06.02.2015 Views

Integrability Conditions of a Generalised almost ... - Ultrascientist.org

Integrability Conditions of a Generalised almost ... - Ultrascientist.org

Integrability Conditions of a Generalised almost ... - Ultrascientist.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ultra Scientist Vol. 24(2)A, 319-326 (2012).<br />

<strong>Integrability</strong> <strong>Conditions</strong> <strong>of</strong> a <strong>Generalised</strong><br />

<strong>almost</strong> contact manifold<br />

LATA BISHT* and SANDHANA KUMARI**<br />

*HOD <strong>of</strong> Applied Science Department, Bipin Tripathi Kumaon Institute <strong>of</strong> Technology,<br />

Dwarahat (Uttarakhand) (INDIA)<br />

**Assistant Pr<strong>of</strong>essor in Bipin Tripathi Kumaon Institute <strong>of</strong> Technology,<br />

Dwarahat (Uttarakhand) (INDIA).<br />

Email: dr.latabisht@gmail.com, Email: sandhana_shanks@rediffmail.com<br />

(Acceptance Date 9th June, 2012)<br />

Abstract<br />

In this Paper, we have obtained the integrability conditions for<br />

a generalized <strong>almost</strong> contact manifold some related result have also<br />

been discussed.<br />

1. Introduction<br />

An odd dimensional Riemannian<br />

manifold ( V<br />

n<br />

, g) is said to be <strong>Generalised</strong><br />

<strong>almost</strong> contact manifold 1-9 if there exists a tensor<br />

φ <strong>of</strong> the type (1,1) and a global vector field ξ<br />

and a 1-form η satisfying the following<br />

equations:<br />

2 2<br />

X a X (<br />

X ) , (1.1)a<br />

( X ) 0 , (1.1)b<br />

2<br />

( ) a<br />

, (1.1)c<br />

( ) 0 , (1.1)d<br />

( X ) g(<br />

X , ) , (1.1)e<br />

2<br />

g( X . Y ) a g( X , Y ) ( X ) ( Y ).<br />

(1.1)f<br />

Where X, Y V n<br />

‘ a ’ be a complex number<br />

and g be the metric <strong>of</strong>V n<br />

.<br />

From the above definition it is clear<br />

that <strong>almost</strong> contact manifold is a particular case<br />

<strong>of</strong> a <strong>Generalised</strong> <strong>almost</strong> contact manifold<br />

for<br />

2<br />

a 1<br />

.<br />

The Nijenhuis 10-11 tensor with respect<br />

to the structure φ on a generalized <strong>almost</strong> contact<br />

manifold is given by<br />

N( X , Y ) [ X<br />

, Y<br />

] [<br />

X<br />

, Y ] [<br />

X , Y<br />

].<br />

2<br />

[ X , Y ]<br />

2. <strong>Integrability</strong> Condition:<br />

Theorem(2.1). If α be an eigen value<br />

<strong>of</strong> φ then<br />

2 2<br />

( a ) m 0 .<br />

Pro<strong>of</strong>: If P is an eigen vector <strong>of</strong> φ


320 Lata Bisht, et al.<br />

corresponding to the eigen value α then<br />

P P ,<br />

or<br />

P P . (2.1)<br />

Applying again φ in equation (2.1) we get<br />

P P ,<br />

2 2<br />

P P . (2.2)<br />

Applying equation (1.1)a in equation (2.2) we<br />

get<br />

2<br />

2<br />

a P ( P)<br />

P ,<br />

2 2<br />

( a ) P (<br />

P)<br />

. (2.3)<br />

Two cases arises:<br />

Case 1: If P and ξ are linearly dependent<br />

then P K<br />

, then 0 is an eigen value, the<br />

corresponding eigen vector being ξ. ξ is the<br />

only vector such that<br />

0 , therefore the<br />

eigen value 0 is <strong>of</strong> multiplicity 1.<br />

Case 2: If {P, ξ) are linearly independent<br />

then<br />

2 2<br />

a 0. Hence eigen values<br />

a,-a occur in pairs 2-5 . Since rank (φ) =2m, then<br />

multiplicity <strong>of</strong> a or –a is m. There is a pencil <strong>of</strong><br />

eigen vectors corresponding to the eigen value<br />

‘a’ and a pencil <strong>of</strong> complex conjugate eigen<br />

vectors corresponding to the eigen value ‘-a’.<br />

If P is an eigen vector corresponding to a or –a,<br />

( P) 0 .<br />

Theorem (2.2): The necessary and<br />

sufficient condition that V<br />

n<br />

(n =2m+1) be an<br />

<strong>Generalised</strong> <strong>almost</strong> contact manifold is that it<br />

contains a tangent bundle <br />

m<br />

<strong>of</strong> dimension<br />

m, a tangent bundle conjugate to <br />

m<br />

m<br />

and<br />

a real line such that<br />

1<br />

<br />

and<br />

m<br />

<br />

<br />

m<br />

, <br />

m<br />

<br />

1<br />

, 1<br />

,<br />

<br />

1<br />

<br />

m<br />

<br />

m<br />

a tangent bundle <strong>of</strong> dimension<br />

n 2m<br />

1<br />

, projections l, m, n on<br />

, being given by<br />

m, <br />

m 1<br />

2 la<br />

2 2 a , (2.4)a<br />

2 ma<br />

2 2 a , (2.4)b<br />

2 2<br />

n a <br />

<br />

. (2.4)c<br />

Necessary condition:<br />

Let V<br />

n<br />

be an <strong>Generalised</strong> <strong>almost</strong><br />

contact manifold with <strong>Generalised</strong> <strong>almost</strong><br />

contact structure {φ, ξ, η} corresponding to<br />

the eigen value a , Let<br />

m<br />

P<br />

x<br />

, x = 1,2,3………m<br />

be linearly independent eigen vectors. Let<br />

be the complex conjugate to P x<br />

, then 6-11<br />

now<br />

d<br />

x<br />

x<br />

x<br />

b P 0 b 0 x ,<br />

c<br />

x<br />

P<br />

x<br />

x<br />

x<br />

P e Q<br />

x<br />

ad<br />

x<br />

x<br />

x<br />

x<br />

0 c 0 x ,<br />

<br />

x<br />

P ae Q<br />

Qx<br />

x x<br />

h<br />

0d<br />

P e Q 0<br />

x<br />

0<br />

x x<br />

d P e Q 0 .<br />

x<br />

All these equations imply<br />

x x<br />

h d P e Q 0 ,<br />

or<br />

x<br />

x<br />

x<br />

x<br />

x


<strong>Integrability</strong> <strong>Conditions</strong> <strong>of</strong> a <strong>Generalised</strong> <strong>almost</strong> contact manifold. 321<br />

x x<br />

h d e 0 . x<br />

Thus { P , , }<br />

is linearly independent set.<br />

x Q x<br />

From (2.4)a, (2.4)b, (2.4)c we have<br />

lPx P x<br />

, (2.5)a lQ<br />

x=0, (2.5)b l 0; (2.6)c<br />

mP<br />

x=0, (2.6)a<br />

x<br />

mQ Q , (2.6)b m =0; (2.6)c<br />

x<br />

nP =0, (2.7)a nQ 0, (2.7)b n . (2.7)c<br />

x<br />

x<br />

Thus we prove that on generalized<br />

<strong>almost</strong> contact manifold V2m<br />

1there is a tangent<br />

bundle<br />

m<br />

<br />

m<br />

<strong>of</strong> dimension m, a tangent bundle<br />

complex conjugate to<br />

m<br />

and a real line<br />

such that<br />

<br />

m<br />

<br />

m<br />

, <br />

m<br />

<br />

1<br />

, <br />

m<br />

1<br />

,<br />

and<br />

<br />

1<br />

<br />

m<br />

<br />

m<br />

a tangent bundle <strong>of</strong> dimension<br />

n 2m<br />

1, projections on <br />

m,<br />

<br />

m<br />

, <br />

1<br />

being<br />

l, m and n respectively.<br />

Sufficient Condition:<br />

Suppose that there is a tangent bundle<br />

<br />

m<br />

<strong>of</strong> dimension m, a tangent bundle <br />

m<br />

complex conjugate to <br />

m<br />

and a real line 1<br />

such<br />

that<br />

<br />

m<br />

<br />

m<br />

, <br />

m<br />

1<br />

, <br />

m<br />

1<br />

,<br />

and<br />

<br />

1<br />

<br />

m<br />

<br />

m<br />

a tangent bundle <strong>of</strong> dimension<br />

n 2m<br />

1.<br />

Let P x be m linearly independent vectors in<br />

m and Q x complex conjugate to P x be m linearly<br />

independent vectors in<br />

and ξ be a vector<br />

m<br />

in . Let { P , Q , }<br />

1<br />

x x<br />

span a tangent bundle<br />

dimension 2m+1. Then { P , , }<br />

is a linearly<br />

x Q x<br />

independent set. Let us define the inverse set<br />

x x<br />

{ p , q , } such that<br />

x<br />

x <br />

I<br />

n<br />

p Px<br />

q Qx<br />

. (2.8)<br />

2<br />

a<br />

Let us put<br />

x<br />

x<br />

a{ p P q Q } x<br />

, (2.9)a<br />

then<br />

x<br />

2 2 x<br />

x<br />

a { p P q Q } . (2.9)b<br />

x<br />

Using equation (2.8) in equation (2.9)b, we get<br />

<br />

2 a 2 I<br />

n<br />

<br />

. (2.10)<br />

The equation (2.10 ) shows that the manifold<br />

admit an generalized <strong>almost</strong> contact structure<br />

{φ, ξ, η}. Hence the condition is sufficient<br />

also 1-7 .<br />

Corollary (2.1): We have<br />

l <br />

m<br />

p<br />

x<br />

P<br />

x<br />

x<br />

(2.11)a<br />

x<br />

q Qx<br />

(2.11)b<br />

n <br />

(2.11)c<br />

Pro<strong>of</strong>: From equations (2.4)a and<br />

(2.4)b, we have<br />

a( l m) , (2.12)a<br />

2 2<br />

a ( l m)<br />

. (2.12)b<br />

From (2.9)a and (2.9)b , we have<br />

x<br />

x<br />

a{ p P q Q } x<br />

, (2.13)a<br />

x<br />

2 2 x<br />

x<br />

a ( p P q Q }. (2.13)b<br />

x<br />

x


322 Lata Bisht, et al.<br />

Comparing equations (2.12) and (2.13), we get<br />

the equations (2.11).<br />

Corollary (2.2): We have<br />

lm ml ln nl mn nm 0 , (2.14)<br />

and<br />

l 2 l , m<br />

2 m , 2<br />

n n . (2.15)<br />

Pro<strong>of</strong>: From equations (2.5)b and (2.11)b,<br />

we get<br />

x<br />

lm q lQ 0 .<br />

From equations (2.5)a and (2.11)a , we have<br />

l<br />

2<br />

<br />

p<br />

x<br />

lP<br />

x<br />

x<br />

<br />

p<br />

x<br />

P<br />

x<br />

l .<br />

Similarly we can prove other relations.<br />

Lemma (2.1): ( dl )( nX , nY ) 0 , (2.16)a<br />

( dp x )( nX , nY ) 0 . (2.16)b<br />

Pro<strong>of</strong>: (2.11)c yields (2.16)a . For<br />

( dl)( ( X ) , ( Y ) ) 0 .<br />

Since d is skew symmetric in both the slots.<br />

Pro<strong>of</strong> <strong>of</strong> (2.16)b follows the same pattern.<br />

1 1<br />

,<br />

a a<br />

Lemma (2.2): 2(<br />

dm)(<br />

lX , lY ) [ lX . lY ] [ lX , lY ]<br />

2<br />

(2.16)a<br />

1 1<br />

( dm)(<br />

lX , lY)<br />

[ X , Y ] N(<br />

X , Y )<br />

6<br />

a a<br />

8<br />

5<br />

1<br />

1 1<br />

N ( X , Y ) [ X , Y ] [ X , Y ]<br />

4 4<br />

3<br />

a<br />

a a<br />

1<br />

+ [ X , Y ]<br />

5 . (2.16)b<br />

a<br />

Pro<strong>of</strong>: From equation (2.14) , we have<br />

2(<br />

dm)(<br />

lX , lY ) 2m[<br />

lX , lY ],<br />

1 1<br />

[ lX , lY ] [ lX , lY ]<br />

2 .<br />

a a<br />

Now<br />

1<br />

1<br />

8(<br />

dm)(<br />

lX , lY ) [2lX<br />

,2lY<br />

] [2lX<br />

,2lY<br />

]<br />

2 ,<br />

a<br />

a<br />

1 1 1 1 1<br />

{ [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y]}<br />

2 4 3 3 2<br />

a a a a a<br />

1 1 1 1 1<br />

+ { [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ]}<br />

4 3<br />

3<br />

2 ,<br />

a a a a a<br />

1 1 1 1 1<br />

[ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ]<br />

6 5 5 4 5<br />

a a a a a<br />

1 1 1<br />

+ [ X , Y ] [ X , Y ] [ X , Y ]<br />

4 4<br />

3<br />

,<br />

a a a<br />

1 1 1<br />

[ X , Y ] {[ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ]} [ X , Y ]<br />

6 5 5<br />

a a a


<strong>Integrability</strong> <strong>Conditions</strong> <strong>of</strong> a <strong>Generalised</strong> <strong>almost</strong> contact manifold. 323<br />

1<br />

1 1<br />

+ {[ X , Y]<br />

[ X , Y ] [ X , Y ] [ X , Y]}<br />

[ X , Y]<br />

[ X , Y ]<br />

4 4<br />

3<br />

,<br />

a<br />

a a<br />

1 1 1 1 1 1<br />

( dm)(<br />

lX , lY ) [ X , Y ] N(<br />

X , Y)<br />

N(<br />

X , Y ) [ X , Y ] [ X , Y ] [ X , Y ]<br />

6 5<br />

4<br />

4<br />

3<br />

.<br />

a a a a a a<br />

8<br />

5<br />

Lemma (2.3): dn( lX , lY ) [ lX , lY ] , (2.17)<br />

1 1 1 1 1 1<br />

4 dn( lX , lY ) N( X , Y ) N( X , Y ) N ( X , Y ) N( X , Y ) [ X , Y ] [ X , Y ]<br />

3 2 2 4 3<br />

a a a a a a<br />

1 1 1 1 1<br />

+ [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ]<br />

3 2<br />

2<br />

. (2.17)b<br />

a a a a a<br />

Pro<strong>of</strong>: From (2.14) , we get<br />

dn( lX , lY ) [ lX , lY ] .<br />

Now<br />

4(<br />

dn)(<br />

lX , lY ) 4n[<br />

lX , lY ],<br />

2<br />

4[<br />

lX , lY ] 4a<br />

[ lX , lY ],<br />

1 1 1 1 2 1 1 1 1<br />

[ X X , Y Y ] a [ X X , Y Y]<br />

,<br />

2 2<br />

2<br />

2<br />

a a a a a a a a<br />

1 1 1 1 1 1 1<br />

[ X , Y]<br />

[ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y]<br />

[<br />

X , Y ]<br />

4 3<br />

3<br />

2<br />

2<br />

,<br />

a a a a a a a<br />

1 1 1 1 1 1 1<br />

N( X , Y ) N( X , Y ) N( X , Y ) N( X , Y ) [ X , Y ] [ X , Y ] [ X , Y ]<br />

3 2 2 4 3 3<br />

a a a a a a a<br />

1 1 1 1<br />

+ [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ]<br />

2 2<br />

.<br />

a a a a<br />

Theorem (2.2): The real line is integrable.<br />

Pro<strong>of</strong>: From equation (2.8) , we have<br />

n<br />

I n<br />

l m <br />

2 .<br />

a<br />

In order to that is integrable, it is necessary<br />

1<br />

and sufficient that l = 0 and m=0 be integrable<br />

that is<br />

2 2<br />

dl ( X , Y ) 0 dl(<br />

a X , a Y)<br />

0<br />

dl( nX , nY ) 0 .<br />

But from lemma (2.1), these equations are<br />

identically satisfied, hence we have the<br />

statement 8-11 .<br />

Theorem(2.3): In order that<br />

<br />

m<br />

and<br />

are integrable, it is necessary and sufficient<br />

m<br />

that


324 Lata Bisht, et al.<br />

1 1<br />

[ lX , lY ] [ lX , lY ], (2.18)a<br />

2<br />

a a<br />

1<br />

1<br />

1 1 1 1<br />

N(<br />

X , Y ) N(<br />

X , Y ) [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ]<br />

5 4<br />

3<br />

5<br />

6<br />

4<br />

, (2.18)b<br />

a<br />

a<br />

a a a a<br />

[ lX , lY ] 0, (2.18)c<br />

1 1 1<br />

1 1 1 1<br />

N(<br />

X , Y ) N(<br />

X , Y ) N(<br />

X , Y ) [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ]<br />

3 2<br />

3<br />

2<br />

2<br />

a<br />

a a<br />

a a a a<br />

1<br />

1 1 1<br />

N(<br />

X , Y ) [ X , Y ] [ X , Y ] [ X , Y ]<br />

2 4<br />

3<br />

. (2.18)d<br />

a<br />

a a a<br />

Pro<strong>of</strong>: In order to that m is completely integrable, it is necessary and sufficient that<br />

m=0, n=0 be completely integrable, that is<br />

dm ( X , Y ) 0 , (2.19)a<br />

dn ( X , Y ) 0 . (2.19)b<br />

Now from equation (2.8) we have<br />

l I<br />

n<br />

So dm ( lX , lY ) 0, (2.20)a<br />

From equation (2.19)a , we get<br />

dn ( lX , lY ) 0 . (2.20)b<br />

dm ( lX , lY ) 0,<br />

8dm ( lX , lY ) 0 .<br />

From lemma (2.2) , we have<br />

and<br />

1 1<br />

[ lX , lY ] [ lX , lY ]<br />

2 ,<br />

a a


<strong>Integrability</strong> <strong>Conditions</strong> <strong>of</strong> a <strong>Generalised</strong> <strong>almost</strong> contact manifold. 325<br />

1<br />

1<br />

1 1 1 1<br />

N(<br />

X , Y ) N(<br />

X , Y ) [ X , Y ] [ X , Y ] [ X , Y ] [ X , Y ]<br />

5 4<br />

3<br />

5<br />

6<br />

4<br />

.<br />

a<br />

a<br />

a a a a<br />

Now from equation (2.19)b , we have<br />

dn ( X , Y ) 0 .<br />

From equation (2.8) we have<br />

dn ( lX , lY ) 0 .<br />

From lemma (2.3) , we have<br />

l I<br />

n<br />

, so<br />

And<br />

dn( lX , lY ) <br />

[ lX , lY ] 0.<br />

4dn(<br />

lX , lY ) 0<br />

Now from lemma (2.3) , we get<br />

1 1 1<br />

1 1<br />

N ( X , Y ) N(<br />

X , Y ) N(<br />

X , Y ) [ X , Y ] [ X , Y ]<br />

3 2<br />

3<br />

2<br />

a<br />

a a<br />

a a<br />

1 1<br />

[ X , Y ] [ X , Y ] [ X , Y ]<br />

2<br />

a a<br />

1<br />

1 1 1<br />

N(<br />

X , Y ) [ X , Y ] [ X , Y ] [ X , Y ]<br />

2 4<br />

3<br />

.<br />

a<br />

a a a<br />

References<br />

1. Ahmad, M., Haseeb, A., Jun, J.B. and<br />

Rahman, S., Hyper Surfaces <strong>of</strong> an <strong>almost</strong><br />

r-paracontact Riemannian manifold<br />

endowed with a quarter symmetric metric<br />

connections, Bull. Korean Math Soc., Vol.<br />

46 (3), 477-487 (2009).<br />

2. Beltitua, Daniel, <strong>Integrability</strong> <strong>of</strong> <strong>almost</strong><br />

complex structures on Banach manifolds,<br />

arxiv: math. DG/0407395 vl (2004).<br />

3. Bisht, Lata, Hsu-Structure manifold, Ultra<br />

Scientist. Vol. 22 (3) M, 765-768 (2010).<br />

4. Mishra, R. S., A course in tensors with<br />

applications to Riemannian geometry, II<br />

edition Pothishala Pvt. Ltd. Allahabad


326 Ultra Scientist Vol.24(2)A, (2012).<br />

(1973).<br />

5. Mishra, R. S., Structure on a differentiable<br />

manifold and there application. Chandrama<br />

Prakashan, Allahabad (1984).<br />

6. Pandey, S. B., Dwivedi, J. P. and Dasila,<br />

L.S., <strong>Integrability</strong> conditions <strong>of</strong> a framed<br />

manifold, Proc. Math. Soc. BHU. Vol. 10,<br />

11-16 (1994).<br />

7. Pandey, S.B. and Dasila, Lata, <strong>Integrability</strong><br />

conditions <strong>of</strong> a framed manifold, Proc.<br />

Math. Soc. BHU. Vol. 10 (1994).<br />

8. Pinzon, S., <strong>Integrability</strong> <strong>of</strong> F-Structures on<br />

Generalized flag manifold, Revista de La<br />

Union Mathematica Argentina,Vol. 47(1),<br />

99-113 (2006).<br />

9. Upreti, Jaya, and Chanyal S. K., Pseudoslant<br />

submanifolds <strong>of</strong> a generalized <strong>almost</strong><br />

contact metric structure manifold. Journal<br />

<strong>of</strong> Tensor Society, Vol. 4, 57-68 (2010).<br />

10. Yano, K., Differential geometry on complex<br />

and <strong>almost</strong> complex spaces, Pergramon<br />

Press, New York (1965).<br />

11. Yano, K., and Ako, M., <strong>Integrability</strong><br />

conditions for <strong>almost</strong> quaternion structures.<br />

Hokkaido Math J (1) 63-86 (1972).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!