17.02.2015 Views

The Mathematics of the Casimir Effect - School of Mathematical ...

The Mathematics of the Casimir Effect - School of Mathematical ...

The Mathematics of the Casimir Effect - School of Mathematical ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Thomas Prellberg<br />

<strong>School</strong> <strong>of</strong> Ma<strong>the</strong>matical Sciences<br />

Queen Mary, University <strong>of</strong> London<br />

Annual Lectures<br />

February 19, 2007<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>Casimir</strong> forces: still surprising after<br />

60 years<br />

Physics Today, February 2007<br />

<strong>The</strong> <strong>Casimir</strong> effect heats up<br />

AIP News Update, February 7, 2007<br />

Scientists devise test for string<br />

<strong>the</strong>ory<br />

EE Times, February 6, 2007<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>Casimir</strong> forces: still surprising after<br />

60 years<br />

Physics Today, February 2007<br />

<strong>The</strong> <strong>Casimir</strong> effect heats up<br />

AIP News Update, February 7, 2007<br />

Scientists devise test for string<br />

<strong>the</strong>ory<br />

EE Times, February 6, 2007<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>Casimir</strong> forces: still surprising after<br />

60 years<br />

Physics Today, February 2007<br />

<strong>The</strong> <strong>Casimir</strong> effect heats up<br />

AIP News Update, February 7, 2007<br />

Scientists devise test for string<br />

<strong>the</strong>ory<br />

EE Times, February 6, 2007<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Topic Outline<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

1 <strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

2 Making Sense <strong>of</strong> Infinity - Infinity<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

3 Conclusion<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Outline<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

1 <strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

2 Making Sense <strong>of</strong> Infinity - Infinity<br />

3 Conclusion<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

student <strong>of</strong> Ehrenfest, worked with<br />

Pauli and Bohr<br />

retarded Van-der-Waals-forces<br />

E = 23<br />

4π c α R 7<br />

Force between cavity walls<br />

<strong>Casimir</strong> and Polder, 1948<br />

F = − π2 c<br />

240<br />

A<br />

d 4 <strong>Casimir</strong>, 1948<br />

Hendrik Brugt Gerhard<br />

<strong>Casimir</strong>, 1909 - 2000<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

student <strong>of</strong> Ehrenfest, worked with<br />

Pauli and Bohr<br />

retarded Van-der-Waals-forces<br />

E = 23<br />

4π c α R 7<br />

Force between cavity walls<br />

<strong>Casimir</strong> and Polder, 1948<br />

F = − π2 c<br />

240<br />

A<br />

d 4 <strong>Casimir</strong>, 1948<br />

Hendrik Brugt Gerhard<br />

<strong>Casimir</strong>, 1909 - 2000<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

student <strong>of</strong> Ehrenfest, worked with<br />

Pauli and Bohr<br />

retarded Van-der-Waals-forces<br />

E = 23<br />

4π c α R 7<br />

Force between cavity walls<br />

<strong>Casimir</strong> and Polder, 1948<br />

F = − π2 c<br />

240<br />

A<br />

d 4 <strong>Casimir</strong>, 1948<br />

Hendrik Brugt Gerhard<br />

<strong>Casimir</strong>, 1909 - 2000<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Electromagnetic Field<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

<strong>The</strong> electromagnetic field, described by <strong>the</strong> Maxwell Equations,<br />

satisfies <strong>the</strong> wave equation<br />

(∆ − 1 ∂ 2 )<br />

⃗A(⃗x,<br />

c 2 ∂t 2 t) = 0<br />

Fourier-transformation (⃗x ↔ ⃗ k) gives<br />

( ) ∂<br />

2<br />

∂t 2 + ω2 ⃗A( ⃗ k, t) = 0 with ω = c| ⃗ k|<br />

which, for each ⃗ k, describes a harmonic oscillator<br />

Quantising harmonic oscillators is easy...<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Electromagnetic Field<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

<strong>The</strong> electromagnetic field, described by <strong>the</strong> Maxwell Equations,<br />

satisfies <strong>the</strong> wave equation<br />

(∆ − 1 ∂ 2 )<br />

⃗A(⃗x,<br />

c 2 ∂t 2 t) = 0<br />

Fourier-transformation (⃗x ↔ ⃗ k) gives<br />

( ) ∂<br />

2<br />

∂t 2 + ω2 ⃗A( ⃗ k, t) = 0 with ω = c| ⃗ k|<br />

which, for each ⃗ k, describes a harmonic oscillator<br />

Quantising harmonic oscillators is easy...<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Electromagnetic Field<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

<strong>The</strong> electromagnetic field, described by <strong>the</strong> Maxwell Equations,<br />

satisfies <strong>the</strong> wave equation<br />

(∆ − 1 ∂ 2 )<br />

⃗A(⃗x,<br />

c 2 ∂t 2 t) = 0<br />

Fourier-transformation (⃗x ↔ ⃗ k) gives<br />

( ) ∂<br />

2<br />

∂t 2 + ω2 ⃗A( ⃗ k, t) = 0 with ω = c| ⃗ k|<br />

which, for each ⃗ k, describes a harmonic oscillator<br />

Quantising harmonic oscillators is easy...<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Quantisation <strong>of</strong> <strong>the</strong> Field<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

Each harmonic oscillator can be in a discrete state <strong>of</strong> energy<br />

(<br />

E m ( ⃗ k) = m + 1 )<br />

ω with ω = c|<br />

2<br />

⃗ k|<br />

Interpretation: m photons with energy ω and momentum ⃗ k<br />

In particular, <strong>the</strong> ground state energy 1 2ω is non-zero!<br />

This leads to a zero-point energy density <strong>of</strong> <strong>the</strong> field<br />

∫<br />

E<br />

V = 2<br />

E 0 ( ⃗ k) d 3 k<br />

(2π) 3<br />

(factor 2 due to polarisation <strong>of</strong> <strong>the</strong> field)<br />

Caveat: this quantity is infinite...<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Quantisation <strong>of</strong> <strong>the</strong> Field<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

Each harmonic oscillator can be in a discrete state <strong>of</strong> energy<br />

(<br />

E m ( ⃗ k) = m + 1 )<br />

ω with ω = c|<br />

2<br />

⃗ k|<br />

Interpretation: m photons with energy ω and momentum ⃗ k<br />

In particular, <strong>the</strong> ground state energy 1 2ω is non-zero!<br />

This leads to a zero-point energy density <strong>of</strong> <strong>the</strong> field<br />

∫<br />

E<br />

V = 2<br />

E 0 ( ⃗ k) d 3 k<br />

(2π) 3<br />

(factor 2 due to polarisation <strong>of</strong> <strong>the</strong> field)<br />

Caveat: this quantity is infinite...<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Quantisation <strong>of</strong> <strong>the</strong> Field<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

Each harmonic oscillator can be in a discrete state <strong>of</strong> energy<br />

(<br />

E m ( ⃗ k) = m + 1 )<br />

ω with ω = c|<br />

2<br />

⃗ k|<br />

Interpretation: m photons with energy ω and momentum ⃗ k<br />

In particular, <strong>the</strong> ground state energy 1 2ω is non-zero!<br />

This leads to a zero-point energy density <strong>of</strong> <strong>the</strong> field<br />

∫<br />

E<br />

V = 2<br />

E 0 ( ⃗ k) d 3 k<br />

(2π) 3<br />

(factor 2 due to polarisation <strong>of</strong> <strong>the</strong> field)<br />

Caveat: this quantity is infinite...<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Quantisation <strong>of</strong> <strong>the</strong> Field<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

Each harmonic oscillator can be in a discrete state <strong>of</strong> energy<br />

(<br />

E m ( ⃗ k) = m + 1 )<br />

ω with ω = c|<br />

2<br />

⃗ k|<br />

Interpretation: m photons with energy ω and momentum ⃗ k<br />

In particular, <strong>the</strong> ground state energy 1 2ω is non-zero!<br />

This leads to a zero-point energy density <strong>of</strong> <strong>the</strong> field<br />

∫<br />

E<br />

V = 2<br />

E 0 ( ⃗ k) d 3 k<br />

(2π) 3<br />

(factor 2 due to polarisation <strong>of</strong> <strong>the</strong> field)<br />

Caveat: this quantity is infinite...<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Quantisation <strong>of</strong> <strong>the</strong> Field<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

Each harmonic oscillator can be in a discrete state <strong>of</strong> energy<br />

(<br />

E m ( ⃗ k) = m + 1 )<br />

ω with ω = c|<br />

2<br />

⃗ k|<br />

Interpretation: m photons with energy ω and momentum ⃗ k<br />

In particular, <strong>the</strong> ground state energy 1 2ω is non-zero!<br />

This leads to a zero-point energy density <strong>of</strong> <strong>the</strong> field<br />

∫<br />

E<br />

V = 2<br />

E 0 ( ⃗ k) d 3 k<br />

(2π) 3<br />

(factor 2 due to polarisation <strong>of</strong> <strong>the</strong> field)<br />

Caveat: this quantity is infinite...<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Making (Physical) Sense <strong>of</strong> Infinity<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

<strong>The</strong> zero-point energy shifts due to a restricted geometry<br />

In <strong>the</strong> presence <strong>of</strong> <strong>the</strong> boundary<br />

E discrete = ∑ n<br />

E 0,n<br />

is a sum over discrete energies E 0,n = 1 2 ω n<br />

In <strong>the</strong> absence <strong>of</strong> a boundary<br />

∫<br />

E = 2V<br />

<strong>The</strong> difference <strong>of</strong> <strong>the</strong> infinite zero-point energies is finite!<br />

∆E = E discrete − E = − π2 c L 2<br />

720 d 3<br />

for a box <strong>of</strong> size L × L × d with d ≪ L<br />

E 0 ( ⃗ k) d 3 k<br />

(2π) 3<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Making (Physical) Sense <strong>of</strong> Infinity<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

<strong>The</strong> zero-point energy shifts due to a restricted geometry<br />

In <strong>the</strong> presence <strong>of</strong> <strong>the</strong> boundary<br />

E discrete = ∑ n<br />

E 0,n<br />

is a sum over discrete energies E 0,n = 1 2 ω n<br />

In <strong>the</strong> absence <strong>of</strong> a boundary<br />

∫<br />

E = 2V<br />

<strong>The</strong> difference <strong>of</strong> <strong>the</strong> infinite zero-point energies is finite!<br />

∆E = E discrete − E = − π2 c L 2<br />

720 d 3<br />

for a box <strong>of</strong> size L × L × d with d ≪ L<br />

E 0 ( ⃗ k) d 3 k<br />

(2π) 3<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Making (Physical) Sense <strong>of</strong> Infinity<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

<strong>The</strong> zero-point energy shifts due to a restricted geometry<br />

In <strong>the</strong> presence <strong>of</strong> <strong>the</strong> boundary<br />

E discrete = ∑ n<br />

E 0,n<br />

is a sum over discrete energies E 0,n = 1 2 ω n<br />

In <strong>the</strong> absence <strong>of</strong> a boundary<br />

∫<br />

E = 2V<br />

<strong>The</strong> difference <strong>of</strong> <strong>the</strong> infinite zero-point energies is finite!<br />

∆E = E discrete − E = − π2 c L 2<br />

720 d 3<br />

for a box <strong>of</strong> size L × L × d with d ≪ L<br />

E 0 ( ⃗ k) d 3 k<br />

(2π) 3<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Making (Physical) Sense <strong>of</strong> Infinity<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

<strong>The</strong> zero-point energy shifts due to a restricted geometry<br />

In <strong>the</strong> presence <strong>of</strong> <strong>the</strong> boundary<br />

E discrete = ∑ n<br />

E 0,n<br />

is a sum over discrete energies E 0,n = 1 2 ω n<br />

In <strong>the</strong> absence <strong>of</strong> a boundary<br />

∫<br />

E = 2V<br />

<strong>The</strong> difference <strong>of</strong> <strong>the</strong> infinite zero-point energies is finite!<br />

∆E = E discrete − E = − π2 c L 2<br />

720 d 3<br />

for a box <strong>of</strong> size L × L × d with d ≪ L<br />

E 0 ( ⃗ k) d 3 k<br />

(2π) 3<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

Wolfgang Pauli’s initial reaction: ‘absolute nonsense’<br />

Experimental verification<br />

Sparnaay (1958): ‘not inconsistent with’<br />

van Blokland and Overbeek (1978): experimental accuracy <strong>of</strong> 50%<br />

Lamoreaux (1997): experimental accuracy <strong>of</strong> 5%<br />

<strong>The</strong>oretical extensions<br />

Geometry dependence<br />

Dynamical <strong>Casimir</strong> effect<br />

Real media: non-zero temperature, finite conductivity, roughness, . . .<br />

We are done with <strong>the</strong> physics. Let’s look at some ma<strong>the</strong>matics!<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

Wolfgang Pauli’s initial reaction: ‘absolute nonsense’<br />

Experimental verification<br />

Sparnaay (1958): ‘not inconsistent with’<br />

van Blokland and Overbeek (1978): experimental accuracy <strong>of</strong> 50%<br />

Lamoreaux (1997): experimental accuracy <strong>of</strong> 5%<br />

<strong>The</strong>oretical extensions<br />

Geometry dependence<br />

Dynamical <strong>Casimir</strong> effect<br />

Real media: non-zero temperature, finite conductivity, roughness, . . .<br />

We are done with <strong>the</strong> physics. Let’s look at some ma<strong>the</strong>matics!<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

Wolfgang Pauli’s initial reaction: ‘absolute nonsense’<br />

Experimental verification<br />

Sparnaay (1958): ‘not inconsistent with’<br />

van Blokland and Overbeek (1978): experimental accuracy <strong>of</strong> 50%<br />

Lamoreaux (1997): experimental accuracy <strong>of</strong> 5%<br />

<strong>The</strong>oretical extensions<br />

Geometry dependence<br />

Dynamical <strong>Casimir</strong> effect<br />

Real media: non-zero temperature, finite conductivity, roughness, . . .<br />

We are done with <strong>the</strong> physics. Let’s look at some ma<strong>the</strong>matics!<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

History<br />

Quantum Electrodynamics<br />

Zero-Point Energy Shift<br />

Wolfgang Pauli’s initial reaction: ‘absolute nonsense’<br />

Experimental verification<br />

Sparnaay (1958): ‘not inconsistent with’<br />

van Blokland and Overbeek (1978): experimental accuracy <strong>of</strong> 50%<br />

Lamoreaux (1997): experimental accuracy <strong>of</strong> 5%<br />

<strong>The</strong>oretical extensions<br />

Geometry dependence<br />

Dynamical <strong>Casimir</strong> effect<br />

Real media: non-zero temperature, finite conductivity, roughness, . . .<br />

We are done with <strong>the</strong> physics. Let’s look at some ma<strong>the</strong>matics!<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Outline<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

1 <strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

2 Making Sense <strong>of</strong> Infinity - Infinity<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

3 Conclusion<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Spectral <strong>The</strong>ory<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Consider −∆ for a compact manifold Ω with a smooth boundary ∂Ω<br />

On a suitable function space, this operator is self-adjoint and<br />

positive with pure point spectrum<br />

One finds formally<br />

E discrete = 1 c Trace(−∆)1/2<br />

2<br />

This would be a different talk — let’s keep it simple for today<br />

Choose<br />

Ω = [0, L] and ∆ = ∂2<br />

∂x 2<br />

with Dirichlet boundary conditions f (0) = f (L) = 0.<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Spectral <strong>The</strong>ory<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Consider −∆ for a compact manifold Ω with a smooth boundary ∂Ω<br />

On a suitable function space, this operator is self-adjoint and<br />

positive with pure point spectrum<br />

One finds formally<br />

E discrete = 1 c Trace(−∆)1/2<br />

2<br />

This would be a different talk — let’s keep it simple for today<br />

Choose<br />

Ω = [0, L] and ∆ = ∂2<br />

∂x 2<br />

with Dirichlet boundary conditions f (0) = f (L) = 0.<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Spectral <strong>The</strong>ory<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Consider −∆ for a compact manifold Ω with a smooth boundary ∂Ω<br />

On a suitable function space, this operator is self-adjoint and<br />

positive with pure point spectrum<br />

One finds formally<br />

E discrete = 1 c Trace(−∆)1/2<br />

2<br />

This would be a different talk — let’s keep it simple for today<br />

Choose<br />

Ω = [0, L] and ∆ = ∂2<br />

∂x 2<br />

with Dirichlet boundary conditions f (0) = f (L) = 0.<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Spectral <strong>The</strong>ory<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Consider −∆ for a compact manifold Ω with a smooth boundary ∂Ω<br />

On a suitable function space, this operator is self-adjoint and<br />

positive with pure point spectrum<br />

One finds formally<br />

E discrete = 1 c Trace(−∆)1/2<br />

2<br />

This would be a different talk — let’s keep it simple for today<br />

Choose<br />

Ω = [0, L] and ∆ = ∂2<br />

∂x 2<br />

with Dirichlet boundary conditions f (0) = f (L) = 0.<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Spectral <strong>The</strong>ory<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Consider −∆ for a compact manifold Ω with a smooth boundary ∂Ω<br />

On a suitable function space, this operator is self-adjoint and<br />

positive with pure point spectrum<br />

One finds formally<br />

E discrete = 1 c Trace(−∆)1/2<br />

2<br />

This would be a different talk — let’s keep it simple for today<br />

Choose<br />

Ω = [0, L] and ∆ = ∂2<br />

∂x 2<br />

with Dirichlet boundary conditions f (0) = f (L) = 0.<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Spectral <strong>The</strong>ory<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Consider −∆ for a compact manifold Ω with a smooth boundary ∂Ω<br />

On a suitable function space, this operator is self-adjoint and<br />

positive with pure point spectrum<br />

One finds formally<br />

E discrete = 1 c Trace(−∆)1/2<br />

2<br />

This would be a different talk — let’s keep it simple for today<br />

Choose<br />

Ω = [0, L] and ∆ = ∂2<br />

∂x 2<br />

with Dirichlet boundary conditions f (0) = f (L) = 0.<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>Casimir</strong> <strong>Effect</strong> in One Dimension<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

<strong>The</strong> solutions are standing waves with wavelength λ satisfying<br />

We <strong>the</strong>refore find<br />

n λ 2 = L<br />

E 0,n = 1 2 c nπ L<br />

<strong>The</strong> zero-point energies are given by<br />

E discrete = π ∞ 2L c ∑<br />

n and E = π ∫ ∞<br />

2L c t dt<br />

n=0<br />

0<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>Casimir</strong> <strong>Effect</strong> in One Dimension<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

<strong>The</strong> solutions are standing waves with wavelength λ satisfying<br />

We <strong>the</strong>refore find<br />

n λ 2 = L<br />

E 0,n = 1 2 c nπ L<br />

<strong>The</strong> zero-point energies are given by<br />

E discrete = π ∞ 2L c ∑<br />

n and E = π ∫ ∞<br />

2L c t dt<br />

n=0<br />

0<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>Casimir</strong> <strong>Effect</strong> in One Dimension<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

<strong>The</strong> solutions are standing waves with wavelength λ satisfying<br />

We <strong>the</strong>refore find<br />

n λ 2 = L<br />

E 0,n = 1 2 c nπ L<br />

<strong>The</strong> zero-point energies are given by<br />

E discrete = π ∞ 2L c ∑<br />

n and E = π ∫ ∞<br />

2L c t dt<br />

n=0<br />

0<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Problem<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

We need to make sense <strong>of</strong><br />

(<br />

∆E = E discrete − E = π ∞<br />

2L c ∑<br />

n −<br />

∫ ∞<br />

n=0 0<br />

t dt<br />

)<br />

More generally, consider<br />

∞∑<br />

∆(f ) = f (n) −<br />

∫ ∞<br />

n=0<br />

0<br />

f (t) dt<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Problem<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

We need to make sense <strong>of</strong><br />

(<br />

∆E = E discrete − E = π ∞<br />

2L c ∑<br />

n −<br />

∫ ∞<br />

n=0 0<br />

t dt<br />

)<br />

More generally, consider<br />

∞∑<br />

∆(f ) = f (n) −<br />

∫ ∞<br />

n=0<br />

0<br />

f (t) dt<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Divergent Series<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

On <strong>the</strong> Whole, Divergent Series are <strong>the</strong> Works <strong>of</strong> <strong>the</strong> Devil and it’s a<br />

Shame that one dares base any Demonstration upon <strong>the</strong>m. You can get<br />

whatever result you want when you use <strong>the</strong>m, and <strong>the</strong>y have given rise to<br />

so many Disasters and so many Paradoxes. Can anything more horrible<br />

be conceived than to have <strong>the</strong> following oozing out at you:<br />

where n is an integer number?<br />

0 = 1 − 2 n + 3 n − 4 n + etc.<br />

Niels Henrik Abel<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Summing Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Some divergent series can be summed in a sensible way . . .<br />

S =<br />

∞∑<br />

(−1) n = 1 − 1 + 1 − 1 + 1 − 1 + . . .<br />

n=0<br />

Cesaro summation: let S N = P N<br />

n=0 (−1)n and compute<br />

Abel summation:<br />

1<br />

S = lim<br />

N→∞ N + 1<br />

S = lim<br />

x→1 −<br />

∞<br />

X<br />

n=0<br />

NX<br />

S N = 1 2<br />

n=0<br />

(−1) n x n = 1 2<br />

Borel summation, Euler summation, . . . : again S = 1 2<br />

∞∑<br />

. . . but some (such as n) cannot<br />

n=0<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Summing Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Some divergent series can be summed in a sensible way . . .<br />

S =<br />

∞∑<br />

(−1) n = 1 − 1 + 1 − 1 + 1 − 1 + . . .<br />

n=0<br />

Cesaro summation: let S N = P N<br />

n=0 (−1)n and compute<br />

Abel summation:<br />

1<br />

S = lim<br />

N→∞ N + 1<br />

S = lim<br />

x→1 −<br />

∞<br />

X<br />

n=0<br />

NX<br />

S N = 1 2<br />

n=0<br />

(−1) n x n = 1 2<br />

Borel summation, Euler summation, . . . : again S = 1 2<br />

∞∑<br />

. . . but some (such as n) cannot<br />

n=0<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Summing Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Some divergent series can be summed in a sensible way . . .<br />

S =<br />

∞∑<br />

(−1) n = 1 − 1 + 1 − 1 + 1 − 1 + . . .<br />

n=0<br />

Cesaro summation: let S N = P N<br />

n=0 (−1)n and compute<br />

Abel summation:<br />

1<br />

S = lim<br />

N→∞ N + 1<br />

S = lim<br />

x→1 −<br />

∞<br />

X<br />

n=0<br />

NX<br />

S N = 1 2<br />

n=0<br />

(−1) n x n = 1 2<br />

Borel summation, Euler summation, . . . : again S = 1 2<br />

∞∑<br />

. . . but some (such as n) cannot<br />

n=0<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Summing Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Some divergent series can be summed in a sensible way . . .<br />

S =<br />

∞∑<br />

(−1) n = 1 − 1 + 1 − 1 + 1 − 1 + . . .<br />

n=0<br />

Cesaro summation: let S N = P N<br />

n=0 (−1)n and compute<br />

Abel summation:<br />

1<br />

S = lim<br />

N→∞ N + 1<br />

S = lim<br />

x→1 −<br />

∞<br />

X<br />

n=0<br />

NX<br />

S N = 1 2<br />

n=0<br />

(−1) n x n = 1 2<br />

Borel summation, Euler summation, . . . : again S = 1 2<br />

∞∑<br />

. . . but some (such as n) cannot<br />

n=0<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Summing Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Some divergent series can be summed in a sensible way . . .<br />

S =<br />

∞∑<br />

(−1) n = 1 − 1 + 1 − 1 + 1 − 1 + . . .<br />

n=0<br />

Cesaro summation: let S N = P N<br />

n=0 (−1)n and compute<br />

Abel summation:<br />

1<br />

S = lim<br />

N→∞ N + 1<br />

S = lim<br />

x→1 −<br />

∞<br />

X<br />

n=0<br />

NX<br />

S N = 1 2<br />

n=0<br />

(−1) n x n = 1 2<br />

Borel summation, Euler summation, . . . : again S = 1 2<br />

∞∑<br />

. . . but some (such as n) cannot<br />

n=0<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Regularising Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

If a divergent series cannot be summed, physicists like to remove infinity<br />

Regularisation <strong>of</strong><br />

∞∑<br />

f (n) (in particular, f (n) = n)<br />

n=0<br />

∞X<br />

Heat kernel regularisation ˜f (s) = f (n) e −sn<br />

n=0<br />

∞X<br />

in particular, n e −sn e s<br />

=<br />

(e s − 1) = 1 2 s − 1<br />

2 12 + O(s2 )<br />

n=0 Z ∞<br />

Compare with t e −st dt = 1 : divergent terms cancel<br />

0<br />

s2 Zeta function regularisation ˜f<br />

∞X<br />

(s) = f (n) n −s<br />

in particular,<br />

∞X<br />

n=0<br />

n=0<br />

n n −s = ζ(s − 1) , ζ(−1) = − 1<br />

12<br />

Digression<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Regularising Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

If a divergent series cannot be summed, physicists like to remove infinity<br />

Regularisation <strong>of</strong><br />

∞∑<br />

f (n) (in particular, f (n) = n)<br />

n=0<br />

∞X<br />

Heat kernel regularisation ˜f (s) = f (n) e −sn<br />

n=0<br />

∞X<br />

in particular, n e −sn e s<br />

=<br />

(e s − 1) = 1 2 s − 1<br />

2 12 + O(s2 )<br />

n=0 Z ∞<br />

Compare with t e −st dt = 1 : divergent terms cancel<br />

0<br />

s2 Zeta function regularisation ˜f<br />

∞X<br />

(s) = f (n) n −s<br />

in particular,<br />

∞X<br />

n=0<br />

n=0<br />

n n −s = ζ(s − 1) , ζ(−1) = − 1<br />

12<br />

Digression<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Regularising Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

If a divergent series cannot be summed, physicists like to remove infinity<br />

Regularisation <strong>of</strong><br />

∞∑<br />

f (n) (in particular, f (n) = n)<br />

n=0<br />

Heat kernel regularisation ˜f (s) =<br />

in particular,<br />

∞X<br />

n e −sn =<br />

n=0 Z ∞<br />

∞X<br />

f (n) e −sn<br />

n=0<br />

e s<br />

(e s − 1) 2 = 1 s 2 − 1<br />

12 + O(s2 )<br />

Compare with t e −st dt = 1 : divergent terms cancel<br />

0<br />

s2 Zeta function regularisation ˜f<br />

∞X<br />

(s) = f (n) n −s<br />

in particular,<br />

∞X<br />

n=0<br />

n=0<br />

n n −s = ζ(s − 1) , ζ(−1) = − 1<br />

12<br />

Digression<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Regularising Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

If a divergent series cannot be summed, physicists like to remove infinity<br />

Regularisation <strong>of</strong><br />

∞∑<br />

f (n) (in particular, f (n) = n)<br />

n=0<br />

∞X<br />

Heat kernel regularisation ˜f (s) = f (n) e −sn<br />

n=0<br />

∞X<br />

in particular, n e −sn e s<br />

=<br />

(e s − 1) = 1 2 s − 1<br />

2 12 + O(s2 )<br />

n=0 Z ∞<br />

Compare with t e −st dt = 1 : divergent terms cancel<br />

0<br />

s2 Zeta function regularisation ˜f<br />

∞X<br />

(s) = f (n) n −s<br />

in particular,<br />

∞X<br />

n=0<br />

n=0<br />

n n −s = ζ(s − 1) , ζ(−1) = − 1<br />

12<br />

Digression<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Regularising Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

If a divergent series cannot be summed, physicists like to remove infinity<br />

Regularisation <strong>of</strong><br />

∞∑<br />

f (n) (in particular, f (n) = n)<br />

n=0<br />

∞X<br />

Heat kernel regularisation ˜f (s) = f (n) e −sn<br />

n=0<br />

∞X<br />

in particular, n e −sn e s<br />

=<br />

(e s − 1) = 1 2 s − 1<br />

2 12 + O(s2 )<br />

n=0 Z ∞<br />

Compare with t e −st dt = 1 : divergent terms cancel<br />

0<br />

s2 Zeta function regularisation ˜f<br />

∞X<br />

(s) = f (n) n −s<br />

in particular,<br />

∞X<br />

n=0<br />

n=0<br />

n n −s = ζ(s − 1) , ζ(−1) = − 1<br />

12<br />

Digression<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Regularising Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

If a divergent series cannot be summed, physicists like to remove infinity<br />

Regularisation <strong>of</strong><br />

∞∑<br />

f (n) (in particular, f (n) = n)<br />

n=0<br />

∞X<br />

Heat kernel regularisation ˜f (s) = f (n) e −sn<br />

n=0<br />

∞X<br />

in particular, n e −sn e s<br />

=<br />

(e s − 1) = 1 2 s − 1<br />

2 12 + O(s2 )<br />

n=0 Z ∞<br />

Compare with t e −st dt = 1 : divergent terms cancel<br />

0<br />

s2 Zeta function regularisation ˜f<br />

∞X<br />

(s) = f (n) n −s<br />

in particular,<br />

∞X<br />

n=0<br />

n=0<br />

n n −s = ζ(s − 1) , ζ(−1) = − 1<br />

12<br />

Digression<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Regularising Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

If a divergent series cannot be summed, physicists like to remove infinity<br />

Regularisation <strong>of</strong><br />

∞∑<br />

f (n) (in particular, f (n) = n)<br />

n=0<br />

∞X<br />

Heat kernel regularisation ˜f (s) = f (n) e −sn<br />

n=0<br />

∞X<br />

in particular, n e −sn e s<br />

=<br />

(e s − 1) = 1 2 s − 1<br />

2 12 + O(s2 )<br />

n=0 Z ∞<br />

Compare with t e −st dt = 1 : divergent terms cancel<br />

0<br />

s2 Zeta function regularisation ˜f<br />

∞X<br />

(s) = f (n) n −s<br />

in particular,<br />

∞X<br />

n=0<br />

n=0<br />

n n −s = ζ(s − 1) , ζ(−1) = − 1<br />

12<br />

Digression<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Regularising Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Regularisation result should be independent <strong>of</strong> <strong>the</strong> method used<br />

In particular, for a reasonable class <strong>of</strong> cut<strong>of</strong>f functions<br />

g(t; s) with lim g(t; s) = 0 and lim g(t; s) = 1<br />

t→∞ s→0 +<br />

replacing f (t) by f (t)g(t; s) should give <strong>the</strong> same result for s → 0 +<br />

We need to study<br />

(<br />

∑ ∞<br />

lim ∆(fg) = lim f (n)g(n; s) −<br />

s→0 + s→0 +<br />

n=0<br />

∫ ∞<br />

0<br />

f (t)g(t; s) dt<br />

)<br />

Two ma<strong>the</strong>matically sound approaches are<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Regularising Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Regularisation result should be independent <strong>of</strong> <strong>the</strong> method used<br />

In particular, for a reasonable class <strong>of</strong> cut<strong>of</strong>f functions<br />

g(t; s) with lim g(t; s) = 0 and lim g(t; s) = 1<br />

t→∞ s→0 +<br />

replacing f (t) by f (t)g(t; s) should give <strong>the</strong> same result for s → 0 +<br />

We need to study<br />

(<br />

∑ ∞<br />

lim ∆(fg) = lim f (n)g(n; s) −<br />

s→0 + s→0 +<br />

n=0<br />

∫ ∞<br />

0<br />

f (t)g(t; s) dt<br />

)<br />

Two ma<strong>the</strong>matically sound approaches are<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Regularising Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Regularisation result should be independent <strong>of</strong> <strong>the</strong> method used<br />

In particular, for a reasonable class <strong>of</strong> cut<strong>of</strong>f functions<br />

g(t; s) with lim g(t; s) = 0 and lim g(t; s) = 1<br />

t→∞ s→0 +<br />

replacing f (t) by f (t)g(t; s) should give <strong>the</strong> same result for s → 0 +<br />

We need to study<br />

(<br />

∑ ∞<br />

lim ∆(fg) = lim f (n)g(n; s) −<br />

s→0 + s→0 +<br />

n=0<br />

∫ ∞<br />

0<br />

f (t)g(t; s) dt<br />

)<br />

Two ma<strong>the</strong>matically sound approaches are<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Regularising Divergent Series<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Regularisation result should be independent <strong>of</strong> <strong>the</strong> method used<br />

In particular, for a reasonable class <strong>of</strong> cut<strong>of</strong>f functions<br />

g(t; s) with lim g(t; s) = 0 and lim g(t; s) = 1<br />

t→∞ s→0 +<br />

replacing f (t) by f (t)g(t; s) should give <strong>the</strong> same result for s → 0 +<br />

We need to study<br />

(<br />

∑ ∞<br />

lim ∆(fg) = lim f (n)g(n; s) −<br />

s→0 + s→0 +<br />

n=0<br />

∫ ∞<br />

0<br />

f (t)g(t; s) dt<br />

)<br />

Two ma<strong>the</strong>matically sound approaches are<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Euler-Maclaurin Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Leonhard Euler, 1707 - 1783 Colin Maclaurin, 1698 - 1746<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Euler-Maclaurin Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

A formal derivation (Hardy, Divergent Series, 1949)<br />

Denoting Df (x) = f ′ (x), <strong>the</strong> Taylor series can be written as<br />

It follows that<br />

f (x + n) = e nD f (x)<br />

N−1<br />

∑<br />

f (x + n) = eND − 1<br />

e D − 1 f (x) = 1<br />

e D (f (x + N) − f (x))<br />

− 1<br />

n=0<br />

(<br />

)<br />

∞∑<br />

= D −1 B k<br />

+<br />

k! Dk−1 (f (x + N) − f (x))<br />

Skip precise statement<br />

∞∑<br />

f (x + n) −<br />

n=0<br />

∫ ∞<br />

0<br />

k=1<br />

f (x + t) dt = −<br />

∞∑<br />

k=1<br />

B k<br />

k! Dk−1 f (x)<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Euler-Maclaurin Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

A formal derivation (Hardy, Divergent Series, 1949)<br />

Denoting Df (x) = f ′ (x), <strong>the</strong> Taylor series can be written as<br />

It follows that<br />

f (x + n) = e nD f (x)<br />

N−1<br />

∑<br />

f (x + n) = eND − 1<br />

e D − 1 f (x) = 1<br />

e D (f (x + N) − f (x))<br />

− 1<br />

n=0<br />

(<br />

)<br />

∞∑<br />

= D −1 B k<br />

+<br />

k! Dk−1 (f (x + N) − f (x))<br />

Skip precise statement<br />

∞∑<br />

f (x + n) −<br />

n=0<br />

∫ ∞<br />

0<br />

k=1<br />

f (x + t) dt = −<br />

∞∑<br />

k=1<br />

B k<br />

k! Dk−1 f (x)<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Euler-Maclaurin Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

A formal derivation (Hardy, Divergent Series, 1949)<br />

Denoting Df (x) = f ′ (x), <strong>the</strong> Taylor series can be written as<br />

It follows that<br />

f (x + n) = e nD f (x)<br />

N−1<br />

∑<br />

f (x + n) = eND − 1<br />

e D − 1 f (x) = 1<br />

e D (f (x + N) − f (x))<br />

− 1<br />

n=0<br />

(<br />

)<br />

∞∑<br />

= D −1 B k<br />

+<br />

k! Dk−1 (f (x + N) − f (x))<br />

Skip precise statement<br />

∞∑<br />

f (x + n) −<br />

n=0<br />

∫ ∞<br />

0<br />

k=1<br />

f (x + t) dt = −<br />

∞∑<br />

k=1<br />

B k<br />

k! Dk−1 f (x)<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Euler-Maclaurin Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

A formal derivation (Hardy, Divergent Series, 1949)<br />

Denoting Df (x) = f ′ (x), <strong>the</strong> Taylor series can be written as<br />

It follows that<br />

f (x + n) = e nD f (x)<br />

N−1<br />

∑<br />

f (x + n) = eND − 1<br />

e D − 1 f (x) = 1<br />

e D (f (x + N) − f (x))<br />

− 1<br />

n=0<br />

(<br />

)<br />

∞∑<br />

= D −1 B k<br />

+<br />

k! Dk−1 (f (x + N) − f (x))<br />

Skip precise statement<br />

∞∑<br />

f (x + n) −<br />

n=0<br />

∫ ∞<br />

0<br />

k=1<br />

f (x + t) dt = −<br />

∞∑<br />

k=1<br />

B k<br />

k! Dk−1 f (x)<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Euler-Maclaurin Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

A formal derivation (Hardy, Divergent Series, 1949)<br />

Denoting Df (x) = f ′ (x), <strong>the</strong> Taylor series can be written as<br />

It follows that<br />

f (x + n) = e nD f (x)<br />

N−1<br />

∑<br />

f (x + n) = eND − 1<br />

e D − 1 f (x) = 1<br />

e D (f (x + N) − f (x))<br />

− 1<br />

n=0<br />

(<br />

)<br />

∞∑<br />

= D −1 B k<br />

+<br />

k! Dk−1 (f (x + N) − f (x))<br />

Skip precise statement<br />

∞∑<br />

f (x + n) −<br />

n=0<br />

∫ ∞<br />

0<br />

k=1<br />

f (x + t) dt = −<br />

∞∑<br />

k=1<br />

B k<br />

k! Dk−1 f (x)<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

<strong>The</strong>orem (Euler-Maclaurin Formula)<br />

If f ∈ C 2m [0, N] <strong>the</strong>n<br />

where<br />

N∑<br />

n=0<br />

∫ N<br />

f (n) − f (t) dt = 1 (f (0) + f (N)) +<br />

0<br />

2<br />

m−1<br />

∑ B<br />

(<br />

)<br />

2k<br />

+<br />

f (2k−1) (N) − f (2k−1) (0) + R m<br />

(2k)!<br />

k=1<br />

R m =<br />

∫ N<br />

0<br />

B 2m − B 2m (t − ⌊t⌋)<br />

f (2m) (t) dt<br />

(2m)!<br />

Here, B n (x) are Bernoulli polynomials and B n = B n (0) are Bernoulli<br />

numbers<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Applying <strong>the</strong> Euler-Maclaurin Formula<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = −<br />

∞∑<br />

k=1<br />

B k<br />

k! f (k−1) (0)<br />

Introducing suitable cut<strong>of</strong>f functions g(t; s) one can justify applying<br />

this to divergent series<br />

For f (t) = t we find RHS = − B 1<br />

1! f (0) − B 2<br />

2! f ′ (0)<br />

∞∑<br />

n −<br />

n=0<br />

∫ ∞<br />

0<br />

t dt = − 1 12<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Applying <strong>the</strong> Euler-Maclaurin Formula<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = −<br />

∞∑<br />

k=1<br />

B k<br />

k! f (k−1) (0)<br />

Introducing suitable cut<strong>of</strong>f functions g(t; s) one can justify applying<br />

this to divergent series<br />

For f (t) = t we find RHS = − B 1<br />

1! f (0) − B 2<br />

2! f ′ (0)<br />

∞∑<br />

n −<br />

n=0<br />

∫ ∞<br />

0<br />

t dt = − 1 12<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Applying <strong>the</strong> Euler-Maclaurin Formula<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = −<br />

∞∑<br />

k=1<br />

B k<br />

k! f (k−1) (0)<br />

Introducing suitable cut<strong>of</strong>f functions g(t; s) one can justify applying<br />

this to divergent series<br />

For f (t) = t we find RHS = − B 1<br />

1! f (0) − B 2<br />

2! f ′ (0)<br />

∞∑<br />

n −<br />

n=0<br />

∫ ∞<br />

0<br />

t dt = − 1 12<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Applying <strong>the</strong> Euler-Maclaurin Formula<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = −<br />

∞∑<br />

k=1<br />

B k<br />

k! f (k−1) (0)<br />

Introducing suitable cut<strong>of</strong>f functions g(t; s) one can justify applying<br />

this to divergent series<br />

For f (t) = t we find RHS = − B 1<br />

1! f (0) − B 2<br />

2! f ′ (0)<br />

∞∑<br />

n −<br />

n=0<br />

∫ ∞<br />

0<br />

t dt = − 1 12<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Niels Henrik Abel, 1802 - 1829<br />

Giovanni Antonio Amedeo Plana,<br />

1781 - 1864<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

. . . a remarkable summation formula <strong>of</strong> Plana . . .<br />

Germund Dahlquist, 1997<br />

<strong>The</strong> only two places I have ever seen this formula are in Hardy’s book<br />

and in <strong>the</strong> writings <strong>of</strong> <strong>the</strong> “massive photon” people — who also got it<br />

from Hardy.<br />

Jonathan P Dowling, 1989<br />

<strong>The</strong> only o<strong>the</strong>r applications I am aware <strong>of</strong>, albeit for convergent series,<br />

are<br />

q-Gamma function asymptotics (Adri B Olde Daalhuis, 1994)<br />

∞∏<br />

uniform asymptotics for (1 − q n+k ) −1 (myself, 1995)<br />

k=0<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

. . . a remarkable summation formula <strong>of</strong> Plana . . .<br />

Germund Dahlquist, 1997<br />

<strong>The</strong> only two places I have ever seen this formula are in Hardy’s book<br />

and in <strong>the</strong> writings <strong>of</strong> <strong>the</strong> “massive photon” people — who also got it<br />

from Hardy.<br />

Jonathan P Dowling, 1989<br />

<strong>The</strong> only o<strong>the</strong>r applications I am aware <strong>of</strong>, albeit for convergent series,<br />

are<br />

q-Gamma function asymptotics (Adri B Olde Daalhuis, 1994)<br />

∞∏<br />

uniform asymptotics for (1 − q n+k ) −1 (myself, 1995)<br />

k=0<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

. . . a remarkable summation formula <strong>of</strong> Plana . . .<br />

Germund Dahlquist, 1997<br />

<strong>The</strong> only two places I have ever seen this formula are in Hardy’s book<br />

and in <strong>the</strong> writings <strong>of</strong> <strong>the</strong> “massive photon” people — who also got it<br />

from Hardy.<br />

Jonathan P Dowling, 1989<br />

<strong>The</strong> only o<strong>the</strong>r applications I am aware <strong>of</strong>, albeit for convergent series,<br />

are<br />

q-Gamma function asymptotics (Adri B Olde Daalhuis, 1994)<br />

∞∏<br />

uniform asymptotics for (1 − q n+k ) −1 (myself, 1995)<br />

k=0<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Use Cauchy’s integral formula f (ζ) = 1 ∮<br />

2πi<br />

with<br />

∞∑<br />

π cot(πz) =<br />

to get<br />

∞∑<br />

n=0<br />

f (n) = 1<br />

2πi<br />

∞∑<br />

∮<br />

n=0<br />

Γ n<br />

n=−∞<br />

Γ ζ<br />

1<br />

z − n<br />

f (z)<br />

dz toge<strong>the</strong>r<br />

z − ζ<br />

f (z)<br />

z − n dz = 1 ∫<br />

cot(πz)f (z) dz<br />

2i Γ<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Rotate <strong>the</strong> upper and lower arm <strong>of</strong> Γ by ±π/2 to get<br />

∞∑<br />

f (n) = 1 2 f (0) + i 2<br />

n=0<br />

A similar trick gives<br />

∫ ∞<br />

0<br />

f (t) dt = i 2<br />

∫ ∞<br />

0<br />

∫ ∞<br />

0<br />

(f (iy) − f (−iy)) coth(πy) dy<br />

(f (iy) − f (−iy)) dy<br />

Taking <strong>the</strong> difference gives <strong>the</strong> elegant result<br />

Skip precise statement<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = 1 2 f (0) + i ∫ ∞<br />

0<br />

f (iy) − f (−iy)<br />

e 2πy − 1<br />

dy<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Rotate <strong>the</strong> upper and lower arm <strong>of</strong> Γ by ±π/2 to get<br />

∞∑<br />

f (n) = 1 2 f (0) + i 2<br />

n=0<br />

A similar trick gives<br />

∫ ∞<br />

0<br />

f (t) dt = i 2<br />

∫ ∞<br />

0<br />

∫ ∞<br />

0<br />

(f (iy) − f (−iy)) coth(πy) dy<br />

(f (iy) − f (−iy)) dy<br />

Taking <strong>the</strong> difference gives <strong>the</strong> elegant result<br />

Skip precise statement<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = 1 2 f (0) + i ∫ ∞<br />

0<br />

f (iy) − f (−iy)<br />

e 2πy − 1<br />

dy<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

Rotate <strong>the</strong> upper and lower arm <strong>of</strong> Γ by ±π/2 to get<br />

∞∑<br />

f (n) = 1 2 f (0) + i 2<br />

n=0<br />

A similar trick gives<br />

∫ ∞<br />

0<br />

f (t) dt = i 2<br />

∫ ∞<br />

0<br />

∫ ∞<br />

0<br />

(f (iy) − f (−iy)) coth(πy) dy<br />

(f (iy) − f (−iy)) dy<br />

Taking <strong>the</strong> difference gives <strong>the</strong> elegant result<br />

Skip precise statement<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = 1 2 f (0) + i ∫ ∞<br />

0<br />

f (iy) − f (−iy)<br />

e 2πy − 1<br />

dy<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

<strong>The</strong>orem (Abel-Plana Formula)<br />

Let f : C → C satisfy <strong>the</strong> following conditions<br />

(a) f (z) is analytic for R(z) ≥ 0 (though not necessarily at infinity)<br />

(b) lim |y|→∞ |f (x + iy)|e −2π|y| = 0 uniformly in x in every finite interval<br />

(c) ∫ ∞<br />

−∞ |f (x + iy) − f (x − iy)|e−2π|y| dy exists for every x ≥ 0 and<br />

tends to zero for x → ∞<br />

(d) ∫ ∞<br />

f (t) dt is convergent, and lim<br />

0 n→∞ f (n) = 0<br />

<strong>The</strong>n<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = 1 2 f (0) + i ∫ ∞<br />

0<br />

f (iy) − f (−iy)<br />

e 2πy − 1<br />

dy<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Applying <strong>the</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = 1 2 f (0) + i ∫ ∞<br />

0<br />

f (iy) − f (−iy)<br />

e 2πy − 1<br />

Introducing suitable cut<strong>of</strong>f functions g(t; s) one can justify applying<br />

this to divergent series<br />

∫ ∞<br />

y dy<br />

For f (t) = t one finds RHS = −2<br />

e 2πy − 1<br />

∞∑<br />

n −<br />

n=0<br />

∫ ∞<br />

0<br />

0<br />

t dt = − 1 12<br />

dy<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Applying <strong>the</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = 1 2 f (0) + i ∫ ∞<br />

0<br />

f (iy) − f (−iy)<br />

e 2πy − 1<br />

Introducing suitable cut<strong>of</strong>f functions g(t; s) one can justify applying<br />

this to divergent series<br />

∫ ∞<br />

y dy<br />

For f (t) = t one finds RHS = −2<br />

e 2πy − 1<br />

∞∑<br />

n −<br />

n=0<br />

∫ ∞<br />

0<br />

0<br />

t dt = − 1 12<br />

dy<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Applying <strong>the</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = 1 2 f (0) + i ∫ ∞<br />

0<br />

f (iy) − f (−iy)<br />

e 2πy − 1<br />

Introducing suitable cut<strong>of</strong>f functions g(t; s) one can justify applying<br />

this to divergent series<br />

∫ ∞<br />

y dy<br />

For f (t) = t one finds RHS = −2<br />

e 2πy − 1<br />

∞∑<br />

n −<br />

n=0<br />

∫ ∞<br />

0<br />

0<br />

t dt = − 1 12<br />

dy<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Applying <strong>the</strong> Abel-Plana Formula<br />

<strong>The</strong> Ma<strong>the</strong>matical Setting<br />

Divergent Series<br />

Euler-Maclaurin Formula<br />

Abel-Plana Formula<br />

∞∑<br />

f (n) −<br />

n=0<br />

∫ ∞<br />

0<br />

f (t) dt = 1 2 f (0) + i ∫ ∞<br />

0<br />

f (iy) − f (−iy)<br />

e 2πy − 1<br />

Introducing suitable cut<strong>of</strong>f functions g(t; s) one can justify applying<br />

this to divergent series<br />

∫ ∞<br />

y dy<br />

For f (t) = t one finds RHS = −2<br />

e 2πy − 1<br />

∞∑<br />

n −<br />

n=0<br />

∫ ∞<br />

0<br />

0<br />

t dt = − 1 12<br />

dy<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Outline<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

1 <strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

2 Making Sense <strong>of</strong> Infinity - Infinity<br />

3 Conclusion<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Conclusion<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Ma<strong>the</strong>matical question posed in <strong>the</strong>oretical physics<br />

Some really nice, old formulæ from classical analysis<br />

<strong>The</strong> result has been verified in <strong>the</strong> laboratory<br />

<strong>The</strong> motivation for this talk:<br />

Jonathan P Dowling “<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>”<br />

Math Mag 62 (1989) 324<br />

Doing ma<strong>the</strong>matics and physics toge<strong>the</strong>r can be more stimulating than<br />

doing ei<strong>the</strong>r one separately, not to mention it’s downright fun.<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Conclusion<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Ma<strong>the</strong>matical question posed in <strong>the</strong>oretical physics<br />

Some really nice, old formulæ from classical analysis<br />

<strong>The</strong> result has been verified in <strong>the</strong> laboratory<br />

<strong>The</strong> motivation for this talk:<br />

Jonathan P Dowling “<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>”<br />

Math Mag 62 (1989) 324<br />

Doing ma<strong>the</strong>matics and physics toge<strong>the</strong>r can be more stimulating than<br />

doing ei<strong>the</strong>r one separately, not to mention it’s downright fun.<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Conclusion<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Ma<strong>the</strong>matical question posed in <strong>the</strong>oretical physics<br />

Some really nice, old formulæ from classical analysis<br />

<strong>The</strong> result has been verified in <strong>the</strong> laboratory<br />

<strong>The</strong> motivation for this talk:<br />

Jonathan P Dowling “<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>”<br />

Math Mag 62 (1989) 324<br />

Doing ma<strong>the</strong>matics and physics toge<strong>the</strong>r can be more stimulating than<br />

doing ei<strong>the</strong>r one separately, not to mention it’s downright fun.<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Conclusion<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Ma<strong>the</strong>matical question posed in <strong>the</strong>oretical physics<br />

Some really nice, old formulæ from classical analysis<br />

<strong>The</strong> result has been verified in <strong>the</strong> laboratory<br />

<strong>The</strong> motivation for this talk:<br />

Jonathan P Dowling “<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>”<br />

Math Mag 62 (1989) 324<br />

Doing ma<strong>the</strong>matics and physics toge<strong>the</strong>r can be more stimulating than<br />

doing ei<strong>the</strong>r one separately, not to mention it’s downright fun.<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Conclusion<br />

<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

Ma<strong>the</strong>matical question posed in <strong>the</strong>oretical physics<br />

Some really nice, old formulæ from classical analysis<br />

<strong>The</strong> result has been verified in <strong>the</strong> laboratory<br />

<strong>The</strong> motivation for this talk:<br />

Jonathan P Dowling “<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>”<br />

Math Mag 62 (1989) 324<br />

Doing ma<strong>the</strong>matics and physics toge<strong>the</strong>r can be more stimulating than<br />

doing ei<strong>the</strong>r one separately, not to mention it’s downright fun.<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


<strong>The</strong> <strong>Casimir</strong> <strong>Effect</strong><br />

Making Sense <strong>of</strong> Infinity - Infinity<br />

Conclusion<br />

I had a feeling once about <strong>Ma<strong>the</strong>matics</strong> - that I saw it all. . . . I saw a<br />

quantity passing through infinity and changing its sign from plus to<br />

minus. I saw exactly why it happened and why <strong>the</strong> tergiversation was<br />

inevitable but it was after dinner and I let it go.<br />

Sir Winston Spencer Churchill, 1874 - 1965<br />

<strong>The</strong> End<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Zeta Function Regularisation<br />

Regularised Sum and Product<br />

Product <strong>of</strong> Primes<br />

Define for an increasing sequence 0 < λ 1 ≤ λ 2 ≤ λ 3 ≤ . . . <strong>the</strong> zeta<br />

function<br />

∞∑<br />

ζ λ (s) =<br />

n=1<br />

λ −s<br />

n<br />

If <strong>the</strong> zeta function has an analytic extension up to 0 <strong>the</strong>n define <strong>the</strong><br />

regularised infinite sum by<br />

∞∑<br />

log λ n = −ζ λ ′ (0)<br />

n=1<br />

Alternatively, <strong>the</strong> regularised infinite product is given by<br />

∞∏<br />

λ n = e −ζ′ λ (0)<br />

n=1<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Zeta Function Regularisation<br />

Regularised Sum and Product<br />

Product <strong>of</strong> Primes<br />

Define for an increasing sequence 0 < λ 1 ≤ λ 2 ≤ λ 3 ≤ . . . <strong>the</strong> zeta<br />

function<br />

∞∑<br />

ζ λ (s) =<br />

n=1<br />

λ −s<br />

n<br />

If <strong>the</strong> zeta function has an analytic extension up to 0 <strong>the</strong>n define <strong>the</strong><br />

regularised infinite sum by<br />

∞∑<br />

log λ n = −ζ λ ′ (0)<br />

n=1<br />

Alternatively, <strong>the</strong> regularised infinite product is given by<br />

∞∏<br />

λ n = e −ζ′ λ (0)<br />

n=1<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Zeta Function Regularisation<br />

Regularised Sum and Product<br />

Product <strong>of</strong> Primes<br />

Define for an increasing sequence 0 < λ 1 ≤ λ 2 ≤ λ 3 ≤ . . . <strong>the</strong> zeta<br />

function<br />

∞∑<br />

ζ λ (s) =<br />

n=1<br />

λ −s<br />

n<br />

If <strong>the</strong> zeta function has an analytic extension up to 0 <strong>the</strong>n define <strong>the</strong><br />

regularised infinite sum by<br />

∞∑<br />

log λ n = −ζ λ ′ (0)<br />

n=1<br />

Alternatively, <strong>the</strong> regularised infinite product is given by<br />

∞∏<br />

λ n = e −ζ′ λ (0)<br />

n=1<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Zeta Function Regularisation<br />

Regularised Sum and Product<br />

Product <strong>of</strong> Primes<br />

Let λ n = p n be <strong>the</strong> n-th prime so that<br />

∏<br />

p = e −ζ′ p (0) where ζ p (s) = ∑<br />

p<br />

p<br />

p −s<br />

Using e x =<br />

∞∏<br />

n=1<br />

(1 − x n ) − µ(n)<br />

n<br />

, one gets<br />

e ζp(s) = ∏ p<br />

e p−s<br />

= ∏ p<br />

∞∏<br />

n=1<br />

(<br />

1 − p<br />

−ns ) − µ(n)<br />

n<br />

Observing that ζ(s) = ∏ p<br />

(<br />

1 − p<br />

−s ) −1<br />

, one gets<br />

e ζp(s) =<br />

∞∏<br />

n=1<br />

ζ(ns) µ(n)<br />

n<br />

(Edmund Landau and Arnold Walfisz, 1920)<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Zeta Function Regularisation<br />

Regularised Sum and Product<br />

Product <strong>of</strong> Primes<br />

Let λ n = p n be <strong>the</strong> n-th prime so that<br />

∏<br />

p = e −ζ′ p (0) where ζ p (s) = ∑<br />

p<br />

p<br />

p −s<br />

Using e x =<br />

∞∏<br />

n=1<br />

(1 − x n ) − µ(n)<br />

n<br />

, one gets<br />

e ζp(s) = ∏ p<br />

e p−s<br />

= ∏ p<br />

∞∏<br />

n=1<br />

(<br />

1 − p<br />

−ns ) − µ(n)<br />

n<br />

Observing that ζ(s) = ∏ p<br />

(<br />

1 − p<br />

−s ) −1<br />

, one gets<br />

e ζp(s) =<br />

∞∏<br />

n=1<br />

ζ(ns) µ(n)<br />

n<br />

(Edmund Landau and Arnold Walfisz, 1920)<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Zeta Function Regularisation<br />

Regularised Sum and Product<br />

Product <strong>of</strong> Primes<br />

Let λ n = p n be <strong>the</strong> n-th prime so that<br />

∏<br />

p = e −ζ′ p (0) where ζ p (s) = ∑<br />

p<br />

p<br />

p −s<br />

Using e x =<br />

∞∏<br />

n=1<br />

(1 − x n ) − µ(n)<br />

n<br />

, one gets<br />

e ζp(s) = ∏ p<br />

e p−s<br />

= ∏ p<br />

∞∏<br />

n=1<br />

(<br />

1 − p<br />

−ns ) − µ(n)<br />

n<br />

Observing that ζ(s) = ∏ p<br />

(<br />

1 − p<br />

−s ) −1<br />

, one gets<br />

e ζp(s) =<br />

∞∏<br />

n=1<br />

ζ(ns) µ(n)<br />

n<br />

(Edmund Landau and Arnold Walfisz, 1920)<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Zeta Function Regularisation<br />

Regularised Sum and Product<br />

Product <strong>of</strong> Primes<br />

From e ζp(s) =<br />

∞∏<br />

n=1<br />

ζ(ns) µ(n)<br />

n<br />

At s = 0, this simplifies to<br />

one gets <strong>the</strong> divergent expression<br />

ζ ′ p (s) = ∞ ∑<br />

n=1<br />

µ(n) ζ′ (ns)<br />

ζ(ns)<br />

ζ p ′ (0) = 1 ζ ′ (0)<br />

= −2 log(2π)<br />

ζ(0) ζ(0)<br />

This calculation “à la Euler” can be made rigorous, so that<br />

∏<br />

p = 4π 2<br />

p<br />

(Elvira Muñoz Garcia and Ricardo Pérez-Marco, preprint 2003)<br />

Corollary: <strong>the</strong>re are infinitely many primes<br />

Back to main talk<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Zeta Function Regularisation<br />

Regularised Sum and Product<br />

Product <strong>of</strong> Primes<br />

From e ζp(s) =<br />

∞∏<br />

n=1<br />

ζ(ns) µ(n)<br />

n<br />

At s = 0, this simplifies to<br />

one gets <strong>the</strong> divergent expression<br />

ζ ′ p (s) = ∞ ∑<br />

n=1<br />

µ(n) ζ′ (ns)<br />

ζ(ns)<br />

ζ p ′ (0) = 1 ζ ′ (0)<br />

= −2 log(2π)<br />

ζ(0) ζ(0)<br />

This calculation “à la Euler” can be made rigorous, so that<br />

∏<br />

p = 4π 2<br />

p<br />

(Elvira Muñoz Garcia and Ricardo Pérez-Marco, preprint 2003)<br />

Corollary: <strong>the</strong>re are infinitely many primes<br />

Back to main talk<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Zeta Function Regularisation<br />

Regularised Sum and Product<br />

Product <strong>of</strong> Primes<br />

From e ζp(s) =<br />

∞∏<br />

n=1<br />

ζ(ns) µ(n)<br />

n<br />

At s = 0, this simplifies to<br />

one gets <strong>the</strong> divergent expression<br />

ζ ′ p (s) = ∞ ∑<br />

n=1<br />

µ(n) ζ′ (ns)<br />

ζ(ns)<br />

ζ p ′ (0) = 1 ζ ′ (0)<br />

= −2 log(2π)<br />

ζ(0) ζ(0)<br />

This calculation “à la Euler” can be made rigorous, so that<br />

∏<br />

p = 4π 2<br />

p<br />

(Elvira Muñoz Garcia and Ricardo Pérez-Marco, preprint 2003)<br />

Corollary: <strong>the</strong>re are infinitely many primes<br />

Back to main talk<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>


Zeta Function Regularisation<br />

Regularised Sum and Product<br />

Product <strong>of</strong> Primes<br />

From e ζp(s) =<br />

∞∏<br />

n=1<br />

ζ(ns) µ(n)<br />

n<br />

At s = 0, this simplifies to<br />

one gets <strong>the</strong> divergent expression<br />

ζ ′ p (s) = ∞ ∑<br />

n=1<br />

µ(n) ζ′ (ns)<br />

ζ(ns)<br />

ζ p ′ (0) = 1 ζ ′ (0)<br />

= −2 log(2π)<br />

ζ(0) ζ(0)<br />

This calculation “à la Euler” can be made rigorous, so that<br />

∏<br />

p = 4π 2<br />

p<br />

(Elvira Muñoz Garcia and Ricardo Pérez-Marco, preprint 2003)<br />

Corollary: <strong>the</strong>re are infinitely many primes<br />

Back to main talk<br />

Thomas Prellberg<br />

<strong>The</strong> <strong>Ma<strong>the</strong>matics</strong> <strong>of</strong> <strong>the</strong> <strong>Casimir</strong> <strong>Effect</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!