25.02.2015 Views

近傍磁界の測定による アンテナ電流分布の推定 河村 暁子 電気通信 ...

近傍磁界の測定による アンテナ電流分布の推定 河村 暁子 電気通信 ...

近傍磁界の測定による アンテナ電流分布の推定 河村 暁子 電気通信 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

()


()


2007


Estimation of Current Distributions on Antennas<br />

by Measuring the Magnetic Near Fields<br />

Akiko KOHMURA<br />

Abstract<br />

The estimation of current distributions on antennas is required to make clear<br />

behaviors of designed and fabricated antennas. It also contributes to specify unexpected<br />

electromagnetic sources and to cope with the emission problems. Generally,<br />

the requirement arises in practical uses, for example, in the case of trouble on an<br />

attachment circuit and so on. Therefore, it is necessary to investigate these issues<br />

not only by computer simulations in ideal state but also by measurements in the<br />

practical state. However, it is dicult to measure the current directly, because a<br />

current sensor cannot touch an antenna under test in order to avoid disturbing its<br />

behavior.<br />

In this paper, a method for estimating the current with the measurements of<br />

magnetic near eld is proposed. The method has the potential to estimate the<br />

distributions of the complex current values (both real and imaginary part). The<br />

objective in this study is to conrm an availability of the method by computer<br />

simulations and experiments.<br />

The principle of estimation is based on an expression of the relationship between<br />

the current and the magnetic near eld derived by Maxwell s equations. The<br />

objective current is composed of small dipole segments with constant current. The<br />

magnetic near eld can be expressed as a composition of magnetic elds made from<br />

these segments. Thus, the current and the magnetic near eld are related in linear<br />

equations. It means that the current distributions can be estimated by solving the<br />

linear equations with the measured magnetic near eld.<br />

In this estimation method, it is important to obtain magnetic eld data with suf-<br />

cient small errors to solve the inverse problem stably. A double-output shielded<br />

loop probe is introduced as a small magnetic eld sensor. The omni-directional


characteristic of the small loop is appropriate to the magnetic near eld measurement<br />

for this estimation. A novel determination method of the magnetic complex<br />

antenna factor (M-CAF), that is a characteristic of eld-measurement antennas,<br />

for the introduced probe is also proposed. The M-CAF is dened as a ratio of<br />

incident magnetic eld to antenna output voltage. The magnetic near eld must<br />

be measured accurately to estimate the current distributions. The measurement<br />

accuracy depends on the determination of the M-CAF. The proposed determination<br />

method is based on an equivalent circuit of the small loop probe. The M-CAF<br />

can be determined with the calculated eective length and the reection coecient<br />

at the output port.<br />

As the rst step, the current distribution on an element of a simple dipole antenna<br />

is estimated from the magnetic near eld measured by the double-output<br />

shielded loop probe. Appropriate positions of the probe, which does not disturb<br />

the current and also provides enough output amplitude, are investigated using<br />

computer simulations considering the existence of the small probe. The estimated<br />

complex current distribution and the values are conrmed by a comparison to the<br />

theoretical current distributions calculated by the method of moments. In this<br />

comparison, a new technique to calibrate the excited voltage of the dipole element<br />

is developed. As the result, it is made clear that the presented method can estimate<br />

not only the current distribution form but also its absolute values.<br />

Furthermore, current distributions of leaking along a surface on feeder lines of<br />

dipole antennas are also estimated. The method can estimate the small currents<br />

of leakages. The usefulness of the estimation method in the analysis of actual antennas<br />

and the specication of unexpected emissions is shown by the experimental<br />

investigations.<br />

Finally, the current estimation method is extended for two-dimensional objects.<br />

The method is based on the characteristic of the small loop probe, that is, only the<br />

magnetic component perpendicular to the loop plane is measured. The possibility<br />

is examined through the estimation of current distributions on a two-element Yagi-<br />

Uda antenna. This result can be the base of more general two-dimensional current<br />

estimations in future.


Maxwell <br />

<br />

<br />

1 <br />

<br />

<br />

<br />

<br />

2 <br />

<br />

<br />

(Magnetic Complex Antenna Factor)


1 <br />

<br />

2 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2 <br />

2 <br />

<br />

<br />

<br />

2


1 1<br />

1.1 ............. 1<br />

1.2 .......................... 3<br />

1.3 .............................. 4<br />

1.4 .............................. 4<br />

2 6<br />

2.1 ................................. 6<br />

2.2 ................... 6<br />

2.3 ................................. 10<br />

3 2 11<br />

3.1 ................................. 11<br />

3.2 ................... 12<br />

3.3 ..................... 15<br />

3.4 ............ 16<br />

3.4.1 3 .......................... 16<br />

3.4.2 ...................... 18<br />

3.5 2 <br />

.......................... 20<br />

3.5.1 ........................... 21<br />

3.5.2 ........... 22<br />

3.6 ............................. 24<br />

3.6.1 ........................ 24<br />

3.6.2 ............................. 27<br />

3.6.3 ................. 31<br />

3.7 ............ 34<br />

i


3.7.1 3 ...... 34<br />

3.7.2 .................... 36<br />

3.8 ................................. 39<br />

4 40<br />

4.1 ................................. 40<br />

4.2 .............................. 41<br />

4.3 ......................... 44<br />

4.4 .......................... 47<br />

4.5 ....................... 49<br />

4.5.1 S .......... 49<br />

4.5.2 .................... 55<br />

4.5.3 ..................... 60<br />

4.6 .................. 61<br />

4.7 ................................. 62<br />

5 63<br />

5.1 ................................. 63<br />

5.2 ............... 64<br />

5.3 ........ 65<br />

5.3.1 ............ 65<br />

5.3.2 .... 67<br />

5.4 ..... 68<br />

5.5 ..... 68<br />

5.6 ................................. 72<br />

6 2 73<br />

6.1 ................................. 73<br />

6.2 2 ........................ 74<br />

6.3 2 ............. 80<br />

6.4 ....... 81<br />

6.5 2 ....... 85<br />

6.6 ................................. 90<br />

7 91<br />

ii


92<br />

A 93<br />

A.1 ................................. 93<br />

A.2 ......................... 94<br />

A.3 ....................... 95<br />

B 98<br />

C 3 100<br />

D 102<br />

D.1 .................................. 102<br />

D.2 ..................... 102<br />

D.3 .......... 104<br />

D.4 <br />

................................. 108<br />

E 110<br />

F 1+j0V 114<br />

G 2 117<br />

G.1 ....................... 117<br />

G.2 .......................... 122<br />

<br />

<br />

<br />

iii


1 <br />

<br />

1.1 <br />

1901 Marconi 1 <br />

20 <br />

LAN(Local Area Network) <br />

<br />

<br />

<br />

<br />

(VCCI: Voluntary Control Council for Interference by Data Processing Equipment<br />

and Electronic Oce Machines) IEC:<br />

International Electrotechnical Commission) CISPR(<br />

:Comite International Special des Perturbations Radioelectriques) <br />

<br />

<br />

[1][2][3]<br />

<br />

[4][5] 1MHz3THz <br />

<br />

<br />

1


1820 Ampere <br />

Faraday (1831 <br />

1864 Maxwell 4 <br />

1888 <br />

Hertz <br />

Marconi <br />

Maxwell <br />

1960 (Method<br />

of Moments)[6] FDTD (Finite-Dierence Time Domain method)[7] <br />

1900 <br />

<br />

VSWRVoltage Standing Wave Ratio: <br />

<br />

<br />

<br />

<br />

1) <br />

2) <br />

3) <br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

2) <br />

<br />

<br />

<br />

<br />

2


UWB(Ultra Wide Band: ) PLC(Power<br />

Line Communications) <br />

<br />

<br />

<br />

<br />

1.2 <br />

<br />

2 <br />

<br />

[8]<br />

[9][10] LSI <br />

<br />

Maxwell<br />

<br />

[11][12] [13]<br />

[8] <br />

Maxwell <br />

<br />

3


1.3 <br />

Maxwell <br />

<br />

<br />

<br />

<br />

<br />

<br />

1.4 <br />

7 2 <br />

2 <br />

<br />

<br />

3 <br />

2 <br />

<br />

<br />

<br />

4 2 <br />

3 <br />

3 <br />

<br />

<br />

<br />

4


5 4 <br />

<br />

<br />

6 1<br />

2 <br />

1 2 <br />

2 <br />

7 <br />

5


2 <br />

<br />

2.1 <br />

<br />

<br />

<br />

<br />

<br />

1 <br />

<br />

<br />

2.2 <br />

2.1 y I <br />

1l r <br />

P ' H ' [14]<br />

H ' = I1le0jkr<br />

4<br />

jk<br />

r + 1 r 2 !<br />

sin (2.1)<br />

k y ' <br />

<br />

6


x<br />

ϕ<br />

∆l<br />

I<br />

θ<br />

r<br />

P<br />

z<br />

y<br />

H x<br />

H x = H ϕ<br />

H ϕ<br />

sin ϕ<br />

2.1: <br />

2.2 y <br />

2.1 <br />

y N<br />

1ly d <br />

M <br />

2 3 2<br />

32<br />

3<br />

H 1<br />

11 111 1N<br />

6 .<br />

4<br />

7<br />

5 = I 1<br />

6 .<br />

.. . .<br />

4<br />

7<br />

5<br />

6 .<br />

4<br />

7<br />

5<br />

H M M 1 111 MN I N<br />

(2.2)<br />

[] mn (m =1; 2;:::;M; n =1; 2;:::;N) <br />

(2.1) [14] 2.2 <br />

x sin = d=r mn <br />

' = =2 <br />

d 1 1l 1 e0jkrmn jk<br />

mn = + 1<br />

2<br />

4r mn r mn r mn<br />

(m =1; 2; :::; M; n =1; 2;:::;N)<br />

7<br />

!<br />

(2.3)


I n ( n =<br />

1; 2; 3; ;N) n H m (m =1,2,3,, M) m <br />

r mn m n <br />

<br />

I n (n =1,2,3,, N) <br />

(2.2) 1 <br />

<br />

M N <br />

<br />

[15]M >N<br />

<br />

(2.2) <br />

[] <br />

[] H [16][17]<br />

2<br />

3H2<br />

3 2<br />

3H2<br />

32<br />

3<br />

11 111 1N<br />

.<br />

6 . . H 1<br />

. .<br />

4<br />

7<br />

11 111 1N<br />

5<br />

6 .<br />

4<br />

7<br />

5 = .<br />

6 . . 11 111 1N<br />

. .<br />

4<br />

7<br />

.<br />

5<br />

6 . . I 1<br />

. .<br />

4<br />

7<br />

5<br />

6 .<br />

4<br />

7<br />

5 (2.4)<br />

M 1 111 MN H M M1 111 MN M 1 111 MN I N<br />

(M >N)<br />

(2.2), (2.4) 1 <br />

[16] B) <br />

8


y<br />

Dipole antenna<br />

I N<br />

H M<br />

x<br />

I n<br />

r mn<br />

Feeding<br />

terminal<br />

z<br />

H m<br />

∆l<br />

I 1<br />

H 1<br />

Scanned<br />

Magnetic<br />

fields sensor<br />

d<br />

2.2: <br />

9


2.3 <br />

<br />

<br />

<br />

1 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10


3 <br />

2<br />

3.1 <br />

<br />

2 <br />

<br />

2 <br />

2 2 <br />

<br />

<br />

<br />

<br />

<br />

(M-CAF) <br />

<br />

<br />

3 [18] <br />

S <br />

<br />

<br />

FTF 3 <br />

11


[19][20]<br />

<br />

<br />

<br />

2 <br />

<br />

<br />

<br />

3.2 <br />

3.1(a), (b) <br />

<br />

<br />

Direction Of Arrival:DOA<br />

[21]<br />

<br />

<br />

<br />

3.1(a) <br />

<br />

3.1(a) <br />

<br />

<br />

[22] <br />

3.1(a) <br />

3.1(b) <br />

3.2<br />

<br />

<br />

[23] <br />

<br />

12


2 <br />

<br />

2 <br />

<br />

13


Magnetic<br />

field<br />

Loop<br />

Conductor<br />

Coaxial line<br />

Output Port<br />

Inner conductor<br />

Outer conductor<br />

(a) Single-output<br />

Magnetic<br />

field<br />

Loop<br />

Two coaxial lines<br />

Port 1<br />

Slot<br />

L<br />

Inner conductor<br />

Outer conductor<br />

(b) Double-output<br />

Port 2<br />

3.1: <br />

Slot<br />

Semi-rigid cable<br />

E<br />

(a) Behaviors of current around the loop<br />

E<br />

Outer conductor<br />

Inner conductor<br />

-<br />

+<br />

+<br />

I S<br />

-<br />

+<br />

-<br />

-<br />

Slot<br />

+<br />

(b) Current and electric potential focused on the slot<br />

3.2: 2 <br />

14


Loop element<br />

Current I O<br />

H<br />

Coupling<br />

circuit<br />

Z 0<br />

Z L<br />

Transmission<br />

Line<br />

Matched<br />

Load<br />

(Z L = Z 0 )<br />

3.3: <br />

3.3 <br />

3.3 Z 0 <br />

!<br />

H(!) Z L = Z 0 I O (!) <br />

F M (!) = H(!)<br />

I O (!)<br />

(3.1)<br />

3.1<br />

F M I O <br />

H H(!)=F M (!) 2 I O (!) <br />

<br />

E(!) V O (!) <br />

F E (!) <br />

F E (!) = E(!)<br />

V O (!)<br />

(3.2)<br />

15


F E (!) F M (!) <br />

(120 []) Z 0 <br />

3.4 <br />

3 <br />

[18] [20] 3 <br />

<br />

(Field Transfer Factor; FTF) <br />

<br />

<br />

<br />

3.4.1 3 <br />

3 (3-antenna method) 3 <br />

S S 21 <br />

3 2 <br />

<br />

<br />

3.4 3 3 <br />

2 S S 21 ]i <br />

]j S S 21 A ji (i; j =1; 2; 3) <br />

F M1 ;F M 2 ;F M3 <br />

]2 <br />

F M 1 =<br />

vu<br />

u<br />

t jZ 0A 23 (R)e 0jkR<br />

v<br />

u<br />

0 A 21 (R)A 13 (R)R<br />

F M 2 = t jZ 0A 13 (R)e 0jkR<br />

0 A 23 (R)A 21 (R)R<br />

F M 3 =<br />

vu<br />

u<br />

t jZ 0A 21 (R)e 0jkR<br />

0 A 13 (R)A 23 (R)R<br />

(3.3)<br />

(3.4)<br />

(3.5)<br />

R 0 <br />

16


(=120 [])Z 0 k <br />

k =2= <br />

(3.3) (3.5) <br />

<br />

0 =Z 0 <br />

3 <br />

<br />

(3.3) (3.5) 090 90 <br />

<br />

3.4.2 <br />

3 <br />

S S 21 R <br />

<br />

<br />

S 21 <br />

3 S <br />

<br />

[6] S <br />

A 21 S 21 rR <br />

q(r; R) <br />

q(r;R)= A 21(R)<br />

A 21 (r)<br />

(3.6)<br />

A 21 K K <br />

<br />

q(r;R) = A 21(R)<br />

A 21 (r)<br />

'<br />

'<br />

S 21(R)K<br />

S 21 (r)K<br />

S 21(R)<br />

S 21 (r)<br />

(3.7)<br />

S <br />

<br />

18


(3.6) <br />

A 21 (R) =q(r; R) 1 A 21 (r) (3.8)<br />

S <br />

S <br />

(3.3) (3.5) <br />

<br />

19


1<br />

Coaxial Coaxial<br />

2<br />

3 4<br />

-<br />

+<br />

Z a<br />

V O<br />

Z 0 Z 0 , β<br />

Z 0 , β Z 0<br />

Slot<br />

1‘ 2‘<br />

3‘ 4‘<br />

+<br />

-<br />

L<br />

L<br />

(a)<br />

I S<br />

V O<br />

Z a<br />

3<br />

4<br />

+<br />

Za ⋅ I S<br />

Z 0 , β<br />

Z 0 V O<br />

3‘<br />

4‘<br />

Z<br />

-<br />

0<br />

L<br />

(b)<br />

3.5: 2 <br />

3.5 2 <br />

<br />

3.1(b) 2 <br />

3.5 <br />

L <br />

I S Z a <br />

2 <br />

Z 0 2-2'<br />

3-3' 1-1' 4-4' Z 0 <br />

<br />

20


V<br />

O<br />

= l eE<br />

(a) The effective length in general definition<br />

I ′<br />

S =<br />

l e H<br />

(b) The effective length in this study<br />

3.6: <br />

3.5.1 <br />

H I S <br />

3.9 l 0 e <br />

I S (!) =l 0 e<br />

(!) 1 H(!) (3.9)<br />

l e E(!) V O (!) <br />

V O (!) =l e 1 E(!) (3.10)<br />

[24]3.9 3.6 <br />

(Thevenin) (Norton) <br />

(120 []) <br />

3.9 l 0 ""<br />

e<br />

21


3.5.2 <br />

3.5 2 <br />

2<br />

1 <br />

3.2 2 <br />

2 <br />

2 <br />

1 2 <br />

2 <br />

<br />

2 I O V O V O <br />

<br />

I O (!) = V O(!) 0f0V O (!)g<br />

Z 0<br />

1 1 2<br />

(3.11)<br />

3.1<br />

F M (!) = I S(!)Z 0<br />

l 0 e(!)V O (!)<br />

(3.12)<br />

3.5(a) 3-3' 3.5(b) <br />

3.12<br />

F M (!) = 1 ( )<br />

le 0 (!) 1+ 2Z 0<br />

e jL (3.13)<br />

Z a (!)<br />

l 0 e(!) <br />

Z a 4-4' <br />

0 1 <br />

0 1 (!) =<br />

Z a (!)<br />

Z a (!)+2Z 0<br />

e 0j2L (3.14)<br />

3.143.13 fg e j2L <br />

3.1(b) 2 <br />

22


F M (!) =<br />

e0jL<br />

l 0 e(!)0 1 (!)<br />

(3.15)<br />

2 0 1 2 <br />

(3.15) <br />

2 2 <br />

F M =2 <br />

23


11.5mm<br />

Loop<br />

Conductor<br />

Coaxial line f = 1.5mm<br />

Connector<br />

60mm<br />

(a) Single-output<br />

Slot<br />

(0.4mm)<br />

11.5mm<br />

Loop<br />

Two coaxial lines<br />

f = 1.5 mm<br />

126 mm<br />

Connector<br />

(b) Double-output<br />

3.6 <br />

3.7: <br />

3.7 2 <br />

2 <br />

<br />

1.5<br />

mm 11.5 mm Z 0 50 <br />

6cm2 <br />

0.4 mm L 12.6 cm <br />

3.7 <br />

3.6.1 <br />

4 4.2 <br />

[6] <br />

24


1.5 mm 24 <br />

3.7(a) (b) <br />

3.8 <br />

3.9 l 0 <br />

e<br />

1 GHz <br />

0.15 <br />

=0 60 0.13 dB <br />

1 GHz <br />

<br />

25


E<br />

θ<br />

11.5 mm<br />

H<br />

Incident<br />

field<br />

k<br />

Feeding<br />

point<br />

Loop<br />

3.8: <br />

Real part of effective length [m]<br />

0.0098<br />

0.0096<br />

0.0094<br />

0.0092<br />

0.009<br />

0.0088<br />

q= 0 deg<br />

30 deg<br />

45 deg<br />

60 deg<br />

0 0.5 1 1.5 2 0 0.0005<br />

Frequency [GHz]<br />

0.0025<br />

0.002<br />

0.0015<br />

0.001<br />

Imaginary part of effective length [m]<br />

3.9: l 0 e<br />

26


3.6.2 <br />

11.5 mm <br />

1GHz<br />

3.7 2 <br />

<br />

3.10 = 0<br />

<br />

3.7(a) 2 3.7(b) v o <br />

3.10 2 <br />

3.7(a) <br />

1ns 1 MHz <br />

Picosecond Puls Labs Model 1000D<br />

70 V 1GHz<br />

6dB<br />

1GHz 1/6 5cm<br />

1.83 m 2 1.36 m <br />

50 3GHz<br />

Tektronix TDS694C 1t =0.1ns 1000 <br />

<br />

=030 45 60 <br />

3.11 (a) (b) <br />

2 1 50 3.12 <br />

3.11 =0 =30, 45, 60<br />

2 <br />

<br />

<br />

<br />

27


30cm<br />

Loop antenna<br />

port1<br />

φ = 0 deg<br />

Monopole<br />

antenna<br />

l = 5 cm<br />

h(t)<br />

φ = 60 deg<br />

10 cm<br />

port2<br />

Ground plane<br />

Attenuator 6dB<br />

Impulse generator<br />

∆t = 0.1 ns<br />

1000 points<br />

Ch.2 Ch.1<br />

Oscilloscope<br />

3.10: <br />

28


0.01<br />

0.005<br />

φ = 0 deg<br />

30 deg<br />

45 deg<br />

60 deg<br />

Voltage [V]<br />

-0.005<br />

0<br />

-0.01<br />

-0.015<br />

-4 -3 -2 -1 0 1 2 3 4<br />

Time [ns]<br />

(a) Shielded Coaxial Loop Antenna<br />

0.01<br />

0.005<br />

φ = 0 deg<br />

30 deg<br />

45 deg<br />

60 deg<br />

Voltage [V]<br />

-0.005<br />

0<br />

-0.01<br />

-0.015<br />

-4 -3 -2 -1 0 1 2 3 4<br />

Time [ns]<br />

(b) Double-Output Shielded Loop Antenna<br />

3.11: <br />

29


30<br />

Ratio [%]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Reference<br />

φ = 0 deg<br />

0<br />

0 10 20 30 40 50 60 70 80 90<br />

Angle of the loop antenna φ [deg]<br />

Singleoutput<br />

Doubleoutput<br />

3.12: <br />

30


3.6.3 <br />

3.13 Agilent E8358A 2 <br />

0 1 <br />

0 3.9<br />

3.133.15 0 2 <br />

<br />

1m S 21 <br />

3.14 3.15<br />

3.14 10 cm 0 1<br />

l 0 e<br />

3.10 <br />

10 cm <br />

<br />

31


0<br />

1 [dB]<br />

-5<br />

-10<br />

-15<br />

-20<br />

Magnitude of G<br />

-25<br />

0 0.5 1 1.5 2<br />

Frequency [GHz]<br />

200<br />

150<br />

100<br />

1 [deg.]<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

Phase of G<br />

-200<br />

0 0.5 1 1.5 2<br />

Frequency [GHz]<br />

3.13: 0 1 (<br />

32


65<br />

In free space<br />

Magnitude of M-CAF [dB 1/m ]<br />

60<br />

55<br />

50<br />

45<br />

With the effect of<br />

the ground plane<br />

(height 10cm)<br />

40<br />

0 0.5 1 1.5 2<br />

Frequency [GHz]<br />

Phase of M-CAF [deg.]<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

In free space<br />

With the effect of<br />

the ground plane<br />

(height 10cm)<br />

-150<br />

-200<br />

0 0.5 1 1.5 2<br />

Frequency [GHz]<br />

3.14: 2 (<br />

<br />

33


3.7 <br />

3.7.1 3 <br />

3.15 3.4 3 <br />

2 1 50 <br />

3 <br />

3.15 690 <br />

(unwrapping) [25]<br />

6180 <br />

100 MHz <br />

3 <br />

<br />

S 3 <br />

<br />

S <br />

<br />

<br />

(Extrapolation) <br />

<br />

<br />

34


75<br />

70<br />

Proposed method<br />

FTF-3antenna method<br />

65<br />

M-CAF [dB 1/m ]<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

0 0.5 1 1.5 2<br />

Frequency [GHz]<br />

200<br />

150<br />

100<br />

Proposed method<br />

FTF-3antenna method<br />

FTF-3antenna method<br />

(modified phase<br />

from –180deg. to 180deg.)<br />

M-CAF [deg.]<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

0 0.5 1 1.5 2<br />

Frequency [GHz]<br />

3.15: FTF-3 M-CAF (<br />

35


3.7.2 <br />

3.15 3.14 <br />

3.10 <br />

2 <br />

<br />

h(t) i O (t) <br />

<br />

(waveform reconstruction) [26]<br />

i O (t) 2 v O (t), 0v O (t) <br />

i O (t) = v O(t) 0f0v O (t)g<br />

Z 0<br />

1 1 2<br />

h(t) <br />

h i<br />

h(t) =F 01 FM (!)Ffi O (t)g<br />

(3.16)<br />

(3.17)<br />

FF 01 <br />

<br />

h(t) <br />

<br />

h(t) <br />

" l<br />

1<br />

h(t) =F 01 4 r + jk <br />

#<br />

0<br />

1 I a (!) 1 e 0jk 0r<br />

2 r<br />

(3.18)<br />

(2.1) sin 1=r r <br />

k 0 I a (!) <br />

2l <br />

3.18 l 3.16 <br />

(a) (b) I a (!) <br />

i a (t) 6dB v m (t)<br />

Z in (!) Z 0<br />

C<br />

I a (!) =Fn<br />

ia (t) o =<br />

2v m (t)<br />

Z 0 + Z in (!)<br />

(3.19)<br />

36


6dB Z 0 <br />

<br />

3.16 v open (t) v m (t)<br />

<br />

Z in ! 0 1 <br />

<br />

3.17 <br />

3 <br />

<br />

<br />

V O <br />

<br />

<br />

<br />

37


Transmission<br />

line<br />

Transmission<br />

line<br />

v open (t)<br />

Z 0<br />

Z 6 dB<br />

0 Z Z 0 v m (t)<br />

Attenuator 0<br />

1<br />

vm ( t)<br />

= vopen<br />

( t)<br />

4<br />

(a)<br />

i a (t)<br />

v open (t)<br />

Z 0<br />

Z 6 dB<br />

0 Z<br />

Attenuator 0 Z in<br />

I<br />

a<br />

{ i ( )}<br />

( ω ) = t<br />

F<br />

a<br />

(b)<br />

3.16: i a (!) <br />

Magnetic field [A/m]<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

-0.01<br />

-0.02<br />

-0.03<br />

-0.04<br />

-0.05<br />

Reconstruction<br />

-M-CAF proposed<br />

-M-CAF FTF 3ant.<br />

Calculation<br />

-0.06<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Time [ns]<br />

3.17: M-CAF <br />

38


3.8 <br />

<br />

2 <br />

<br />

<br />

<br />

<br />

<br />

2 <br />

2 <br />

<br />

2 <br />

<br />

<br />

2 <br />

2 <br />

<br />

<br />

3 <br />

<br />

2 <br />

""<br />

<br />

<br />

39


4 <br />

<br />

<br />

4.1 <br />

2 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

[6] <br />

<br />

3 2 <br />

<br />

<br />

<br />

40


300 mm, <br />

1mm<br />

480 MHz <br />

4.2 <br />

<br />

<br />

<br />

<br />

<br />

<br />

(Method of Moments : MoM)[6] Pocklington Hallen<br />

1967 Harrington <br />

<br />

<br />

<br />

<br />

S <br />

<br />

4.1 a 2L <br />

" y y <br />

E y Maxwell <br />

E y = 1<br />

j!"<br />

Z +L<br />

0L<br />

<br />

"<br />

@2 V (y;y 0 )<br />

@y 2 + 2 V (y;y 0 )<br />

V (y;y 0 )= 1<br />

4<br />

r(y;y 0 )=<br />

e 0jr(y;y0 )<br />

r(y;y 0 )<br />

#<br />

I(y 0 ) dy 0 (4.1)<br />

(4.2)<br />

q<br />

a 2 +(y 0 y 0 ) 2 (4.3)<br />

I(y 0 ) <br />

y <br />

41


y<br />

+L<br />

I(y’)<br />

y’<br />

y<br />

0<br />

-L<br />

a<br />

4.1: <br />

E i y <br />

0 <br />

E y + E i y<br />

=0 (4.4)<br />

(4.1) (4.4) <br />

1<br />

j!"<br />

Z +L<br />

0L<br />

" #<br />

@2 V (y;y 0 )<br />

+ 2 V (y;y 0 ) I(y 0 )dy 0 + E<br />

@y<br />

y(y) i =0 (4.5)<br />

2<br />

(Pocklington's integral equation)[27]<br />

<br />

V (y; y 0 ) E i y(z) R <br />

P I(y 0 ) (4.5) <br />

I n <br />

" # #<br />

Z mn<br />

#"I n =<br />

"V m<br />

(4.6)<br />

42


1+ j 0〔V〕<br />

0.014<br />

0.012<br />

Real part<br />

Imaginary part<br />

Current [A]<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

-0.002<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

4.2: (480 MHz)<br />

[Z mn ](m =1; 2;:::;N;<br />

n =1; 2;:::;N) <br />

[V m ] N <br />

[I n ] 1+j0V<br />

<br />

# "I n =<br />

"<br />

Z mn<br />

# 01<br />

"<br />

V m<br />

#<br />

(4.7)<br />

1+j0V<br />

<br />

2 1+j0V<br />

4.2 30 cm 1mm 480 MHz <br />

<br />

43


4.3 <br />

2.2 2 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

H I S <br />

l 0 e (3.9) <br />

2.2 <br />

I S l 0 e (3.9) <br />

(2.4) <br />

<br />

<br />

<br />

<br />

1) I S (y)<br />

<br />

2) (3.9):H(y) =I S (y)=l 0 1) I e S(y) H(y) <br />

3) H(y) (2.4): [ ] H [H] =[ ] H [ ][I] <br />

I(y) <br />

4) I(y) 4.2 <br />

<br />

44


Current [A]<br />

0.016<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

Theoretical<br />

(MoM)<br />

One side of the loop<br />

5 mm<br />

10 mm<br />

15 mm<br />

20 mm<br />

25 mm<br />

0.004<br />

0.002<br />

0<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

4.3: <br />

(d =30 mm)<br />

3.1(b) 2 <br />

4.3<br />

30 mm 1.0 mm <br />

5mm10 mm15 mm20 mm25 mm <br />

<br />

11.5 mm 2 <br />

<br />

d <br />

<br />

<br />

10 mm 60 mm <br />

4.4 20 mm <br />

3 <br />

45


0.016<br />

Theoretical 10mm 30mm 50mm<br />

(MoM) 20mm 40mm 60mm<br />

Current [A]<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

Real part<br />

I [A]<br />

0<br />

-0.0005<br />

-0.001<br />

-0.0015<br />

-0.002<br />

-0.0025<br />

-0.003<br />

5 7 9 11 13<br />

y [cm]<br />

-0.002<br />

-0.004<br />

Imaginary part<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

4.4: d <br />

<br />

<br />

<br />

<br />

[28]<br />

4.5 30 mm <br />

11.5 mm <br />

12.5 mm <br />

(075 mm


0.0138<br />

0.0136<br />

0.0134<br />

0.0132<br />

Theoretical(MoM)<br />

Interval 2mm<br />

5mm<br />

10mm<br />

12.5mm<br />

20mm<br />

Current [A]<br />

0.013<br />

0.0128<br />

0.0126<br />

0.0124<br />

0.0122<br />

0.012<br />

0.0118<br />

-5 -3 -1 0 1 3 5<br />

y [cm]<br />

4.5: <br />

(d =30 mm)<br />

4.4 <br />

480 MHz <br />

6 (<br />

: 7 m, : 4 m, : 2.4 m) 2.2 <br />

300 mm 1mm<br />

1:4 (50 -200 ) (M/A Com , TP-103) <br />

<br />

200 <br />

3 2 <br />

11.52 11.5 mm 2 4.1 <br />

S S 21 , S 31 3 <br />

(Anritsu MS4623B) <br />

47


11.5 mm<br />

d 20 mm 30 mm<br />

12.5 mm 10 mm<br />

4.1: <br />

<br />

S <br />

<br />

48


4.5 <br />

4.5.1 S <br />

<br />

4.2 <br />

1+j0V<br />

<br />

1+j0V S <br />

1+j0V<br />

2 <br />

4.6 <br />

3 S<br />

S 21 , S 31 S S 11 <br />

4.7 4.6 <br />

4.7 V 1 , V d I i ( i =2,3) a i , b i (i =<br />

1, , 4)[29] <br />

V 1 = (a 1 + b 1 )<br />

q<br />

Z 0 ; V d =(a 4 + b 4 )<br />

q<br />

Z 0<br />

0<br />

(4.8)<br />

I i = a i 0 b i<br />

(4.9)<br />

qZ 0<br />

Z 0 2 <br />

Z 0 0 <br />

2 4.6<br />

a i (i=1,2...N) b j (j=1,2...M) <br />

2 3 2<br />

32<br />

3<br />

b 1<br />

S 11 111 S 1N<br />

6 .<br />

4<br />

7<br />

5 = .<br />

6 . . a 1<br />

. .<br />

4<br />

7<br />

5<br />

6 .<br />

4<br />

7<br />

5<br />

b M S M 1 111 S MN a N<br />

(4.10)<br />

a g a g = a 1 <br />

a 2 =0,a 3 =0 (4.10) <br />

b 1 = S 11 a g<br />

b 2 = S 21 a g (4.11)<br />

b 3 = S 31 a g<br />

49


(4.8) (4.11) V 1 I 2 , I 3 <br />

<br />

V 1 =<br />

I 2 =<br />

I 3 =<br />

q<br />

Z 0 1 (1 + S 11 ) 1 a g (4.12)<br />

1<br />

S 21 a g qZ 0<br />

(4.13)<br />

1<br />

qZ 0<br />

S 31 a g (4.14)<br />

2 I O I 2 I 3 <br />

I O = I 2 0 I 3 <br />

I O =<br />

V 1<br />

Z 0 (1 + S 11 ) 1 (S 21 0 S 31 ) : (4.15)<br />

(3.1) H = I O 1 F M 3 F M<br />

1 <br />

F M =2 H V 1 <br />

<br />

H =<br />

V 1<br />

Z 0 1 (1 + S 11 ) 1 (S 31 0 S 21 ) 1 F M<br />

2 (4.16)<br />

4.6 1 (4.16)<br />

S <br />

V 1 1+j0V<br />

<br />

4.7 V d <br />

<br />

V 1 V d (4.10) <br />

V 1 = 1+S 11B + S 14BS 41B 0 d<br />

1 0 S 44B 0 d<br />

! q<br />

Z 0 1 a g (4.17)<br />

V d = (0 d +1)1<br />

S 41B<br />

q<br />

Z d 1 a g (4.18)<br />

1 0 S 44B 0 d<br />

(4.17) (4.18) a g V 1 V d <br />

V 1 = (1 + S 11B)(1 0 S 44B 0 d )+S 41B S 14B 0 d<br />

S 41B (0 d +1)<br />

1<br />

s<br />

Z0<br />

Z 0<br />

0 1 V d (4.19)<br />

50


0 d = Z d 0 Z 0<br />

0<br />

Z d + Z 0<br />

0<br />

(4.20)<br />

(4.19),(4.20) Z 00 2 <br />

S ihB (i =1,4, h =1,4) S <br />

S ihB TRL(Through Reect Line) <br />

[30],[31] (4.16),(4.19) V d =<br />

1+j0V<br />

51


Z 0<br />

Port 1<br />

S<br />

S<br />

S<br />

Port 2<br />

a 2 b<br />

11 12 13<br />

2<br />

Z<br />

V 0<br />

1<br />

S 21 S 22 S 23<br />

I 3<br />

b 1 a 1<br />

S 31 S 32 S 33 a 3 b 3<br />

I 2<br />

Z 0<br />

Z 0<br />

Z 0<br />

Z 0<br />

V g<br />

0<br />

V g = 2ag<br />

Z<br />

Port 3<br />

Dipole antenna<br />

Probe<br />

4.6: 3 <br />

Port 1 Port 4<br />

b 1 a 1<br />

a 4 b 4<br />

Z 0<br />

Z 0<br />

S<br />

S<br />

S<br />

S<br />

V g 11B<br />

14B<br />

V 1<br />

0<br />

41B<br />

44B<br />

V g = 2ag<br />

Z<br />

0<br />

Z ′<br />

Vd<br />

Z d<br />

Antenna<br />

element<br />

Γ d<br />

Balun<br />

1+j0 [V]<br />

4.7: 2 <br />

52


Measured magnetic field [A/m]<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

Real part<br />

Imaginary part<br />

-0.01<br />

-25 -20 -15 -10 -5 0 5 10 15 20 25<br />

y [cm]<br />

4.8: (d=3cm)<br />

4.8 2 S (4.16) <br />

4.9 4.8 V d =1+j0V<br />

-15 cm y 15 cm <br />

<br />

53


Magnetic field in 1+j0 [V] excitation [A/m]<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

-0.01<br />

Real part<br />

Imaginary part<br />

-0.02<br />

-25 -20 -15 -10 -5 0 5 10 15 20 25<br />

y [cm]<br />

4.9: V d =1+j0V (480MHz)<br />

54


4.5.2 <br />

4.10 <br />

015 cm<br />


0.015<br />

Real<br />

Imaginary<br />

0.01<br />

I [A]<br />

0.005<br />

0<br />

-0.005<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

(a) Estimated from calculated magnetic fields<br />

0.04<br />

0.03<br />

Real<br />

Imaginary<br />

0.02<br />

I [A]<br />

0.01<br />

0<br />

-0.01<br />

-0.02<br />

-0.03<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

(b) Estimated from measured magnetic fields<br />

4.10: <br />

56


0.025<br />

0.02<br />

Without error<br />

With 1% of error<br />

I [A]<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

-0.005<br />

-0.01<br />

-0.015<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

4.11: 1 <br />

57


0.0135<br />

0.013<br />

Theoretical I n<br />

Estimated I n<br />

’<br />

Interpolated<br />

points<br />

I n (y) , I n ’(y)<br />

0.0125<br />

0.012<br />

0.0115<br />

0.011<br />

0.0105<br />

0.01<br />

10 12 14 16 18 20 22<br />

y [cm]<br />

4.12: I n I 0 n<br />

(N =7)<br />

<br />

(2.4) <br />

<br />

1I<br />

(4.21) <br />

1I =<br />

vu<br />

u<br />

t 1 N<br />

NX<br />

n01<br />

jI n 0 0 I n j 2 (4.21)<br />

I n 31 ) N=31 <br />

I 0 n 4.12 7 I 0 n<br />

1I =0<br />

cm 31 <br />

16 11 7 6 4 3 4.13 7 <br />

<br />

4.13 <br />

58


0.005<br />

0.004<br />

I [A]<br />

Difference D<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

0 3 7 10 16 20 30<br />

Decreased estimation points<br />

4.13: <br />

<br />

59


0.015<br />

Measurement<br />

Calculation(MoM)<br />

excited) [A]<br />

0.01<br />

Real part<br />

Current (V d<br />

= 1+j 0 〔<br />

0.005<br />

0<br />

V〕<br />

-0.005<br />

Imaginary part<br />

-15 -10 -5 0 5 10 15<br />

Balun<br />

y [cm]<br />

4.14: (480 MHz)<br />

4.5.3 <br />

(4.19) 7 (2.4)<br />

1+j0V<br />

4.14 <br />

<br />

(2.4) <br />

0 10 010<br />

( B) 4.5.1 <br />

<br />

<br />

60


0.0035<br />

0.003<br />

Measurement<br />

0.0025<br />

Real part<br />

Actual Current [A]<br />

0.002<br />

0.0015<br />

0.001<br />

0.0005<br />

0<br />

-0.0005<br />

-0.001<br />

Imaginary part<br />

-15 -10 -5 0 5 10 15<br />

Balun<br />

y [cm]<br />

4.15: <br />

(480 MHz)<br />

4.6 <br />

1+j0 V<br />

ja g j 2<br />

(4.12), (4.19) jV d j <br />

jV d j =<br />

q<br />

Z 0<br />

0<br />

S<br />

<br />

41B (0 d +1)<br />

1 (1 + S 11 ) 1jag j (4.22)<br />

(1 + S 11B )(1 0 S 44B )+S 41B S 14B 0 d<br />

<br />

V d V d = jV d j+j0 V<br />

4.15 (4.22) V d <br />

ja g j 2<br />

0 dBm(1 mW) <br />

61


4.7 <br />

30 cm 1mm 2 <br />

3 <br />

<br />

<br />

<br />

<br />

480MHz <br />

<br />

<br />

<br />

2 <br />

<br />

<br />

<br />

<br />

62


5 <br />

<br />

<br />

5.1 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 <br />

<br />

<br />

<br />

63


x<br />

(24, 15, 0)<br />

y<br />

z<br />

(24, 0, 0)<br />

Antenna<br />

elements<br />

(24, -15, 0)<br />

Scanning probe<br />

(for antenna elements)<br />

Semi-Ridged<br />

cable<br />

Connector<br />

(12, 0, 0)<br />

Scanning probe<br />

(for cables)<br />

Test cable<br />

(0, 0, 0)<br />

Unit : [cm]<br />

5.1: <br />

5.2 <br />

3 <br />

2 5.1 <br />

<br />

<br />

y<br />

x 30 cm x =24<br />

cm <br />

64


5.3 <br />

2 <br />

<br />

<br />

<br />

2 <br />

5.3.1 <br />

5.2 <br />

<br />

<br />

<br />

30 cm 1mm 5.2 (a) 5.2 (b) <br />

2:1 <br />

<br />

65


Antenna element (φ = 1mm)<br />

Semi-rigid<br />

cable<br />

(φ = 2mm)<br />

12cm<br />

Connector<br />

x<br />

Test cable<br />

y<br />

z<br />

(a) Symmetric element (15cm, 15cm)<br />

(b) Asymmetric element (20cm, 10cm)<br />

5.2: <br />

66


Antenna element (30cm, φ=1mm)<br />

3.5mm<br />

7cm<br />

Parallel two<br />

-wire line(4cm)<br />

Soldered<br />

3cm<br />

Balun (TP-103)<br />

Connector<br />

(a) Dipole element<br />

with detachable balun<br />

Test cable<br />

(b) Dipole element<br />

with soldered balun<br />

y<br />

x<br />

z<br />

5.3: <br />

5.3.2 <br />

5.3 <br />

4 (M/A Com , TP-103) <br />

5.3 (a) 4 <br />

4cm 3mm 2 4 <br />

5.3(a) <br />

<br />

<br />

5.3 (b) 2 <br />

<br />

30 cm 1mm<br />

67


0.015<br />

Measurement<br />

0.01<br />

Current [A]<br />

0.005<br />

0<br />

Real part<br />

Imaginary part<br />

-0.005<br />

-0.01<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

5.4: 480 MHz<br />

5.4 <br />

<br />

<br />

5.2 (b) 480 MHz 5.4 <br />

5.4 <br />

1+j0V<br />

4.14 <br />

2mA<br />

<br />

5.5 <br />

5.2 2 <br />

120 mm<br />

68


5.5 (0cm<br />

y 30 cm) 300 mm Symmetric,<br />

150 mm-150 mmAsymmetric, 200 mm-100 mm<br />

x =24cm<br />

24 cm


(for solid line), y [cm] (for dotted line)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

Asymmetric elements<br />

Feed line<br />

Elements<br />

Semirigid<br />

cable<br />

No currents<br />

exist.<br />

Dipole elements<br />

x [cm]<br />

10<br />

5<br />

Test<br />

cable<br />

connector<br />

0<br />

0 0.005 0.01 0.015 0.02 0.025 0.03<br />

| I | [A]<br />

x<br />

(for solid line), y [cm] (for dotted line)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

(a) Asymmetric antenna elements<br />

Symmetric elements<br />

Feed line<br />

Elements<br />

Semirigid<br />

cable<br />

z<br />

No currents<br />

exist.<br />

y<br />

Dipole elements<br />

x [cm]<br />

10<br />

5<br />

Test<br />

cable<br />

connector<br />

0<br />

0 0.005 0.01 0.015 0.02 0.025 0.03<br />

| I | [A]<br />

x<br />

(b) Symmetric antenna elements<br />

z<br />

y<br />

5.5: <br />

480 MHz<br />

70


x [cm]<br />

Antenna<br />

element<br />

Feeder<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Symetric dipole (Fig. 5.2(a))<br />

Asymetric dipole (Fig. 5.2(b))<br />

Dipole with balun (Fig. 5.3(a))<br />

Dipole soldered balun (Fig. 5.3(b))<br />

0<br />

0 10 20 30 40 50 60<br />

I ratio [%]<br />

5.6: 480<br />

MHz<br />

71


5.6 <br />

4 <br />

<br />

0 <br />

<br />

<br />

<br />

<br />

10 <br />

50<br />

<br />

<br />

1 <br />

2 <br />

2 2 <br />

<br />

72


6 <br />

2<br />

<br />

6.1 <br />

4 5 <br />

1 <br />

1 <br />

<br />

2 <br />

<br />

<br />

<br />

73


x<br />

I<br />

I 2<br />

1<br />

H 3<br />

y<br />

z<br />

I n H1<br />

H 2<br />

H M<br />

I N<br />

H m<br />

Plane of current<br />

Space of measurement<br />

6.2 2 <br />

6.1: 2 <br />

6.1 <br />

x y <br />

y <br />

2 (6.1) r <br />

H ' (6.2) (2.4)<br />

k 1l <br />

I <br />

H ' = I1le0jkr<br />

4<br />

jk<br />

r + 1 r 2 !<br />

sin (6.1)<br />

74


y<br />

x<br />

z<br />

Emitter element<br />

30 cm<br />

I (e) N<br />

H (e) M<br />

H (e) m<br />

I (e) n<br />

r (ee) mn<br />

Dl<br />

r (ed) mn<br />

I (d) N<br />

I (e) 1<br />

w<br />

H (e) 1<br />

r (dd) mn<br />

H (d) M<br />

w’<br />

I (d) n<br />

H (d) m<br />

Director element<br />

24 cm<br />

I (d) 1<br />

H (d) 1<br />

Scanned<br />

Magnetic<br />

fields sensor<br />

6.2: 2 <br />

2<br />

6<br />

4<br />

3<br />

H 1<br />

.<br />

7<br />

H M<br />

2<br />

5 = 6<br />

4<br />

3<br />

11 111 1N<br />

.<br />

.. . .<br />

7<br />

5<br />

M 1 111 MN<br />

2<br />

6<br />

4<br />

3<br />

I 1<br />

.<br />

7<br />

5<br />

I N<br />

(6.2)<br />

6.2 (x 0 y <br />

<br />

y y 0 z x <br />

y <br />

<br />

<br />

<br />

<br />

<br />

<br />

75


x <br />

<br />

6.2 I (e)<br />

n<br />

( n =1,2,3,, N) (e) n <br />

H (e)<br />

m<br />

( m =1,2,3,, M) (e) <br />

m x I (d)<br />

n<br />

( n =1,2,3,, N) <br />

(d) n H (d) ( m =1,2,3,<br />

m<br />

, M) (d) m x <br />

r (ee)<br />

mn r(ed) mn<br />

n<br />

m r (de)<br />

mn<br />

r (dd)<br />

mn<br />

n <br />

m <br />

<br />

w <br />

<br />

w 0 <br />

<br />

1l <br />

<br />

0 <br />

6.3(a) ' =2 <br />

I (e)<br />

n<br />

H (ee)<br />

m<br />

<br />

2<br />

6<br />

4<br />

H (ee)<br />

1.<br />

H (ee)<br />

M<br />

3 2<br />

7<br />

5 = 6<br />

4<br />

(ee)<br />

11<br />

111 (ee)<br />

1N<br />

.<br />

. . . .<br />

(ee)<br />

M1<br />

111 (ee)<br />

MN<br />

m x <br />

32<br />

7<br />

5<br />

6<br />

4<br />

I (e)<br />

1.<br />

I (e)<br />

N<br />

3<br />

7<br />

5<br />

(6.3)<br />

x H x H ' sin ' ' =<br />

=2 (6.1) <br />

sin =<br />

w<br />

r (ee)<br />

mn<br />

(6.4)<br />

(ee)<br />

mn<br />

<br />

(2.3) d w r mn r (ee)<br />

mn<br />

76


I (d)<br />

n<br />

m x <br />

H (ed)<br />

m<br />

<br />

2<br />

6<br />

4<br />

H (ed)<br />

1.<br />

H (ed)<br />

M<br />

3 2<br />

7<br />

5 = 6<br />

4<br />

(ed)<br />

11<br />

111 (ed)<br />

1N<br />

.<br />

. . . .<br />

(ed)<br />

M1<br />

111 (ed)<br />

MN<br />

x (ed)<br />

mn <br />

sin = w0<br />

r (ed)<br />

mn<br />

32<br />

7<br />

5<br />

6<br />

4<br />

I (d)<br />

1.<br />

I (d)<br />

N<br />

3<br />

7<br />

5<br />

(6.5)<br />

(6.6)<br />

sin ' = w w 0 (6.7)<br />

(2.3) mn r mn r (ed) d w <br />

mn<br />

<br />

x H (e)<br />

m<br />

<br />

2<br />

6<br />

4<br />

H (e)<br />

1<br />

.<br />

H (e)<br />

M<br />

3 2<br />

7<br />

5 = 6<br />

4<br />

H (ee)<br />

1.<br />

H (ee)<br />

M<br />

( m =1,2,3,, M) <br />

3 2<br />

7<br />

5 + 6<br />

4<br />

H (ed)<br />

1.<br />

H (ed)<br />

M<br />

3<br />

7<br />

5<br />

(6.8)<br />

6.3(b) <br />

I (e)<br />

n<br />

<br />

2<br />

6<br />

4<br />

(de)<br />

m x H<br />

m<br />

H (de)<br />

1.<br />

H (de)<br />

M<br />

3 2<br />

7<br />

5 = 6<br />

4<br />

I (d)<br />

n<br />

x H (dd) <br />

m<br />

2<br />

6<br />

4<br />

H (dd)<br />

1.<br />

H (dd)<br />

M<br />

3 2<br />

7<br />

5 = 6<br />

4<br />

(de)<br />

11<br />

111 (de)<br />

1N<br />

.<br />

. . . .<br />

(de)<br />

M1<br />

111 (de)<br />

MN<br />

32<br />

7<br />

5<br />

6<br />

4<br />

I (e)<br />

1.<br />

I (e)<br />

N<br />

3<br />

7<br />

5<br />

(6.9)<br />

m <br />

(dd)<br />

11<br />

111 (dd)<br />

1N<br />

.<br />

... .<br />

(dd)<br />

M1<br />

111 (dd)<br />

MN<br />

32<br />

7<br />

5<br />

6<br />

4<br />

I (d)<br />

1.<br />

I (d)<br />

N<br />

x H (d)<br />

m<br />

3<br />

7<br />

5<br />

(6.10)<br />

(6.8) <br />

77


H (de) H (dd) <br />

m m<br />

2<br />

6<br />

4<br />

H (d)<br />

1<br />

.<br />

H (d)<br />

M<br />

3 2<br />

7<br />

5 = 6<br />

4<br />

H (de)<br />

1.<br />

H (de)<br />

M<br />

3 2<br />

7<br />

5 + 6<br />

4<br />

H (dd)<br />

1.<br />

H (dd)<br />

M<br />

3<br />

7<br />

5<br />

(6.11)<br />

<br />

(6.8) (6.11) <br />

<br />

2<br />

6<br />

4<br />

H (e)<br />

1<br />

.<br />

H (e)<br />

M<br />

H (d)<br />

1<br />

.<br />

H (d)<br />

M<br />

3<br />

7<br />

5<br />

=<br />

2<br />

6<br />

4<br />

(ee)<br />

11 111 (ee)<br />

1N<br />

.<br />

.. . .<br />

(ee)<br />

M1<br />

111 (ee)<br />

MN<br />

(de)<br />

11<br />

111 (de)<br />

1N<br />

.<br />

.. . .<br />

(de)<br />

M1<br />

111 (de)<br />

MN<br />

(ed)<br />

11 111 (ed)<br />

1N<br />

.<br />

.. . .<br />

(ed)<br />

M1<br />

111 (ed)<br />

MN<br />

(dd)<br />

11<br />

111 (dd)<br />

1N<br />

.<br />

.. . .<br />

(dd)<br />

M1<br />

111 (dd)<br />

MN<br />

3 2<br />

7<br />

5<br />

6<br />

4<br />

I (e)<br />

1.<br />

I (e)<br />

N<br />

I (d)<br />

1<br />

.<br />

I (d)<br />

N<br />

3<br />

7<br />

5<br />

(6.12)<br />

(de)<br />

mn (dd) mn<br />

<br />

(2.3) (ee)<br />

mn<br />

r(ee)<br />

mn<br />

r(de)<br />

mn<br />

r(dd) <br />

mn<br />

x <br />

y 0 z <br />

x 0 z (sin ') <br />

<br />

<br />

<br />

78


w<br />

Elements<br />

I (e)<br />

e<br />

j =p/2<br />

H (e)<br />

Loop probe<br />

I (d)<br />

j<br />

d w’<br />

x<br />

y<br />

z<br />

(a) Probe scanning near the emitter<br />

I (e)<br />

e<br />

j<br />

w’<br />

Elements<br />

I (d)<br />

d<br />

j=p/2<br />

H (d)<br />

Loop probe<br />

w<br />

x<br />

(b) Probe scanning near the director<br />

y<br />

z<br />

6.3: <br />

79


Emitter: 30cm<br />

= 1mm) (f<br />

3cm or 6cm<br />

Director: 24cm<br />

(f = 1mm)<br />

y<br />

x<br />

z<br />

6.4: 2 <br />

6.3 2 <br />

1926 <br />

[32]<br />

<br />

<br />

<br />

<br />

2 1 <br />

2 <br />

6.4 2 <br />

30 cm (Emitter) 24 cm (Director) 2 <br />

1mm<br />

2 <br />

4 <br />

80


6.4 <br />

6.2 (6.12) y 0 z <br />

x 0 z (sin ') <br />

6.4 <br />

30 cm 24 cm 2 <br />

1mm<br />

0 480 MHz <br />

3 2 <br />

11.5 mm <br />

2 <br />

1+j0V 6.5 <br />

I S <br />

l 0 e<br />

(3.9) <br />

H <br />

l 0 <br />

e<br />

(6.12) <br />

[16] <br />

<br />

2<br />

<br />

6.6 w 3cm<br />

1l 10 mm <br />

M= 51,N= 51-25 cm z 25 cm <br />

6.7 w 3cm 6cm<br />

6.6 6.7 z -15 cm,<br />

z 15 cmz -12 cm, z 12 cm<br />

0 <br />

<br />

x <br />

<br />

81


Emitter : 30cm<br />

Director : 24cm<br />

3cm<br />

1.15cm<br />

H<br />

I s<br />

Square small loop( l ′ )<br />

30cm<br />

e<br />

z<br />

x<br />

y<br />

6.5: <br />

82


Current [A]<br />

0.016<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

On the Emitter<br />

Real<br />

part<br />

Estimated<br />

Theoretical<br />

-0.002<br />

Imaginary part<br />

-0.004<br />

-25 -20 -15 -10 -5 0 5 10 15 20<br />

y [cm]<br />

25<br />

0.002<br />

On the Director<br />

Real part<br />

Estimated<br />

Theoretical<br />

0<br />

Current [A]<br />

-0.002<br />

-0.004<br />

Imaginary part<br />

-0.006<br />

-25 -20 -15 -10 -5 0 5 10 15 20<br />

y [cm]<br />

25<br />

6.6: <br />

3 cm)<br />

83


0.016<br />

0.014<br />

0.012<br />

0.01<br />

On the Emitter<br />

Estimated<br />

Theoretical<br />

Current [A]<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

Real<br />

part<br />

-0.002<br />

Imaginary part<br />

-0.004<br />

-25 -20 -15 -10 -5 0 5 10 15 20<br />

y [cm]<br />

25<br />

0.002<br />

On the Director<br />

Estimated<br />

Theoretical<br />

0<br />

Real part<br />

Current [A]<br />

-0.002<br />

-0.004<br />

Imaginary part<br />

-0.006<br />

-25 -20 -15 -10 -5 0 5 10 15 20<br />

25<br />

y [cm]<br />

6.7: <br />

6 cm)<br />

84


6.5 2 <br />

2 <br />

2 1:4 <br />

2 <br />

200 y 0 z <br />

3 <br />

2 11.5 mm 2 11.5 mm<br />

3.11(b) y 0 z <br />

<br />

6 7 m4 m2.4 m 6.2 <br />

2 30 mm <br />

10 mm <br />

S 3 <br />

(Anritsu MS4623B) <br />

S <br />

4.5 <br />

<br />

6.8 6.9 480MHz 1+j0<br />

V1+j0V<br />

6.8 3cm 6.9 <br />

6cm (6.12) <br />

<br />

5 1 M= 51,N= 11<br />

w 3cm-25 cm z 25 cm <br />

6.8 6.9 <br />

0 <br />

85


0.014<br />

0.012<br />

On the Emitter<br />

Estimated<br />

Theoretical<br />

Current [A]<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

Real<br />

part<br />

0.002<br />

0<br />

Imaginary part<br />

-0.002<br />

-25 -20 -15 -10 -5 0 5 10 15 20<br />

y [cm]<br />

25<br />

0.002<br />

On the Director<br />

Real part<br />

Estimated<br />

Theoretical<br />

0<br />

Current [A]<br />

-0.002<br />

-0.004<br />

Imaginary part<br />

-0.006<br />

-25 -20 -15 -10 -5 0 5 10 15 20<br />

y [cm]<br />

25<br />

6.8: 3cm<br />

86


0.016<br />

0.014<br />

On the Emitter<br />

Estimated<br />

Theoretical<br />

0.012<br />

Current [A]<br />

0.01<br />

0.008<br />

0.006<br />

Real<br />

part<br />

0.004<br />

0.002<br />

0<br />

Imaginary part<br />

-0.002<br />

-25 -20 -15 -10 -5 0 5 10 15 20<br />

y [cm]<br />

25<br />

0.002<br />

On the Director<br />

Estimated<br />

Theoretical<br />

0<br />

Real part<br />

Current [A]<br />

-0.002<br />

-0.004<br />

Imaginary part<br />

-0.006<br />

-25 -20 -15 -10 -5 0 5 10 15 20<br />

25<br />

y [cm]<br />

6.9: 6cm<br />

87


3cm6 cm<br />

<br />

<br />

<br />

0 <br />

6.9 6.10 <br />

2 <br />

<br />

88


0.016<br />

0.014<br />

On the Emitter<br />

Estimated<br />

Theoretical<br />

0.012<br />

0.01<br />

Current [A]<br />

0.008<br />

0.006<br />

0.004<br />

Real<br />

part<br />

0.002<br />

0<br />

Imaginary part<br />

-0.002<br />

-25 -20 -15 -10 -5 0 5 10 15 20<br />

25<br />

y [cm]<br />

0.002<br />

0<br />

On the Director<br />

Real part<br />

Estimated<br />

Theoretical<br />

Current [A]<br />

-0.002<br />

-0.004<br />

Imaginary part<br />

-0.006<br />

-25 -20 -15 -10 -5 0 5 10 15 20<br />

25<br />

y [cm]<br />

6.10: <br />

6cm<br />

89


6.6 <br />

2 2 <br />

<br />

<br />

<br />

2 <br />

2 <br />

<br />

<br />

<br />

2 <br />

2 <br />

<br />

3 <br />

2 <br />

4 <br />

<br />

<br />

2 2 <br />

<br />

<br />

y <br />

6.1 x <br />

y x y <br />

y x <br />

<br />

2 <br />

<br />

90


7 <br />

<br />

<br />

<br />

2 <br />

<br />

<br />

3 <br />

2 <br />

<br />

<br />

<br />

<br />

3 <br />

<br />

<br />

4 <br />

3 2 <br />

2 <br />

<br />

<br />

<br />

91


5 <br />

<br />

0 <br />

<br />

<br />

6 1 <br />

2 2 <br />

2 1 <br />

2 2 <br />

<br />

2 <br />

<br />

<br />

<br />

<br />

6 <br />

<br />

<br />

92


A<br />

<br />

2 (2.1) <br />

[33]<br />

A.1 <br />

Maxwell <br />

r2H = J + " @E<br />

@t<br />

r2E = 0 @H @t<br />

r1E = "<br />

(A.1)<br />

(A.2)<br />

(A.3)<br />

r1H = 0 (A.4)<br />

(A.4) <br />

A<br />

B = H = r2A<br />

(A.5)<br />

(A.5) (A.2) <br />

r2E = 0 @ (r2A) (A.6)<br />

@t<br />

93


2 <br />

r2E + @ (r2A) =0<br />

@t !<br />

r2 E + @A =0 (A.7)<br />

@t<br />

(A.7) r2 0 1 r <br />

(A.7) <br />

E + @A<br />

@t = 0r<br />

(A.8)<br />

0r <br />

<br />

E = 0r 0 @A<br />

@t<br />

(A.9)<br />

A (A.5)<br />

H <br />

A.2 <br />

(A.9) A <br />

(A.5) (A.9) (A.1) <br />

r2(r 2A) =J 0 "r<br />

@<br />

@t<br />

!<br />

0 " @2 <br />

@t 2<br />

2 <br />

r(r 1A) 0r 2 A = J 0 "r<br />

@<br />

@t<br />

!<br />

0 " @2 <br />

@t 2<br />

(A.10)<br />

(A.11)<br />

<br />

r 2 A 0 " @2 <br />

@<br />

= 0J + "r<br />

2<br />

@t @t<br />

!<br />

+ r(r 1A) (A.12)<br />

A r2A r1A <br />

r1A (<br />

r1A = 0"r @<br />

@t<br />

(A.13)<br />

1<br />

r2r =0<br />

2<br />

r2(r 2A) =rr 1 A 0r 2 A<br />

94


(A.13) (A.12) A <br />

r 2 A 0 "r @2 A<br />

= 0J (A.14)<br />

2<br />

@t<br />

A A(r)e j!t 2 e j!t 0! 2 <br />

(A.14) <br />

r 2 A(r)+! 2 "A(r) =0J(r)<br />

(A.15)<br />

<br />

<br />

A(r) = 4<br />

ZZZ J(r<br />

0<br />

)e<br />

0jkR<br />

R<br />

dx 0 xy 0 xz 0<br />

(A.16)<br />

r = xa x + ya y + za z (A.17)<br />

r 0 = x 0 a x + y 0 a y + z 0 a z (A.18)<br />

R = jr 0 r 0 j (A.19)<br />

k 2 = ! 2 " (A.20)<br />

<br />

A.3 <br />

A.1 y J r <br />

(A.16) <br />

I 1l 1l <br />

y (A.16) J;A y <br />

r 0 0 A<br />

A = A y a y = 4 r<br />

<br />

I1le 0jkr<br />

a y<br />

(A.21)<br />

A r = A y cos <br />

A = 0A y sin (A.22)<br />

A ' = 0<br />

<br />

95


x<br />

ϕ<br />

∆l<br />

I<br />

θ<br />

r<br />

P<br />

z<br />

y<br />

H x<br />

H x = H ϕ<br />

H ϕ<br />

sin ϕ<br />

A.1: <br />

96


(A.5) (A.22) H <br />

H r = 1 (r2A) r<br />

" #<br />

1 @<br />

=<br />

r sin @ (sin A ') 0 @A <br />

@'<br />

= 0 (A.23)<br />

H = 1 (r2A) <br />

= 1 "<br />

1 @A 1 #<br />

r<br />

r sin @' 0 @<br />

r @r (rA ')<br />

= 0 (A.24)<br />

H ' = 1 (r2A) '<br />

"<br />

@<br />

@r (rA ) 0 @A r<br />

#<br />

= 1 <br />

A y (A.21) <br />

"<br />

@<br />

= 1 0 sin @(rA y) @ cos <br />

0 A y<br />

r @ @<br />

= sin #<br />

"0 @ r @r (rA y)+A z<br />

= sin 0 @A y<br />

@r<br />

I1l sin <br />

H ' = 0<br />

4<br />

= I1le0jkr<br />

4<br />

@<br />

@r<br />

e 0jkr<br />

!<br />

r<br />

jk<br />

r + 1 !<br />

sin <br />

r 2<br />

#<br />

(A.25)<br />

(A.26)<br />

(2.1) H ' (A.23) (A.24)<br />

0 <br />

97


B<br />

<br />

(Coecient Matrix) <br />

1 <br />

Gauss-Jordan (LU <br />

Gauss-Seidel <br />

(Conjugate Gradient method; CG<br />

<br />

H = I 1 b=Ax<br />

x <br />

Gauss-Seidel <br />

<br />

1 <br />

Ax = b<br />

(B.1)<br />

b x (2.4)<br />

A A H (B.1) <br />

<br />

A H Ax = A H b<br />

(B.2)<br />

<br />

A R x = A H Ax (B.3)<br />

b 0 = A H b (B.4)<br />

98


M x N A M 2 N <br />

A H A A R A R N 2 N <br />

(B.3) (B.4) 1 <br />

A R x = b 0<br />

(B.5)<br />

x <br />

x x 0 (B.5) r i <br />

r 0 = b 0 0 A R x 0 (B.6)<br />

p 0 = r 0 (B.7)<br />

r i i x 0 0<br />

<br />

kr i k > 10 010<br />

(B.8)<br />

kr i k > 10 08 <br />

x i <br />

= (p i 1 r i )<br />

(p i 1 A R p i )<br />

x i+1 = x i + p i<br />

r i+1 = r i 0 A R p i (B.9)<br />

= kr i+1k 2<br />

kr i k 2<br />

p i+1 = r i+1 + p i<br />

i = i +1<br />

(p i 1 r i ) p i r i kr i k r i <br />

(B.9) <br />

[16][17]<br />

99


C<br />

3<br />

<br />

3 (3.19) <br />

C.1 6dB <br />

C.1(a) <br />

V 0 m V 0 m = 1 2 V open (C.1)<br />

V open 6dB <br />

V m C.1<br />

V m = 1 4 V open<br />

(C.2)<br />

<br />

C.1(b) i 0 <br />

a<br />

<br />

i 0 = V open<br />

(C.3)<br />

a<br />

Z 0 + Z in<br />

Z in <br />

<br />

V open<br />

i a = 1 2 1<br />

Z 0 + Z in<br />

C.2C.4<br />

i a = 2 1 V open<br />

Z 0 + Z in<br />

(C.4)<br />

(C.5)<br />

(3.19) C.5<br />

100


Transmission<br />

line<br />

Transmission<br />

line<br />

v open (t)<br />

Z 0<br />

Z 6 dB<br />

0 Z 0 Z 0 v m (t)<br />

Attenuator<br />

1<br />

vm ( t)<br />

= vopen<br />

( t)<br />

4<br />

(a)<br />

i a (t)<br />

v open (t)<br />

Z 0<br />

Z 6 dB<br />

0 Z<br />

Attenuator 0 Z in<br />

I<br />

a<br />

{ i ( )}<br />

( ω ) = t<br />

F<br />

a<br />

(b)<br />

C.1: i a (!) <br />

101


D<br />

<br />

D.1 <br />

1 (Condition number)<br />

[17] (ill-posed) <br />

<br />

1 <br />

A 1 cond(A) <br />

cond(A) =kAkkA 01 k<br />

(D.1)<br />

kAk a ij (i=1,2,..m, j=1,2,...n) <br />

<br />

kAk =<br />

vu<br />

u<br />

t m X<br />

nX<br />

i=1 j=1<br />

a<br />

ij a ij<br />

(D.2)<br />

(D.1) Ax = b x A b<br />

<br />

1 <br />

D.2 <br />

<br />

<br />

<br />

102


H = I <br />

(2.3) <br />

30 cm d =<br />

3cm1cm <br />

(2.2) (M = N =51) <br />

1.6107E3 (2.4) <br />

M =51;N =111l =5cm5.8946 <br />

<br />

(D.2) <br />

<br />

<br />

<br />

<br />

103


D.3 <br />

<br />

<br />

<br />

4.3 <br />

<br />

<br />

<br />

<br />

<br />

<br />

I n (y) I 0 (y) <br />

n<br />

Error(y) <br />

<br />

Error(y) =<br />

I 0 (y) 0 I n n(y)<br />

I n (y)<br />

<br />

2 100 [%] (D.3)<br />

D.1 <br />

015cm < = y < = 15cm y =0cm <br />

01 1 <br />

<br />

0.1 0.5 1 <br />

2 5 10 <br />

104


Error (y) [%]<br />

1200<br />

1000<br />

800<br />

600<br />

Given random error 0.1%<br />

0.5%<br />

1%<br />

2%<br />

5%<br />

10%<br />

400<br />

200<br />

0<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

(a) Real part<br />

Error (y) [%]<br />

600<br />

500<br />

400<br />

300<br />

200<br />

Given random error 0.1%<br />

0.5%<br />

1%<br />

2%<br />

5%<br />

10%<br />

100<br />

0<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

(b) Imaginary part<br />

D.1: <br />

105


D.2 5 1 <br />

D.1 D.2 <br />

10 <br />

<br />

106


Error (y) [%]<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

Given random error 0.1%<br />

0.5%<br />

1%<br />

2%<br />

5%<br />

10%<br />

1<br />

0.5<br />

0<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

(a) Real part<br />

Error (y) [%]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

Given random error 0.1%<br />

0.5%<br />

1%<br />

2%<br />

5%<br />

10%<br />

4<br />

2<br />

0<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

(b) Imaginary part<br />

D.2: 5 1 <br />

107


D.4 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

I n (y) I 0 (y) <br />

n<br />

Error(y) <br />

<br />

Error(y) =<br />

I 0 (y) n 0 I n(y)<br />

I n (y)<br />

<br />

2 100 [%] (D.4)<br />

D.3 x,y,z <br />

01 1 <br />

(1cm) 1 <br />

015cm < = y < = 15cm y =0cm <br />

<br />

D.3 x; y z <br />

<br />

<br />

<br />

<br />

<br />

<br />

108


50<br />

45<br />

40<br />

X axis<br />

Y axis<br />

Z axis<br />

Error (y) [%]<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

(a) Real part<br />

100<br />

80<br />

X axis<br />

Y axis<br />

Z axis<br />

Error (y) [%]<br />

60<br />

40<br />

20<br />

0<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

(b) Imaginary part<br />

D.3: <br />

109


E<br />

<br />

<br />

-25 cm < = y < = 25 cm 1cm <br />

51 -25 cm < = y < = 25 cm <br />

1l, <br />

-25 cm < = y < = 25 cm <br />

<br />

4 ( 30<br />

cm 4.3 <br />

1l 0 1l E 4<br />

a) (2.2) <br />

b) 4 6 <br />

E.1 E.3 E a) b)<br />

c)d) <br />

-25 < = y < = -15 cm 15 cm < = y < = 25 cm <br />

0 E <br />

a) cond(A) 3<br />

cond(A H A) <br />

110


E.1: <br />

(1l 0 ) (1l) <br />

a) 51 (10 mm) 51 (10 mm) 50 cm 1.6107E3<br />

b) 51 (10 mm) 11 (50 mm) 50 cm 5.8946<br />

c) 51 (10 mm) 31 (10 mm) 30 cm 2.2642E6<br />

d) 51 (10 mm) 51 (6 mm) 30 cm 4.9598E18<br />

0.015<br />

a) 51p -> 51p<br />

b) 51p -> 11p<br />

0.01<br />

Current [A]<br />

0.005<br />

0<br />

-0.005<br />

-0.01<br />

-25 -20 -15 -10 -5 0 5 10 15 20 25<br />

y [cm]<br />

E.1: b) (1l 0 > 1l)<br />

111


0.015<br />

a) 51p -> 51p<br />

c) 51p -> 31p (∆ keep)<br />

0.01<br />

Current [A]<br />

0.005<br />

0<br />

-0.005<br />

-0.01<br />

-25 -20 -15 -10 -5 0 5 10 15 20 25<br />

y [cm]<br />

E.2: c) (1l 0<br />

=1l)<br />

0.015<br />

0.01<br />

a) ∆ l :10mm -> ∆ l’ :10mm<br />

d) ∆ l :10mm -> ∆ l’ :6mm<br />

(51points)<br />

Current [A]<br />

0.005<br />

0<br />

-0.005<br />

-0.01<br />

-25 -20 -15 -10 -5 0 5 10 15 20 25<br />

y [cm]<br />

E.3: d) (1l 0 > 1l)<br />

112


E.1 E.3 <br />

y <br />

<br />

d) <br />

<br />

<br />

3 0<br />

<br />

c) d) E.2 E.3 <br />

<br />

<br />

<br />

<br />

c) d) <br />

113


F<br />

1+j0V<br />

<br />

5 5.4 <br />

1+j0V<br />

(4.16)<br />

H =<br />

V 1<br />

Z 0 1 (1 + S 11 ) 1 (S 31 0 S 21 ) 1 F M<br />

2<br />

(F.1)<br />

V 1 <br />

S <br />

<br />

<br />

F.1 <br />

F.1 l Z d <br />

a g <br />

a i (i=1, 4)b j (j=1, 4) <br />

a 1 = a g (F.2)<br />

a 4 = 0 d b 4 (F.3)<br />

b 1 = S 12 S 21 a g 0 d (F.4)<br />

b 4 = A 21 a g (F.5)<br />

114


Port 1 Port 4<br />

b 1 a 1<br />

a 4 b 4<br />

Z 0<br />

Z 0<br />

a g<br />

Z 0<br />

− jβl<br />

e<br />

0<br />

e<br />

− jβl<br />

0<br />

Z d<br />

V 1 Vd<br />

Antenna<br />

Γ d<br />

l<br />

Test cable<br />

Connector<br />

Semi-Rigid cable<br />

element<br />

F.1: <br />

V 1 ;V d <br />

q<br />

V 1 = (a 1 + b 1 ) Z 0<br />

= (1 + S 12 S 21 0 d )a g<br />

qZ 0 (F.6)<br />

V d = (a 4 + b 4 )<br />

q<br />

Z 0<br />

= (0 d +1)S 21 a g<br />

qZ 0 (F.7)<br />

(F.6) (F.7) a g <br />

V 1 = 1+S 12S 21 0 d<br />

(0 d +1)S 21<br />

1 V d (F.8)<br />

S S 11 =0, S 22 =0,<br />

S 21 = S 12 = e 0jl <br />

V d =1+j0V<br />

V 1 = 1+0 d 1 e 02jl<br />

(0 d +1)e 0jl (F.9)<br />

115


(F.9) (F.1) 1+j0V<br />

<br />

116


G<br />

2<br />

<br />

5 1 <br />

6 <br />

2 <br />

4 2 <br />

1 1 <br />

6.4 <br />

2 <br />

<br />

G.1 <br />

G.1 2 <br />

y x 6.4 <br />

y <br />

x 1 4 <br />

x =0cm <br />

1 (1line)x = 03cm<br />

2 (2lines)x =0cm, 06cm<br />

3 (3lines)x =0cm, 03cm, 06cm<br />

117


Two-Element<br />

Yagi-Uda antenna<br />

3cm<br />

3cm<br />

Emitter<br />

30cm<br />

3cm<br />

6cm<br />

x<br />

Director<br />

24cm<br />

Loop<br />

probe<br />

y<br />

z<br />

G.1: 3 <br />

4 (4lines)x =0cm, 03cm, 06cm, 09cm<br />

z =3cm<br />

G.2 <br />

025cm < = y < = 25cm <br />

1cm 51 1 2 <br />

025cm < = y < = 25cm<br />

1cm 1 (1line) <br />

5mm 101 <br />

G.2 x 2 <br />

<br />

x <br />

<br />

( G.3)<br />

G.4 3 3 <br />

3 <br />

30cm 24cm 2 <br />

118


Current [mA]<br />

Current [mA]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Emitter(30cm)<br />

Real<br />

Director(24cm)<br />

Theoretical<br />

1 line H data<br />

2 lines<br />

3 lines<br />

4 lines<br />

Imaginary<br />

-2<br />

Imaginary<br />

-4<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

G.2: x 2 <br />

Real<br />

3cm 1mm <br />

119


Current[mA]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

Emitter (30cm)<br />

Theoretical<br />

Simulation<br />

(x= 0cm,-3cm)<br />

(x=-1cm,-4cm)<br />

2<br />

0<br />

-2<br />

Current[mA]<br />

-4<br />

2<br />

0<br />

-2<br />

-4<br />

Director (24cm)<br />

-6-15 -10 -5 0 5 10<br />

y [cm]<br />

G.3: 2 (2 <br />

<br />

120


16<br />

14<br />

12<br />

10<br />

Emitter (30cm)<br />

Theoretical<br />

H data 1line<br />

2lines<br />

3lines<br />

4lines<br />

5lines<br />

Current [mA]<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

6<br />

4<br />

Director1(24cm)<br />

Current [mA]<br />

2<br />

0<br />

-2<br />

Current [mA]<br />

-4<br />

-6<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

Director2(24cm)<br />

-6<br />

-15 -10 -5 0 5 10 15<br />

y [cm]<br />

G.4: x (3 <br />

121


Current [mA]<br />

Current [mA]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

4<br />

2<br />

0<br />

-2<br />

Emitter(30cm)<br />

Real<br />

Director(24cm)<br />

Imaginary<br />

Imaginary<br />

Real<br />

Estimated<br />

Theoretical<br />

-4<br />

-15 -10 -5 0<br />

y [cm]<br />

5 10 15<br />

G.5: (x ) 2 <br />

G.2 <br />

2 x <br />

2 <br />

z <br />

G.5 x = 03cm, z =2cm, 3cm <br />

2 <br />

G.1 x 1 <br />

z 2 2 <br />

<br />

<br />

<br />

2 <br />

122


Bernard Huyart Xavier Begaud Radiofrequency Research<br />

Group <br />

<br />

<br />

123


[1] 38 "<br />

" June ,1990<br />

[2] 89 "<br />

" April ,1997<br />

[3] 13 2005<br />

[4] 2006 7 25 "<br />

"<br />

[5] T. Hondou et al."Passive Exposure to Mobile Phones: Enhancement of Intensity<br />

by Reection"Journal of the Physical Society of Japan Vol. 75 No.<br />

8, pp.084801-087805, August, 2006<br />

[6] ""<br />

1993<br />

[7] K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving<br />

Maxwell's Equations in Isotripic Media," IEEE Transaction on Antennas and<br />

Propagations, Vil.14, No.4, 1966<br />

[8] E. Hankui, T. Harada, and T. Kuriyama, Estimation of Current Distribution<br />

on Cellular Telephone Antennas Aected by Human Body Interaction, <br />

IEICE Trans. on Electron. Vol. E84-C, No. 9, Sept 2001, pp. 1260-1263<br />

[9] T. Harada, N. Masuda, and M. Yamaguchi, Near-Field Magnetic Measurements<br />

and Their Application to EMC of Digital Equipment, IEICE Trans.<br />

Electron., Vol. E89-C, No. 1, Jan 2006<br />

124


[10] <br />

<br />

Vol.J87-C No.3pp.335-342Mar. 2004<br />

[11] S. Hayashi, K. Masuda, and K. Hatakeyama,Radiated emission estimation<br />

of a metallic enclosure model source by inverse-forward analysis, IEICE<br />

Trans. Commun., Vol. E78-B, No. 2, pp. 173-180, Feb. 1995<br />

[12] 2002<br />

B-4-60pp.411Mar. 2002<br />

[13] <br />

<br />

Vol.J88-C No.12pp.1159-1166Dec. 2005<br />

[14] W. L. Stutzman, G. A. Thiele, Antenna Theory and Design Second Edition,<br />

John Willey & Sons, Inc., 1998<br />

[15] A <br />

Vol. 117-ANo. 5pp. 450-455May 1997<br />

[16] T. K. Sarkar, Application of Conjugate Gradient Method to Electromagnetics<br />

and Signal Analysis, Elsevier Science Publishing Co., Inc, 1991<br />

[17] 1993<br />

[18] S.Ishigami, H.Iida, and T.Iwasaki, "Measurements of complex antenna factor<br />

by the near-eld 3-antenna method," IEEE Trans. on Electromagn. Compat.,<br />

Vol.38, No3, pp.424-432, Aug. 1996<br />

[19] T. Iwasaki and K. Tomizawa: Systematic uncertainties of the complex<br />

antenna factor of a dipole antenna as determined by two methods, IEEE<br />

Trans. Electromagn. Compat., Vol.46, No.2, pp.234-245, 2004.<br />

[20] <br />

<br />

Vol.J-80B-II, No.12, pp.1091-1098, December 1997<br />

125


[21] M. Ishii, T. Iwasaki, "A method for nding the direction of arrival of a single<br />

short pulse by the waveform reconstruction, IEICE Trans. on Communications,<br />

Vol.E83-B, No.3, pp.453-459, 2000<br />

[22] M. Takashima, K. Fujii and T. Iwasaki,Measurement of magnetic complex<br />

antenna factor of a double-gapped shielded loop antenna,IEICE Trans. On<br />

Commun. vol. J84-B, No.11, pp. 2066-2070, Nov. 2001.<br />

[23] I. Yokoshima: Absolute measurements for small loop antenna for RF magnetic<br />

eld standards,IEEE Trans. Instrum. and Meas., Vol.IM-23, No.3, pp.<br />

217-221, Sept. 1974.<br />

[24] 1999<br />

[25] L. Hamada, G. Nakanishi, T. Iwasaki, "Waveform Reconstruction of Electromagnetic<br />

Fields by Using Log-Periodic Dipole Array Antenna," EMC EU-<br />

ROPE 2002, September, 2002<br />

[26] L. Hamada, N. Otonari and T. Iwasaki: Measurement of electromagnetic<br />

elds near a monopole antenna excited by a pulse, IEEE Trans. Electromagn.<br />

Compat., Vol. 44, No.1, pp.72-78, 2002.<br />

[27] Pocklington H. E., "Electrical oscillation in wires," Camblidge Phil. Soc.<br />

Peoc., 9. pp.324-332. 1987<br />

[28] T. Harada, N. Masuda, and M. Yamaguchi, Near-Field Magnetic Measurements<br />

and Their Application to EMC of Digital Equipment, IEICE Trans.<br />

Electron., Vol. E89-C, No. 1, Jan 2006<br />

[29] <br />

1992<br />

[30] K. Fujii and T. Iwasaki,Evaluation of Sites for Measuring Complex Antenna<br />

Factors: Comparison of Theoretical Calculation and TRL-Based Experiment,<br />

IEICE Trans. on Commun., Vol. E83-B, No. 10, pp. 2419-2426, Oct. 2000<br />

126


[31] TRL <br />

S B, vol. J86-B, no.7 pp.1050-<br />

1061, July 2003<br />

[32] 2001<br />

[33] 1995<br />

127


1. <br />

<br />

(1) Akiko KOHMURA, Takashi IWASAKI<br />

"Determination of Magnetic Complex Antenna Factor of Double-<br />

Output Shielded Loop Antenna Using an Equivalent Circuit,"<br />

IEEJ, Transaction on Fundamentals and Materials, Vol.126, No.6, pp.414-<br />

419, June 2006<br />

( 3 )<br />

(2) , <br />

" 2 <br />

,"<br />

B, Vol.J89-B, No.12, pp.2237-2244, December 2006<br />

( 2 4 5 )<br />

128


2. <br />

(6 )<br />

(1) , <br />

","<br />

B, Vol.J87-B, No.7, pp.1033-1038 , July 2004<br />

()<br />

(2) Akiko KOHMURA, Tomonori HASEGAWA, Takashi IWASAKI<br />

"A Method for Measuring Reection Distribution of The Electromagnetic<br />

Absorber by A Scalar Inverse Scattering,"<br />

EMC'04 Sendai, 2B3-1, pp.321-324, June, 2004<br />

(3) Akiko KOHMURA and Takashi IWASAKI<br />

"Estimation of Current Distribution on Dipole Antenna Elements<br />

Using a Double-Output Shielded Loop Probe,"<br />

EMC Europe 2006, ABS-37, pp. 750-755, September 2006<br />

129


(4) , <br />

<br />

, <br />

, IM-01-23, pp.33-38, June 2001<br />

(5) , <br />

, <br />

13 , pp.27, March 2002<br />

(6) , <br />

, <br />

15 , 1-156, pp.193, March 2003<br />

(7) , <br />

<br />

, <br />

, IM-03-31, pp.11-15, June 2003<br />

(8) , <br />

, <br />

15 , pp.246, August 2003<br />

(9) , <br />

, <br />

, EMT-03-45, pp.47-51, November 2003<br />

(10) , <br />

, <br />

, EMCJ-14-8, pp.9-12, April 2004<br />

130


(11) , <br />

, <br />

, pp.19-28, June 2004<br />

(12) , , <br />

<br />

, <br />

, IM-04-16, pp.23-28, June 2004<br />

(13) , , <br />

<br />

, <br />

, IM-04-19, pp.41-46, June 2004<br />

(14) , <br />

2 ,"<br />

2005 , B-4-64, pp.38September<br />

2005<br />

(15) , <br />

,<br />

, IM-06-18, pp.13-18, June 2006<br />

(16) , <br />

, <br />

, IM-06-19, pp.19-24, June 2006<br />

(17) , <br />

2 2 <br />

, <br />

, IM-06-51, pp.37-42, November 2006<br />

131


(18) , <br />

2 <br />

, <br />

2007 , B-4-63March 2007<br />

(19) , <br />

2 <br />

, <br />

2007 , B-4-62, March 2007<br />

3. <br />

(1) 15 (7))<br />

(2) 16 9 17 5 (ENST) <br />

JASSO<br />

132


( )<br />

1978 8 8 <br />

<br />

1997 3 <br />

1997 4 <br />

2001 3 <br />

2001 4 <br />

<br />

2003 3 <br />

<br />

2003 4 <br />

<br />

2004 9 2005 5 <br />

<br />

(Ecole Nationale Superieure<br />

des Telecommunications) <br />

2007 3 <br />

<br />

133

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!