08.02.2015 Views

download pdf 1.2 Mb

download pdf 1.2 Mb

download pdf 1.2 Mb

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Is there hope for TB serology<br />

Maria Laura Gennaro, MD<br />

Public Health Research Institute<br />

Newark, NJ, USA


TB serology<br />

Highly desirable<br />

– rapid, simple, inexpensive, safe, non-invasive<br />

Difficult


The challenges of TB serodiagnosis<br />

A varied antibody response<br />

– not all patients with active TB have antibodies against the<br />

same antigens<br />

HIV coinfection<br />

– reduced anti-Mtb antibody titers<br />

“Confounding” states<br />

– Exposure to mycobacterial antigens<br />

– Natural history of M. tuberculosis infection


Exposure to mycobacterial antigens<br />

Non-TB mycobacterioses AVOID CROSS-REACTIVE AGs<br />

BCG vaccination<br />

SERONEGATIVE


Natural history of tuberculosis<br />

Infection<br />

Primary tuberculosis<br />

5%<br />

w/ HIV 40%<br />

Latent infection<br />

95%<br />

w/ HIV 60%<br />

Active disease<br />

5-10% lifetime<br />

w/ HIV 2%-10% yearly<br />

Lifelong containment<br />

95%<br />

Inactive tuberculosis<br />

treated/self-cured


Natural history of tuberculosis<br />

Latent infection<br />

Inactive TB<br />

SERONEGATIVE<br />

SEROPOSITIVE


Antibody responses in active TB and inactive (past) TB<br />

Mean OD450<br />

Mean OD450<br />

.5<br />

.4<br />

.3<br />

.2<br />

.1<br />

0.0<br />

38kDa Antigen<br />

TB Status<br />

Act TB Inact TB TST+ TSTp<br />

< 0.05<br />

active TB inactive TB tst-neg tst-pos<br />

Latently infected (TST + ) and non-infected (TST - ) groups<br />

were serologically indistinguishable (p > 0.5)<br />

Active TB was associated with greater reactivity to the<br />

38 kDa antigen than any other group<br />

Inactive TB was associated with greater reactivity to<br />

ESAT-6 and 16 kDa antigen than any other group<br />

.30<br />

.25<br />

ESAT-6 Antigen<br />

p < 0.001<br />

.16<br />

.14<br />

16kDa 14 kDa Antigen<br />

p < 0.001<br />

.12<br />

Mean OD450<br />

Mean OD450<br />

.20<br />

.15<br />

.10<br />

Mean OD450<br />

Mean OD450<br />

.10<br />

.08<br />

.06<br />

.04<br />

.05<br />

.02<br />

0.00<br />

active TB inactive TB tst-neg tst-pos<br />

Act TB Inact TB TST+ TST-<br />

TB status<br />

0.00<br />

active TB inactive TB tst-neg tst-pos<br />

Act TB Inact TB TST+ TST-<br />

TB status


A bar-code<br />

Inactive TB<br />

Active TB<br />

38kDa Ag<br />

AlaDH<br />

ESAT-6<br />

Rv2626c<br />

16kDa Ag<br />

0 0.2 0.4 0.6 0.8 1<br />

ORi/(ORi+ORa) x 100


Since<br />

Latent infection is seronegative<br />

Active TB can be distinguished from<br />

inactive TB<br />

There is hope for TB serology


The evolution of TB serodiagnostic tests<br />

Single antigen tests<br />

One antigen fits all!<br />

Multi-antigen tests<br />

Multiple, positive markers<br />

Bar-codes<br />

Multiple, positive and<br />

negative markers


How do we identify the<br />

antibody profiles specific for<br />

each TB state


The genome<br />

A high throughput approach<br />

PCR fragments with<br />

5Õ& 3ÕŅadapterÓsequences<br />

No Purification Required<br />

Day 1<br />

Mix linear vector with PCR<br />

fragments and transform E. coli<br />

Overnight Culture<br />

No Colony Selection Required<br />

MiniPrep Plasmid<br />

Day 2<br />

In vitro<br />

Transcription &Translation<br />

No Purification Required<br />

The proteome on a chip<br />

Microarray Chip Printing<br />

Probed microarrays<br />

Naive Immunized<br />

Day 3<br />

Mouse


Course of the antibody response in BalbC mice<br />

infected with M. tuberculosis<br />

Time 0<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 2 4 6 8 10 12<br />

weeks<br />

[(I antigen -I control )/(I antigen,t=0 -I control,t=0 )]<br />

900 TB protein microarray


Course of the antibody response in BalbC mice<br />

infected with M. tuberculosis<br />

Time 2 weeks<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 2 4 6 8 10 12<br />

weeks<br />

[(I antigen -I control )/(I antigen,t=0 -I control,t=0 )]<br />

900 TB protein microarray


Course of the antibody response in BalbC mice<br />

infected with M. tuberculosis<br />

Time 5 weeks<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 2 4 6 8 10 12<br />

weeks<br />

[(I antigen -I control )/(I antigen,t=0 -I control,t=0 )]<br />

900 TB protein microarray


Course of the antibody response in BalbC mice<br />

infected with M. tuberculosis<br />

Time 7 weeks<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 2 4 6 8 10 12<br />

weeks<br />

[(I antigen -I control )/(I antigen,t=0 -I control,t=0 )]<br />

900 TB protein microarray


Course of the antibody response in BalbC mice<br />

infected with M. tuberculosis<br />

Time 11 weeks<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 2 4 6 8 10 12<br />

weeks<br />

[(I antigen -I control )/(I antigen,t=0 -I control,t=0 )]<br />

900 TB protein microarray


(1)<br />

top<br />

(2)<br />

(3)<br />

Hierarchical clustering<br />

of data collected with<br />

serial mouse sera<br />

bottom


Close-up on hierarchical tree showing the two top clusters<br />

cluster 1 -- 2 proteins<br />

naive1<br />

naive2<br />

2wk1<br />

2wk2<br />

5wk1<br />

5wk2<br />

7wk1<br />

7wk2<br />

11wk1<br />

11wk2<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

infection time points<br />

cluster 2 -- 5 proteins<br />

naive1<br />

naive2<br />

2wk1<br />

2wk2<br />

5wk1<br />

5wk2<br />

7wk1<br />

7wk2<br />

11wk1<br />

11wk2<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

infection time points


4 additional clusters (559 protein total) showing<br />

increased antibody production by 2 weeks post-infection<br />

cluster 3 -- 242 protein<br />

cluster 6 -- 49 protein<br />

C3<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

naive1 naive2 2wk1 2wk2 5wk1 5wk2 7wk1 7wk2 11wk1 11wk2<br />

0<br />

-1<br />

naive1 naive2 2wk1 2wk2 5wk1 5wk2 7wk1 7wk2 11wk1 11wk2<br />

-2<br />

-2<br />

-3<br />

infection time point<br />

-3<br />

infection time point<br />

cluster 7 -- 42 protein<br />

cluster 8 -- 226 protein<br />

C6<br />

3<br />

2<br />

3<br />

2<br />

C7<br />

1<br />

0<br />

-1<br />

naive1 naive2 2wk1 2wk2 5wk1 5wk2 7wk1 7wk2 11wk1 11wk2<br />

1<br />

0<br />

-1<br />

naive1 naive2 2wk1 2wk2 5wk1 5wk2 7wk1 7wk2 11wk1 11wk2<br />

-2<br />

-2<br />

C8<br />

-3<br />

infection time point<br />

-3<br />

infection time point


Conclusions<br />

A comprehensive antibody profiling of M.<br />

tuberculosis infection needs to be developed<br />

to define a diagnostic bar-code for active TB<br />

High-throughput methods for whole<br />

proteome screens are available


There is most definitely hope<br />

for TB serology


Acknowledgements<br />

Gennaro Lab<br />

– Lanbo Shi<br />

– Shajo Kunnath<br />

– Ganga Kanaujia<br />

– PierNatale Brusasca<br />

– Yanis BenAmor<br />

– XuDong Guo<br />

– Konstantin Lyashchenko<br />

– Roberto Colangeli<br />

– Claudia Manca<br />

Experimental TB<br />

– Bob North (Trudeau Institute)<br />

– Padmini Salgame (UMDNJ)<br />

Human TB<br />

– Dick Menzies (McGill U.)<br />

– Amy Davidow (UMDNJ)<br />

– Lee Reichmann (UMDNJ)<br />

– Mahmoud Affouf (Kean College)<br />

Protein chip microarray<br />

– Phil Felgner (UC Irvine)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!