02.02.2015 Views

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

Connes-Chern Character for Manifolds with Boundary and ETA ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CONNES-CHERN CHARACTER AND <strong>ETA</strong> COCHAINS 5<br />

When M is even-dimensional <strong>and</strong> D ∂ is invertible, the equality between the above<br />

limit <strong>and</strong> the limit as t → ∞ yields, <strong>for</strong> any n = 2l ≥ m, the identity<br />

∑ 〈<br />

κ 2k (D), ch 2k (p F ) − ch 2k (p E ) 〉 + 〈 B b T/ch n+1<br />

∞ (D), ch n(p F ) − ch n (p E ) 〉 +<br />

0≤k≤l<br />

where<br />

+ 〈 T/ch n ∞ (D ∂), ch n (p F∂ ) − ch n (p E∂ ) 〉 =<br />

∫<br />

= Â( b ∇ 2 g) ∧ ( ch • (p F ) − ch • (p E ) ) ∫<br />

−<br />

b M<br />

+ 〈 B T/ch n ∞ (D ∂), T/ch n−1<br />

(h) 〉 ,<br />

ch 2k (p) =<br />

∂M<br />

Â(∇ 2 g ∂<br />

) ∧ T/ch •<br />

(h)<br />

{<br />

tr 0 (p), <strong>for</strong> k = 0,<br />

(−1) k (2k)!<br />

(<br />

tr<br />

k! 2k (p −<br />

1<br />

) ⊗ p⊗2k) , <strong>for</strong> k > 0.<br />

2<br />

(0.14)<br />

Like the Atiyah-Patodi-Singer index <strong>for</strong>mula [APS75], the equation (0.14) involves<br />

index <strong>and</strong> eta cochains, only of higher order. Moreover, the same type of identity<br />

continues to hold in the odd-dimensional case. Explicitly, it takes the <strong>for</strong>m<br />

(−1) n−1<br />

2<br />

( n−1<br />

2<br />

)<br />

!<br />

( 〈B b T/ch n+1<br />

∞ (D), (V −1 ⊗ V ) ⊗ n+1<br />

〉<br />

2 − (U −1 ⊗ U) ⊗ n+1<br />

2 +<br />

〈<br />

T/ch<br />

n<br />

∞ (D 〉 )<br />

∂), (V −1<br />

∂<br />

⊗ V ∂ ) ⊗ n+1<br />

2 − (U −1<br />

∂<br />

⊗ U ∂ ) ⊗ n+1<br />

2 =<br />

∫<br />

= Â( b ∇ 2 g) ∧ ( ch • (V ) − ch • (U) ) ∫<br />

− Â(∇ 2 g ∂<br />

) ∧ T/ch •<br />

(h)<br />

b M<br />

+ 〈 B T/ch n ∞ (D ∂), T/ch n−1<br />

(h) 〉 .<br />

∂M<br />

(0.15)<br />

The relationship between the relative pairing <strong>and</strong> the Atiyah-Patodi-Singer index<br />

theorem can actually be made explicit, <strong>and</strong> leads to interesting geometric consequences.<br />

Indeed, under the necessary assumption that M is even-dimensional, we show (cf.<br />

Theorem 7.6) that the above pairing can be expressed as follows:<br />

〈[D], [E, F, h]〉 = Ind APS D F − Ind APS D E + SF(h, D ∂ ); (0.16)<br />

here Ind APS st<strong>and</strong>s <strong>for</strong> the APS-index, <strong>and</strong> SF(h, D ∂ ) denotes the spectral flow along<br />

the path of operators ( ) h(s);<br />

D + ∂ D<br />

+<br />

∂<br />

is the restriction of c(dx)−1 D ∂ to the positive half<br />

spinor bundle <strong>and</strong> c(dx) denotes Clif<strong>for</strong>d multiplication by the inward normal vector.<br />

On applying the A-P-S index <strong>for</strong>mula [APS75, Eq. (4.3)], the pairing takes the explicit<br />

<strong>for</strong>m<br />

∫<br />

〈[D], [E, F, h]〉 = Â( b ∇ 2 g) ∧ ( ch • (F ) − ch • (E) )<br />

b M<br />

(<br />

)<br />

(0.17)<br />

− ξ(D +,F ∂<br />

∂<br />

) − ξ(D +,E ∂<br />

∂<br />

) + SF(h, D ∂ ),<br />

where<br />

ξ(D +,E ∂<br />

∂<br />

) = 1 (<br />

2<br />

η(D +,E ∂<br />

∂<br />

)<br />

) + dim Ker D +,E ∂<br />

∂<br />

. (0.18)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!