26.02.2015 Views

k - spsc - Graz University of Technology

k - spsc - Graz University of Technology

k - spsc - Graz University of Technology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SPSC – Signal Processing & Speech Communication Lab<br />

Wavelet Transform and<br />

its relation to<br />

multirate filter banks<br />

Christian Wallinger<br />

ASP Seminar 12 th June 2007<br />

<strong>Graz</strong> <strong>University</strong> <strong>of</strong> <strong>Technology</strong>, Austria<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

1


SPSC – Signal Processing & Speech Communication Lab<br />

Outline<br />

Short – Time Fourier – Transformation<br />

‣ Interpretation using Bandpass Filters<br />

‣ Uniform DFT Bank<br />

‣ Decimation<br />

‣ Inverse STFT and filter - bank interpretation<br />

‣ Basis Functions and Orthonormality<br />

‣ Continuous Time STFT<br />

Wavelet – Transformation<br />

‣ Passing from STFT to Wavelets<br />

‣ General Definition <strong>of</strong> Wavelets<br />

‣ Inversion and filter - bank interpretation<br />

‣ Orthonormal Basis<br />

‣ Discrete – Time Wavelet Transf.<br />

‣ Inverse<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

2


SPSC – Signal Processing & Speech Communication Lab<br />

SHORT-Time FOURIER TRANSF.<br />

sdfgsdfg<br />

yxvyxvyxcv<br />

fgjfghj<br />

figure 1: STFT processing in time<br />

time – frequency plot = Spectogram<br />

figure 2: spectogram<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

3


SPSC – Signal Processing & Speech Communication Lab<br />

Definition:<br />

X<br />

STFT<br />

(<br />

jω<br />

) ∑ ∞ e , m =<br />

n=<br />

−∞<br />

x(<br />

n)<br />

v(<br />

n − m)<br />

e<br />

− jωn<br />

m . . . time shift – variable<br />

( typically an integer multiple <strong>of</strong> some fixed integer K)<br />

ω . . . frequency – variable<br />

− π ≤ ω < π<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

4


SPSC – Signal Processing & Speech Communication Lab<br />

Interpretation using Bandpass Filters<br />

Traditional Fourier Transform as a Filter Bank<br />

figure 3: Representation <strong>of</strong> FT in terms <strong>of</strong> a linear system<br />

e<br />

0<br />

− jω<br />

n<br />

1. Modulator : performs a frequency shift<br />

(<br />

jω<br />

)<br />

H e<br />

2. LTI – System : ideal lowpass filter<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

5


SPSC – Signal Processing & Speech Communication Lab<br />

(<br />

jω)<br />

H e<br />

Why is an ideal lowpass filter ?<br />

Impulse Response h(n) = 1 for all n<br />

(<br />

jω<br />

)<br />

− jωn<br />

H e h( n)<br />

e = 2πδ<br />

( ω)<br />

= ∑ ∞<br />

−∞<br />

n=<br />

a<br />

−π ≤ ω < π<br />

only zero - frequency passes<br />

every other frequency is completely supressed<br />

(<br />

jω<br />

)<br />

0<br />

e<br />

y ( n)<br />

= X<br />

for all n<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

6


SPSC – Signal Processing & Speech Communication Lab<br />

STFT as a Bank <strong>of</strong> Filters<br />

Expansion <strong>of</strong> Definiton for further insight!<br />

X<br />

STFT<br />

(<br />

jω<br />

)<br />

− jωm<br />

∞ e , m = e ∑<br />

n=<br />

−∞<br />

x(<br />

n)<br />

v(<br />

n<br />

−<br />

m)<br />

e<br />

jω(<br />

m−n)<br />

with:<br />

v(<br />

n − m)<br />

e<br />

jω(<br />

m−n)<br />

=<br />

v(<br />

−(<br />

m − n))<br />

e<br />

jω(<br />

m−n)<br />

Convolution <strong>of</strong> x(n) with the impulse response <strong>of</strong> the LTI – System<br />

v(−n)<br />

e<br />

jωn<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

7


SPSC – Signal Processing & Speech Communication Lab<br />

figure 4: Representation <strong>of</strong> STFT in terms <strong>of</strong> a linear system<br />

In most applications, v(n) has a lowpass transform V(e jω ).<br />

<br />

jω<br />

v( − n) V ( e<br />

− )<br />

0<br />

v(<br />

jω<br />

n<br />

− j( 0<br />

− n)<br />

e V ( e<br />

ω−ω ) )<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

8


SPSC – Signal Processing & Speech Communication Lab<br />

figure 5: Demonstration <strong>of</strong> how STFT works<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

9


SPSC – Signal Processing & Speech Communication Lab<br />

In practice, we are interested in computing the Fourier transform at a discrete<br />

set <strong>of</strong> frequencies<br />

0 ≤ ω 0<br />

< ω 1<br />

< … < ω M-1<br />

< 2π<br />

Therefore the STFT reduces to a filter bank with M bandpass filters<br />

H<br />

k<br />

( e<br />

jω<br />

) = V ( e<br />

− j( ω−ωk<br />

)<br />

)<br />

figure 6: STFT viewed as a filter bank<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

10


SPSC – Signal Processing & Speech Communication Lab<br />

Uniform DFT bank<br />

If the frequencies ω k<br />

are uniformly spaced, then the system<br />

becomes the uniform DFT bank.<br />

The M filters are related as in the following manner<br />

H<br />

k<br />

z)<br />

H<br />

0<br />

(<br />

k<br />

zW )<br />

( = 0 ≤ k ≤ M −1<br />

W<br />

=<br />

e<br />

j 2π<br />

−<br />

M<br />

<br />

H<br />

k<br />

( e<br />

jω<br />

)<br />

=<br />

H<br />

0<br />

⎛<br />

⎜<br />

e<br />

⎝<br />

2π<br />

j(<br />

ω− k )<br />

M<br />

⎞<br />

⎟<br />

⎠<br />

H 0( e<br />

) = V ( e<br />

jω − jω<br />

)<br />

The uniform DFT bank is a device to compute the STFT at uniformely<br />

spaced frequencies.<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

11


SPSC – Signal Processing & Speech Communication Lab<br />

Decimation<br />

if passband width <strong>of</strong> V(e jω ) is narrow<br />

output signals y k<br />

(n) are narrowband lowpass signals<br />

this means, that yk(n) varies slowly with time<br />

According to this variying nature, one can exploit that to decimate the<br />

output.<br />

Decimation Ratio <strong>of</strong> M = moving the window v(k) by M samples at a time<br />

if filters have equal bandwidth<br />

<br />

n k<br />

= M<br />

maximally decimated analyses bank<br />

figure 7: Analysis bank with decimators<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

12


SPSC – Signal Processing & Speech Communication Lab<br />

Time – Frequency Grid<br />

Uniform sampling <strong>of</strong> both, ‘time’ n and ‘frequency’ ω<br />

figure 8: time – frequency grid<br />

Time spacing M corresponds to moving the window M units ( = samples ) at a time.<br />

2π<br />

frequency spacing <strong>of</strong> adjacent filters = M<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

13


SPSC – Signal Processing & Speech Communication Lab<br />

X<br />

Inversion <strong>of</strong> the STFT<br />

From traditional Fourier – viewpoint<br />

(<br />

jω<br />

e m)<br />

STFT<br />

,<br />

is the FT. from the time domain product<br />

x( n)<br />

v(<br />

n − m)<br />

<br />

2π<br />

1<br />

− = ∫ (<br />

jω<br />

)<br />

jωn<br />

x( n)<br />

v(<br />

n m)<br />

X<br />

STFT<br />

e , m e dω<br />

2π<br />

0<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

14


SPSC – Signal Processing & Speech Communication Lab<br />

Another inversion formula is given by:<br />

2π<br />

∞<br />

1 ⎛<br />

∫ ∑ (<br />

jω<br />

)<br />

* ⎞<br />

= ⎜<br />

( − )<br />

jωn<br />

x( n)<br />

X<br />

STFT<br />

e , m v n m ⎟e<br />

dω<br />

2π<br />

⎝ m=−∞<br />

⎠<br />

0<br />

2<br />

∑ v = 1<br />

which is provided by ( m)<br />

m<br />

if<br />

∑<br />

m<br />

( m)<br />

2<br />

v ≠ 1<br />

but finite divide right side <strong>of</strong> the formula by<br />

∑ m<br />

v<br />

( m)<br />

2<br />

but if window energy is infinite one cannot apply this formulation<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

15


SPSC – Signal Processing & Speech Communication Lab<br />

Filter Bank Interpretation <strong>of</strong> the Inverse<br />

F k<br />

(z)<br />

With as synthesis - filter<br />

Reconstruction can be done by the following synthesis bank:<br />

figure 9: synthesis – bank used to reconstruct x(n)<br />

typically n k<br />

= M for all k<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

16


SPSC – Signal Processing & Speech Communication Lab<br />

( n)<br />

The z – Transformation <strong>of</strong> is given by<br />

Xˆ<br />

M<br />

∑ − 1<br />

k = 0<br />

xˆ<br />

nk<br />

( z) = X ( z ) F ( z)<br />

k<br />

k<br />

xˆ<br />

M − 1<br />

in time – domain<br />

∞<br />

( n) = x ( m) f ( n − n m)<br />

∑∑<br />

k=<br />

0 m=−∞<br />

k<br />

k<br />

k<br />

=<br />

M − 1<br />

∞<br />

∑∑<br />

k=<br />

0 m=−∞<br />

y<br />

k<br />

jω ( n m)<br />

( n m) e k k<br />

f ( n − n m)<br />

k<br />

k<br />

k<br />

y<br />

k<br />

( n m) K STFT − Coefficien ts<br />

k<br />

Reconstruction is stable, if the filters F k<br />

(z) are stable!<br />

Perfect reconstruction will be obtained, if x ˆ(<br />

n) = x( n)<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

17


SPSC – Signal Processing & Speech Communication Lab<br />

Basis Functions and Orthonormality<br />

η<br />

km<br />

Functions <strong>of</strong> interest<br />

( n) =ˆ f ( n − n m) Kbasis<br />

functions<br />

k<br />

k<br />

For these double indexed functions ( basis functions n ),<br />

the orthonormality property means that<br />

{ ( )}<br />

η km<br />

∑ ∞<br />

n=<br />

−∞<br />

( n − n m ) f ( n − n m ) = δ ( k − k ) ( m − m )<br />

*<br />

f<br />

k1 k1<br />

1 k 2 k 2 2 1 2<br />

δ<br />

1 2<br />

should be zero, except for those cases where k<br />

1<br />

= k2<br />

and m1<br />

= m2<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

18


SPSC – Signal Processing & Speech Communication Lab<br />

The Continuous - Time Case<br />

Main points:<br />

X<br />

STFT<br />

∞<br />

∫<br />

−∞<br />

− jΩ<br />

t<br />

( jΩ,τ<br />

) = x( t) v( t −τ<br />

) e dt ( STFT )<br />

x<br />

∞<br />

1<br />

2π<br />

∫<br />

j t<br />

()( t v t −τ<br />

) = X ( jΩ,<br />

τ ) e<br />

Ω dΩ<br />

( inv STFT )<br />

−∞<br />

STFT<br />

.<br />

x<br />

1 ∞ ∞<br />

*<br />

STFT<br />

.<br />

jΩ<br />

t<br />

() t = ⎜ X ( jΩ,<br />

τ ) v ( t −τ<br />

) dτ<br />

⎟e<br />

dΩ<br />

( inv STFT )<br />

2π<br />

∫⎜<br />

∫<br />

−∞<br />

⎛<br />

⎝<br />

−∞<br />

⎞<br />

⎟<br />

⎠<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

19


SPSC – Signal Processing & Speech Communication Lab<br />

Choice <strong>of</strong> “Best Window”<br />

R oot<br />

M ean<br />

S quare<br />

duration <strong>of</strong> window function v(t) in<br />

time domain D t<br />

∞<br />

2 1 2 2<br />

D t ∫ t v<br />

E<br />

−∞<br />

() t<br />

= dt<br />

frequency domain D f<br />

∞<br />

2 1 2<br />

2<br />

D f ∫ Ω V ( jΩ)<br />

2πE<br />

−∞<br />

= dΩ<br />

with:<br />

2<br />

E . . . window energy E = v () t dt<br />

∫<br />

Uncertainty principle:<br />

D t D f<br />

≥ 0.5<br />

Iff Gaussian – window, this inequality becomes an equality !<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

20


SPSC – Signal Processing & Speech Communication Lab<br />

Filter Bank Interpretation<br />

figure 10: continuous – STFT<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

21


SPSC – Signal Processing & Speech Communication Lab<br />

THE WAVELET TRANSFORM<br />

Disadvantage <strong>of</strong> STFT<br />

uniform time – frequency box ( D = const., D const. )<br />

t f<br />

=<br />

The accuracy <strong>of</strong> the estimate <strong>of</strong> the Fourier transform<br />

is poor at low frequencies, and improves as the frequency increases.<br />

Expected properties for a new function:<br />

‣ window width should adjust itself with ‘frequency’<br />

‣ as the window gets wider in time, also the step sizes for<br />

moving the window should become wider.<br />

These goals are nicely accomplished by the wavelet transform.<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

22


SPSC – Signal Processing & Speech Communication Lab<br />

Passing from STFT to Wavelets<br />

Step 1:<br />

Giving up the STFT modulation scheme and obtain filters<br />

h<br />

k<br />

−k<br />

() t a ( ) 2 −k<br />

= h a t a > 1Kscaling<br />

factor,<br />

k = int eger<br />

in the frequency domain:<br />

k<br />

k<br />

( jΩ) = a H ( ja Ω)<br />

2<br />

H<br />

k<br />

all reponses are obtained by frequency – scaling <strong>of</strong> a prototype response H(<br />

jΩ)<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

23


SPSC – Signal Processing & Speech Communication Lab<br />

Example:<br />

H<br />

( jΩ)<br />

Assuming is a bandpass with cut<strong>of</strong>f frequencies α and β.<br />

Also a = 2 , β = 2α and the center frequency should be the geometrical<br />

mean <strong>of</strong> the two cut<strong>of</strong>f edges<br />

Ω<br />

k<br />

=<br />

2<br />

−k<br />

αβ = α 2<br />

−k<br />

2<br />

figure 11: frequency – response obtained by scaling process<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

24


SPSC – Signal Processing & Speech Communication Lab<br />

Ratio:<br />

bandwidth<br />

center − frequency<br />

Ω<br />

k<br />

=<br />

2<br />

−k<br />

2<br />

( β − α )<br />

−k<br />

αβ<br />

=<br />

1<br />

2<br />

is independent <strong>of</strong> integer k<br />

In electrical filter theory such a system is <strong>of</strong>ten said to be a ‘constant Q’ system!<br />

( Q ... Quality factor<br />

center − frequency<br />

Q = )<br />

bandwidth<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

25


SPSC – Signal Processing & Speech Communication Lab<br />

filter ouputs can be obtained by:<br />

a<br />

−k<br />

2<br />

e<br />

− jΩ<br />

k<br />

∞<br />

τ<br />

∫<br />

−∞<br />

x<br />

−k<br />

() t h a ( τ − t)<br />

( )<br />

dt<br />

Step 2:<br />

k<br />

↑<br />

→<br />

bandwidth<br />

<strong>of</strong><br />

H<br />

k<br />

( jΩ) ↓ → Samplerate ↓<br />

or in time domain<br />

k<br />

↑<br />

→<br />

window length<br />

↑<br />

→<br />

step<br />

size<br />

↑<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

26


SPSC – Signal Processing & Speech Communication Lab<br />

Therefore:<br />

τ =<br />

na<br />

k<br />

T<br />

nK int eger,<br />

a<br />

k<br />

T Kstep<br />

size<br />

hence:<br />

h<br />

(<br />

−k<br />

(<br />

k<br />

) (<br />

−k<br />

a na T − t = h nT − a t)<br />

Summarizing, we are computing:<br />

<br />

X<br />

X<br />

DWT<br />

DWT<br />

,<br />

∞<br />

∫<br />

−∞<br />

−k<br />

2<br />

−k<br />

( k,<br />

n) a x() t h( nT − a t)<br />

= dt<br />

∞<br />

∫<br />

−∞<br />

k<br />

( k n) x( t) h ( na T − t)<br />

= dt<br />

k<br />

DWT...Discrete Wavelet Transform<br />

figure 12: Analysis bank <strong>of</strong> DWT<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

27


SPSC – Signal Processing & Speech Communication Lab<br />

Time Frequency Grid<br />

figure 13: time – frequency grid<br />

D t<br />

D f<br />

=<br />

const.<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

28


SPSC – Signal Processing & Speech Communication Lab<br />

General Definition <strong>of</strong> the Wavelet Transform<br />

∞<br />

1 ⎛ t − q ⎞<br />

X CWT<br />

( p,<br />

q) = ∫ x()<br />

t f ⎜ ⎟dt<br />

p −∞ ⎝ p ⎠<br />

p,q ... real – valued continuous variables<br />

According to former definition:<br />

p =<br />

k<br />

a<br />

q<br />

k<br />

= a Tn f ( t) = h( − t)<br />

X<br />

CWT<br />

( p,<br />

q) and X ( k,<br />

n) KKK<br />

wavelet coefficients<br />

DWT<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

29


SPSC – Signal Processing & Speech Communication Lab<br />

Inversion <strong>of</strong> Wavelet Transform<br />

x<br />

( t) X ( k,<br />

n) ψ ( t)<br />

= ∑∑<br />

ψ k n<br />

k<br />

( t)<br />

n<br />

DWT<br />

k n<br />

where are the basis functions<br />

Filter Bank Interpretation <strong>of</strong> Inversion<br />

Reconstruction <strong>of</strong> x(t) as a designing problem <strong>of</strong> the following synthesis filter bank<br />

( k,<br />

n) K sequence<br />

( jΩ) K continuous intime<br />

X DWT<br />

F k<br />

output <strong>of</strong> synthesis filter bank :<br />

k<br />

( t) = ∑∑X<br />

( k n) f ( t − a nT )<br />

x ˆ<br />

,<br />

k n<br />

DWT<br />

k<br />

figure 14: synthesis bank<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

30


SPSC – Signal Processing & Speech Communication Lab<br />

All synthesis filters are again generated from a fixed prototype synthesis filter<br />

f(t) ( mother wavelet )<br />

f<br />

k<br />

−k<br />

2 −k<br />

() t = a f ( a t)<br />

Substituting this in the preceding equation and assuming perfect reconstruction, we get<br />

with:<br />

−k<br />

() = ∑∑ ( ) ( − k<br />

t X k,<br />

n a f a t − nT )<br />

2<br />

x<br />

DWT<br />

k n<br />

−k<br />

k<br />

k<br />

−<br />

2 −<br />

−k<br />

k<br />

() t = f () t → ψ () t = a ψ ( a t − nT ) = a ψ [ a ( t − na T )] Kset<br />

<strong>of</strong> basis functions<br />

2<br />

ψ<br />

k n<br />

using this, we can express each basis function in terms <strong>of</strong> the filter f k<br />

( t)<br />

ψ<br />

k n<br />

( ) (<br />

k<br />

t = f t − na T )<br />

k<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

31


SPSC – Signal Processing & Speech Communication Lab<br />

Orthonormal Basis<br />

{ ()}<br />

Of particular interest is the case where ψ k<br />

t is a set <strong>of</strong> orthonormal<br />

n<br />

functions<br />

Therefore, we expect:<br />

∞<br />

∫ψ *<br />

k<br />

−∞<br />

n<br />

() t ψ () t dt = δ ( k − l) δ ( n − m)<br />

l m<br />

using Parseval’s theorem, this becomes<br />

1<br />

2π<br />

∞<br />

∫<br />

−∞<br />

Ψ<br />

*<br />

k n<br />

( jΩ) Ψ ( jΩ) dΩ = δ ( k − l) δ ( n − m)<br />

l m<br />

and get :<br />

X<br />

DWT<br />

∞<br />

∫<br />

−∞<br />

*<br />

( k, n) x() t ψ () t<br />

= dt<br />

k n<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

32


SPSC – Signal Processing & Speech Communication Lab<br />

Comparing these results, we can conclude:<br />

ψ<br />

k n<br />

And in particular for k = 0 and n = 0:<br />

( ) (<br />

k<br />

t = h<br />

* a nT − t)<br />

*<br />

ψ ( t) = ( t) = h ( − t)<br />

for the orthonormal case fk<br />

( t) = h<br />

*<br />

k ( − t)<br />

00<br />

ψ<br />

k<br />

H<br />

Discrete – Time Wavelet Transform<br />

Starting with the frequency domain relation and a scaling factor a = 2<br />

k<br />

k<br />

j<br />

( e ) ( ) ω j2<br />

ω<br />

= H e K k is a nonnegative int eger<br />

H<br />

jω<br />

( e )<br />

for highpass and k = 1, k = 2<br />

figure 15: Magnitude responses<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

33


SPSC – Signal Processing & Speech Communication Lab<br />

Let G(z) be a lowpass with response<br />

Using QMF – banks<br />

figure 16: Magnitude – response <strong>of</strong> G(z)<br />

or<br />

its equivalent<br />

figure 17: 3 level binary tree-structured QMF<br />

figure 18: equivalent 4-channel system<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

34


SPSC – Signal Processing & Speech Communication Lab<br />

2<br />

2 4<br />

Responses <strong>of</strong> the filters H ( z) , G( z) H ( z ),<br />

G( z) G( z ) H ( z ),......<br />

figure 19: combinations <strong>of</strong> H(z) and G(z)<br />

Defining the Discrete –Time Wavelet Transform<br />

M −1<br />

k +<br />

( n) = x( m) h ( 2 1 n − m)<br />

∑ ∞<br />

m=<br />

−∞<br />

y , 0 ≤ k ≤ M − 2<br />

k<br />

k<br />

M −<br />

( n) = x( m) h ( 2 1 n − m) ( D T WT )<br />

∑ ∞<br />

m=<br />

−∞<br />

y ,<br />

M −1<br />

iscrete<br />

ime<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

35


SPSC – Signal Processing & Speech Communication Lab<br />

Inverse Transform<br />

F<br />

2<br />

( z) = H ( z) , F ( z) H ( z ) G ( ),<br />

K<br />

0 s 1<br />

=<br />

s s<br />

z<br />

figure 20: synthesis filters<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

36


SPSC – Signal Processing & Speech Communication Lab<br />

For perfect reconstruction x ˆ( n) = x( n)<br />

we can express<br />

X<br />

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )<br />

2<br />

4<br />

2<br />

2<br />

z = F z Y z + F z Y z + + F z Y z F z Y z<br />

0 0<br />

1 1<br />

...<br />

M −1<br />

M − 2 M −2<br />

+<br />

M −1<br />

M −1<br />

M −1<br />

and in time domain:<br />

x<br />

M −2<br />

∞<br />

∞<br />

2k<br />

+ 1<br />

M −1<br />

( n) = y ( m) f ( n − 2 m) + y ( m) f ( n − 2 m)<br />

∑∑<br />

∑<br />

k k<br />

k=<br />

0 m=−∞<br />

m=−∞<br />

M −1<br />

M −1<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

37


SPSC – Signal Processing & Speech Communication Lab<br />

Main References<br />

Multirate Systems and Filter Banks<br />

(Prentice Hall Signal Processing Series)<br />

by P. P. Vaidyanathan<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

38


SPSC – Signal Processing & Speech Communication Lab<br />

Thank you for attention !<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!