22.02.2015 Views

Roger Griffith Physics 137B hw. # 9 Proffessor Clarke Problem # 1 ...

Roger Griffith Physics 137B hw. # 9 Proffessor Clarke Problem # 1 ...

Roger Griffith Physics 137B hw. # 9 Proffessor Clarke Problem # 1 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Roger</strong> <strong>Griffith</strong><br />

<strong>Physics</strong> <strong>137B</strong><br />

<strong>hw</strong>. # 9<br />

<strong>Proffessor</strong> <strong>Clarke</strong><br />

<strong>Problem</strong> # 1<br />

An infinite one-dimensional square well [V=0, for |x|≤<br />

2 a , V=∞ elsewhere] contains a particle of mass<br />

m in the ground state. At time t = 0 a pertubation H ′ = Aδ(x) is turned on: δ(x) is the Dirac delta function.<br />

Calculate the initial rate of transition into the first (n=2) and (n=3) excited states using time dependent<br />

pertubation theory.<br />

[NOTE: Find coefficients a 2 (t) and a 3 (t) using the integral expressions we derived in class and appropriate<br />

matrix elements. Look carefulle at the parity of the two matrix elements before evaluating them!<br />

“Initial” means ωt ≪ 1, where ω is the relavent energy differece.<br />

We are given<br />

H ′ = Aδ(x)<br />

ΔE = ω<br />

and the wave functions for the one-dimensional infinite square well are given by<br />

√<br />

2<br />

( nπx<br />

)<br />

√<br />

2<br />

( nπx<br />

)<br />

ψ odd =<br />

a sin ψ even =<br />

a<br />

a cos a<br />

The integral expression derived in class is given by<br />

Z t<br />

a k (t) = − i H k ′<br />

j<br />

<br />

eiω k jt ′ dt ′ ω k j = 1 [<br />

E<br />

0<br />

0<br />

k − En]<br />

0<br />

where k is the final state of the system and j is the initial state.<br />

We need to find the matrix elements H<br />

k ′<br />

j<br />

. (we also know that n = 1 is an even wave function and n = 2<br />

is an odd wavefunction)<br />

For the n : 1 → 2 we find<br />

H ′<br />

21 = 〈2|Aδ(x)|1〉 = 2A a<br />

thus we know that<br />

Z a/2<br />

−a/2<br />

cos<br />

( πx<br />

)<br />

sin<br />

a<br />

( 2πx<br />

a<br />

)<br />

δ(x)dx = 2A a<br />

cos(0) · sin(0) = 0<br />

For the n : 1 → 3 we find<br />

H ′<br />

31 = 〈3|Aδ(x)|1〉 = 2A a<br />

we know what ω 31 is<br />

a 2 (t) = − i <br />

Z a/2<br />

−a/2<br />

cos<br />

Z t<br />

0<br />

( πx<br />

)<br />

cos<br />

a<br />

H ′<br />

21 eiω 21t ′ dt ′ = 0<br />

( 3πx<br />

a<br />

)<br />

δ(x)dx = 2A a cos(0) · cos(0) = 2A a<br />

ω 31 = 1 [<br />

E<br />

0<br />

3 − E1<br />

0 ] 4π 2 =<br />

ma 2<br />

1


we will need to use the following identity for the next part<br />

we find the coefficient to be<br />

2isin(ω 31 t/2) = e iω 31t/2 − e −iω 31t/2<br />

so we get<br />

a 3 (t) = − i <br />

Z t<br />

H ′<br />

0<br />

= − 2A<br />

a eiω 31t/2<br />

The rate of transition is given by<br />

31 eiω 31t ′ dt ′ = − 2Ai Z t<br />

e iω 31t ′ dt ′ = − 2A [ e<br />

iω 31 t ]<br />

− 1<br />

t<br />

a 0<br />

a ω 31 t<br />

[<br />

]<br />

e iω31t/2 − e −iω 31t/2<br />

t = − 2A [ isin(ω31 t/2)<br />

ω 31 t<br />

a eiωt/2 ω 31 t/2<br />

a 3 (t) = − 2A<br />

a eiω 31t/2<br />

[ isin(ω31 t/2)<br />

ω 31 t/2<br />

]<br />

t<br />

]<br />

t<br />

|a 3 (t)| 2<br />

t<br />

=<br />

( ) 2A 2 ( )<br />

a t sin(ω31 t/2) 2<br />

since ω 31 t ≪ 1<br />

ω 31 t/2<br />

sin(ω 31 t/2)<br />

ω 31 t/2<br />

⇒ 1<br />

we get<br />

|a 3 (t)| 2<br />

t<br />

= 4A2<br />

2 a 2 t<br />

<strong>Problem</strong> # 2<br />

A hydrogen atom in its ground state is placed between the parallel plates of a capacitor. The z-axis<br />

of the atom in perpendicular to the capacitor plates. At time t = 0, a uniform electric field⃗ε =⃗ε 0 e −t/τ is<br />

applied to the atom. The perturbing Hamiltonian is thus<br />

H ′ = −e⃗r ·⃗ε 0 e −t/τ = −ezε 0 e −t/τ<br />

and since z is given by z = r cos(θ)<br />

we find the Hamiltonian to be<br />

H ′ = −er cos(θ)ε 0 e −t/τ<br />

and the three hydrogen wave functions needed for this problem are given as<br />

ψ 100 = √<br />

1 e −r/a 0<br />

ψ 200 = 1 (<br />

1<br />

√ 1 − r )<br />

e −r/2a 0<br />

ψ 210 = 1<br />

πa 3 2πa0 2a 0 2a 0<br />

0<br />

√<br />

2π<br />

1<br />

4a 5/2<br />

0<br />

cos(θ)e −r/2a 0<br />

(a) Show that the electron has zero probability of being excited into the 2s state Ψ nlm = Ψ 200<br />

what we are looking for is |a 200 (t)| 2 so we must use the formula<br />

a 200 (t) = − i <br />

Z t<br />

0<br />

H ′<br />

k j eiω k jt ′ dt ′<br />

2


where<br />

H ′<br />

200,100 = 〈200| − er cos(θ)ε 0 e −t/τ |100〉 = −eε 0 e −t/τ 〈200|r cos(θ)|100〉<br />

= − eε 0e −t/τ Z 2π Z π<br />

Z ∞<br />

(<br />

√ dφ cos(θ)sin(θ)dθ r 3 1 − r )<br />

e −3r/2a 0<br />

dr<br />

8πa<br />

3<br />

0<br />

2a 0<br />

0<br />

0<br />

0<br />

but since we know that<br />

causes<br />

Z π<br />

0<br />

cos(θ)sin(θ)dθ = 0<br />

H ′<br />

200,100 = 0<br />

and thus<br />

a 200 (t) = − i Z t<br />

H k ′<br />

j<br />

<br />

eiω k jt ′ dt ′ = 0<br />

0<br />

and if you square this number, you still get 0 thus the probability of this transition happening is nill.<br />

(b) Show that after time t ≫ τ, the probability that the atom is in the 2p state Ψ nlm = Ψ 210 is<br />

|a 210 (t)| 2 = 215<br />

3 10 e 2 ε 2 0 a2 0<br />

2 (ω 2 + 1/τ 2 )<br />

we must first find the matrix element H<br />

210,100 ′ which is given by<br />

H ′<br />

210,100 = 〈210| − er cos(θ)ε 0 e −t/τ |100〉 = −eε 0 e −t/τ 〈210|r cos(θ)|100〉<br />

= − eε 0e −t/τ Z 2π<br />

√ dφ<br />

8πa<br />

4<br />

0<br />

and so we find the integrals to be<br />

Z 2π<br />

0<br />

Z π<br />

dφ cos 2 (θ)sin(θ)dθ<br />

0<br />

0<br />

Z π<br />

0<br />

cos 2 (θ)sin(θ)dθ<br />

Z ∞<br />

0<br />

r 4 e −3r/2a 0<br />

dr<br />

letting u = cos(θ) du = −sin(θ)dθ<br />

thus we find<br />

Z 2π Z π<br />

Z −1<br />

dφ cos 2 (θ)sin(θ)dθ = 2π u 2 du = 4π<br />

0 0<br />

1 3<br />

and for the other integral we find<br />

putting this all together we get<br />

Z ∞<br />

0<br />

(<br />

r 4 e −3r/2a 2a0<br />

0<br />

dr = 4!<br />

3<br />

) 5<br />

H 210,100 ′ = −eε 0e −t/τ ( )<br />

4π<br />

5<br />

√<br />

8πa<br />

4<br />

0<br />

3 4! 2a0<br />

= − 28 a 0<br />

3 3 5√ 2 eε 0e −t/τ<br />

3


now that we have this solution we can find the coefficient. Plugging this into the equation derived in<br />

class we find<br />

but since we know that<br />

Z t<br />

0<br />

a 210 (t) = − i <br />

e t′ (iω−1/τ) dt ′ =<br />

and so we find the coefficient to be given as<br />

and the probability is given by<br />

= ieε 0<br />

<br />

Z t<br />

0<br />

H ′<br />

k j eiω k jt ′ dt ′<br />

a<br />

√ 0 2 8<br />

2<br />

1<br />

iω − 1/τ<br />

for t ≫ τ e t(iω−1/τ) → 0<br />

a 210 (t) = − ieε 0<br />

<br />

( )<br />

a0 2<br />

8<br />

(<br />

√<br />

2 3 5<br />

Z t<br />

3 5 e t′ (iω−1/τ) dt ′<br />

0<br />

[<br />

]<br />

e t(iω−1/τ) − 1<br />

)<br />

1<br />

iω − 1/τ<br />

|a 210 (t)| 2 = a 210 (t)a 210 (t) ∗ = 215<br />

3 10 e 2 ε 2 0 a2 0<br />

2 (ω 2 + 1/τ 2 )<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!