24.02.2015 Views

Output Filter for the High-Voltage DC/DC Converter

Output Filter for the High-Voltage DC/DC Converter

Output Filter for the High-Voltage DC/DC Converter

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

160A<br />

155A<br />

I L<br />

160<br />

140<br />

IL, A<br />

Inductor Current<br />

150A<br />

120<br />

145A<br />

100<br />

140A<br />

80<br />

135A<br />

60<br />

130A<br />

125A<br />

I out<br />

40<br />

<strong>Output</strong> Current, Iout<br />

1 501 18 1001 36 1501 54 2001<br />

72 t, ms<br />

<strong>Output</strong> Current<br />

160<br />

IOUT, A<br />

120A<br />

12.0ms 12.4ms 12.8ms 13.2ms 13.6ms 14.0ms 14.4ms 14.8ms 15.2ms 15.6ms 16.0ms<br />

I(L2) -I(RLoad)<br />

Time<br />

Fig. 7. Inductor current (I L ) and output current (I out )<br />

wave<strong>for</strong>ms with <strong>the</strong> minimum switch duty cycle<br />

Fig. 8 demonstrates rectifier output voltage (U 3 ) and<br />

converter output voltage (U out ) wave<strong>for</strong>ms. The<br />

peak-to-peak output voltage ripple is about 1.5%.<br />

800V<br />

700V<br />

U 3<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

<strong>Output</strong> <strong>Voltage</strong>, Uout<br />

1 501 18 1001 36 1501 54 72<br />

2001 t, ms<br />

<strong>Output</strong> <strong>Voltage</strong><br />

410<br />

UOUT, V<br />

390<br />

370<br />

600V<br />

350<br />

500V<br />

400V<br />

U out<br />

330<br />

310<br />

300V<br />

290<br />

200V<br />

270<br />

1 501 18 1001 36 1501 54 72 t, ms<br />

2001<br />

100V<br />

0V<br />

Fig. 9. Simulated wave<strong>for</strong>ms of <strong>the</strong> isolated halfbridge<br />

<strong>DC</strong>/<strong>DC</strong> converter with proposed LC-filter<br />

-100V<br />

0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms<br />

V(RLoad:2) V(L2:1)<br />

Time<br />

Fig. 8. Rectifier output voltage (U 3 ) and converter<br />

output voltage (U out ) with <strong>the</strong> minimum switch duty<br />

cycle<br />

3 <strong>Converter</strong> dynamic response<br />

Above-presented simulations are demonstrating that<br />

filter components were selected properly.<br />

Corresponding voltage and current ripple values are<br />

minimal. Thus, <strong>for</strong> <strong>the</strong> prototype it was decided to<br />

implement <strong>the</strong> laminated iron-core inductor with<br />

inductance value of 5 mH. Two electrolytic<br />

capacitors (EPCOS B437 560 µF, 450 V) will be<br />

connected in series with <strong>the</strong> total capacitance value<br />

of 280 µF.<br />

To test <strong>the</strong> converter dynamic response with <strong>the</strong><br />

selected output filter components <strong>the</strong> generalized<br />

ma<strong>the</strong>matical model of <strong>the</strong> converter was developed<br />

by help of Simplorer® simulation software.<br />

The converter model was tested with <strong>the</strong> maximal<br />

input voltage conditions (4000 V) and during <strong>the</strong><br />

random load step change (see Fig. 9), when <strong>the</strong><br />

output current of <strong>the</strong> converter is changing instantly<br />

from some intermediate value (70 A) to a maximal<br />

value (143 A).<br />

The maximum inductor current ripple is about 10%,<br />

while <strong>the</strong> output current ripple is less than 2%. The<br />

voltage ripple of unregulated output is about 1.5%.<br />

The voltage overshoot during load step change is<br />

14%, which can be fully compensated by <strong>the</strong><br />

appropriated control system algorithm.<br />

Conclusion<br />

<strong>Output</strong> filters play a very important role in <strong>DC</strong>/<strong>DC</strong><br />

converters. Important aspects of converters such as<br />

dynamic response, size and cost are closely related<br />

to <strong>the</strong> components of <strong>the</strong> filter. Small values <strong>for</strong> <strong>the</strong><br />

filter components improve <strong>the</strong> per<strong>for</strong>mance of <strong>the</strong><br />

converters and increase <strong>the</strong> power density, whereas<br />

minimum values should be provided to guarantee <strong>the</strong><br />

filtering objective.<br />

References<br />

[1] D. Vinnikov, „Research, Design and<br />

Implementation of Auxiliary Power Supplies<br />

<strong>for</strong> <strong>the</strong> Light Rail Vehicles”, PhD Thesis,<br />

Tallinn, 2005.<br />

[2] Pressman, A.I., “Switching Power Supply<br />

Design”, Second Edition, McGraw-Hill, 1998.<br />

[3] Billings, K.H., “Switchmode Power Supply<br />

Handbook”, McGraw-Hill, 1989.<br />

121

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!