06.02.2015 Views

s - Athanasios Dermanis Home Page

s - Athanasios Dermanis Home Page

s - Athanasios Dermanis Home Page

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1 T<br />

δ M = m 0m<br />

0 , α<br />

D<br />

−1<br />

−1<br />

m 0 = Cs′ sC<br />

m s + N s′<br />

sN<br />

q − m s′<br />

-&<br />

(47b)<br />

Recall that C = C s + C v and N=<br />

−vecCvec T C−<br />

−1-T<br />

where also - = - s + - v and = s + v .<br />

5. Extension to the general model<br />

A more general model involves observables a , which are<br />

non-linear functions a (s)<br />

of the signals s , for which up to<br />

fourth order central moments are known. In this case the<br />

general non-linear collocation model with additive noise is<br />

y = a( s)<br />

+ v<br />

(48)<br />

Furthermore, we want to predict a stochastic signal g<br />

which is also a nonlinear function g (s)<br />

of the same fundamental<br />

signals s .<br />

The solution is straightforward if the marginal and joint<br />

central moments (up to 4th order) are known for the random<br />

parameters a and g : we merely need to replace s and s′<br />

and their moments, by a and g and their moments, respectively.<br />

In this way the problem reduces to one of "moment<br />

propagation", i.e. to the determination of m a , C a ,<br />

- a , a , m g , c g a and - g a from the known m= m s , C s ,<br />

- s , s . If the joint distribution of s and s′ were known,<br />

the joint distribution of a and g , and therefore the required<br />

moments, could be derived in principle though tedious numerical<br />

techniques need to be used. However this requirement<br />

departs from the spirit of a "fourth order theory" and<br />

an approximate propagation law should be used instead.<br />

Linearization of a (s)<br />

and g (s)<br />

provides such an approximation,<br />

as in the case of linearized models and "second order<br />

theory". A better and hopefully sufficient approximation<br />

can be provided by propagation laws in quadratic approximations,<br />

which are derived from quadratic approximations<br />

to the nonlinear functions a (s)<br />

and g (s)<br />

. Using Taylor expansions<br />

up to the second order about the known (Taylor<br />

point) m= E{s}<br />

we obtain<br />

a= a( m)<br />

+ Aδ s+<br />

H vec(<br />

s sT<br />

a δ δ ) , (49)<br />

g = g( m)<br />

+ gT<br />

δ s+<br />

h vec(<br />

δsδsT<br />

) , (50)<br />

where δ s=<br />

s−m<br />

and<br />

T g<br />

h g = vecH g ,<br />

H<br />

g<br />

⎡<br />

T<br />

1 ∂ ⎛ ∂g<br />

⎞ ⎤<br />

= ⎢ ⎜ ⎟ ⎥<br />

⎢2<br />

∂s<br />

s<br />

⎣ ⎝ ∂ ⎠ ⎥⎦<br />

m<br />

, (53)<br />

d= −H a vecC s , c= −h vecC s . (54)<br />

Using these relations in the definitions of m a , C a , - a ,<br />

a , m g , c ag<br />

and - g a , while making use of the definitions<br />

of m , C s , - s , s , the following propagation laws are<br />

derived<br />

m<br />

C<br />

a<br />

a<br />

= a( m)+<br />

H vecC<br />

(55)<br />

a<br />

= AC AT<br />

+ A-T<br />

H<br />

T<br />

+ H - AT<br />

+<br />

s<br />

s<br />

s<br />

a<br />

a<br />

+ H ( −vecC<br />

vec T C ) H<br />

(56)<br />

a<br />

s<br />

s<br />

s<br />

s<br />

- = ⊗ + ⊗ + + ⊗<br />

s<br />

a d Ca<br />

( A A)[<br />

-s<br />

AT<br />

sH<br />

T<br />

a ] ( A H a ) vec<br />

a<br />

m<br />

c<br />

s<br />

s<br />

T<br />

a<br />

+ vec( +<br />

T T<br />

(57)<br />

C a dd ) d<br />

= ( A⊗A)<br />

( A⊗A)<br />

T<br />

−dT<br />

⊗(<br />

C ⊗d)<br />

−<br />

−(<br />

d⊗d)(<br />

d⊗d<br />

s<br />

) T<br />

+ -<br />

a<br />

s<br />

⊗d<br />

T<br />

s<br />

T g<br />

+ -<br />

a<br />

s<br />

s<br />

T<br />

a<br />

T<br />

T<br />

a C a<br />

⊗d−<br />

− vec C ( d⊗d)<br />

−(<br />

d⊗d)<br />

vec<br />

(58)<br />

= g( m)<br />

h vec<br />

(59)<br />

g +<br />

ag<br />

vec<br />

where<br />

<br />

s<br />

vec<br />

T g<br />

C s<br />

= AC + +<br />

T<br />

sg<br />

H a-<br />

sg<br />

A-s<br />

h g +<br />

+ H ( −vecC<br />

vec T C h<br />

(60)<br />

a s s s )<br />

s<br />

- ga<br />

ag<br />

( s s g<br />

= d⊗c<br />

+ A⊗A)[<br />

- g+<br />

h ] +<br />

s<br />

g<br />

+ ( A⊗H<br />

) <br />

s<br />

g+<br />

c vec(<br />

C ddT<br />

)<br />

(61)<br />

⎡vec<br />

⎢<br />

= ⎢ <br />

⎢<br />

⎣vec<br />

a vec<br />

a +<br />

s<br />

11<br />

s<br />

n1<br />

<br />

<br />

<br />

vec<br />

<br />

vec<br />

s<br />

1<br />

n<br />

<br />

s<br />

nn<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

+<br />

(62)<br />

while use of the "symmetric" Kronecker matrix product has<br />

been made, defined for any two matrices A and B by<br />

A⊗ s B=<br />

A⊗B+<br />

B⊗A<br />

(63)<br />

⎡∂a<br />

⎤<br />

A= ⎢<br />

s<br />

⎥ ,<br />

⎣ ∂ ⎦<br />

H<br />

m<br />

⎡1<br />

∂ ⎛ ∂ai<br />

⎞<br />

= ⎢ ⎜ ⎟<br />

⎢ ∂s<br />

s<br />

⎣ ⎝ ∂ ⎠<br />

ai 2<br />

T<br />

⎤<br />

⎥<br />

⎥<br />

⎦<br />

m<br />

,<br />

g<br />

T ⎡∂g<br />

⎤<br />

= ⎢<br />

s<br />

⎥<br />

⎣ ∂<br />

, (51)<br />

⎦<br />

H a<br />

m<br />

⎡vecT<br />

H<br />

⎢<br />

= ⎢ <br />

⎢ T<br />

⎣<br />

vec H<br />

a1<br />

a n<br />

⎤<br />

⎥<br />

⎥ , (52)<br />

⎥<br />

⎦<br />

The above propagation laws can be interpreted either as<br />

quadratic approximations of the true propagation laws for<br />

the original non-linear model y = a( s)<br />

+ v , g (s), or as exact<br />

propagation laws for the "quadraticized" model<br />

y = a( m)<br />

+ Aδ s+<br />

H a vec(<br />

δsδsT<br />

) + v , (64)<br />

g = g( m)<br />

+ gT<br />

δ s+<br />

h vec(<br />

δsδsT<br />

) . (65)<br />

T g<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!