24.02.2015 Views

Balance training following stroke: effects of task-oriented exercises ...

Balance training following stroke: effects of task-oriented exercises ...

Balance training following stroke: effects of task-oriented exercises ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Original article 51<br />

<strong>Balance</strong> <strong>training</strong> <strong>following</strong> <strong>stroke</strong>: <strong>effects</strong> <strong>of</strong> <strong>task</strong>-<strong>oriented</strong><br />

<strong>exercises</strong> with and without altered sensory input<br />

Jean-François Bayouk a , Jean P. Boucher a and Alain Leroux b,c<br />

The purpose <strong>of</strong> this study was to compare the <strong>effects</strong> <strong>of</strong> a<br />

<strong>task</strong>-<strong>oriented</strong> exercise program with and without altered<br />

sensory input on postural stability in subjects with <strong>stroke</strong>.<br />

Sixteen hemiparetic subjects, at least 6 months<br />

post-<strong>stroke</strong>, were randomly assigned to the experimental<br />

or control group, and participated in an 8-week<br />

<strong>task</strong>-<strong>oriented</strong> exercise program focusing on balance and<br />

mobility <strong>exercises</strong>. Exercises were performed under<br />

normal conditions by the control group, and under<br />

conditions <strong>of</strong> vision and surface manipulation by the<br />

experimental group. Pre- and post-test assessments<br />

involved the measurement <strong>of</strong> the center <strong>of</strong> pressure<br />

(COP) displacement during double-legged stance and<br />

sit-to-stand under four sensory conditions: (1) eyes open,<br />

normal surface; (2) eyes open, s<strong>of</strong>t surface; (3) eyes<br />

closed, normal surface; and (4) eyes closed, s<strong>of</strong>t surface,<br />

as well as the 10-m walking test. Results showed<br />

significant improvements (P < 0.05) in COP displacement<br />

under sensory conditions (1) and (2) for the experimental<br />

group only, and limited changes for the sit-to-stand in both<br />

groups after <strong>training</strong>. Significant improvements (P < 0.05)<br />

were also found in both groups for the walking test. It is<br />

concluded that a <strong>task</strong>-<strong>oriented</strong> exercise program, assisted<br />

by sensory manipulation, is more effective at improving the<br />

standing balance <strong>of</strong> <strong>stroke</strong> subjects than a conventional<br />

<strong>task</strong>-<strong>oriented</strong> program.<br />

Die vorliegende Studie vergleicht die Wirkung eines<br />

anforderungsspezifischen Übungsprogramms mit und<br />

ohne Sinnesreizänderung auf die posturale Stabilität von<br />

Schlaganfallpatienten. Insgesamt 16 Hemiparetiker<br />

wurden mindestens sechs Monate nach dem Schlaganfall<br />

randomisiert der Versuchs- oder der Kontrollgruppe<br />

zugeordnet, innerhalb derer sie acht Wochen an einem<br />

anforderungsspezifischen Programm mit speziellen<br />

Gleichgewichts- und Mobilitätsübungen teilnahmen. Die<br />

Kontrollgruppe führte die Übungen unter normalen<br />

Bedingungen durch, die Versuchsgruppe dagegen<br />

unter Manipulation der Aspekte Sicht und Gehflächen. Bei<br />

den Bewertungen vor und nach dem Test wurde die<br />

Verlagerung des Druckmittelpunkts (COP) während der<br />

zweibeinigen Haltung und der Aufstehübung anhand von<br />

vier Sinneszuständen gemessen: (1) <strong>of</strong>fene Augen,<br />

normale Fläche, (2) <strong>of</strong>fene Augen, weiche Fläche,<br />

(3) geschlossene Augen, normale Fläche und (4)<br />

geschlossene Augen, weiche Fläche sowie anhand des<br />

10 m Gehtests. Die Ergebnisse wiesen nur bei der<br />

Versuchsgruppe bei der COP-Verlagerung unter den<br />

Sinneszuständen (1) und (2) beachtliche Verbesserungen<br />

(P < 0,05) auf und bei beiden Gruppen in beschränktem<br />

Maß Veränderungen bei der Aufstehübung. Bei beiden<br />

Gruppen wurden auch signifikante Verbesserungen<br />

(P < 0,05) beim Gehtest beobachtet. Daraus schließt sich,<br />

dass ein anforderungsspezifisches Übungsprogramm mit<br />

begleitender Sinnesmanipulation das Gleichgewicht von<br />

Schlaganfallpatienten bei aufrechter Körperhaltung<br />

effektiver verbessert als ein herkömmliches<br />

anforderungsspezifisches Programm.<br />

El propósito de este estudio fue comparar los efectos de<br />

un programa de ejercicios dirigidos, con estimulación<br />

sensorial alterada o sin ella, sobre la estabilidad postural<br />

de sujetos con accidente vascular cerebral. Dieciséis<br />

sujetos hemiparéticos que habían sufrido un accidente<br />

vascular cerebral hacía al menos 6 meses, fueron<br />

distribuidos al azar en dos grupos: uno experimental y uno<br />

control. Los mismos participaron durante 8 semanas en un<br />

programa de ejercicios dirigidos, el cual se centraba en<br />

ejercicios de balance y de movilidad. El grupo control<br />

realizó los ejercicios en condiciones normales, mientras<br />

que el grupo experimental los realizó en condiciones en<br />

que la visión y las superficies fueron alteradas. En las<br />

evaluaciones realizadas antes y después de los ejercicios<br />

se midió la desviación del centro de presión (CP) durante<br />

la postura de pie utilizando ambas piernas, así como en la<br />

postura sentada, listo para ponerse de pie, bajo cuatro<br />

condiciones sensoriales deferentes: 1) ojos abiertos,<br />

superficie normal; 2) ojos abiertos, superficie blanda; 3)<br />

ojos cerrados, superficie normal; y 4) ojos cerrados,<br />

superficie blanda. Se realizó además la prueba de la<br />

marcha de los 10 m. Los resultados mostraron mejoras<br />

significativas (P < 0,05) en la desviación del CP en ambos<br />

grupos durante la prueba de la marcha. Se concluyó que<br />

un programa de ejercicios dirigidos, en los que se utilicen<br />

manipulaciones sensoriales, es más efectivo que un<br />

programa convencional de ejercicios dirigidos para<br />

mejorar el balance durante la postura de pie en sujetos con<br />

accidente vascular cerebral.<br />

Le but de cette étude était de comparer les effets d’un<br />

programme d’exercices fonctionnels assistés ou non de<br />

stimulations sensorielles sur la stabilité posturale de<br />

sujets atteints d’un accident vasculaire cérébral (AVC).<br />

Seize sujets hémiparétiques atteints d’un AVC depuis au<br />

moins 6 mois et répartis de façon aléatoire au sein du<br />

groupe expérimental et du groupe témoin ont participé à<br />

un programme d’exercices fonctionnels de huit semaines<br />

portant sur des exercices d’équilibre et de mobilité. Les<br />

exercices étaient exécutés en situation normale par le<br />

groupe témoin et en situation de manipulation de la vision<br />

0342-5282 c 2006 Lippincott Williams & Wilkins<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


52 International Journal <strong>of</strong> Rehabilitation Research 2006, Vol 29 No 1<br />

et de la surface de support par le groupe expérimental. Les<br />

évaluations pré et post exercices ont été effectuées à l’aide<br />

de la mesure du déplacement du centre de pression (CP)<br />

lors du maintien de la position debout en appui bipodal et<br />

du transfert assis-debout selon les quatre conditions<br />

sensorielles suivantes: yeux ouverts, surface normale (1);<br />

yeux ouverts, surface moelleuse (2); yeux fermés, surface<br />

normale (3); yeux fermés, surface moelleuse (4). Le test de<br />

marchede10mètres a aussi été inclus dans l’évaluation.<br />

Les résultats ont démontré une amélioration significative<br />

(P < 0.05) du déplacement du CP dans les conditions 1 et 2<br />

pour le groupe expérimental seulement ainsi que des<br />

changements limités pour le transfert assis-debout chez<br />

les deux groupes de sujets à la suite de l’entraînement.<br />

Une amélioration significative (P < 0.05) a été observée au<br />

niveau du test de marche chez les deux groupes de sujets.<br />

Cette étude a démontré qu’un programme d’exercices<br />

fonctionnels assistés de stimulations sensorielles est plus<br />

efficace pour l’amélioration du maintien de l’équilibre en<br />

position debout chez les sujets atteints d’un AVC qu’un<br />

programme d’exercices fonctionnels conventionnnel.<br />

International Journal <strong>of</strong> Rehabilitation Research 29:51–59<br />

c 2006 Lippincott Williams & Wilkins.<br />

International Journal <strong>of</strong> Rehabilitation Research 2006, 29:51–59<br />

Keywords: exercise, <strong>stroke</strong>, multisensory <strong>training</strong>, hemiparesis, hemiplegia,<br />

balance, postural stability<br />

a Department <strong>of</strong> Kinanthropology, University <strong>of</strong> Quebec in Montréal, Montréal,<br />

Canada, b Department <strong>of</strong> Exercise Science, Concordia University, Montréal,<br />

Canada and c Centre de Recherche Interdisciplinaire en Réadaptation du<br />

Montréal Métropolitan-Site, Constance-Lethbridge Rehabilitation Centre,<br />

Montreal, Canada.<br />

Correspondence and requests for reprints to Alain Leroux, Department <strong>of</strong><br />

Exercise Science, Concordia University, 7141 Sherbrooke West, Montréal<br />

(Quebec), Canada H4B 1R6.<br />

Tel: + 1 514 84803326; fax: + 1 514 848 8681;<br />

e-mail: alerou@alcor.concordia.ca<br />

Sponsorship: Funding for this study was provided by the Faculty <strong>of</strong> Arts and<br />

Science <strong>of</strong> Concordia University (no. NS2001-001).<br />

Received 2 May 2005 Accepted 11 July 2005<br />

Introduction<br />

<strong>Balance</strong> impairment is important to consider after <strong>stroke</strong><br />

since the number <strong>of</strong> falls can be as high as five per year in<br />

the first year post-lesion (Nyberg and Gustafson, 1995).<br />

These falls can further lead to pathological events (e.g.<br />

hip fractures), and additional declines in function and<br />

disability status (Grisso et al., 1991). The decreased<br />

ability to maintain static and dynamic balance after <strong>stroke</strong><br />

could be related to the inability to select reliable sensory<br />

information (visual, vestibular and somatosensory systems)<br />

in order to produce the proper motor action<br />

necessary to maintain postural stability (Shumway-Cook<br />

et al., 1988; Di Fabio and Badke, 1991; Bonan et al., 2004a).<br />

It was found, for instance, that <strong>stroke</strong> subjects having<br />

impaired ankle proprioception exhibited a significant<br />

increase in postural sway as compared to <strong>stroke</strong> subjects<br />

showing intact proprioception during double-legged<br />

stance (Niam et al., 1999). Furthermore, when sensory<br />

inputs from the visual, vestibular and somatosensory<br />

systems were manipulated, <strong>stroke</strong> subjects exhibited<br />

greater postural instability than healthy subjects (Di<br />

Fabio and Badke, 1991; Bonan et al., 2004a).<br />

Exercise interventions, in the form <strong>of</strong> <strong>task</strong>-<strong>oriented</strong><br />

exercise programs, are now recognized as a new strategy<br />

to improve the functional status <strong>of</strong> chronic <strong>stroke</strong><br />

individuals (Dean et al., 2000; Eng et al., 2003; Salbach<br />

et al., 2004; Leroux, 2005) Hence, <strong>following</strong> several weeks<br />

<strong>of</strong> functional <strong>training</strong>, hemiparetic subjects, secondary to<br />

<strong>stroke</strong>, have shown significant improvements in functional<br />

mobility (Eng et al., 2003; Leroux, 2005), walking<br />

speed and endurance (Dean et al., 2000; Eng et al., 2003;<br />

Salbach et al., 2004), and in clinical measures <strong>of</strong> balance<br />

(Dean et al., 2000; Eng et al., 2003; Leroux, 2005). When<br />

using laboratory measures <strong>of</strong> static and dynamic balance,<br />

<strong>task</strong>-<strong>oriented</strong> <strong>exercises</strong> did not, on the other hand, have<br />

any effect over the abnormally increased lateral sway<br />

exhibited by <strong>stroke</strong> subjects during double-legged stance<br />

and sit-to-stance <strong>task</strong>s (Leroux, 2002). Since <strong>stroke</strong><br />

subjects <strong>of</strong>ten present with somatosensory deficits<br />

(Smith et al., 1983; Di Fabio and Badke, 1990; Carr and<br />

Shepherd, 1998), the adaptation <strong>of</strong> regular <strong>exercises</strong> with<br />

the use <strong>of</strong> surface and vision manipulation to challenge<br />

balance could improve the process <strong>of</strong> somatosensory<br />

integration and have a positive effect on postural stability.<br />

This type <strong>of</strong> intervention has further shown to be<br />

effective at improving postural stability in neurologically<br />

intact elderly people (Hu and Woollacott, 1994a,b).<br />

Therefore, the main objective <strong>of</strong> this study was to<br />

compare the <strong>effects</strong> <strong>of</strong> a <strong>task</strong>-<strong>oriented</strong> exercise program<br />

with and without altered sensory input on postural<br />

stability in two groups <strong>of</strong> hemiparetic subjects secondary<br />

to <strong>stroke</strong>. A second objective was to establish the<br />

feasibility <strong>of</strong> multisensory <strong>training</strong> in older adults with<br />

<strong>stroke</strong>.<br />

Methods<br />

Subjects<br />

Sixteen hemiparetic subjects, secondary to <strong>stroke</strong>, were<br />

recruited from physiotherapy clinics, hospital centers and<br />

local <strong>stroke</strong> community groups (see Table 1). To be<br />

eligible to participate in the study, all subjects had to<br />

fulfill the <strong>following</strong> criteria: (1) be victim <strong>of</strong> a <strong>stroke</strong><br />

that resulted in hemiparesis, (2) be at least 6 months<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


<strong>Balance</strong> <strong>training</strong> <strong>following</strong> <strong>stroke</strong> Bayouk et al. 53<br />

Table 1<br />

Pr<strong>of</strong>ile <strong>of</strong> the <strong>stroke</strong> subjects (mean ± SD)<br />

Control group (n = 8) Experimental group (n =8)<br />

Age (years) 62.0 ± 4.6 68.4 ± 7.1<br />

Time since <strong>stroke</strong> (years) 5.7 ± 6.9 7.1 ± 12.5<br />

Chedoke–McMaster <strong>stroke</strong> assessment score (/7) 4.6 ± 1.1 4.9 ± 1.25<br />

Gender (n)<br />

Male 3 6<br />

Female 5 2<br />

Hemiparetic side (n)<br />

Right 4 2<br />

Left 4 6<br />

post-<strong>stroke</strong>, (3) be fully discharged from all rehabilitation<br />

program and (4) obtain written approval from a<br />

primary care physician. Exclusion criteria were: a severe<br />

limitation that would limit the subject’s participation<br />

in the exercise program or interfere with functional<br />

assessments performed in this study. Prior to beginning<br />

the study, every subject signed an informed consent<br />

document. Ethical approval was obtained from the ethics<br />

committees <strong>of</strong> the Cummings Jewish Centre for Seniors<br />

(CJCS) and Concordia University (Montréal, Québec,<br />

Canada).<br />

Research design<br />

Stroke subjects were matched in pairs <strong>of</strong> two according to<br />

the Chedoke–McMaster Stroke Assessment stage <strong>of</strong> their<br />

mobility affected leg (Gowland et al., 1995) and randomly<br />

assigned to the experimental or control group. Each group<br />

was tested before and immediately after the end <strong>of</strong> the<br />

8-week exercise program.<br />

Exercise program<br />

Subjects from both groups participated in a 1-h (twice a<br />

week) exercise class for a period <strong>of</strong> 8 weeks. The exercise<br />

classes were held at the Wellness Centre <strong>of</strong> the CJCS<br />

(Montréal, Québec, Canada) and supervised by the same<br />

clinical exercise physiologist assisted by two intern<br />

students. Details on the Wellness Centre exercise<br />

program <strong>of</strong> the CJCS have been reported in a previous<br />

paper (Leroux, 2005). The main objective <strong>of</strong> this program<br />

is to strengthen the hemiparetic side <strong>of</strong> <strong>stroke</strong> subjects by<br />

the practice <strong>of</strong> functional <strong>exercises</strong> (Leroux, 2005).<br />

Secondary objectives include the improvement <strong>of</strong> balance,<br />

gait and coordination. In the present study,<br />

experimental and control group subjects participated in<br />

exercise sessions composed <strong>of</strong> the <strong>following</strong> <strong>task</strong>-<strong>oriented</strong><br />

<strong>exercises</strong>: (1) stepping forward, backward, and sideways<br />

on the exercise step; (2) stepping over blocks <strong>of</strong> various<br />

heights; (3) standing up from a chair, walking four steps<br />

forward, performing a bilateral stool touch and walking<br />

backwards to the chair; (4) standing up from a chair,<br />

walking four steps forward, turning to the right, stepping<br />

over the exercise step, turning to the right again and<br />

walking forwards to the chair (repeat the exercise circuit<br />

in opposite direction); (5) from a sitting position on a<br />

65-cm Swiss ball, performing a range <strong>of</strong> motion and<br />

balance <strong>exercises</strong> (forward and backward rolling <strong>of</strong> the<br />

arms; bending the trunk forward and side to side); (6)<br />

performing double-legged stance for 10 s; (7) performing<br />

tandem stance for 10 s; (8) rising from a chair without the<br />

use <strong>of</strong> the arms; (9) walking forward and backward with a<br />

tandem walking pattern (toes <strong>of</strong> one foot touching the<br />

heel <strong>of</strong> the foot in front); and (10) performing singlelegged<br />

stance for 10 s.<br />

Control group subjects performed all <strong>of</strong> the above<br />

<strong>exercises</strong> under normal conditions (i.e. with eyes open<br />

and on a hard regular surface). The level <strong>of</strong> difficulty <strong>of</strong><br />

the <strong>exercises</strong> was adjusted according to the progression <strong>of</strong><br />

each subject. The number <strong>of</strong> repetitions, the height <strong>of</strong><br />

the exercise step and the ankle weight were modified<br />

progressively. Experimental group subjects performed<br />

<strong>exercises</strong> one to five under normal conditions in the first<br />

20 min <strong>of</strong> each session. The second part <strong>of</strong> the session<br />

(30 min) aimed at improving static and dynamic balance<br />

by executing <strong>exercises</strong> while the proprioception <strong>of</strong> the<br />

feet and ankles and/or vision was manipulated. As part <strong>of</strong><br />

this multisensory <strong>training</strong>, experimental subjects performed<br />

<strong>exercises</strong> (6) to (10) under the <strong>following</strong><br />

conditions: (1) eyes open, firm surface; (2) eyes open,<br />

s<strong>of</strong>t surface; (3) eyes closed, firm surface; and (4) eyes<br />

closed, s<strong>of</strong>t surface. The s<strong>of</strong>t surface condition was<br />

performed with subjects standing on a 50 cm 62 cm<br />

foam mat (CFC free foam, 2.5 cm thick). To progress<br />

from one sensory condition to the next, the participants<br />

had to perform the exercise without any assistance and<br />

with proper form. Finally, both groups <strong>of</strong> subjects<br />

completed their session with a 10-min cool-down period<br />

where flexibility and range <strong>of</strong> motion <strong>exercises</strong> were<br />

performed in a seated position. These <strong>exercises</strong> focused<br />

on the major muscles groups involved during the class<br />

(quadriceps, hamstrings, hips, lower and upper back, and<br />

neck).<br />

Evaluation<br />

Subjects were evaluated before (pre-test) and after (posttest)<br />

the 8-week exercise program. Subjects’ postural<br />

sway was measured during the <strong>following</strong> <strong>task</strong>s: (1)<br />

double-legged stance for 10 s and (2) sit-to-stand from a<br />

chair. For the double-legged stance, subjects were<br />

instructed to maintain a steady posture and a horizontal<br />

gaze without moving the head. During the sit-to-stand<br />

test, subjects were seated on an armless chair adjusted to<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


54 International Journal <strong>of</strong> Rehabilitation Research 2006, Vol 29 No 1<br />

their lower-leg length and were instructed to stand up at<br />

their self-paced comfortable speed without using their<br />

arms (Engardt et al., 1995; Cheng et al., 1998, 2001; Eng<br />

and Chu, 2002). The two <strong>task</strong>s were performed under the<br />

<strong>following</strong> sensory conditions: (1) eyes open, firm surface;<br />

(2) eyes open, s<strong>of</strong>t surface; (3) eyes closed, firm surface;<br />

and (4) eyes closed, s<strong>of</strong>t surface. This order was followed<br />

for each <strong>task</strong> and each subject. For each sensory<br />

condition, subjects completed three trials <strong>of</strong> the double-legged<br />

stance <strong>task</strong> and three trials <strong>of</strong> the sit-to-stand<br />

<strong>task</strong>. In the event <strong>of</strong> unsuccessful trials, subjects were<br />

allowed an additional trial to complete the <strong>task</strong>. In<br />

addition to balance <strong>task</strong>s, subjects’ functional performance<br />

was assessed using the 10-m walking test. Subjects<br />

were instructed to walk as fast as possible with the use <strong>of</strong><br />

their regular assistive device. Walking speed was measured<br />

by timing subjects over the 10-m distance.<br />

To decrease the <strong>effects</strong> <strong>of</strong> acceleration and deceleration,<br />

measurements were taken over the middle 10-m <strong>of</strong> a<br />

20-m distance. A stopwatch was used to calculate the<br />

time <strong>of</strong> each subject and the test was performed once.<br />

The displacement <strong>of</strong> the center <strong>of</strong> pressure (COP)<br />

during double-legged stance and sit-to-stance <strong>task</strong>s was<br />

measured with the Matscan system (Tekscan, Boston,<br />

Massachusetts, USA). The Matscan is a pressure sensing<br />

floor mat (43.2 cm 36.8 cm) consisting <strong>of</strong> 2288 sensors<br />

to measure the applied pressures at a sampling rate<br />

<strong>of</strong> 40 Hz. This technology has been used successfully<br />

in several clinical trials (Henderson et al., 1994; Randolph<br />

et al., 2000; Caseli et al., 2002; Smith et al., 2002;<br />

Ducic et al., 2004), and has been shown to be accurate<br />

(Hsiao et al., 2002) and reliable (Ahroni et al., 1998;<br />

Randolph et al., 2000; Pinet et al., 2003).<br />

Quantification and analysis<br />

The measures <strong>of</strong> COP variability and total excursion were<br />

used to evaluate static and dynamic balance. The<br />

standard deviation <strong>of</strong> the COP displacement was<br />

calculated to determine the variability in anteroposterior<br />

(A/P) and mediolateral (M/L) axes during double-legged<br />

stance (Goldie et al., 1989; Winstein et al., 1989; Goldie<br />

et al., 1992; Karlsson and Frykberg, 2000; Palmieri et al.,<br />

2002). For the sit-to-stand <strong>task</strong>, postural stability was<br />

measured using the peak-to-peak amplitude <strong>of</strong> the COP<br />

displacements in A/P and M/L axes, and reported as COP<br />

total excursion (Cheng et al., 1998, 2001; Leroux, 2002).<br />

Descriptive statistics were performed on the nine test<br />

conditions per subject (mean and standard deviation).<br />

Statistical analyses for all the variables were done in<br />

SigmaStat (SPSS Inc., version 2.03) using a two-way<br />

ANOVA with repeated measures. When significant<br />

differences were found (P < 0.05), pair wise comparisons<br />

were made using the Tukey test.<br />

Results<br />

Exercise program participation<br />

Experimental and control group subjects showed a very<br />

high participation rate in the 8-week exercise program.<br />

Among the eight subjects forming the experimental<br />

group, six <strong>of</strong> them completed all exercise sessions and<br />

the two other subjects missed one session each. For the<br />

control group, six subjects took part in all exercise<br />

sessions, one subject missed one session and another<br />

subject missed two sessions. Subjects from both groups<br />

completed the missing sessions immediately after the<br />

end <strong>of</strong> the 8-week program.<br />

Compliance to the multisensory exercise program<br />

Table 2 illustrates the level <strong>of</strong> achievement <strong>of</strong> the<br />

experimental group during the multisensory program. It<br />

can be seen that the double-legged stance was the only<br />

<strong>task</strong> that was successfully completed by all subjects under<br />

the four sensory conditions. When performing more<br />

challenging balance <strong>task</strong>s, such as tandem stance and<br />

rising from a chair, seven subjects out <strong>of</strong> eight completed<br />

the control (eyes open, firm surface) and the surface<br />

manipulation conditions, whereas six <strong>of</strong> them achieved the<br />

vision manipulation condition under firm and s<strong>of</strong>t surfaces.<br />

The <strong>task</strong> <strong>of</strong> walking forward and backward with a tandem<br />

foot pattern was also successfully completed by most<br />

subjects (six out <strong>of</strong> eight subjects) for conditions (1) and<br />

(2) only. When asked to repeat the <strong>task</strong> under conditions<br />

(3) and (4), however, none <strong>of</strong> the subjects achieved it.<br />

Finally, only two subjects were able to complete the singlelegged<br />

stance for 10 s and under condition (1) only.<br />

Table 2 Number <strong>of</strong> experimental group subjects (out <strong>of</strong> 8) who successfully completed the <strong>task</strong>-<strong>oriented</strong> <strong>exercises</strong> under each sensory<br />

condition<br />

Task-<strong>oriented</strong> <strong>exercises</strong><br />

Sensory conditions (n)<br />

Eyes open, hard surface Eyes open, s<strong>of</strong>t surface Eyes closed, hard surface Eyes closed, s<strong>of</strong>t surface<br />

Double-legged stance for 10 s 8 8 8 8<br />

Tandem stance during 10 s 7 7 6 6<br />

Rising from a chair without using<br />

7 7 6 6<br />

the arms<br />

Forward and backward walking<br />

6 6 0 0<br />

with a tandem walking pattern<br />

Single-legged stance for 10 s 2 0 0 0<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


<strong>Balance</strong> <strong>training</strong> <strong>following</strong> <strong>stroke</strong> Bayouk et al. 55<br />

Changes in postural stability<br />

Figure 1 shows the changes in COP variability between<br />

pre- and post-test measures for double-legged stance<br />

performed under the four sensory conditions by experimental<br />

and control groups. Significant group test interactions<br />

were observed for conditions one and two (Fig. 1a<br />

and b). Post hoc tests showed that, unlike controls,<br />

experimental group subjects significantly reduced<br />

(P < 0.05) their COP variability in M/L and A/P axes<br />

for the eyes open, firm surface and the eyes open, s<strong>of</strong>t<br />

surface conditions, respectively (Fig. 1a and b). A trend <strong>of</strong><br />

improvement in M/L COP variability <strong>of</strong> experimental<br />

group subjects was also observed for the eyes open, s<strong>of</strong>t<br />

surface (condition 2) and the eyes closed, firm surface<br />

conditions (condition 3). Although not statistically<br />

significant (P < 0.15), the decrease <strong>of</strong> COP variability<br />

was found in six subjects out <strong>of</strong> eight for the latter<br />

sensory conditions.<br />

Fig. 1<br />

(a) Eyes open, firm surface<br />

A/P axis<br />

4<br />

COP variability (cm)<br />

0<br />

Exp. group Control group<br />

Pre-test<br />

Post-test<br />

2<br />

0<br />

∗<br />

Exp. group<br />

M/L axis<br />

Control group<br />

(b) Eyes open, s<strong>of</strong>t surface<br />

A/P axis<br />

4<br />

COP variability (cm)<br />

∗<br />

0<br />

Exp. group Control group<br />

2<br />

0<br />

Exp. group<br />

M/L axis<br />

Control group<br />

(c) Eyes closed, firm surface<br />

A/P axis<br />

4<br />

COP variability (cm)<br />

0<br />

Exp. group Control group<br />

2<br />

0<br />

M/L axis<br />

Exp. group<br />

Control group<br />

(d) Eyes closed, s<strong>of</strong>t surface<br />

A/P axis<br />

4<br />

COP variability (cm)<br />

0<br />

Exp. group Control group<br />

2<br />

0<br />

M/L axis<br />

Exp. group<br />

Control group<br />

COP variability between pre- and post-test measures during double-legged stance performed under four sensory conditions by experimental and<br />

control groups. Results for the A/P axis are shown on the left graphs and those for the M/L axis appear on the right. Note that the ordinal scales are<br />

the same across all sensory conditions. * Significant difference between pre- and post-test measures.<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


56 International Journal <strong>of</strong> Rehabilitation Research 2006, Vol 29 No 1<br />

The changes in COP total excursion between pre- and posttest<br />

measures for sit-to-stand performed under the four<br />

sensory conditions by experimental and control groups are<br />

illustrated in Figure 2. Results revealed a main effect due to<br />

tests for the COP total excursion in A/P axis. Post hoc tests<br />

showed that both groups significantly reduced (P < 0.05)<br />

their COP total excursion in A/P axis for the eyes open, s<strong>of</strong>t<br />

surface condition (condition 2; Fig. 2b). No significant main<br />

<strong>effects</strong> or group test interaction <strong>effects</strong> were found under<br />

the other sensory conditions for the sit-to-stand <strong>task</strong>.<br />

Ten-meter walking test<br />

The pre–post-test scores for the 10-m walking test<br />

revealed a main effect due to tests indicating that both<br />

groups significantly decreased (P < 0.05) the time<br />

needed to complete the walking test after the exercise<br />

program. The experimental group showed a change from<br />

20.8 ( ± 8.3) to 18.3 ( ± 6.5)s while the control group<br />

evidenced a change from 22.4 ( ± 13.8) to 19.7 ( ± 12.3)s<br />

<strong>following</strong> exercise intervention. The percentage improvement<br />

was in the order <strong>of</strong> 12.2% for the experimental<br />

Fig. 2<br />

(a) Eyes open, firm surface<br />

A/P axis<br />

15<br />

COP excursion (cm)<br />

0<br />

Exp. group Control group<br />

Pre-test<br />

Post-test<br />

22<br />

0<br />

Exp. group<br />

M/L axis<br />

Control group<br />

(b) Eyes open, s<strong>of</strong>t surface<br />

∗<br />

A/P axis<br />

15<br />

COP excursion (cm)<br />

0<br />

Exp. group Control group<br />

∗<br />

22<br />

0<br />

M/L axis<br />

Exp. group<br />

Control group<br />

(c) Eyes closed, firm surface<br />

A/P axis<br />

15<br />

COP excursion (cm)<br />

0<br />

Exp. group Control group<br />

22<br />

0<br />

M/L axis<br />

Exp. group<br />

Control group<br />

(d) Eyes closed, s<strong>of</strong>t surface<br />

A/P axis<br />

15<br />

COP excursion (cm)<br />

0<br />

Exp. group Control group<br />

22<br />

0<br />

M/L axis<br />

Exp. group<br />

Control group<br />

COP total excursion between pre- and post-test measures during sit-to-stand performed under four sensory conditions by experimental and control<br />

groups. Results for the A/P axis are shown on the left graphs and those for the M/L axis appear on the right. Note that the ordinal scales are the same<br />

across all sensory conditions. * Significant difference between pre- and post-test measures.<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


<strong>Balance</strong> <strong>training</strong> <strong>following</strong> <strong>stroke</strong> Bayouk et al. 57<br />

group and 12.0% for the control group. No significant<br />

main <strong>effects</strong> or group test interaction <strong>effects</strong> were found<br />

for this test.<br />

Discussion<br />

The results from this study indicated that a <strong>task</strong>-<strong>oriented</strong><br />

exercise program with altered sensory input was feasible<br />

and could significantly improve standing balance in<br />

hemiparetic subjects secondary to <strong>stroke</strong>. This effect<br />

was not found in hemiparetic subjects exercising without<br />

altered sensory input. Furthermore, the postural stability<br />

<strong>of</strong> <strong>stroke</strong> subjects during sit-to-stand was minimally<br />

affected by both types <strong>of</strong> <strong>training</strong>, but the walking speed<br />

<strong>of</strong> experimental and control group subjects significantly<br />

improved after exercise intervention.<br />

Effects <strong>of</strong> <strong>task</strong>-<strong>oriented</strong> <strong>exercises</strong> on balance<br />

Our results showed that the addition <strong>of</strong> a multisensory<br />

<strong>training</strong> component to the regular exercise program was<br />

required to obtain a significant improvement in standing<br />

balance <strong>of</strong> <strong>stroke</strong> subjects. In the absence <strong>of</strong> sensory<br />

<strong>training</strong>, very limited changes were observed for both<br />

static and dynamic balance <strong>task</strong>s. These results are in<br />

agreement with our previous study showing limited<br />

<strong>effects</strong> <strong>of</strong> <strong>task</strong>-<strong>oriented</strong> <strong>exercises</strong> without sensory <strong>training</strong><br />

on postural sway <strong>of</strong> <strong>stroke</strong> subjects during double-legged<br />

stance and sit-to-stance <strong>task</strong>s (Leroux, 2002). Even<br />

though <strong>stroke</strong> subjects could significantly improve their<br />

scores on functional measures <strong>of</strong> balance and mobility<br />

after such <strong>training</strong> (Dean et al., 2000; Eng et al., 2003;<br />

Leroux, 2005), these improvements did not translate into<br />

a reduction <strong>of</strong> the abnormally increased lateral sway<br />

exhibited by <strong>stroke</strong> subjects during double-legged stance<br />

and sit-to-stance <strong>task</strong>s (Leroux, 2002). This lack <strong>of</strong> effect<br />

tends to show that balance senses have to be specifically<br />

targeted when designing balance-re<strong>training</strong> programs for<br />

hemiparetic subjects.<br />

<strong>Balance</strong> improvement after multisensory <strong>training</strong><br />

<strong>Balance</strong> impairments <strong>following</strong> <strong>stroke</strong> have been associated<br />

with deficits in sensorimotor integration (Di Fabio<br />

and Badke, 1991) and an inability to select the pertinent<br />

sensory input (Bonan et al., 2004a,b). For instance, under<br />

conditions <strong>of</strong> sensory deprivation, it has been shown that<br />

<strong>stroke</strong> subjects presented with greater postural instability<br />

than healthy subjects <strong>of</strong> similar ages (Di Fabio and Badke,<br />

1991; Bonan et al., 2004a). In our study, the significant<br />

decrease in the M/L sway during standing for the control<br />

condition (eyes open, firm surface) after sensory <strong>training</strong><br />

was likely to be the result <strong>of</strong> the increased use <strong>of</strong><br />

somatosensory, visual and vestibular information when<br />

performing the various <strong>exercises</strong> under sensory deprivation<br />

conditions. This sensory compensation might have<br />

improved sensorimotor integration <strong>of</strong> postural control in<br />

the central nervous system, serving to activate and<br />

coordinate motor processes (e.g. action <strong>of</strong> the proper<br />

muscles synergies) (Hu and Woollacott, 1994a,b; Bonan<br />

et al., 2004b). Using a static standing balance protocol<br />

involving sensory manipulation <strong>of</strong> the visual, vestibular<br />

and somatosensory systems, Hu and Woollacott (1994a)<br />

reported important changes in muscle and movement<br />

characteristics <strong>of</strong> postural responses after 10 h <strong>of</strong> <strong>training</strong><br />

in healthy older adults. The changes were characterized<br />

by a reduction in the latency <strong>of</strong> muscle activation and<br />

kinematic patterns, and by a decrease <strong>of</strong> the response<br />

frequency <strong>of</strong> antagonist muscles in reaction to platform<br />

translation perturbations. Bonan et al. (2004b) also<br />

reported that balance improved more after rehabilitation<br />

with visual deprivation than with free vision in <strong>stroke</strong><br />

subjects. These results suggest that enhanced multisensory<br />

interaction resulting from sensory <strong>training</strong> could<br />

have improved the sensorimotor integration <strong>of</strong> postural<br />

stability <strong>of</strong> hemiparetic subjects secondary to <strong>stroke</strong>.<br />

Our findings showed that standing balance was improved<br />

under conditions <strong>of</strong> sensory deprivation after the multisensory<br />

<strong>training</strong>. A significant decrease in A/P sway was<br />

found under the eyes open, s<strong>of</strong>t surface condition, and a<br />

trend <strong>of</strong> improvement in M/L sway was observed for the<br />

eyes open, s<strong>of</strong>t surface and the eyes closed, firm surface<br />

conditions. The lack <strong>of</strong> significance was probably due to<br />

the small sample size since six subjects out <strong>of</strong> eight<br />

showed a decrease in M/L sway for the latter sensory<br />

conditions. One possible mechanism for this improvement<br />

is that <strong>stroke</strong> subjects were able to select reliable<br />

sensory information for postural control more efficiently<br />

<strong>following</strong> the multisensory <strong>training</strong> (Hu and Woollacott,<br />

1994a,b; Bonan et al., 2004b). Bonan et al. (2004a)<br />

suggested that postural imbalance might be due more<br />

to a higher-level inability to select reliable sensory input<br />

than to elementary sensory impairment. When the<br />

subjects were standing on the s<strong>of</strong>t surface, their balance<br />

was challenged due to the unstable surface and the lack<br />

<strong>of</strong> accurate somatosensory information. In this condition,<br />

the pertinent sensory inputs for postural stability might<br />

come from the vestibular and visual systems. Our results<br />

suggest that these compensatory mechanisms can occur<br />

and be improved with proper sensory <strong>training</strong> after a<br />

cerebrovascular accident.<br />

As opposed to standing, changes in postural sways during<br />

sit-to-stand were very limited after exercising with and<br />

without sensory <strong>training</strong>. This lack <strong>of</strong> effect may be<br />

explained by several factors. Performing a sit-to-stand<br />

movement requires a great amount <strong>of</strong> coordination and<br />

muscular strength from all regions <strong>of</strong> the body (Engardt<br />

and Olsson, 1992; Millington et al., 1992; Vander Linden<br />

et al., 1994; Engardt et al., 1995; Kerr et al., 1997). These<br />

characteristics are highly stressed when performing<br />

repetitive sit-to-stand movements, and are likely to<br />

respond quickly and favorably to short-term <strong>training</strong>.<br />

Previous studies have shown that <strong>following</strong> 4–8 weeks <strong>of</strong><br />

<strong>task</strong>-<strong>oriented</strong> <strong>exercises</strong>, <strong>stroke</strong> subjects could perform<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


58 International Journal <strong>of</strong> Rehabilitation Research 2006, Vol 29 No 1<br />

this movement faster and with better weight-bearing<br />

symmetry from lower limbs (Dean et al., 2000; Leroux,<br />

2002). However, these changes were not accompanied by<br />

a reduction in the abnormally elevated M/L sway<br />

(Leroux, 2002). In the present study, the fact that the<br />

postural sway <strong>of</strong> experimental group subjects was in a<br />

normal range for sway at pre-test when compared with<br />

age- and sex-matched healthy subjects (Leroux, 2002)<br />

might have also influenced the possible improvement<br />

that can be induced by multisensory <strong>training</strong> or other<br />

type <strong>of</strong> <strong>training</strong> programs. As for other types <strong>of</strong> <strong>training</strong><br />

regiments, we believe that the <strong>training</strong> volume is the<br />

most important factor to consider. Because <strong>of</strong> the<br />

restricted allotted time devoted to the sensory <strong>training</strong><br />

and the fatigue component when performing sit-to-stand<br />

movements, the participants spent more time practicing<br />

double-legged stance than sit-to-stand. On the other<br />

hand, Cheng et al. (2001) showed that the postural sway<br />

<strong>of</strong> <strong>stroke</strong> individuals could be improved <strong>following</strong><br />

repetitive sit-to-stand <strong>training</strong> through use <strong>of</strong> a standing<br />

bi<strong>of</strong>eedback trainer but this required a more intense<br />

program (5 times/week).<br />

Improvement in functional performance<br />

The 10-m walking test was included to obtain an<br />

estimate <strong>of</strong> the changes in the functional performance<br />

<strong>of</strong> <strong>stroke</strong> subjects after exercise intervention. The<br />

improvements obtained in this test could have a positive<br />

impact for maintaining physical independence in <strong>stroke</strong><br />

subjects. When converted into walking speed, experimental<br />

group subjects showed a change from 0.48 to<br />

0.55 m/s and control group subjects from 0.45 to 0.51 m/s<br />

when performing the 10-m walking test after exercise<br />

<strong>training</strong>. These changes are probably significant from a<br />

clinical point <strong>of</strong> view, Perry et al. (1995) having<br />

demonstrated that a walking speed <strong>of</strong> 0.4 ± 0.18 m/s or<br />

less restricts a <strong>stroke</strong> individual’s capacity for community<br />

ambulation.<br />

Our findings showed that the addition <strong>of</strong> a sensory<br />

component to the <strong>task</strong>-<strong>oriented</strong> exercise program did not<br />

lead to greater improvement in walking speed <strong>of</strong><br />

hemiparetic subjects. The transference <strong>of</strong> balance <strong>training</strong><br />

to walking function has not been clearly established<br />

and remains a controversial issue in the literature<br />

(Nichols, 1997). It is interesting to note that despite<br />

the fact that experimental group subjects devoted more<br />

time practicing static <strong>task</strong>s like double-legged standing,<br />

they improved their walking speed to the same extent as<br />

control group subjects. We believe that this increased<br />

walking speed was likely to be the result <strong>of</strong> practicing<br />

<strong>task</strong>s involving a mobility component.<br />

Conclusion<br />

Our results showed that a <strong>task</strong>-<strong>oriented</strong> exercise program<br />

assisted by sensory manipulation was feasible and more<br />

effective for the improvement <strong>of</strong> the standing balance <strong>of</strong><br />

hemiparetic subjects secondary to <strong>stroke</strong> than a conventional<br />

<strong>task</strong>-<strong>oriented</strong> program. The significant improvements<br />

in mediolateral sway when performing a standing<br />

stance with eyes open on a firm surface further suggest an<br />

improvement in the sensorimotor integration <strong>following</strong><br />

the multisensory program.<br />

Acknowledgements<br />

The authors wish to thank Maria Fragapane (Cummings<br />

Jewish Centre for Seniors) for the conceptualization and<br />

supervision <strong>of</strong> the exercise program, and for her assistance<br />

in the development <strong>of</strong> the multisensory component <strong>of</strong><br />

the program. Funding for this study was provided by the<br />

Faculty <strong>of</strong> Arts and Science <strong>of</strong> Concordia University (no.<br />

NS2001-001).<br />

References<br />

Ahroni JH, Boyko EJ, Forsberg R (1998). Reliability <strong>of</strong> F-scan in-shoe<br />

measurements <strong>of</strong> plantar pressure. Foot Ankle Int 19:668–673.<br />

Bonan IV, Colle FM, Guichard JP, Vicaut E, Eisenfisz M, Tran Ba HP, et al. (2004a).<br />

Reliance on visual information after <strong>stroke</strong>. Part I: balance on dynamic<br />

posturography. Arch Phys Med Rehabil 85:268–273.<br />

Bonan IV, Yelnik AP, Colle FM, Michaud C, Normand E, Panigot B, et al. (2004b).<br />

Reliance on visual information after <strong>stroke</strong>. Part II: effectiveness <strong>of</strong> a balance<br />

rehabilitation program with visual cue deprivation after <strong>stroke</strong>. A randomized<br />

controlled trial. Arch Phys Med Rehabil 85:274–278.<br />

Carr JH, Shepherd RB (1998). Neurological rehabilitation: optimizing motor<br />

performance. Oxford: Butterworth Heinemann.<br />

Caseli A, Pham H, Giurini JM, Armstrong DG, Veves A (2002). The forefoot-torearfoot<br />

plantar pressure ratio is increased in severe diabetic neuropathy and<br />

can predict foot ulceration. Diabetes Care 25:1066–1071.<br />

Cheng PT, Liaw MY, Wong MK, Tang FT, Lee MY, Lin PS (1998). The sit-to-stand<br />

movement in <strong>stroke</strong> patients and its correlation with falling. Arch Phys Med<br />

Rehabil 79:1043–1046.<br />

Cheng PT, Wu SH, Liaw MY, Wong AM, Tang FT (2001). Symmetrical bodyweight<br />

distribution <strong>training</strong> in <strong>stroke</strong> patients and its effect on fall prevention.<br />

Arch Phys Med Rehabil 82:1650–1654.<br />

Dean CM, Richards CL, Malouin F (2000). Task-related circuit <strong>training</strong> improves<br />

performance <strong>of</strong> locomotor <strong>task</strong>s in chronic <strong>stroke</strong>: a randomized, controlled<br />

pilot trial. Arch Phys Med Rehabil 81:409–417.<br />

Di Fabio RP, Badke MB (1990). Relationship <strong>of</strong> sensory organization to balance<br />

function in patients with hemiplegia. Phys Ther 70:542–548.<br />

Di Fabio RP, Badke MB (1991). Stance duration under sensory conflict<br />

conditions in patients with hemiplegia. Arch Phys Med Rehabil 72:292–295.<br />

Ducic I, Short KW, Dellon AL (2004). Relationship between loss <strong>of</strong> pedal<br />

sensibility, balance, and falls in patients with peripheral neuropathy. Ann Plast<br />

Surg 52:535–540.<br />

Eng JJ, Chu KS (2002). Reliability and comparison <strong>of</strong> weight-bearing ability<br />

during standing <strong>task</strong>s for individuals with chronic <strong>stroke</strong>. Arch Phys Med<br />

Rehabil 83:1138–1144.<br />

Eng JJ, Chu KS, Maria KC, Dawson AS, Carswell A, Hepburn KE (2003). A<br />

community-based group exercise program for persons with chronic <strong>stroke</strong>.<br />

Med Sci Sports Exerc 35:1271–1278.<br />

Engardt M, Knutsson E, Jonsson M, Sternhag M (1995). Dynamic muscle<br />

strength <strong>training</strong> in <strong>stroke</strong> patients: <strong>effects</strong> on knee extension torque,<br />

electromyographic activity, and motor function. Arch Phys Med Rehabil<br />

76:419–425.<br />

Engardt M, Olsson E (1992). Body weight-bearing while rising and sitting down<br />

in patients with <strong>stroke</strong>. Scand J Rehabil Med 24:67–74.<br />

Goldie PA, Bach TM, Evans OM (1989). Force platform measures for evaluating<br />

postural control: reliability and validity. Arch Phys Med Rehabil 70:510–517.<br />

Goldie PA, Evans OM, Bach TM (1992). Steadiness in one-legged stance:<br />

development <strong>of</strong> a reliable force-platform testing procedure. Arch Phys Med<br />

Rehabil 73:348–354.<br />

Gowland C, Van Hullenaar S, Torresin W, Moreland J, Vanspall B, Barreca S, et al.<br />

(1995). Chedoke–McMaster <strong>stroke</strong> assessment: development, validation<br />

and administration manual. Hamilton: Chedoke–McMaster Hospitals and<br />

McMaster University.<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


<strong>Balance</strong> <strong>training</strong> <strong>following</strong> <strong>stroke</strong> Bayouk et al. 59<br />

Grisso JA, Kelsey JL, Strom BL, Chiu GY, Maislin G, O’Brien LA, et al. (1991).<br />

Risk factors for falls as a cause <strong>of</strong> hip fracture in women. The Northeast Hip<br />

Fracture Study Group. N Engl J Med 324:1326–1331.<br />

Henderson JL, Price SH, Brandstater ME, Mandac BR (1994). Efficacy <strong>of</strong> three<br />

measures to relieve pressure in seated persons with spinal cord injury. Arch<br />

Phys Med Rehabil 75:535–539.<br />

Hsiao H, Guan J, Weatherly M (2002). Accuracy and precision <strong>of</strong> two in-shoe<br />

pressure measurement systems. Ergonomics 45:537–555.<br />

Hu MH, Woollacott MH (1994a). Multisensory <strong>training</strong> <strong>of</strong> standing balance in<br />

older adults: I. Postural stability and one-leg stance balance. J Gerontol<br />

49:M52–M61.<br />

Hu MH, Woollacott MH (1994b). Multisensory <strong>training</strong> <strong>of</strong> standing balance in<br />

older adults: II. Kinematic and electromyographic postural responses.<br />

J Gerontol 49:M62–M71.<br />

Karlsson A, Frykberg G (2000). Correlations between force plate measures for<br />

assessment <strong>of</strong> balance. Clin Biomech (Bristol, Avon) 15:365–369.<br />

Kerr KM, White JA, Barr DA, Mollan RA (1997). Analysis <strong>of</strong> the sit-stand-sit<br />

movement cycle in normal subjects. Clin Biomech (Bristol, Avon) 12:<br />

236–245.<br />

Leroux A (2002). Improvements in balance and mobility after exercise <strong>training</strong> in<br />

elderly individuals with <strong>stroke</strong>. Arch Phys Med Rehabil 83:1492.<br />

Leroux A (2005). Exercise <strong>training</strong> to improve motor performance in chronic<br />

<strong>stroke</strong>: <strong>effects</strong> <strong>of</strong> a community-based exercise program. Int J Rehabil Res<br />

28:17–23.<br />

Millington PJ, Myklebust BM, Shambes GM (1992). Biomechanical analysis <strong>of</strong> the<br />

sit-to-stand motion in elderly persons. Arch Phys Med Rehabil 73:609–617.<br />

Niam S, Cheung W, Sullivan PE, Kent S, Gu X (1999). <strong>Balance</strong> and physical<br />

impairments after <strong>stroke</strong>. Arch Phys Med Rehabil 80:1227–1233.<br />

Nichols DS (1997). <strong>Balance</strong> re<strong>training</strong> after <strong>stroke</strong> using force platform<br />

bi<strong>of</strong>eedback. Phys Ther 77:553–558.<br />

Nyberg L, Gustafson Y (1995). Patient falls in <strong>stroke</strong> rehabilitation. A challenge to<br />

rehabilitation strategies. Stroke 26:838–42.<br />

Palmieri RM, Ingersoll CD, Stone MB, Krause BA (2002). Center-<strong>of</strong>-pressure<br />

parameters used in the assessment <strong>of</strong> postural control. Journal <strong>of</strong> Sport<br />

Rehabilitation 11:51–66.<br />

Perry J, Garrett M, Gronley JK, Mulroy SJ (1995). Classification <strong>of</strong> walking<br />

handicap in the <strong>stroke</strong> population. Stroke 26:982–989.<br />

Pinet H, Boucher JP, Leroux A (2003). Test–retest reliability <strong>of</strong> the sit-to-stand<br />

<strong>task</strong> in individuals with chronic <strong>stroke</strong>. Presentation at the Annual Fall<br />

Conference <strong>of</strong> the New England American College <strong>of</strong> Sports Medicine,<br />

Rhode Island, November.<br />

Randolph AL, Nelson M, Akkapeddi S, Levin A, Alexandrescu R (2000). Reliability<br />

<strong>of</strong> measurements <strong>of</strong> pressures applied on the foot during walking<br />

by a computerized insole sensor system. Arch Phys Med Rehabil 81:<br />

573–578.<br />

Salbach NM, Mayo NE, Wood-Dauphinee S, Hanley JA, Richards CL, Cote R<br />

(2004). A <strong>task</strong>-orientated intervention enhances walking distance and speed<br />

in the first year post <strong>stroke</strong>: a randomized controlled trial. Clin Rehabil<br />

18:509–519.<br />

Shumway-Cook A, Anson D, Haller S (1988). Postural sway bi<strong>of</strong>eedback: its<br />

effect on reestablishing stance stability in hemiplegic patients. Arch Phys<br />

Med Rehabil 69:395–400.<br />

Smith BT, Coiro DJ, Finson R, Betz RR, McCarthy J (2002). Evaluation <strong>of</strong> forcesensing<br />

resistors for gait event detection to trigger electrical stimulation to<br />

improve walking in the child with cerebral palsy. IEEE Trans Neural Syst<br />

Rehabil Eng 10:22–29.<br />

Smith DL, Akhtar AJ, Garraway WM (1983). Proprioception and spatial neglect<br />

after <strong>stroke</strong>. Age Ageing 12:63–69.<br />

Vander Linden DW, Brunt D, McCulloch MU (1994). Variant and invariant<br />

characteristics <strong>of</strong> the sit-to-stand <strong>task</strong> in healthy elderly adults. Arch Phys<br />

Med Rehabil 75:653–660.<br />

Winstein CJ, Gardner ER, McNeal DR, Barto PS, Nicholson DE (1989). Standing<br />

balance <strong>training</strong>: effect on balance and locomotion in hemiparetic adults.<br />

Arch Phys Med Rehabil 70:755–762.<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!