14.02.2015 Views

diene

diene

diene

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DIENES<br />

Dienes are alkenes with 2 double bonds.<br />

IUPAC: Same as alkene, but change -ene to -a<strong>diene</strong> and<br />

use two numbers to locate the two double bonds (number<br />

from the end of the chain which makes the smaller of<br />

these numbers smaller).<br />

Double bonds separated by more than one single bond are<br />

isolated. Compounds with isolated double bonds have the<br />

same chemical properties as alkenes.<br />

Double bonds that alternate with single bonds,<br />

eg C=C-C=C, are conjugated.<br />

Double bond arrangements like C=C=C are cumulated.<br />

Compounds containing two carbon-carbon cumulated<br />

double bonds are called allenes.<br />

Conjugated <strong>diene</strong>s differ from simple alkenes in that they<br />

are more stable,<br />

undergo 1,4-addition, and<br />

are more reactive.


Stability<br />

Alkene Type<br />

RCH=CH 2<br />

∆H hydrogenation<br />

30 kcal/mole,exotherm.<br />

R 2 C=CH 2 , RCH=CHR 28<br />

R 2 C=CHR 27<br />

For <strong>diene</strong>s with isolated double bonds, the ∆H hydrogenation<br />

calculated by adding the appropriate values from the table<br />

above together is very close to the experimental value.<br />

For conjugated <strong>diene</strong>s, the experimental ∆H hydrogenation is<br />

smaller than the calculated one, which is based on isolated<br />

double bonds.<br />

Conjugated Diene<br />

Calculated<br />

∆H h<br />

Experimental<br />

∆H h<br />

CH 2 =CH-CH=CH 2 60 kcal/mole 57<br />

CH 2 =C(CH 3 )-C(CH 3 )=CH 2 56 54


Therefore, conjugated <strong>diene</strong>s are more stable than<br />

isolated <strong>diene</strong>s.<br />

This stability is reflected in the fact that, where possible,<br />

conjugated <strong>diene</strong>s are the preferred <strong>diene</strong> products of<br />

elimination reactions ---<br />

H<br />

H H<br />

C<br />

H<br />

C<br />

C C<br />

C<br />

Cl H<br />

KOH, alcohol<br />

heat<br />

Formation of the conjugated<br />

<strong>diene</strong> takes precedence over<br />

the Saytzeff rule.<br />

+<br />

H<br />

C<br />

C C<br />

C C<br />

H<br />

major product - conjugated<br />

H H<br />

C<br />

C<br />

C<br />

C<br />

C<br />

+ H 2 O + KCl<br />

H<br />

minor product - isolated<br />

(Saytzeff product)<br />

This stability can be explained by electron delocalization in<br />

the conjugated <strong>diene</strong><br />

using the resonance model ---<br />

or the molecular orbital model ---


Energy (Huckel) of Two Isolated vs Conjugated Double Bonds<br />

1.68<br />

_<br />

π4<br />

1.0<br />

_<br />

0.68<br />

_<br />

Energy 0<br />

-0.68<br />

_<br />

-1.0<br />

_<br />

π∗<br />

π<br />

π3<br />

π2<br />

-1.68<br />

_<br />

Two isolated π-bonds.<br />

Conjugated π-system.<br />

π1<br />

Eπ = −4.0 Eπ = −4.72


Electrophilic Addition to Conjugated Dienes:<br />

1,2- vs. 1,4- Addition ---<br />

1<br />

2<br />

3<br />

4<br />

YZ<br />

1<br />

Y<br />

2 3<br />

Z<br />

4<br />

1<br />

Y<br />

2<br />

3 4<br />

Z<br />

1,2-addition<br />

1,4-addition<br />

Note the "shift"<br />

of the π-bond.<br />

eg CH 3 CH=CH-CH=CHCH 3 + HCl ><br />

CH 3 -CH 2 -CHCl-CH=CHCH 3 via 1,2-addition<br />

+<br />

CH 3 -CH 2 CH=CH-CHCl-CH 3 via 1,4-addition


Mechanism ---<br />

H H<br />

H H<br />

4 CH<br />

1<br />

3 HCl<br />

2 4 CH<br />

CH<br />

3<br />

3<br />

CH<br />

1 3<br />

3<br />

2<br />

3<br />

H H<br />

H H H<br />

ordinary 2o carbocation -<br />

VERY LITTLE FORMED<br />

+<br />

H H<br />

H H<br />

1<br />

2 4 CH<br />

1<br />

3 3<br />

2<br />

CH 3 4<br />

CH 3<br />

3<br />

CH 3<br />

H H<br />

H H<br />

H H<br />

2o allylic type of carbocation; ~ stability of 3o carbocation.<br />

Since the positive charge is shared between the carbons labeled 2 & 4<br />

Cl - can attack either.


1,2- vs. 1,4-Addition: Rate vs. Equilibrium Control<br />

1<br />

2<br />

3<br />

4<br />

HBr<br />

Low temp (-80o C)<br />

High temp (40o C)<br />

1<br />

2 3<br />

H Br<br />

1<br />

2<br />

3 4<br />

1<br />

4<br />

2<br />

80%<br />

40oC<br />

3 4<br />

1<br />

2 4<br />

3<br />

80%<br />

H 20% H 20%<br />

Br<br />

Br<br />

H<br />

Br<br />

At -80o the 1,2-isomer<br />

converts to 1,4-isomer<br />

very slowly. Since 1,2-<br />

predominates here,<br />

it is formed faster.<br />

Reaction rates determine<br />

product here:<br />

Kinetic Control<br />

At 40o the 1,2- and 1,4-<br />

isomers interconvert, giving<br />

an equilibrium mixture.<br />

The 1,4-isomer is more<br />

stable and predominates.<br />

Equilibrium constant<br />

determines product here:<br />

Thermodynamic Control<br />

In this case, the less stable product is formed faster.<br />

How does this happen


Diels-Alder Reaction<br />

X<br />

Y<br />

X<br />

Y<br />

<strong>diene</strong><br />

<strong>diene</strong>ophile<br />

(X, Y: typically<br />

one or both are<br />

electron<br />

withdrawing)<br />

a substituted cyclohexene<br />

There are other variations on this theme, eg---<br />

X<br />

X<br />

Y<br />

Y


Stereochemistry ---<br />

1) With respect to the <strong>diene</strong>ophile, the addition is<br />

stereospecifically syn, eg<br />

H<br />

Cl<br />

H<br />

Cl<br />

H<br />

Cl<br />

H<br />

Cl<br />

H<br />

Cl<br />

Cl<br />

H<br />

H<br />

Cl<br />

Cl<br />

H<br />

+<br />

Cl<br />

H<br />

H<br />

Cl<br />

2) With respect to the <strong>diene</strong>, the addition is<br />

stereospecific and syn, eg<br />

C 6 H 5<br />

C 6 H 5<br />

Cl Cl<br />

Cl Cl C 6 H 5<br />

Cl Cl<br />

Cl Cl<br />

C 6 H 5


3) The <strong>diene</strong> must be in the s-cis conformation for<br />

reaction to occur. [The mechanism is concerted --- no<br />

intermediates.]<br />

close<br />

enough<br />

s-cis<br />

close<br />

enough<br />

too<br />

far<br />

s-trans<br />

too<br />

far<br />

Dienes unable to attain the s-cis conformation do not react, eg


4) If the <strong>diene</strong> is cyclic and the <strong>diene</strong>ophile has an<br />

unsaturated substituent, the endo product is usually<br />

favored over the exo product [the reaction is<br />

stereoselective; one diasteromer (endo) is favored<br />

over another (exo)].<br />

a<br />

3<br />

4<br />

cyclopenta<strong>diene</strong><br />

3<br />

4<br />

b<br />

e<br />

2 2<br />

5<br />

2<br />

5<br />

d<br />

c<br />

c<br />

d<br />

1<br />

1<br />

b<br />

cyclopenta<strong>diene</strong><br />

e<br />

a<br />

4<br />

3<br />

1<br />

5<br />

d<br />

H<br />

H<br />

exo-dicyclopenta<strong>diene</strong><br />

4<br />

3<br />

1<br />

5<br />

2<br />

H<br />

d<br />

c<br />

H<br />

e<br />

endo-dicyclopenta<strong>diene</strong><br />

e<br />

c<br />

b<br />

b<br />

a<br />

a

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!