25.02.2015 Views

Coulomb Blockade and 'Orthodox' Theory of Single-electron Device

Coulomb Blockade and 'Orthodox' Theory of Single-electron Device

Coulomb Blockade and 'Orthodox' Theory of Single-electron Device

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Coulomb</strong> <strong>Blockade</strong> <strong>and</strong><br />

<strong>Coulomb</strong> staircase<br />

Zhang Jun<br />

01/06/2004


Introduction<br />

<strong>Single</strong>-<strong>electron</strong> effect in mesoscopics<br />

world<br />

Dimension less than ~30nm<br />

Main component <strong>of</strong> single-<strong>electron</strong>ics:<br />

tunnel junction with a very small<br />

capacitance <strong>and</strong> a resistance


Realization <strong>of</strong> these<br />

junctions<br />

Metal-insulator-metal structure<br />

GaAs quantum dots<br />

Silicon structures<br />

Large molecules with conducting cores


<strong>Coulomb</strong> isl<strong>and</strong>


Change <strong>of</strong> voltage<br />

across the junction<br />

The tunneling <strong>of</strong> only one <strong>electron</strong> may<br />

produce a noticeable change e/C <strong>of</strong> the<br />

voltage across the junction.<br />

<strong>Coulomb</strong> blockade: suppression <strong>of</strong><br />

tunneling at voltages |V|


<strong>Coulomb</strong> blockade<br />

Capacitor charge<br />

Q1=C1*V1<br />

Q2=C2*V2<br />

The charge on the<br />

isl<strong>and</strong>,<br />

Q=Q2-Q1= -ne<br />

n=n1-n2


Voltage drops <strong>of</strong> the<br />

tunneling junction<br />

V1=(C2Va+ne)/Ceq<br />

V2=(C1Va-ne)/Ceq<br />

Ceq=C1+C2


Electrostatic energy<br />

stored in the capacitors<br />

Es=Q 12<br />

/2C 1<br />

+Q 22 /2C 2<br />

Es=(C 1<br />

C 2<br />

Va 2 +Q 2 )/2C eq


The work done by the<br />

voltage source<br />

Ws=∫dtVaI(t)=VaΔQ<br />

One <strong>electron</strong> tunneling through 2<br />

so that n2’=n2+1, n’=n-1, Q’=Q+e,<br />

V1’=V1-e/Ceq, ΔQ = -eC1/Ceq<br />

Result: Ws(n2)=-n2eVaC1/Ceq<br />

Ws(n1)=-n1eVaC2/Ceq


The total energy<br />

E(n1,n2)<br />

=Es-Ws<br />

=(C 1<br />

C 2<br />

Va 2 +Q 2 )/2C eq<br />

+eVa(C1n2+C2n1)/Ceq


The change in energy <strong>of</strong><br />

the system with a<br />

particle tunneling<br />

ΔE 2+ =E(n 1<br />

,n 2<br />

)-E(n 1<br />

,n 2<br />

-1)<br />

=Q 2 /2Ceq-(Q+e) 2 /2Ceq+eVaC 1<br />

/Ceq<br />

=e/Ceq[-e/2+(en+VaC 1<br />

)]


When the isl<strong>and</strong> is<br />

initially neutral (n=0)<br />

ΔE2= -e 2 /2Ceq+eVaC1/Ceq >0<br />

For C1=C2=C, the requirement<br />

becomes simply |Va|>e/Ceq


B<strong>and</strong> diagram


<strong>Coulomb</strong> staircase


Thank You!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!