

resp.<br />

= 1 ∫<br />

b ω D ∧ a 0 da 1 · · · ∧ da j , a j ∈ b C ∞ (M ◦ ), (6.18)<br />

j!<br />

b M<br />

lim<br />

t→0+ Chj−1 (tD ∂ )(a 0 , . . . , a j−1 )<br />

=<br />

1<br />

(j − 1)!<br />

Furthermore, in view of (6.5) we have <strong>for</strong> k ≥ dim M − 1<br />

∫<br />

∂M<br />

ω D∂ ∧ a 0 da 1 · · · ∧ da j , a j−1 ∈ C ∞ (M). (6.19)<br />

lim<br />

b T/ch k+1<br />

t→0+<br />

t<br />

(D)(a 0 , . . . , a k+1 ) = 0, a j ∈ b C ∞ (M ◦ ),<br />

lim<br />

t→0+ T/chk t (D ∂)(a 0 , . . . , a k ) = 0,<br />

a j ∈ C ∞ (M).<br />

(6.20)<br />

To interpret these limit results we briefly recall the relation between de Rham currents<br />

<strong>and</strong> relative cyclic cohomology classes over ( b C ∞ (M), C ∞ (M)), cf. also [LMP08,<br />

Sec. 2.2].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!