23.02.2015 Views

An Update on the 3x+1 Problem Marc Chamberland Contents

An Update on the 3x+1 Problem Marc Chamberland Contents

An Update on the 3x+1 Problem Marc Chamberland Contents

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>An</str<strong>on</strong>g> <str<strong>on</strong>g>Update</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>3x+1</strong> <strong>Problem</strong><br />

<strong>Marc</strong> <strong>Chamberland</strong><br />

Department of Ma<strong>the</strong>matics and Computer Science<br />

Grinnell College, Grinnell, IA, 50112, U.S.A.<br />

E-mail: chamberl@math.grinnell.edu<br />

C<strong>on</strong>tents<br />

1 Introducti<strong>on</strong> 2<br />

2 Numerical Investigati<strong>on</strong>s and Stopping Time 3<br />

2.1 Stopping Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

2.2 Total Stopping Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

2.3 The Collatz Graph and Predecessor Sets . . . . . . . . . . . . . . . . . . . . . . 9<br />

3 Representati<strong>on</strong>s of Iterates of a 3x + 1 Map 12<br />

4 Reducti<strong>on</strong> to Residue Classes and O<strong>the</strong>r Sets 13<br />

5 Cycles 15<br />

6 Extending T to Larger Spaces 17<br />

6.1 The Integers Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

6.2 Rati<strong>on</strong>al Numbers with Odd Denominators . . . . . . . . . . . . . . . . . . . . 18<br />

6.3 The Ring of 2-adic Integers Z 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

6.4 The Gaussian Integers and Z 2 [i] . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

6.5 The Real Line lR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

6.6 The Complex Plane lC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

7 Generalizati<strong>on</strong>s of 3x + 1 Dynamics 23<br />

8 Miscellaneous 25<br />

AMS subject classificati<strong>on</strong> : 11B83.<br />

Key Words. 3x + 1 problem, Collatz c<strong>on</strong>jecture.<br />

Running title: 3x + 1 survey.<br />

1


2<br />

1 Introducti<strong>on</strong><br />

The <strong>3x+1</strong> <strong>Problem</strong> is perhaps today’s most enigmatic unsolved ma<strong>the</strong>matical<br />

problem: it can be explained to child who has learned how to divide by 2<br />

and multiply by 3, yet <strong>the</strong>re are relatively few str<strong>on</strong>g results toward solving it.<br />

Paul Erdös was correct when he stated, “Ma<strong>the</strong>matics is not ready for such<br />

problems.”<br />

The problem is also referred to as <strong>the</strong> 3n + 1 problem and is associated with<br />

<strong>the</strong> names of Collatz, Hasse, Kakutani, Ulam, Syracuse, and Thwaites. It may<br />

be stated in a variety of ways. Defining <strong>the</strong> Collatz functi<strong>on</strong> as<br />

⎧<br />

⎨ 3x + 1 x ≡ 1 (mod 2)<br />

C(x) =<br />

⎩ x<br />

2<br />

x ≡ 0 (mod 2),<br />

<strong>the</strong> c<strong>on</strong>jecture states that for each m ∈ Z + , <strong>the</strong>re is a k ∈ Z +<br />

such that<br />

C (k) (m) = 1, that is, any positive integer will eventually iterate to 1. Note that<br />

an odd number m iterates to 3m + 1 which <strong>the</strong>n iterates to (3m + 1)/2. One<br />

may <strong>the</strong>refore “compress” <strong>the</strong> dynamics by c<strong>on</strong>sidering <strong>the</strong> map<br />

⎧<br />

⎨ <strong>3x+1</strong><br />

2<br />

x ≡ 1 (mod 2)<br />

T (x) =<br />

⎩ x<br />

2<br />

x ≡ 0 (mod 2).<br />

The map T is usually favored in <strong>the</strong> literature.<br />

To a much lesser extent some authors work with <strong>the</strong> most dynamically<br />

streamlined 3x + 1 functi<strong>on</strong>, F : Z + odd → Z+ , defined by<br />

odd<br />

F (x) = 3x + 1<br />

2 m(<strong>3x+1</strong>)<br />

where m(x) equals <strong>the</strong> number of factors of 2 c<strong>on</strong>tained in <strong>3x+1</strong>. While working<br />

with F allows <strong>on</strong>e to work <strong>on</strong>ly <strong>on</strong> <strong>the</strong> odd positive integers, <strong>the</strong> variability of<br />

m seems to prohibit any substantial analysis.<br />

This survey reflects <strong>the</strong> author’s view of how work <strong>on</strong> this problem can<br />

be structured. I owe a huge debt to Jeff Lagarias and Gün<strong>the</strong>r Wirsching for<br />

<strong>the</strong> important work <strong>the</strong>y have d<strong>on</strong>e in bringing this problem forward.<br />

paper of Lagarias[45](1985) thoroughly catalogued earlier results, made copious<br />

The


3<br />

c<strong>on</strong>necti<strong>on</strong>s, and developed many new lines of attack; it has justly become <strong>the</strong><br />

classical reference for this problem. Wirsching’s book [87](1998) begins with<br />

a str<strong>on</strong>g survey, followed by several chapters of his own noteworthy analysis.<br />

Lagarias has also maintained an annotated bibliography [48](1998) of work <strong>on</strong><br />

this problem, ano<strong>the</strong>r valuable resource. This current survey would have been<br />

much more difficult to write in <strong>the</strong> absence of <strong>the</strong>se significant c<strong>on</strong>tributi<strong>on</strong>s.<br />

This survey is not meant to be exhaustive, but ra<strong>the</strong>r is complementary to<br />

<strong>the</strong> work of Lagarias and Wirsching. Where I believed <strong>the</strong>re was significant new<br />

work in a given area, I included earlier c<strong>on</strong>tributi<strong>on</strong>s for <strong>the</strong> sake of completeness.<br />

Some areas which have not seen recent development, such as <strong>the</strong> interesting<br />

work c<strong>on</strong>nected to functi<strong>on</strong>al equati<strong>on</strong>s, cellular automata, and <strong>the</strong> origin of<br />

<strong>the</strong> problem, have not been menti<strong>on</strong>ed; <strong>the</strong> reader may c<strong>on</strong>sult Wirsching’s<br />

book [87](1998).<br />

2 Numerical Investigati<strong>on</strong>s and Stopping Time<br />

The structure of <strong>the</strong> positive integers forces any orbit of T to iterate to <strong>on</strong>e of<br />

<strong>the</strong> following:<br />

1. <strong>the</strong> trivial cycle {1, 2}<br />

2. a n<strong>on</strong>-trivial cycle<br />

3. infinity (<strong>the</strong> orbit is divergent)<br />

The 3x + 1 <strong>Problem</strong> claims that opti<strong>on</strong> 1 occurs in all cases. Oliveira e<br />

Silva[61, 62](1999,2000) proved that this holds for all numbers n < 100 × 2 50 ≈<br />

1.12 × 10 17 . This was accomplished with two 133MHz and two 266MHz DEC<br />

Alpha computers and using 14.4 CPU years. This computati<strong>on</strong> ended in April<br />

2000. Roosendaal[65](2003) claims to have improved this to n = 195 × 2 50 ≈<br />

2.19 × 10 17 . His calculati<strong>on</strong>s c<strong>on</strong>tinue, with <strong>the</strong> aid of many o<strong>the</strong>rs in this<br />

distributed-computer project.<br />

The record for proving <strong>the</strong> n<strong>on</strong>-existence of n<strong>on</strong>-trivial cycles is that any<br />

such cycle must have length no less than 272,500,658. This was derived with


4<br />

<strong>the</strong> help of numerical results like those in <strong>the</strong> last paragraph coupled with <strong>the</strong><br />

<strong>the</strong>ory of c<strong>on</strong>tinued fracti<strong>on</strong>s – see a secti<strong>on</strong> 5 for more <strong>on</strong> cycles.<br />

There is a natural algorithm for checking that all numbers up to some N<br />

iterate to <strong>on</strong>e. First, check that every positive integer up to N − 1 iterates to<br />

<strong>on</strong>e, <strong>the</strong>n c<strong>on</strong>sider <strong>the</strong> iterates of N. Once <strong>the</strong> iterates go below N, you are<br />

d<strong>on</strong>e. For this reas<strong>on</strong>, <strong>on</strong>e c<strong>on</strong>siders <strong>the</strong> so-called stopping time of n, that is,<br />

<strong>the</strong> number of steps needed to iterate below n :<br />

σ(n) = inf{k : T (k) (n) < n}.<br />

Related to this is <strong>the</strong> total stopping time, <strong>the</strong> number of steps needed to iterate<br />

to 1:<br />

σ ∞ (n) = inf{k : T (k) (n) = 1}.<br />

One c<strong>on</strong>siders <strong>the</strong> height of n, namely, <strong>the</strong> highest point to which n iterates:<br />

h(n) = sup{T (k) (n) : k ∈ Z + }.<br />

Note that if n is in a divergent trajectory, <strong>the</strong>n σ ∞ (n) = h(n) = ∞. These<br />

functi<strong>on</strong>s may be surprisingly large even for small values of n. For example,<br />

σ(27) = 59, σ ∞ (27) = 111, h(27) = 9232.<br />

The orbit of 27 is depicted in Figure 1.<br />

Roosendaal[65](2003) has computed various “records” for <strong>the</strong>se functi<strong>on</strong>s 1 .<br />

Various results about c<strong>on</strong>secutive numbers with <strong>the</strong> same height are catalogued<br />

by Wirsching[87, pp.21–22](1998).<br />

2.1 Stopping Time<br />

The natural algorithm menti<strong>on</strong>ed earlier can be rephrased: <strong>the</strong> 3x + 1 problem<br />

is true if and <strong>on</strong>ly if every positive integer has a finite stopping time. Terras[77,<br />

1 Roosdendaal has different names for <strong>the</strong>se functi<strong>on</strong>s, and he applies <strong>the</strong>m to <strong>the</strong> map<br />

C(x).


5<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

0 10 20 30 40 50 60 70<br />

Figure 1: Orbit starting at 27.


6<br />

78](1976,1979) has proven that <strong>the</strong> set of positive integers with finite stopping<br />

time has density <strong>on</strong>e. Specifically, he showed that <strong>the</strong> limit<br />

1<br />

F (k) := lim |{n ≤ m : σ(n) ≤ k}|<br />

m→∞ m<br />

exists for each k ∈ Z + and lim k→∞ F (k) = 1. A shorter proof was provided<br />

by Everett[31](1977). Lagarias[45](1985) proved a result regarding <strong>the</strong> speed of<br />

c<strong>on</strong>vergence:<br />

F (k) ≥ 1 − 2 −ηk<br />

for all k ∈ Z + , where η = 1 − H(θ), H(x) = −x log(x) − (1 − x) log(1 − x) and<br />

θ = (log 2 3) −1 . He uses this to c<strong>on</strong>strain any possible divergent orbits:<br />

∣ {n ∈ Z + : n ≤ x, σ(n) = ∞} ∣ ∣ ≤ c1 x 1−η<br />

for some positive c<strong>on</strong>stant c 1 . This implies that any divergent trajectory cannot<br />

diverge too slowly. Al<strong>on</strong>g <strong>the</strong>se lines, Garcia and Tal[33](1999) have recently<br />

proven that <strong>the</strong> density of any divergent orbit is zero. This result holds for more<br />

general sets and more general maps.<br />

Al<strong>on</strong>g different lines, Venturini[81](1989) showed that for every ρ > 0, <strong>the</strong> set<br />

{n ∈ Z + : T (k) (n) < ρn for some k} has density <strong>on</strong>e. Allouche[1](1979) showed<br />

that {n ∈ Z + : T (k) (n) < n c for some k} has density <strong>on</strong>e for c > 3/2 − log 2 3 ≈<br />

0.869. This was improved by Korec[39](1994) who obtained <strong>the</strong> same result<br />

with c > log 4 3 ≈ 0.7924.<br />

Not surprisingly, results of a probabilistic nature abound c<strong>on</strong>cerning <strong>the</strong>se<br />

3x + 1 functi<strong>on</strong>s. <str<strong>on</strong>g>An</str<strong>on</strong>g> assumpti<strong>on</strong> often made is that after many iterati<strong>on</strong>s, <strong>the</strong><br />

next iterate has an equal chance of being ei<strong>the</strong>r even or odd. Wag<strong>on</strong>[84](1985)<br />

argues that <strong>the</strong> average stopping time for odd n (with <strong>the</strong> functi<strong>on</strong> C(x)) approaches<br />

a c<strong>on</strong>stant, specifically, <strong>the</strong> number<br />

∞∑<br />

[1 + 2i + i log 2 3]<br />

i=1<br />

c i<br />

2 [i log 2<br />

3]<br />

≈ 9.477955<br />

where c i is <strong>the</strong> number of sequences c<strong>on</strong>taining 3/2 and 1/2 with exactly i 3/2’s<br />

such that <strong>the</strong> product of <strong>the</strong> whole sequence is less than 1, but <strong>the</strong> product


7<br />

of any initial sequence is greater than 1. Note that this formula bypasses <strong>the</strong><br />

pesky “+1”, perhaps justified asymptotically. This seems to be borne out in<br />

Wag<strong>on</strong>’s numerical testing of stopping times for odd numbers up to n = 10 9 ,<br />

which matches well with <strong>the</strong> approximati<strong>on</strong> given above.<br />

2.2 Total Stopping Time<br />

Results regarding <strong>the</strong> total stopping time are also plenteous. Applegate and<br />

Lagarias[9](2002) make use of two new auxiliary functi<strong>on</strong>s: <strong>the</strong> stopping time<br />

ratio<br />

γ(n) := σ ∞(n)<br />

log n ,<br />

and <strong>the</strong> <strong>on</strong>es-ratio ρ(n) for c<strong>on</strong>vergent sequences, defined as <strong>the</strong> ratio of <strong>the</strong><br />

number of odd terms in <strong>the</strong> first σ ∞ (n) iterates divided by σ ∞ (n). It is easy<br />

to see that γ(n) ≥ 1/ log 2 for all n, with equality <strong>on</strong>ly when n = 2 k . Str<strong>on</strong>ger<br />

inequalities are<br />

γ(n) ≥<br />

1<br />

log 2 − ρ(n) log 3<br />

for any c<strong>on</strong>vergent trajectory, while if ρ(n) ≤ 0.61, <strong>the</strong>n for any positive ɛ,<br />

γ(n) ≤<br />

1<br />

log 2 − ρ(n) log 3 + ɛ<br />

for all sufficiently large n. If <strong>on</strong>e assumes that <strong>the</strong> <strong>on</strong>es-ratio equals 1/2 (which is<br />

equivalent to <strong>the</strong> equal probability of encountering an even or an odd after many<br />

iterates), we have that <strong>the</strong> average value of γ(n) is 2/ log(4/3) ≈ 6.95212, as<br />

has been observed by Shanks[69](1965), Crandall[26](1978), Lagarias[45](1985),<br />

Rawsthorne[64](1985), Lagarias and Weiss[47](1992), and Borovkov and Pfeifer[15](2000).<br />

Experimental evidence supports this observati<strong>on</strong>. Compare this with <strong>the</strong> upper<br />

bounds suggested by <strong>the</strong> stochastic models of Lagarias and Weiss[47](1992):<br />

lim sup γ(n) ≈ 41.677647.<br />

n→∞<br />

Applegate and Lagarias[9](2002) note from records of Roosendaal[65](2003)<br />

what is apparently <strong>the</strong> largest known value of γ:<br />

n = 7, 219, 136, 416, 377, 236, 271, 195


8<br />

produces σ ∞ (n) = 1848 and γ(n) ≈ 36.7169. Applegate and Lagarias seek a<br />

lower bound for γ which holds infinitely often. Using <strong>the</strong> well-known fact that<br />

T (k) (2 k − 1) = 3 k − 1 (see, for example, Kuttler[44](1994)), <strong>the</strong>y note that<br />

γ(2 k − 1) ≥<br />

log 2 + log 3<br />

(log 2) 2 ≈ 3.729.<br />

They go <strong>on</strong> to show that <strong>the</strong>re are infinitely many c<strong>on</strong>verging n whose <strong>on</strong>es-ratio<br />

is at least 14/29, hence giving <strong>the</strong> lower bound<br />

γ(n) ≥<br />

29<br />

29 log 2 − 14 log 3 ≈ 6.14316<br />

for infinitely many n. Though <strong>the</strong> proof involves an extensive computati<strong>on</strong>al<br />

search <strong>on</strong> <strong>the</strong> Collatz tree to depth 60, <strong>the</strong> authors note with surprise that <strong>the</strong><br />

probabilistic average of γ(n) – approximately 6.95212 – was not attained.<br />

Roosendaal[65](2003) defines a functi<strong>on</strong> which he calls <strong>the</strong> residue of a number<br />

x ∈ Z + , denoted Res(x). Suppose x is a c<strong>on</strong>vergent C-trajectory with E<br />

even terms and O odd terms before reaching <strong>on</strong>e. Then <strong>the</strong> residue is defined<br />

as<br />

Res(x) := 2E<br />

x3 O .<br />

Roosendall notes that Res(993) = 1.253142 . . ., and that this is <strong>the</strong> highest<br />

residue attained for all x < 2 32 . He c<strong>on</strong>jectures that this holds for all x ∈ Z + .<br />

Zarnowski[89](2001) recasts <strong>the</strong> 3x + 1 problem as <strong>on</strong>e with Markov chains.<br />

Let g be <strong>the</strong> slightly altered functi<strong>on</strong><br />

⎧<br />

⎪⎨<br />

g(x) =<br />

⎪⎩ 1 x = 1,<br />

<strong>3x+1</strong><br />

2<br />

x ≡ 1 (mod 2), x > 1<br />

x<br />

2<br />

x ≡ 0 (mod 2)<br />

e n <strong>the</strong> column vector whose n th entry is <strong>on</strong>e and all o<strong>the</strong>r entries zero, and <strong>the</strong><br />

transiti<strong>on</strong> matrix P be defined by<br />

⎧<br />

⎨ 1 if g(i) = j,<br />

P ij =<br />

⎩ 0 o<strong>the</strong>rwise.<br />

This gives a corresp<strong>on</strong>dence between g (k) (n) and e T n P k , and <strong>the</strong> <strong>3x+1</strong> <strong>Problem</strong><br />

is true if<br />

lim P k = [1 0 0 · · ·],<br />

k→∞


9<br />

84<br />

85<br />

128<br />

40<br />

26<br />

12<br />

42<br />

64<br />

20<br />

13<br />

6<br />

21<br />

32<br />

10<br />

3<br />

16<br />

5<br />

8<br />

4<br />

2<br />

1<br />

Figure 2: The Collatz graph.<br />

where 1 and 0 represent c<strong>on</strong>stant column vectors. Zarnowski goes <strong>on</strong> to show<br />

that <strong>the</strong> structure of a certain generalized inverse X of I − P encodes <strong>the</strong> total<br />

stopping times of Z + .<br />

For pictorial representati<strong>on</strong>s of stopping times for an extensi<strong>on</strong> of T , see<br />

Dum<strong>on</strong>t and Reiter[29].<br />

2.3 The Collatz Graph and Predecessor Sets<br />

The topic of stopping times is intricately linked with <strong>the</strong> Collatz tree or Collatz<br />

graph, <strong>the</strong> directed graph whose vertices are predecessors of <strong>on</strong>e via <strong>the</strong> map T .<br />

It is depicted in Figure 2.3.<br />

The structure of <strong>the</strong> Collatz graph has attracted some attenti<strong>on</strong>. <str<strong>on</strong>g>An</str<strong>on</strong>g>daloro[4](2002)<br />

studied results about <strong>the</strong> c<strong>on</strong>nectedness of subsets of <strong>the</strong> Collatz graph. Urvoy[79](2000)


10<br />

proved that <strong>the</strong> Collatz graph is n<strong>on</strong>-regular, in <strong>the</strong> sense that it does not have<br />

a decidable m<strong>on</strong>adic sec<strong>on</strong>d order <strong>the</strong>ory; this is related to <strong>the</strong> work of C<strong>on</strong>way<br />

menti<strong>on</strong>ed in Secti<strong>on</strong> 4.<br />

Instead of analyzing how fast iterates approach <strong>on</strong>e, <strong>on</strong>e may c<strong>on</strong>sider <strong>the</strong><br />

set of numbers which approach a given number a, that is, <strong>the</strong> predecessor set of<br />

a:<br />

P T (a) := {b ∈ Z + : T (k) (b) = a for some k ∈ Z + }<br />

Since such sets are obviously infinitely large, <strong>on</strong>e may measure those terms in<br />

<strong>the</strong> predecessor set not exceeding a given bound x, that is,<br />

Z a (x) := |{n ∈ P T (a) : n ≤ x}|.<br />

The size of Z a (x) was first studied by Crandall[26](1979), who proved <strong>the</strong> existence<br />

of some c > 0 such that<br />

Z 1 (x) > x c ,<br />

x sufficiently large.<br />

Wirsching[87, p.4](1998) notes that this result extends to Z a (x) for all a ≢<br />

0 mod 3. Using <strong>the</strong> tree-search method of Crandall, Sander[67](1990) gave a specific<br />

lower bound, c = 0.25, and Applegate and Lagarias[6](1995) extended this<br />

to c = 0.643. Using functi<strong>on</strong>al difference inequalities, Krasikov[41](1989) introduced<br />

a different approach and obtained c = 3/7 ≈ 0.42857. Wirsching[85](1993)<br />

used <strong>the</strong> same approach to obtain c = 0.48. Applegate and Lagarias[7](1995)<br />

superseded <strong>the</strong>se results with Z 1 (x) > x 0.81 , for sufficiently large x, by enhancing<br />

Krasikov’s approach with n<strong>on</strong>linear programming. Recently, Krasikov and<br />

Lagarias[42](2002) streamlined this approach to obtain<br />

Z 1 (x) > x 0.84 ,<br />

x sufficiently large.<br />

Wirsching[87](1998) has pushed <strong>the</strong>se types of results in a different directi<strong>on</strong>.<br />

On a seemingly different course, for j, k ∈ Z + let R j,k denote <strong>the</strong> set of all sums<br />

of <strong>the</strong> form<br />

2 α0 + 2 α1 3 + 2 α2 3 2 + · · · + 2 αj 3 j


11<br />

where j + k ≥ α 0 > · · · > α j ≥ 0. The size of R j,k satisfies<br />

⎛ ⎞<br />

|R j,k | = ⎝ j + k + 1 ⎠ .<br />

j + 1<br />

To maximize <strong>the</strong> size, <strong>on</strong>e has |R j−1,j | = ( 2j<br />

j ). Wirsching posed <strong>the</strong> following<br />

“covering c<strong>on</strong>jecture”: <strong>the</strong>re is a c<strong>on</strong>stant K > 0 such that for every j, l ∈ Z +<br />

we have <strong>the</strong> implicati<strong>on</strong><br />

|R j−1,j | ≥ K ·2·3 l−1 =⇒ R j−1,j covers <strong>the</strong> prime residue classes to modulus 3 l .<br />

This c<strong>on</strong>jecture implies a str<strong>on</strong>ger versi<strong>on</strong> of <strong>the</strong> earlier inequalities:<br />

(<br />

)<br />

Z a (ax)<br />

lim inf inf<br />

x→∞ a≢0 mod 3 x δ > 0 for any δ ∈ (0, 1).<br />

Wirsching argues that, intuitively, <strong>the</strong> sums of mixed powers can be seen as<br />

accumulated n<strong>on</strong>-linearities occuring when iterating <strong>the</strong> map T .<br />

A large part of Wirsching’s book [87](1998) c<strong>on</strong>cerns a finer study of <strong>the</strong><br />

predecessor sets using <strong>the</strong> functi<strong>on</strong>s<br />

e l (k, a) = |{b ∈ Z + : T (k+l) (b) = a, k even iterates, l odd iterates}|.<br />

Defining <strong>the</strong> n th estimating series as<br />

s n (a) :=<br />

∞∑<br />

e l (n + ⌊l log 2 (3/2)⌋, a) ,<br />

l=1<br />

Wirsching proves <strong>the</strong> implicati<strong>on</strong><br />

lim inf<br />

n→∞<br />

s n (a)<br />

( x<br />

) log2 β<br />

β n > 0 =⇒ Z a (x) ≥ C for some c<strong>on</strong>stant C > 0 and large x.<br />

a<br />

Since e l (k, a) depends <strong>on</strong> a <strong>on</strong>ly through its residue class to modulo 3 l , Wirsching<br />

c<strong>on</strong>siders <strong>the</strong> functi<strong>on</strong>s e l (k, ·) whose domain is Z 3 , <strong>the</strong> group of 3-adic integers.<br />

Since e l (k, a) = 0 whenever l ≥ 1 and 3|a, <strong>the</strong> set {e l (k, ·) : l ≥ 1, k ≥ 0} is<br />

a family of functi<strong>on</strong>s <strong>on</strong> <strong>the</strong> compact topological group Z ∗ 3 of invertible 3-adic<br />

integers. This applicati<strong>on</strong> of 3-adic integers to <strong>the</strong> 3x + 1 <strong>Problem</strong> was first<br />

seen in Wirsching[86](1994), and similar analysis was also d<strong>on</strong>e by Applegate


12<br />

and Lagarias[8](1995). The functi<strong>on</strong>s e l (k, ·) are integrable with respect to Z ∗ 3 ’s<br />

unique normalized Haar measure, yielding <strong>the</strong> 3-adic average<br />

⎛ ⎞<br />

∫<br />

1<br />

ē l (k) := e l (k, a)da = ⎝ k + l ⎠<br />

2 · 3 l−1 .<br />

l<br />

Several results follow with this approach, including<br />

∫<br />

1<br />

lim inf<br />

n→∞ 2 n s n (a)da > 0,<br />

Z ∗ 3<br />

Z ∗ 3<br />

implying that every predecessor set P T (a) with a ≢<br />

density.<br />

0 mod 3 has positive<br />

3 Representati<strong>on</strong>s of Iterates of a 3x + 1 Map<br />

The oft-cited result in this area is due to Böhm and S<strong>on</strong>tacchi[14](1978): <strong>the</strong><br />

3x + 1 problem is equivalent to showing that each n ∈ Z + may be written as<br />

(<br />

)<br />

n = 1<br />

m−1<br />

∑<br />

3 m 2 vm − 3 m−k−1 2 v k<br />

where m ∈ Z + and 0 ≤ v 0 < v 1 < · · · v m are integers. Similar results were<br />

obtained by Amigó[2, Prop.4.2](2001).<br />

k=0<br />

Sinai[70](2003) studies <strong>the</strong> functi<strong>on</strong> F <strong>on</strong> <strong>the</strong> set ⊓ defined as<br />

⊓ = {1} ∪ ⊓ + ∪ ⊓ − , ⊓ ±1 = 6Z + ± 1.<br />

Let k 1 , k 2 , . . . , k m ∈ Z + and ɛ = ±1. Then <strong>the</strong> set of x ∈ ⊓ ɛ to which <strong>on</strong>e can<br />

apply F (k1) F (k2) · · · F (km) is an arithmetic progressi<strong>on</strong><br />

σ (k1,k2,...,km,ɛ) = {6 · (2 k1+k2+···+km + q m ) + ɛ}<br />

for some q m such that 1 ≤ q m ≤ 2 k1+k2+···+km . Moreover,<br />

F (k1) F (k2) · · · F (km) (σ (k1,k2,...,km,ɛ) ) = {6 · (3 m p + r) + δ}<br />

for some r and δ satisfying 1 ≤ r ≤ 3 m , δ = ±1. Results in this spirit may<br />

be found in <str<strong>on</strong>g>An</str<strong>on</strong>g>drei et al.[5](2000) and Kuttler[44](1994). Sinai uses this result


13<br />

to obtain some distributi<strong>on</strong>al informati<strong>on</strong> regarding trajectories of F . Let 1 ≤<br />

m ≤ M, x 0 ∈ ⊓ and<br />

( m<br />

)<br />

ω = log(F (m) (x 0 )) − log(x 0 ) + m(2 log 2 − log 3)<br />

√ .<br />

M M<br />

If 0 ≤ t ≤ 1, <strong>the</strong>n ω(t) behaves like a Wiener trajectory.<br />

Related to <strong>the</strong>se results is <strong>the</strong> c<strong>on</strong>necti<strong>on</strong> made in Blecksmith et al.[13](1998)<br />

between <strong>the</strong> <strong>3x+1</strong> problem and 3-smooth representati<strong>on</strong>s of numbers. A number<br />

n ∈ Z + has a 3-smooth representati<strong>on</strong> if and <strong>on</strong>ly if <strong>the</strong>re exist integers {a i }<br />

and {b i } such that<br />

n =<br />

k∑<br />

2 ai 3 bi , a 1 > a 2 > · · · > a k ≥ 0, 0 ≤ b 1 < b 2 < · · · < b k .<br />

i=1<br />

Note <strong>the</strong> similarity with <strong>the</strong> terms c<strong>on</strong>sidered by Wirsching in <strong>the</strong> last secti<strong>on</strong>.<br />

These numbers were studied at least as early as Ramanujan. A 3-smooth representati<strong>on</strong><br />

of n is special of level k if<br />

n = 3 k + 3 k−1 2 a1 + · · · + 3 · 2 a k−1<br />

+ 2 a k<br />

in which every power of 3 appears up to 3 k . For a fixed k, each n has at most<br />

<strong>on</strong>e such representati<strong>on</strong> – see Lagarias[46](1990), who credits <strong>the</strong> proof to D<strong>on</strong><br />

Coppersmith. Blecksmith et al. <strong>the</strong>n offer <strong>the</strong> reader to prove that m ∈ Z +<br />

iterates to 1 under C if and <strong>on</strong>ly if <strong>the</strong>re are integers e and f such that <strong>the</strong><br />

positive integer n = 2 e − 3 f m has a special 3-smooth representati<strong>on</strong> of level<br />

k = f − 1. The choice of e and f is not unique, if it exists.<br />

4 Reducti<strong>on</strong> to Residue Classes and O<strong>the</strong>r Sets<br />

Once <strong>on</strong>e is c<strong>on</strong>vinced that <strong>the</strong> 3x + 1 problem is true, a natural approach is<br />

to find subsets S ⊂ Z + such that proving <strong>the</strong> c<strong>on</strong>jecture <strong>on</strong> S implies it is true<br />

<strong>on</strong> Z + . It is obvious this holds if S = {x : x ≡ 3 mod 4} since numbers in<br />

<strong>the</strong> o<strong>the</strong>r residue classes decrease after <strong>on</strong>e or two iterati<strong>on</strong>s. Puddu[63](1986)<br />

and Cadogan[19](1984) showed that this works if S = {x : x ≡ 1 mod 4}.<br />

The work of Böhm and S<strong>on</strong>tacchi[14](1978) implies that m odd T -iterates of x


14<br />

0 0<br />

2<br />

1<br />

3<br />

2<br />

1<br />

Figure 3: Dynamics of Integers (a) mod 3 and (b) mod 4.<br />

equals (3/2) m (x + 1) − 1, hence odds must eventually become even. Coupling<br />

this with <strong>the</strong> dynamics of integers in Z 4 (see Figure 3b) implies both S = {x :<br />

x ≡ 1 mod 4} and S = {x : x ≡ 2 mod 4} are sufficient. Similarly, Figure<br />

3a indicates S = {x : x ≡ 1 mod 3} or S = {x : x ≡ 2 mod 3} suffice.<br />

<str<strong>on</strong>g>An</str<strong>on</strong>g>daloro[3](2000) has improved <strong>the</strong>se to S = {x : x ≡ 1 mod 16}. All of <strong>the</strong>se<br />

sets have an easily computed positive density, <strong>the</strong> lowest being <str<strong>on</strong>g>An</str<strong>on</strong>g>daloro’s set<br />

S at 1/16. Korec and Znam[40](1987) significantly improve this by showing <strong>the</strong><br />

sufficiency of <strong>the</strong> set S = {x : x ≡ a mod p n } where p is an odd prime, a is a<br />

primitive root mod p 2 , p ̸ |a, and n ∈ Z + . This set has density p −n which can be<br />

made arbitrarily small. In a similar vein, Yang[88](1998) proved <strong>the</strong> sufficiency<br />

of <strong>the</strong> set {n : n ≡ 3 + 10 }<br />

3 (4k − 1) mod 2 2k+2<br />

for any fixed k ∈ Z + . Korec and Znam also claim to have a sufficient set with<br />

density zero, but details were not provided.<br />

To this end, a recent result of<br />

M<strong>on</strong>ks[57](2002) is noteworthy. The last secti<strong>on</strong> showed how difficult it is to<br />

find a usable closed form expressi<strong>on</strong> for T (k) (x). If <strong>the</strong> “+1” was omitted from<br />

<strong>the</strong> iterati<strong>on</strong>s, this would yield T (k) (x) = 3 m x/2 k , where m is <strong>the</strong> number of<br />

odd terms in <strong>the</strong> first k iterati<strong>on</strong>s of x. M<strong>on</strong>ks[57](2002) has proven that <strong>the</strong>re<br />

are infinitely many “linear versi<strong>on</strong>s” of <strong>the</strong> 3x + 1 problem. <str<strong>on</strong>g>An</str<strong>on</strong>g> example given


15<br />

is <strong>the</strong> map<br />

⎧<br />

⎪⎨<br />

R(n) =<br />

⎪⎩<br />

1<br />

11n if 11|n<br />

136<br />

15<br />

n if 15|n and NOT A<br />

5<br />

17n if 17|n and NOT A<br />

4<br />

5n if 5|n and NOT A<br />

26<br />

21n if 21|n and NOT A<br />

7<br />

13n if 13|n and NOT A<br />

1<br />

7n if 7|n and NOT A<br />

33<br />

4<br />

n if 4|n and NOT A<br />

5<br />

2n if 2|n and NOT A<br />

7n<br />

o<strong>the</strong>rwise<br />

where NOT A means “n<strong>on</strong>e of <strong>the</strong> above” c<strong>on</strong>diti<strong>on</strong>s hold. M<strong>on</strong>ks shows <strong>the</strong><br />

<strong>3x+1</strong> problem is true if and <strong>on</strong>ly if for every positive integer n <strong>the</strong> R-orbit of 2 n<br />

c<strong>on</strong>tains 2. The proof uses C<strong>on</strong>way’s Fractran language[25](1987) which C<strong>on</strong>way<br />

used [24](1972) to prove <strong>the</strong> existence of a similar map whose l<strong>on</strong>g-term behavior<br />

<strong>on</strong> <strong>the</strong> integers was algorithmically undecidable. C<strong>on</strong>necting this material back<br />

to sufficient sets, <strong>on</strong>e notes that <strong>the</strong> density of <strong>the</strong> set {2 n : n ∈ Z + } is zero<br />

(albeit, <strong>on</strong>e has a much more complicated map).<br />

5 Cycles<br />

Studying <strong>the</strong> structure of any possible cycles of T has received much attenti<strong>on</strong>.<br />

Letting Ω be a cycle of T , and Ω odd , Ω even denote <strong>the</strong> odd and even terms<br />

in Ω, <strong>on</strong>e may rearrange <strong>the</strong> equati<strong>on</strong><br />

∑<br />

x = ∑ T (x)<br />

x∈Ω x∈Ω<br />

to obtain<br />

∑<br />

x =<br />

x∈Ω even<br />

∑<br />

x∈Ω odd<br />

x + |Ω odd | .<br />

This was noted by <strong>Chamberland</strong>[21](1999) and M<strong>on</strong>ks[57](2002).<br />

Using modular arithmetic, Figure 3 indicates <strong>the</strong> dynamics of integers under<br />

T both in Z 3 and Z 4 . Since no cycles may have all of its elements of <strong>the</strong> form


16<br />

0 mod 3, 0 mod 4, or 3 mod 4, <strong>the</strong> figures imply that no integer cycles (except<br />

{0}) have elements of <strong>the</strong> form form 0 mod 3. Also, <strong>the</strong> number of terms in<br />

a cycle c<strong>on</strong>gruent to 1 mod 4 equals <strong>the</strong> number c<strong>on</strong>gruent to 2 mod 4. This<br />

analysis was presented by <strong>Chamberland</strong>[21](1999).<br />

<str<strong>on</strong>g>An</str<strong>on</strong>g> early cycles result c<strong>on</strong>cerns a special class of T -cycles called circuits. A<br />

circuit is a cycle which may be written as k odd elements followed by l even<br />

elements. Davis<strong>on</strong>[27](1976) showed that <strong>the</strong>re is a <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence<br />

between circuits and soluti<strong>on</strong>s (k, l, h) in positive integers such that<br />

(2 k+l − 3 k )h = 2 l − 1. (1)<br />

It was later shown using c<strong>on</strong>tinued fracti<strong>on</strong>s and transcendental number <strong>the</strong>ory<br />

(see Steiner[71](1977), Rozier[66](1990)) that equati<strong>on</strong> (1) has <strong>on</strong>ly <strong>the</strong> soluti<strong>on</strong><br />

(1, 1, 1). This implies that {1, 2} is <strong>the</strong> <strong>on</strong>ly circuit.<br />

For general cycles of T , Böhm and S<strong>on</strong>tacchi[14](1978) showed that x ∈ Z +<br />

is in an n-cycle of T if and <strong>on</strong>ly if <strong>the</strong>re are integers 0 ≤ v 0 ≤ v 1 ≤ · · · ≤ v m = n<br />

such that<br />

m−1<br />

1 ∑<br />

x =<br />

2 n − 3 m 3 m−k 2 v k<br />

k=0<br />

A similar result is derived by B. Seifert[68](1988).<br />

Eliahou[30](1993) has given some str<strong>on</strong>g results c<strong>on</strong>cerning any n<strong>on</strong>-trivial<br />

cycle Ω of T . Letting Ω 0 denote <strong>the</strong> odd terms in Ω, he showed<br />

(<br />

log 2 3 + 1 )<br />

≤ |Ω| (<br />

M |Ω o | ≤ log 2 3 + 1 )<br />

m<br />

where m and M are <strong>the</strong> smallest and largest terms in Ω. Note that for “large”<br />

cycles this implies<br />

|Ω|<br />

|Ω 0 | ≈ log 2 3.<br />

Eliahou uses this in c<strong>on</strong>juncti<strong>on</strong> with <strong>the</strong> Diophantine approximati<strong>on</strong> of log 2 3<br />

and <strong>the</strong> numerical bound m > 2 40 to show that<br />

|Ω| = 301994a + 17087915b + 85137581c<br />

where a, b, c are n<strong>on</strong>negative integers, b ≥ 1 and ac = 0. Similar results were<br />

found by Chisala[22](1994) and Halbeisen and Hungerbühler[35](1997). This<br />

(2)


17<br />

approach was pushed <strong>the</strong> far<strong>the</strong>st by Tempkin and Arteaga[75](1997). They<br />

tighten <strong>the</strong> relati<strong>on</strong>s in (2) and use a better lower bound <strong>on</strong> m to obtain<br />

|Ω| = 187363077a + 272500658b + 357638239c<br />

where a, b, c are n<strong>on</strong>negative integers, b ≥ 1 and ac = 0.<br />

It is not apparent how <strong>the</strong> even-odd dissecti<strong>on</strong> of a cycle used in <strong>the</strong>se results<br />

may be extended to a finer dissecti<strong>on</strong> of <strong>the</strong> terms in a cycle, say, mod 4. Related<br />

to this, Brox[17](2000) has proven that <strong>the</strong>re are finitely many cycles such that<br />

σ 1 < 2 log(σ 1 + σ 3 )<br />

where σ i equals <strong>the</strong> number of terms in a cycle c<strong>on</strong>gruent to i mod 4.<br />

6 Extending T to Larger Spaces<br />

A comm<strong>on</strong> problem-solving technique is to imbed a problem into a larger class<br />

of problems and use techniques appropriate to that new space. Much work has<br />

been d<strong>on</strong>e al<strong>on</strong>g <strong>the</strong>se lines for <strong>the</strong> 3x + 1 problem. The subsequent subsecti<strong>on</strong>s<br />

detail work d<strong>on</strong>e in increasingly larger spaces.<br />

6.1 The Integers Z<br />

The first natural extensi<strong>on</strong> of T is to all of Z. The definiti<strong>on</strong> of T suffices to<br />

cover this case. One so<strong>on</strong> finds three new cycles: {0}, {−5, −7, −10}, and <strong>the</strong><br />

l<strong>on</strong>g cycle<br />

{−17, −25, −37, −55, −82, −41, −61, −91, −136, −68, −34}.<br />

These new cycles could also be obtained (without minus signs) if <strong>on</strong>e c<strong>on</strong>sidered<br />

<strong>the</strong> map define T ′ (n) = −T (−n), which corresp<strong>on</strong>ds to <strong>the</strong> “3x − 1” problem.<br />

It is c<strong>on</strong>jectured that <strong>the</strong>se cycles are all <strong>the</strong> cycles of T <strong>on</strong> Z. This problem<br />

was c<strong>on</strong>sidered by Seifert[68](1988).


18<br />

6.2 Rati<strong>on</strong>al Numbers with Odd Denominators<br />

Just as <strong>the</strong> study of <strong>the</strong> “3x-1” problem of <strong>the</strong> last subsecti<strong>on</strong> is equivalent to<br />

<strong>the</strong> 3x + 1 problem <strong>on</strong> Z − , Lagarias[46](1990) has extended <strong>the</strong> 3x + 1 to <strong>the</strong><br />

rati<strong>on</strong>als by c<strong>on</strong>sidering <strong>the</strong> class of maps<br />

⎧<br />

⎨<br />

T k (x) =<br />

⎩<br />

positive k ≡ ±1 mod 6 with (x, k) = 1.<br />

3x+k<br />

2<br />

x ≡ 1 (mod 2)<br />

x<br />

2<br />

x ≡ 0 (mod 2)<br />

He has shown that cycles for T k<br />

corresp<strong>on</strong>d to rati<strong>on</strong>al cycles x/k for <strong>the</strong> 3x + 1 functi<strong>on</strong> T . Lagarias proves<br />

<strong>the</strong>re are integer cycles of T k for infinitely many k (with estimates <strong>on</strong> <strong>the</strong> number<br />

of cycles and bounds <strong>on</strong> <strong>the</strong>ir lengths) and c<strong>on</strong>jectures that <strong>the</strong>re are integer<br />

cycles for all k. Halbeisen and Hungerbühler[35](1997) derived similar bounds<br />

as Eliahou[30](1993) <strong>on</strong> cycle lengths for rati<strong>on</strong>al cycles.<br />

6.3 The Ring of 2-adic Integers Z 2<br />

The next extensi<strong>on</strong> is to <strong>the</strong> ring Z 2 of 2-adic integers c<strong>on</strong>sisting of infinite<br />

binary sequences of <strong>the</strong> form<br />

a = a 0 + a 1 2 + a 2 2 2 + · · · =<br />

∞∑<br />

a j 2 j<br />

where a j ∈ {0, 1} for all n<strong>on</strong>-negative integers j. C<strong>on</strong>gruence is defined by<br />

a ≡ a 0 mod 2.<br />

Chisala[22](1994) extends C to Z 2 but <strong>the</strong>n restricts his attenti<strong>on</strong> to <strong>the</strong><br />

rati<strong>on</strong>als. He derives interesting restricti<strong>on</strong>s <strong>on</strong> rati<strong>on</strong>al cycles, for example, if<br />

j=0<br />

m is <strong>the</strong> least element of a positive rati<strong>on</strong>al cycle, <strong>the</strong>n<br />

m > 2 ⌈m log 2 3⌉<br />

m − 3.<br />

A more developed extensi<strong>on</strong> of T , initiated by Lagarias[45](1985), defines<br />

⎧<br />

⎨ a/2 if a ≡ 0 mod 2<br />

T : Z 2 → Z 2 , T (a) :=<br />

⎩ (3a + 1)/2 if a ≡ 1 mod 2


19<br />

It has been shown (see Ma<strong>the</strong>ws and Watts[52](1984) and Müller[59](1991))<br />

that <strong>the</strong> extended T is surjective, not injective, infinitely many times differentiable,<br />

not analytic, measure-preserving with respect to <strong>the</strong> Haar measure,<br />

and str<strong>on</strong>gly mixing. Similar results c<strong>on</strong>cerning iterates of T may be found in<br />

Lagarias[45](1985), Müller[59](1991),[60](1994) and Terras[77](1976). Defining<br />

<strong>the</strong> shift map σ : Z 2 → Z 2 as<br />

⎧<br />

⎨<br />

σ(x) =<br />

⎩<br />

x−1<br />

2<br />

x ≡ 1 (mod 2)<br />

x<br />

2<br />

x ≡ 0 (mod 2)<br />

,<br />

Lagarias[45](1985) proved that T is c<strong>on</strong>jugate to σ via <strong>the</strong> parity vector map<br />

Φ −1 : Z 2 → Z 2 defined by<br />

Φ −1 (x) =<br />

∞∑<br />

2 k (T k (x) mod 2),<br />

k=0<br />

that is, Φ ◦ T ◦ Φ −1 = σ. Bernstein[11](1994) gives an explicit formula for <strong>the</strong><br />

inverse c<strong>on</strong>jugacy Φ, namely<br />

Φ(2 d0 + 2 d1 + 2 d2 + · · ·) = − 1 3 2d0 − 1 9 2d1 − 1<br />

27 2d2 − · · ·<br />

where 0 ≤ d 0 < d 1 < d 2 < . . .. He also shows that <strong>the</strong> 3x + 1 problem is<br />

equivalent to having Z + ⊂ Φ ( 1<br />

3 Z) . Letting Q odd denote <strong>the</strong> set of rati<strong>on</strong>als<br />

whose reduced form has an odd denominator, Bernstein and Lagarias[12](1996)<br />

proved that <strong>the</strong> 3x + 1 problem has no divergent orbits if Φ −1 (Q odd ) ⊂ (Q odd ).<br />

Recent developments al<strong>on</strong>g <strong>the</strong>se lines have been made by M<strong>on</strong>ks and Yazinski[58](2002).<br />

Since Hedlund[36](1969) proved that <strong>the</strong> automorphism group of σ is simply<br />

Aut(σ) = {id, V }, where id is <strong>the</strong> identity map and V (x) = −1 − x, M<strong>on</strong>ks and<br />

Yazinski define a functi<strong>on</strong> Ω as<br />

Ω = Φ ◦ V ◦ Φ −1 .<br />

We <strong>the</strong>n have that Ω is <strong>the</strong> unique n<strong>on</strong>trivial autoc<strong>on</strong>jugacy of <strong>the</strong> <strong>3x+1</strong> map, i.e.<br />

Ω ◦ T = T ◦ Ω and Ω 2 = id. Coupled with <strong>the</strong> results of Bernstein and Lagarias,<br />

<strong>the</strong> authors show that three statements are equivalent: Φ −1 (Q odd ) ⊂ (Q odd ),<br />

Ω(Q odd ) ⊂ (Q odd ), and no rati<strong>on</strong>al 2-adic integer has a divergent T -trajectory.


20<br />

M<strong>on</strong>ks and Yazinski also extend <strong>the</strong> results of Eliahou[30](1993) and Lagarias[45](1985)<br />

c<strong>on</strong>cerning <strong>the</strong> density of “odd” points in an orbit. Let κ n (x) denote <strong>the</strong> number<br />

of <strong>on</strong>es in <strong>the</strong> first n-digits of <strong>the</strong> parity vector x. If x ∈ Q odd eventually<br />

enters an n-periodic orbit, <strong>the</strong>n<br />

ln(2)<br />

ln(3 + 1/m) ≤ lim κ n (x) ln(2)<br />

≤<br />

n→∞ n ln(3 + 1/M)<br />

where m, M are <strong>the</strong> least and greatest cyclic elements in <strong>the</strong> eventual cycle. If<br />

x ∈ Q odd diverges, <strong>the</strong>n<br />

ln(2) κ n (x)<br />

≤ lim inf<br />

ln(3) n→∞ n .<br />

M<strong>on</strong>ks and Yazinski define ano<strong>the</strong>r extensi<strong>on</strong> of T , namely ξ : Z 2 → Z 2 as<br />

⎧<br />

⎨ Ω(x) x ≡ 1 (mod 2)<br />

ξ(x) =<br />

⎩ x<br />

2<br />

x ≡ 0 (mod 2)<br />

and prove that <strong>the</strong> 3x + 1 problem is equivalent to having <strong>the</strong> number <strong>on</strong>e in<br />

<strong>the</strong> ξ-orbit of every positive.<br />

6.4 The Gaussian Integers and Z 2 [i]<br />

Joseph[38](1998) extends T fur<strong>the</strong>r to Z 2 [i], defining ˜T as<br />

⎧<br />

α/2, if α ∈ [0]<br />

⎪⎨ (3α + 1)/2, if α ∈ [1]<br />

˜T (α) =<br />

(3α + i)/2, if α ∈ [i]<br />

⎪⎩ (3α + 1 + i)/2, if α ∈ [1 + i]<br />

where [x] denotes <strong>the</strong> equivalence class of x in Z 2 [i]/2Z 2 [i]. Joseph shows that<br />

˜T is not c<strong>on</strong>jugate to T × T via a Z 2 -module isomorphism, but is topologically<br />

c<strong>on</strong>jugate to T ×T . Arguing akin to results of <strong>the</strong> last subsecti<strong>on</strong>, Joseph shows<br />

that ˜T is chaotic (in <strong>the</strong> sense of Devaney). Kucinski[43](2000) studies cycles<br />

of Joseph’s extensi<strong>on</strong> ˜T restricted to <strong>the</strong> Gaussian integers Z[i].<br />

6.5 The Real Line lR<br />

A fur<strong>the</strong>r extensi<strong>on</strong> of T to <strong>the</strong> real line lR is interesting in that it allows<br />

tools from <strong>the</strong> study of iterating c<strong>on</strong>tinuous maps. In an unpublished paper,


21<br />

Tempkin[76](1993) studies what is geometrically <strong>the</strong> simplest such extensi<strong>on</strong>:<br />

<strong>the</strong> straight-line extensi<strong>on</strong> to <strong>the</strong> Collatz functi<strong>on</strong> C:<br />

⎧<br />

⎨<br />

C(x),<br />

x ∈ Z<br />

L(x) =<br />

⎩ C(⌊x⌋) + (x − ⌊x⌋)(C(⌈x⌉) − C(⌊x⌋)), x ∉ Z<br />

⎧<br />

⎨ −(5n − 2)x + n(10n − 3), x ∈ [2n − 1, 2n]<br />

=<br />

.<br />

⎩ (5n + 4)x − n(10n + 7), x ∈ [2n, 2n + 1]<br />

Tempkin proves that <strong>on</strong> each interval [n, n+1], n ∈ Z + , L has periodic points of<br />

every possible period. Capitalizing <strong>on</strong> <strong>the</strong> fact that iterates of piecewise linear<br />

functi<strong>on</strong>s are piecewise linear, he also shows that every eventually periodic point<br />

of L is rati<strong>on</strong>al, every rati<strong>on</strong>al is ei<strong>the</strong>r eventually periodic or divergent, and<br />

rati<strong>on</strong>als of <strong>the</strong> form k/5 with k ≢ 0 mod 5 are divergent.<br />

Tempkin also menti<strong>on</strong>s a smooth extensi<strong>on</strong> to C, namely<br />

E(x) := 7x + 2<br />

4<br />

+ 5x + 2<br />

4<br />

but c<strong>on</strong>ducts no specific analysis with it.<br />

similar extensi<strong>on</strong> to T :<br />

f(x) := x ( πx<br />

)<br />

2 cos2 + 3x + 1<br />

2 2<br />

= x + 1 4 − 2x + 1<br />

4<br />

cos(π(x + 1))<br />

<strong>Chamberland</strong>[20](1996) studies a<br />

cos(πx).<br />

( sin 2 πx<br />

)<br />

2<br />

<strong>Chamberland</strong> shows that any cycle <strong>on</strong> Z + must be locally attractive. By also<br />

showing that <strong>the</strong> Schwarzian derivative of f is negative <strong>on</strong> lR + , this implies <strong>the</strong><br />

l<strong>on</strong>g-term dynamics of almost all points coincides with <strong>the</strong> l<strong>on</strong>g-term dynamics<br />

of <strong>the</strong> critical points. One quickly finds that <strong>the</strong>re are two attracting cycles,<br />

A 1 := {1, 2}, A 2 := {1.192531907 . . ., 2.138656335 . . .}.<br />

<strong>Chamberland</strong> c<strong>on</strong>jectures that <strong>the</strong>se are <strong>the</strong> <strong>on</strong>ly two attractive cycles of f<br />

<strong>on</strong> lR + . This is equivalent to <strong>the</strong> 3x + 1 problem. It is also shown that a<br />

m<strong>on</strong>it<strong>on</strong>ically increasing divergent orbit exists. <strong>Chamberland</strong> compactifies <strong>the</strong><br />

map via <strong>the</strong> homeomorphism σ(x) = 1/x <strong>on</strong> [µ 1 , ∞) (µ 1 is <strong>the</strong> first positive


22<br />

Figure 4: Julia set of <strong>Chamberland</strong>’s map extended to <strong>the</strong> complex plane<br />

fixed point of <strong>the</strong> map f), yielding a dynamically equivalent map h defined <strong>on</strong><br />

[0, µ 1 ] as<br />

⎧<br />

⎨<br />

h(x) =<br />

⎩<br />

4x<br />

4+x−(2+x) cos(πx) , x ∈ (0, µ 1]<br />

0, x = 0<br />

.<br />

Lastly, <strong>Chamberland</strong> makes statements regarding any general extensi<strong>on</strong> of f:<br />

it must have 3-cycle, a homoclinic orbit (snap-back repeller), and a m<strong>on</strong>ot<strong>on</strong>ically<br />

increasing divergent trajectory. To illustrate how chaos figures into this<br />

extensi<strong>on</strong>, Ken M<strong>on</strong>ks replaced x with z in <strong>Chamberland</strong>’s map and numerically<br />

generated <strong>the</strong> filled-in Julia set. A porti<strong>on</strong> of <strong>the</strong> set is indicated in Figure 4.<br />

In a more recent paper, Dum<strong>on</strong>t and Reiter[28](2003) produce similar results<br />

for <strong>the</strong> real extensi<strong>on</strong><br />

f(x) := 1 2<br />

(<br />

)<br />

3 sin2 (πx/2) x + sin 2 (πx/2) .<br />

The authors have produced several o<strong>the</strong>r extensi<strong>on</strong>s, as well as figures representing<br />

stopping times; see Dum<strong>on</strong>t and Reiter[29](2001).<br />

Borovkov and Pfeifer[15](2000) also show that any c<strong>on</strong>tinuous extensi<strong>on</strong> of T<br />

has periodic orbits of every period by arguing that <strong>the</strong> map is turbulent: <strong>the</strong>re<br />

exist compact intervals A 1 and A 2 such that A 1 ∪ A 2 = f(A 1 ) ∩ f(A 2 ).


23<br />

6.6 The Complex Plane lC<br />

Le<strong>the</strong>rman, Schleicher and Wood[50](1999) offer <strong>the</strong> next refinement of this<br />

approach: <strong>the</strong>y extend T to <strong>the</strong> complex plane with<br />

f(z) := z 2 + 1 (<br />

2 (1 − cos(πz)) z + 1 )<br />

+ 1 ( )<br />

1<br />

2 π 2 − cos(πz) sin(πz)+h(z) sin 2 (πz).<br />

Note that <strong>the</strong> first two terms (with z replaced by x) match <strong>Chamberland</strong>’s<br />

extensi<strong>on</strong>. The clear dynamic advantage of this new functi<strong>on</strong> is that <strong>the</strong> set of<br />

critical points <strong>on</strong> <strong>the</strong> real line is exactly Z. They improve <strong>Chamberland</strong>’s result<br />

by showing that <strong>on</strong> [n, n + 1], with n ∈ Z + , <strong>the</strong>re is a Cantor set of points that<br />

diverge m<strong>on</strong>ot<strong>on</strong>ically. On <strong>the</strong> complex plane, Le<strong>the</strong>rman et al. use techniques<br />

of complex dynamics to derive results about Fatou comp<strong>on</strong>ents. In particular,<br />

<strong>the</strong>y show that no integer is in a Baker domain (domain at infinity).<br />

One<br />

c<strong>on</strong>cludes <strong>the</strong>n that any integer ei<strong>the</strong>r bel<strong>on</strong>gs to a super-attracting periodic<br />

orbit or a wandering domain.<br />

7 Generalizati<strong>on</strong>s of 3x + 1 Dynamics<br />

There have been many investigati<strong>on</strong>s of maps which have similar dynamics to<br />

T but are not extensi<strong>on</strong>s of T . Here <strong>on</strong>e is usually changing <strong>the</strong> functi<strong>on</strong>, as<br />

opposed to last secti<strong>on</strong> where <strong>the</strong> space was extended.<br />

Belaga and Mignotte[10](1998) c<strong>on</strong>sidered <strong>the</strong> “3x+d” problem, and c<strong>on</strong>jecture<br />

that for any odd d ≥ −1 and not divisible by three, all integer orbits enter<br />

a finite set (hence every orbit is eventually periodic). Note that <strong>the</strong> “3x − 1”<br />

problem is equivalent to <strong>the</strong> <strong>3x+1</strong> problem <strong>on</strong> <strong>the</strong> negative integers, c<strong>on</strong>sidered<br />

in <strong>the</strong> previous secti<strong>on</strong>.<br />

<str<strong>on</strong>g>An</str<strong>on</strong>g>o<strong>the</strong>r obvious generalizati<strong>on</strong> is <strong>the</strong> class of “qx + 1” problems. Steiner[72,<br />

73](1981) extended his cycle results and showed that for q = 5, <strong>the</strong>re is <strong>on</strong>ly<br />

<strong>on</strong>e n<strong>on</strong>-trivial circuit (13 → 208 → 13), while q = 7 has no n<strong>on</strong>-trivial circuits.<br />

Franco and Pomerance[32](1995) showed that if q is a Wieferich number 2 , <strong>the</strong>n<br />

some x ∈ Z + never iterates to <strong>on</strong>e. Crandall[26](1978) c<strong>on</strong>jectured that this is<br />

2 <str<strong>on</strong>g>An</str<strong>on</strong>g> odd integer q is called a Wieferich number if 2 l(q) ≡ 1 mod q 2 , where l(q) is <strong>the</strong> order


24<br />

true for any odd q ≥ 5. Wirsching[87](1998) offers a heuristic argument using<br />

p-adic averages that for q ≥ 5, <strong>the</strong> qx + 1 problem admits ei<strong>the</strong>r a divergent<br />

trajectory or infinitely-many different periodic orbits.<br />

Mignosi[55](1995) looked at a related generalizati<strong>on</strong>, namely<br />

⎧<br />

⎨ ⌈βn⌉ n ≡ 1 (mod 2)<br />

T β (n) =<br />

⎩ x<br />

2<br />

n ≡ 0 (mod 2)<br />

for any β > 1 and r ∈ lR. The case β = 3/2 is equivalent to T . Mignosi<br />

c<strong>on</strong>jectures that for any β > 1, <strong>the</strong>re are finitely many periodic orbits. This is<br />

proven for β = √ 2 and a hueristic argument is made that this c<strong>on</strong>jecture holds<br />

for almost all β ∈ (1, 2). Brocco[16](1995) modifies <strong>the</strong> map to<br />

⎧<br />

⎨ ⌈αn + r⌉ n ≡ 1 (mod 2)<br />

T α,r (n) =<br />

⎩ x<br />

2<br />

n ≡ 0 (mod 2)<br />

for 1 < α < 2. He shows for his map that <strong>the</strong> Mignosi’s c<strong>on</strong>jecture is false if <strong>the</strong><br />

interval ((r − 1)/(α − 1), r/(α − 1)) c<strong>on</strong>tains an odd integer and α is a Salem<br />

number or a PV number 3 .<br />

Mat<strong>the</strong>ws and Watts[52, 53](1984,1985) deal with multiple-branched maps<br />

of <strong>the</strong> form<br />

T (x) := m ix − r i<br />

, if x ≡ i mod d<br />

d<br />

where d ≥ 2 is an integer, m 0 , m 1 , . . . , m d−1 are n<strong>on</strong>-zero integers, and r 0 , r 1 , r d−1 ∈<br />

Z such that r i ≡ im i mod d. They mirror <strong>the</strong>ir earlier results (seen in <strong>the</strong><br />

last secti<strong>on</strong>) by extending this map to <strong>the</strong> ring of d-adic integers and show it<br />

is measure-preserving with respect to <strong>the</strong> Haar measure.<br />

Informati<strong>on</strong> about<br />

divergent trajectories may be found in Leigh[49](1986) and Buttsworth and<br />

Mat<strong>the</strong>ws[18](1990).<br />

Ergodic properties of <strong>the</strong>se maps has been studied by<br />

Venturini[80, 82, 83](1982,1992,1997). <str<strong>on</strong>g>An</str<strong>on</strong>g> encapsulating result of [83](1997)<br />

of 2 in <strong>the</strong> multiplicative group (Z/q Z).<br />

Wiefereich numbers have density <strong>on</strong>e in <strong>the</strong> odd<br />

numbers.<br />

3 A Salem number is a real algebraic number greater than 1 all of whose c<strong>on</strong>jugates z satisfy<br />

|z| ≤ 1, with at least <strong>on</strong>e c<strong>on</strong>jugate satisfying |z| = 1. A Pisot-Vijayaraghavan (PV) number<br />

is a real algebraic number greater than 1 all of whose c<strong>on</strong>jugates z satisfy |z| < 1.


25<br />

essentially claims that <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> |m 0 m 1 · · · m d−1 | < 1 gives “c<strong>on</strong>verging”<br />

behavior, while divergent orbits may occur if |m 0 m 1 · · · m d−1 | > 1. A special<br />

class of <strong>the</strong>se maps – known as Hasse functi<strong>on</strong>s, which are “closer” to <strong>the</strong> <strong>3x+1</strong><br />

map T – have been studied by Allouche[1](1979), Heppner[37](1978), Garcia<br />

and Tal[33](1999) and Möller[56](1978), with similar results. A recent survey<br />

of <strong>the</strong>se generalized mappings – with many examples – has been written by<br />

Mat<strong>the</strong>ws[54](2002).<br />

Seemingly far<strong>the</strong>r removed from <strong>the</strong> 3x + 1 problem are results due to<br />

Stolarsky[74](1998) who completely solves a problem of “similar appearance.”<br />

First, recall Beatty’s Theorem which states that if α, β > 1 are irrati<strong>on</strong>al and<br />

satisfy 1/α + 1/β = 1, <strong>the</strong>n <strong>the</strong> sets<br />

A = {⌊nα⌋ : n ∈ Z + }, B = {⌊nβ⌋ : n ∈ Z + }<br />

form a partiti<strong>on</strong> of Z + . If α = φ := (1 + √ 5)/2, we have β = φ 2 = (3 + √ 5)/2.<br />

Stolarsky c<strong>on</strong>siders <strong>the</strong> map<br />

⎧<br />

⎨ ⌈⌈ m φ<br />

⌉φ 2 ⌉ + 1, m ∈ A<br />

f(m) =<br />

2 ⎩ ⌈ m φ<br />

⌉, m ∈ B .<br />

2<br />

He proves that f admits a unique periodic orbit, namely {3, 7}. Defining b(n) =<br />

⌊nβ⌋, <strong>the</strong> set {b (k) (3) : k ∈ Z + } – which has density zero – characterizes <strong>the</strong><br />

eventually periodic points.<br />

All o<strong>the</strong>r positive integers have divergent orbits.<br />

The symbolic dynamics are simple: any trajectory has an itinerary of ei<strong>the</strong>r<br />

B l (AB) ∞ or B l (AB) k A ∞ for some integers k, l ≥ 0.<br />

8 Miscellaneous<br />

Margenstern and Matiyasevich[51](1999) have encoded <strong>the</strong> 3x + 1 problem as a<br />

logical problem using <strong>on</strong>e universal quantifier and several existential quantifiers.<br />

Specifically, <strong>the</strong>y showed that T (m) (2a) = b for some m ∈ Z + if and <strong>on</strong>ly if <strong>the</strong>re<br />

exist w, p, r, s ∈ Z + such that a, b ≤ w and<br />

⎛<br />

4(w + 1)(p + r) + 1<br />

⎝<br />

p + r<br />

⎞ ⎛<br />

⎠ ⎝ pw s<br />

⎞ ⎛<br />

⎠ ⎝ rw t<br />

⎞<br />

⎠ ×


26<br />

⎛<br />

⎝ 2w + 1<br />

w<br />

⎛<br />

⎝ p + r<br />

p<br />

⎞ ⎛<br />

⎠ ⎝<br />

⎞ ⎛<br />

⎠ ⎝<br />

2s + 2t + r + b((4w + 3)(p + r) + 1)<br />

3a + (4w + 4)(3t + 2r + s)<br />

3a + (4w + 4)(3t + 2r + s)<br />

2s + 2t + r + b((4w + 3)(p + r) + 1)<br />

⎞<br />

⎠ ×<br />

⎞<br />

⎠ ≡ 1 mod 2.<br />

Gluck and Taylor[34](2002) have studied ano<strong>the</strong>r “global statistic” besides<br />

<strong>the</strong> total stopping time functi<strong>on</strong> σ ∞ (n). If σ ∞ (a 1 ) = p under <strong>the</strong> map C, <strong>the</strong><br />

authors define a functi<strong>on</strong> 4 A as<br />

A(a 1 ) = a 1a 2 + a 2 a 3 + · · · + a p a 1<br />

a 2 1 + a2 2 + · · · + .<br />

a2 p<br />

where a 2 , a 3 , . . . , a p are <strong>the</strong> c<strong>on</strong>secutive C-iterates of a 1 . For any odd m > 3,<br />

<strong>the</strong>y show that<br />

9<br />

13 < A(m) < 5 7 .<br />

Moreover, <strong>the</strong>se bounds are sharp since<br />

( 4 n )<br />

lim A − 1<br />

n→∞ 3<br />

and<br />

= 9 13<br />

(<br />

)<br />

lim A 2 k (2 3k−1 + 1)<br />

k→∞ 3 k = 5 7 .<br />

Gluck and Taylor also produce a normalized histogram of A for values between<br />

2 20 and 2 20 +20001, and its randomized counterpart. These two histograms bear<br />

a resemblance, hinting at <strong>the</strong> stochastic/probabilistic approach to this problem.<br />

Acknowledgement: The author is grateful to Jeff Lagarias and Ken M<strong>on</strong>ks<br />

for sharing some <strong>the</strong> most recent developments <strong>on</strong> this problem, and to Ken<br />

M<strong>on</strong>ks and T<strong>on</strong>i Guillam<strong>on</strong> i Grabolosa for many helpful suggesti<strong>on</strong>s.<br />

References<br />

[1] J.-P. Allouche. Sur la c<strong>on</strong>jecture de “Syracuse-Kakutani-Collatz”. Séminaire de Théorie<br />

des Nombres, 1978–1979, Exp. No. 9, 15 pp., CNRS, Talence, 1979.<br />

4 Gluck and Taylor used <strong>the</strong> symbol C for <strong>the</strong>ir new functi<strong>on</strong>; to avoid c<strong>on</strong>fusi<strong>on</strong> with <strong>the</strong><br />

Collatz functi<strong>on</strong> C, I am using <strong>the</strong> symbol A.


27<br />

[2] J.M. Amigo. Accelerated Collatz Dynamics. Centre de Recerca Matemàtica preprint,<br />

no. 474, July 2001.<br />

[3] P. <str<strong>on</strong>g>An</str<strong>on</strong>g>daloro. On total stopping times under 3x + 1 iterati<strong>on</strong>. Fib<strong>on</strong>acci Quarterly, 38,<br />

(2000), 73–78.<br />

[4] P. <str<strong>on</strong>g>An</str<strong>on</strong>g>daloro. The 3x + 1 problem and directed graphs. Fib<strong>on</strong>acci Quarterly, 40(1),<br />

(2002), 43–54.<br />

[5] S. <str<strong>on</strong>g>An</str<strong>on</strong>g>drei, M. Kudlek and R.S. Niculescu. Some Results <strong>on</strong> <strong>the</strong> Collatz <strong>Problem</strong>. Acta<br />

Informatica , 37(2), (2000), 145–160.<br />

[6] D. Applegate and J. Lagarias. Density Bounds for <strong>the</strong> 3x + 1 <strong>Problem</strong>. I. Tree-search<br />

method. Ma<strong>the</strong>matics of Computati<strong>on</strong>, 64, (1995), 411–426.<br />

[7] D. Applegate and J. Lagarias. Density Bounds for <strong>the</strong> 3x + 1 <strong>Problem</strong>. II. Krasikov-<br />

Inequalities. Ma<strong>the</strong>matics of Computati<strong>on</strong>, 64, (1995), 427–438.<br />

[8] D. Applegate and J. Lagarias. The Distributi<strong>on</strong> of 3x + 1 Trees. Experimental Ma<strong>the</strong>matics,<br />

4(3), (1995), 193–209.<br />

[9] D. Applegate and J. Lagarias. Lower Bounds for <strong>the</strong> Total Stopping Time of 3x + 1<br />

Iterates. Ma<strong>the</strong>matics of Computati<strong>on</strong>, 72(242), (2002), 1035–1049.<br />

[10] E. Belaga and M. Mignotte. Embedding <strong>the</strong> 3x + 1 C<strong>on</strong>jecture in a 3x + d C<strong>on</strong>text.<br />

Experimental Ma<strong>the</strong>matics, 7(2), (1998), 145–151.<br />

[11] D. Bernstein. A N<strong>on</strong>-iterative 2-adic Statement of <strong>the</strong> 3N +1 C<strong>on</strong>jecture . Proceedings<br />

of <strong>the</strong> American Ma<strong>the</strong>matical Society, 121, (1994), 405–408.<br />

[12] D. Bernstein and J. Lagarias. The 3x + 1 C<strong>on</strong>jugacy Map. Canadian Journal of<br />

Ma<strong>the</strong>matics, 48, (1996), 1154–169.<br />

[13] R. Blecksmith, M. McCallum and J. Selfridge. 3-Smooth Representati<strong>on</strong>s of Integers.<br />

American Ma<strong>the</strong>matical M<strong>on</strong>thly, 105(6), (1998), 529–543.<br />

[14] C. Böhm and G. S<strong>on</strong>tacchi. On <strong>the</strong> Existence of Cycles of given Length in Integer<br />

Sequences like x n+1 = x n/2 if x n even, and x n+1 = 3x n + 1 o<strong>the</strong>rwise. Atti della<br />

Accademia Nazi<strong>on</strong>ale dei Lincei. Rendic<strong>on</strong>ti. Classe di Scienze Fisiche, Matematiche e<br />

Naturali. Serie VIII , 64, (1978), 260–264.<br />

[15] K. Borovkov and D. Pfeifer. Estimates for <strong>the</strong> Syracuse <strong>Problem</strong> via a Probabilistic<br />

Model. Theory Probab. Appl., 45, (2000), 300–310.


28<br />

[16] S. Brocco. A note <strong>on</strong> Mignosi’s generalizati<strong>on</strong> of <strong>the</strong> (3X + 1)-problem. Journal of<br />

Number Theory, 52(2), (1995), 173–178.<br />

[17] T. Brox. Collatz Cycles with Few Descents. Acta Arithmetica, 92(2), (2000), 181–188.<br />

[18] R. Buttsworth and K. Mat<strong>the</strong>ws. On some Markov matrices arising from <strong>the</strong> generalized<br />

Collatz mapping . Acta Arithmetica, 55(1), (1990), 43–57.<br />

[19] C. Cadogan. A Note <strong>on</strong> <strong>the</strong> 3x + 1 <strong>Problem</strong>. Caribbean Journal of Ma<strong>the</strong>matics, 3,<br />

(1984), 67–72.<br />

[20] M. <strong>Chamberland</strong>. A C<strong>on</strong>tinuous Extensi<strong>on</strong> of <strong>the</strong> 3x + 1 <strong>Problem</strong> to <strong>the</strong> Real Line.<br />

Dynamics of C<strong>on</strong>tinuous, Discrete and Impulsive Systems, 2, (1996), 495–509.<br />

[21] M. <strong>Chamberland</strong>. <str<strong>on</strong>g>An</str<strong>on</strong>g>nounced at <strong>the</strong> “Roundatable Discussi<strong>on</strong>”, Internati<strong>on</strong>al C<strong>on</strong>ference<br />

<strong>on</strong> <strong>the</strong> Collatz <strong>Problem</strong> and Related Topics, August 5-6, 1999, Katholische Universität<br />

Eichstätt, Germany .<br />

[22] B. Chisala. Cycles in Collatz Sequences. Publicati<strong>on</strong>es Ma<strong>the</strong>maticae Debrecen, 45,<br />

(1994), 35–39.<br />

[23] K. C<strong>on</strong>row. http : //www − pers<strong>on</strong>al.ksu.edu/~ kc<strong>on</strong>row/gentrees.html.<br />

[24] J. C<strong>on</strong>way. Unpredictable Iterati<strong>on</strong>s. Proceedings of <strong>the</strong> Number Theory C<strong>on</strong>ference<br />

(University of Colorado, Boulder), (1972), 49–52.<br />

[25] J. C<strong>on</strong>way. FRACTRAN: A Simple Universal Programming Language for Arithmetic.<br />

Open <strong>Problem</strong>s in Communicati<strong>on</strong> and Computati<strong>on</strong> (Ed. T.M. Cover and B. Gopinath),<br />

Springer, New York, (1987), 4–26.<br />

[26] R.E. Crandall. On <strong>the</strong> “3x + 1” <strong>Problem</strong>. Ma<strong>the</strong>matics of Computati<strong>on</strong>, 32, (1978),<br />

1281–1292.<br />

[27] J. Davis<strong>on</strong>. Some Comments <strong>on</strong> an Iterati<strong>on</strong> <strong>Problem</strong>. Proceedings of <strong>the</strong> Sixth<br />

Manitoba C<strong>on</strong>ference <strong>on</strong> Numerical Ma<strong>the</strong>matics , (1976), 155–159.<br />

[28] J. Dum<strong>on</strong>t and C. Reiter. Real Dynamics Of A 3-Power Extensi<strong>on</strong> Of The 3x + 1<br />

Functi<strong>on</strong>. Dynamics of C<strong>on</strong>tinuous, Discrete and Impulsive Systems, (2003), to appear.<br />

[29] J. Dum<strong>on</strong>t and C. Reiter. Visualizing Generalized <strong>3x+1</strong> Functi<strong>on</strong> Dynamics. Computers<br />

& Graphics, 25(5), (2001), 883–898.<br />

[30] S. Eliahou. The 3x + 1 <strong>Problem</strong>: New Lower Bounds <strong>on</strong> N<strong>on</strong>trivial Cycle Lengths.<br />

Discrete Ma<strong>the</strong>matics, 118, (1993), 45–56.


29<br />

[31] C.J. Everett. Iterati<strong>on</strong> of <strong>the</strong> Number-Theoretic Functi<strong>on</strong> f(2n) = n, f(2n+1) = 3n+2.<br />

Advances in Ma<strong>the</strong>matics, 25, (1977), 42–45.<br />

[32] Z. Franco and C. Pomerance. On a C<strong>on</strong>jecture of Crandall c<strong>on</strong>cerning <strong>the</strong> qx + 1<br />

<strong>Problem</strong>. Ma<strong>the</strong>matics of Computati<strong>on</strong>, 64(211), (1995), 1333–1336.<br />

[33] M. Garcia and F. Tal. A Note <strong>on</strong> <strong>the</strong> Generalized 3n + 1 <strong>Problem</strong>. Acta Arithmetica,<br />

90(3), (1999), 245–250.<br />

[34] D. Gluck and B. Taylor. A New Statistic for <strong>the</strong> 3x + 1 <strong>Problem</strong>. Proceedings of <strong>the</strong><br />

American Ma<strong>the</strong>matical Society, 130(5), (2002), 1293–1301.<br />

[35] L. Halbeisen and N. Hungerbühler. Optimal Bounds for <strong>the</strong> Length of Rati<strong>on</strong>al Collatz<br />

Cycles. Acta Arithmetica, 78(3), (1997), 227–239.<br />

[36] G. Hedlund. Endomorphisms and Automorphisms of <strong>the</strong> Shift Dynamical System.<br />

Ma<strong>the</strong>matical Systems Theory, 3, (1969), 320–375.<br />

[37] E. Heppner. Eine Bemerkung zum Hasse-Syracuse Algorithmus. Archiv der Ma<strong>the</strong>matik,<br />

31(3), (1978), 317–320.<br />

[38] J. Joseph. A Chaotic Extensi<strong>on</strong> of <strong>the</strong> 3x + 1 Functi<strong>on</strong> to Z 2 [i]. Fib<strong>on</strong>acci Quarterly,<br />

36(4), (1998), 309–316.<br />

[39] I. Korec. A Density Estimate for <strong>the</strong> 3x + 1 <strong>Problem</strong>. Ma<strong>the</strong>matica Slovaca, 44(1),<br />

(1994), 85–89.<br />

[40] I. Korec and Š. Znám. A Note <strong>on</strong> <strong>the</strong> <strong>3x+1</strong> <strong>Problem</strong>. American Ma<strong>the</strong>matical M<strong>on</strong>thly,<br />

94, (1987), 771–772.<br />

[41] I. Krasikov. How many numbers satisfy <strong>the</strong> 3X + 1 c<strong>on</strong>jecture? Internati<strong>on</strong>al Journal<br />

of Ma<strong>the</strong>matics and Ma<strong>the</strong>matical Sciences , 12, (1989), 791–796.<br />

[42] I. Krasikov and J. Lagarias. Bounds for <strong>the</strong> <strong>3x+1</strong> <strong>Problem</strong> using Difference Inequalities.<br />

arXiv:math.NT/0205002 v1, April 30, 2002.<br />

[43] G. Kucinski. Cycles of <strong>the</strong> 3x + 1 Map <strong>on</strong> <strong>the</strong> Gaussian Integers. Preprint dated May,<br />

2000.<br />

[44] J. Kuttler. On <strong>the</strong> 3x + 1 <strong>Problem</strong>. Advances in Applied Ma<strong>the</strong>matics, 15, (1994),<br />

183–185.<br />

[45] J. Lagarias. The 3x + 1 <strong>Problem</strong> and its Generalizati<strong>on</strong>s. American Ma<strong>the</strong>matical<br />

M<strong>on</strong>thly, 92, (1985), 1–23. Available <strong>on</strong>line at www.cecm.sfu.ca/organics/papers.


30<br />

[46] J. Lagarias. The Set of Rati<strong>on</strong>al Cycles for <strong>the</strong> 3x + 1 <strong>Problem</strong>. Acta Arithmetica, 56,<br />

(1990), 33–53.<br />

[47] J. Lagarias and A. Weiss. The 3x + 1 <strong>Problem</strong>; Two Stochastic Models. <str<strong>on</strong>g>An</str<strong>on</strong>g>nals of<br />

Applied Probability, 2, (1992), 229–261.<br />

[48] J. Lagarias. 3x + 1 <strong>Problem</strong> <str<strong>on</strong>g>An</str<strong>on</strong>g>notated Bibliography.<br />

http://www.research.att.com/ ˜ jcl/doc/<strong>3x+1</strong>bib.ps, July 26, 1998.<br />

[49] G.M. Leigh. A Markov process underlying <strong>the</strong> generalized Syracuse algorithm. Acta<br />

Arithmetica, 46(2), (1986), 125–143.<br />

[50] S. Le<strong>the</strong>rman, D. Schleicher, and R. Wood. The 3n + 1-<strong>Problem</strong> and Holomorphic<br />

Dynamics. Experimental Ma<strong>the</strong>matics, 8(3), (1999), 241–251.<br />

[51] M. Margenstern and Y. Matiyasevich. A binomial representati<strong>on</strong> of <strong>the</strong> 3x + 1 problem.<br />

Acta Arithmetica, 91(4), (1999), 367–378.<br />

[52] K. Mat<strong>the</strong>ws and A.M. Watts. A Generalizati<strong>on</strong> of Hasse’s Generalizati<strong>on</strong> of <strong>the</strong> Syracuse<br />

Algorithm. Acta Arithmetica, 43(2), (1984), 167–175.<br />

[53] K. Mat<strong>the</strong>ws and A.M. Watts. A Markov Approach to <strong>the</strong> generalized Syracuse Algorithm.<br />

Acta Arithmetica, 45(1), (1985), 29–42.<br />

[54] K. Mat<strong>the</strong>ws. http : //www.maths.uq.edu.au/~ krm, August 15, 2002.<br />

[55] F. Mignosi. On a generalizati<strong>on</strong> of <strong>the</strong> 3x + 1 problem. Journal of Number Theory,<br />

55(1), (1995), 28–45.<br />

[56] H. Möller. Über Hasses Verallgemeinerung des Syracuse-Algorithmus (Kakutanis <strong>Problem</strong>).<br />

Acta Arithmetica, 34(3), (1978), 219–226.<br />

[57] K. M<strong>on</strong>ks. 3x + 1 Minus <strong>the</strong> +. Discrete Ma<strong>the</strong>matics and Theoretical Computer<br />

Science, 5(1), (2002), 47–54.<br />

[58] K. M<strong>on</strong>ks and J. Yazinski. The Autoc<strong>on</strong>jugacy of <strong>the</strong> 3x + 1 Functi<strong>on</strong>. Discrete<br />

Ma<strong>the</strong>matics, to appear.<br />

[59] H. Müller. Das ‘3n + 1’ <strong>Problem</strong>. Mitteilungen der Ma<strong>the</strong>matischen Gesellschaft in<br />

Hamburg, 12, (1991), 231–251.<br />

[60] H. Müller. Über eine Klasse 2-adischer Funkti<strong>on</strong>en im Zusammenhang mit dem ‘<strong>3x+1</strong>’-<br />

<strong>Problem</strong>. Abhandlungen aus dem Ma<strong>the</strong>matischen Seminar der Universität Hamburg ,<br />

64, (1994), 293–302.


31<br />

[61] T. Oliveira e Silva. Maximum excursi<strong>on</strong> and stopping time record-holders for <strong>the</strong> 3x + 1<br />

problem: computati<strong>on</strong>al results. Ma<strong>the</strong>matics of Computati<strong>on</strong>, 68(225), (1999), 371–384.<br />

[62] T. Oliveira e Silva. http : //www.ieeta.pt/~ tos/3x + 1.html.<br />

[63] S. Puddu. The Syracuse <strong>Problem</strong> (spanish). Notas de la Sociedad de Matemtica de<br />

Chile , 5, (1986), 199-200.<br />

[64] D. Rawsthorne. Imitati<strong>on</strong> of an Iterati<strong>on</strong>. Ma<strong>the</strong>matics Magazine, 58, (1985), 172–176.<br />

[65] E. Roosendaal. http : //pers<strong>on</strong>al.computrain.nl/eric/w<strong>on</strong>drous/.<br />

[66] O. Rozier. Dém<strong>on</strong>strati<strong>on</strong> de l’absense de cycles d’une certain forme pour le Problème<br />

de Syracuse. Singularité, 1, (1990), 9–12.<br />

[67] J. Sander. On <strong>the</strong> (3N + 1)-C<strong>on</strong>jecture. Acta Arithmetica, 55, (1990), 241–248.<br />

[68] B. Seifert. On <strong>the</strong> Arithmetic of Cycles for <strong>the</strong> Collatz-Hasse (‘Syracuse’) <strong>Problem</strong>.<br />

Discrete Ma<strong>the</strong>matics, 68, (1988), 293–298.<br />

[69] D. Shanks. Comments <strong>on</strong> <strong>Problem</strong> 63-13. SIAM Review, 7, (1965), 284–286.<br />

[70] Y. Sinai. Statistical (<strong>3x+1</strong>) - <strong>Problem</strong>. Communicati<strong>on</strong>s <strong>on</strong> Pure and Applied Ma<strong>the</strong>matics,<br />

56(7), (2003), 1016–1028.<br />

[71] R. Steiner. A Theorem <strong>on</strong> <strong>the</strong> Syracuse <strong>Problem</strong>. Proceedings of <strong>the</strong> Seventh Manitoba<br />

C<strong>on</strong>ference <strong>on</strong> Numerical Ma<strong>the</strong>matics and Computing , (1977), 553–559.<br />

[72] R. Steiner. On <strong>the</strong> “QX + 1 problem”, Q odd. Fib<strong>on</strong>acci Quarterly, 19(3), (1981),<br />

285–288.<br />

[73] R. Steiner. On <strong>the</strong> “QX + 1 problem”, Q odd. II. Fib<strong>on</strong>acci Quarterly, 19(4), (1981),<br />

293–296.<br />

[74] K. Stolarsky. A Prelude to <strong>the</strong> 3x + 1 <strong>Problem</strong>. Journal of Difference Equati<strong>on</strong>s and<br />

Applicati<strong>on</strong>s, 4, (1998), 451–461.<br />

[75] J. Tempkin and S. Arteaga. Inequalities Involving <strong>the</strong> Period of a N<strong>on</strong>trivial Cycle of<br />

<strong>the</strong> 3n + 1 <strong>Problem</strong>. Draft of Circa October 3, 1997.<br />

[76] J. Tempkin. Some Properties of C<strong>on</strong>tinuous Extensi<strong>on</strong>s of <strong>the</strong> Collatz Functi<strong>on</strong>. Draft<br />

of Circa October 5, 1993.<br />

[77] R. Terras. A Stopping Time <strong>Problem</strong> <strong>on</strong> <strong>the</strong> Positive Integers. Acta Arithmetica, 30,<br />

(1976), 241–252.


32<br />

[78] R. Terras. On <strong>the</strong> Existence of a Density. Acta Arithmetica, 35, (1979), 101–102.<br />

[79] T. Urvoy. Regularity of c<strong>on</strong>gruential graphs. Ma<strong>the</strong>matical foundati<strong>on</strong>s of computer<br />

science 2000 (Bratislava), 680–689, Lecture Notes in Computer Science, 1893, Springer,<br />

Berlin, (2000), see also http : //www.irisa.fr/gali<strong>on</strong>/turvoy/ .<br />

[80] G. Venturini. Behavior of <strong>the</strong> iterati<strong>on</strong>s of some numerical functi<strong>on</strong>s. (Italian). Istituto<br />

Lombardo. Accademia di Scienze e Lettere. Rendic<strong>on</strong>ti. Scienze Matematiche e<br />

Applicazi<strong>on</strong>i. A , 116, (1982), 115–130.<br />

[81] G. Venturini. On <strong>the</strong> 3x + 1 problem. Advances in Applied Ma<strong>the</strong>matics, 10(3), (1989),<br />

344–347.<br />

[82] G. Venturini. Iterates of number-<strong>the</strong>oretic functi<strong>on</strong>s with periodic rati<strong>on</strong>al coefficients<br />

(generalizati<strong>on</strong> of <strong>the</strong> 3x + 1 problem). Studies in Applied Ma<strong>the</strong>matics, 86(3), (1992),<br />

185–218.<br />

[83] G. Venturini. On a generalizati<strong>on</strong> of <strong>the</strong> 3x + 1 problem. Advances in Applied Ma<strong>the</strong>matics,<br />

19(3), (1997), 295–305.<br />

[84] S. Wag<strong>on</strong>. The Collatz <strong>Problem</strong>. Ma<strong>the</strong>matical Intelligencer, 7(1), (1985), 72–76.<br />

[85] G. Wirsching. <str<strong>on</strong>g>An</str<strong>on</strong>g> Improved Estimate c<strong>on</strong>cerning 3n + 1 Predecessor Sets. Acta Arithmetica,<br />

63, (1993), 205–210.<br />

[86] G. Wirsching. A Markov Chain underlying <strong>the</strong> Backward Syracuse Algorithm. Revue<br />

Roumaine de Mathématiques Pures et Appliquées, 39, (1994), 915–926.<br />

[87] G. Wirsching. The Dynamical System Generated by <strong>the</strong> 3n + 1 Functi<strong>on</strong>. Springer,<br />

Heidelberg, (1998)<br />

[88] Z.H. Yang. <str<strong>on</strong>g>An</str<strong>on</strong>g> Equivalent Set for <strong>the</strong> <strong>3x+1</strong> C<strong>on</strong>jecture. Journal of South China Normal<br />

University, Natural Science Editi<strong>on</strong>, no.2, (1998), 66–68.<br />

[89] R. Zarnowski. Generalized Inverses and <strong>the</strong> Total Stopping Times of Collatz Sequences.<br />

Linear and Multilinear Algebra, 49(2), (2001), 115–130.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!