26.02.2015 Views

k - spsc - Graz University of Technology

k - spsc - Graz University of Technology

k - spsc - Graz University of Technology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SPSC – Signal Processing & Speech Communication Lab<br />

Wavelet Transform and<br />

its relation to<br />

multirate filter banks<br />

Christian Wallinger<br />

ASP Seminar 12 th June 2007<br />

<strong>Graz</strong> <strong>University</strong> <strong>of</strong> <strong>Technology</strong>, Austria<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

1


SPSC – Signal Processing & Speech Communication Lab<br />

Outline<br />

Short – Time Fourier – Transformation<br />

‣ Interpretation using Bandpass Filters<br />

‣ Uniform DFT Bank<br />

‣ Decimation<br />

‣ Inverse STFT and filter - bank interpretation<br />

‣ Basis Functions and Orthonormality<br />

‣ Continuous Time STFT<br />

Wavelet – Transformation<br />

‣ Passing from STFT to Wavelets<br />

‣ General Definition <strong>of</strong> Wavelets<br />

‣ Inversion and filter - bank interpretation<br />

‣ Orthonormal Basis<br />

‣ Discrete – Time Wavelet Transf.<br />

‣ Inverse<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

2


SPSC – Signal Processing & Speech Communication Lab<br />

SHORT-Time FOURIER TRANSF.<br />

sdfgsdfg<br />

yxvyxvyxcv<br />

fgjfghj<br />

figure 1: STFT processing in time<br />

time – frequency plot = Spectogram<br />

figure 2: spectogram<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

3


SPSC – Signal Processing & Speech Communication Lab<br />

Definition:<br />

X<br />

STFT<br />

(<br />

jω<br />

) ∑ ∞ e , m =<br />

n=<br />

−∞<br />

x(<br />

n)<br />

v(<br />

n − m)<br />

e<br />

− jωn<br />

m . . . time shift – variable<br />

( typically an integer multiple <strong>of</strong> some fixed integer K)<br />

ω . . . frequency – variable<br />

− π ≤ ω < π<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

4


SPSC – Signal Processing & Speech Communication Lab<br />

Interpretation using Bandpass Filters<br />

Traditional Fourier Transform as a Filter Bank<br />

figure 3: Representation <strong>of</strong> FT in terms <strong>of</strong> a linear system<br />

e<br />

0<br />

− jω<br />

n<br />

1. Modulator : performs a frequency shift<br />

(<br />

jω<br />

)<br />

H e<br />

2. LTI – System : ideal lowpass filter<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

5


SPSC – Signal Processing & Speech Communication Lab<br />

(<br />

jω)<br />

H e<br />

Why is an ideal lowpass filter ?<br />

Impulse Response h(n) = 1 for all n<br />

(<br />

jω<br />

)<br />

− jωn<br />

H e h( n)<br />

e = 2πδ<br />

( ω)<br />

= ∑ ∞<br />

−∞<br />

n=<br />

a<br />

−π ≤ ω < π<br />

only zero - frequency passes<br />

every other frequency is completely supressed<br />

(<br />

jω<br />

)<br />

0<br />

e<br />

y ( n)<br />

= X<br />

for all n<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

6


SPSC – Signal Processing & Speech Communication Lab<br />

STFT as a Bank <strong>of</strong> Filters<br />

Expansion <strong>of</strong> Definiton for further insight!<br />

X<br />

STFT<br />

(<br />

jω<br />

)<br />

− jωm<br />

∞ e , m = e ∑<br />

n=<br />

−∞<br />

x(<br />

n)<br />

v(<br />

n<br />

−<br />

m)<br />

e<br />

jω(<br />

m−n)<br />

with:<br />

v(<br />

n − m)<br />

e<br />

jω(<br />

m−n)<br />

=<br />

v(<br />

−(<br />

m − n))<br />

e<br />

jω(<br />

m−n)<br />

Convolution <strong>of</strong> x(n) with the impulse response <strong>of</strong> the LTI – System<br />

v(−n)<br />

e<br />

jωn<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

7


SPSC – Signal Processing & Speech Communication Lab<br />

figure 4: Representation <strong>of</strong> STFT in terms <strong>of</strong> a linear system<br />

In most applications, v(n) has a lowpass transform V(e jω ).<br />

<br />

jω<br />

v( − n) V ( e<br />

− )<br />

0<br />

v(<br />

jω<br />

n<br />

− j( 0<br />

− n)<br />

e V ( e<br />

ω−ω ) )<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

8


SPSC – Signal Processing & Speech Communication Lab<br />

figure 5: Demonstration <strong>of</strong> how STFT works<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

9


SPSC – Signal Processing & Speech Communication Lab<br />

In practice, we are interested in computing the Fourier transform at a discrete<br />

set <strong>of</strong> frequencies<br />

0 ≤ ω 0<br />

< ω 1<br />

< … < ω M-1<br />

< 2π<br />

Therefore the STFT reduces to a filter bank with M bandpass filters<br />

H<br />

k<br />

( e<br />

jω<br />

) = V ( e<br />

− j( ω−ωk<br />

)<br />

)<br />

figure 6: STFT viewed as a filter bank<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

10


SPSC – Signal Processing & Speech Communication Lab<br />

Uniform DFT bank<br />

If the frequencies ω k<br />

are uniformly spaced, then the system<br />

becomes the uniform DFT bank.<br />

The M filters are related as in the following manner<br />

H<br />

k<br />

z)<br />

H<br />

0<br />

(<br />

k<br />

zW )<br />

( = 0 ≤ k ≤ M −1<br />

W<br />

=<br />

e<br />

j 2π<br />

−<br />

M<br />

<br />

H<br />

k<br />

( e<br />

jω<br />

)<br />

=<br />

H<br />

0<br />

⎛<br />

⎜<br />

e<br />

⎝<br />

2π<br />

j(<br />

ω− k )<br />

M<br />

⎞<br />

⎟<br />

⎠<br />

H 0( e<br />

) = V ( e<br />

jω − jω<br />

)<br />

The uniform DFT bank is a device to compute the STFT at uniformely<br />

spaced frequencies.<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

11


SPSC – Signal Processing & Speech Communication Lab<br />

Decimation<br />

if passband width <strong>of</strong> V(e jω ) is narrow<br />

output signals y k<br />

(n) are narrowband lowpass signals<br />

this means, that yk(n) varies slowly with time<br />

According to this variying nature, one can exploit that to decimate the<br />

output.<br />

Decimation Ratio <strong>of</strong> M = moving the window v(k) by M samples at a time<br />

if filters have equal bandwidth<br />

<br />

n k<br />

= M<br />

maximally decimated analyses bank<br />

figure 7: Analysis bank with decimators<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

12


SPSC – Signal Processing & Speech Communication Lab<br />

Time – Frequency Grid<br />

Uniform sampling <strong>of</strong> both, ‘time’ n and ‘frequency’ ω<br />

figure 8: time – frequency grid<br />

Time spacing M corresponds to moving the window M units ( = samples ) at a time.<br />

2π<br />

frequency spacing <strong>of</strong> adjacent filters = M<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

13


SPSC – Signal Processing & Speech Communication Lab<br />

X<br />

Inversion <strong>of</strong> the STFT<br />

From traditional Fourier – viewpoint<br />

(<br />

jω<br />

e m)<br />

STFT<br />

,<br />

is the FT. from the time domain product<br />

x( n)<br />

v(<br />

n − m)<br />

<br />

2π<br />

1<br />

− = ∫ (<br />

jω<br />

)<br />

jωn<br />

x( n)<br />

v(<br />

n m)<br />

X<br />

STFT<br />

e , m e dω<br />

2π<br />

0<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

14


SPSC – Signal Processing & Speech Communication Lab<br />

Another inversion formula is given by:<br />

2π<br />

∞<br />

1 ⎛<br />

∫ ∑ (<br />

jω<br />

)<br />

* ⎞<br />

= ⎜<br />

( − )<br />

jωn<br />

x( n)<br />

X<br />

STFT<br />

e , m v n m ⎟e<br />

dω<br />

2π<br />

⎝ m=−∞<br />

⎠<br />

0<br />

2<br />

∑ v = 1<br />

which is provided by ( m)<br />

m<br />

if<br />

∑<br />

m<br />

( m)<br />

2<br />

v ≠ 1<br />

but finite divide right side <strong>of</strong> the formula by<br />

∑ m<br />

v<br />

( m)<br />

2<br />

but if window energy is infinite one cannot apply this formulation<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

15


SPSC – Signal Processing & Speech Communication Lab<br />

Filter Bank Interpretation <strong>of</strong> the Inverse<br />

F k<br />

(z)<br />

With as synthesis - filter<br />

Reconstruction can be done by the following synthesis bank:<br />

figure 9: synthesis – bank used to reconstruct x(n)<br />

typically n k<br />

= M for all k<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

16


SPSC – Signal Processing & Speech Communication Lab<br />

( n)<br />

The z – Transformation <strong>of</strong> is given by<br />

Xˆ<br />

M<br />

∑ − 1<br />

k = 0<br />

xˆ<br />

nk<br />

( z) = X ( z ) F ( z)<br />

k<br />

k<br />

xˆ<br />

M − 1<br />

in time – domain<br />

∞<br />

( n) = x ( m) f ( n − n m)<br />

∑∑<br />

k=<br />

0 m=−∞<br />

k<br />

k<br />

k<br />

=<br />

M − 1<br />

∞<br />

∑∑<br />

k=<br />

0 m=−∞<br />

y<br />

k<br />

jω ( n m)<br />

( n m) e k k<br />

f ( n − n m)<br />

k<br />

k<br />

k<br />

y<br />

k<br />

( n m) K STFT − Coefficien ts<br />

k<br />

Reconstruction is stable, if the filters F k<br />

(z) are stable!<br />

Perfect reconstruction will be obtained, if x ˆ(<br />

n) = x( n)<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

17


SPSC – Signal Processing & Speech Communication Lab<br />

Basis Functions and Orthonormality<br />

η<br />

km<br />

Functions <strong>of</strong> interest<br />

( n) =ˆ f ( n − n m) Kbasis<br />

functions<br />

k<br />

k<br />

For these double indexed functions ( basis functions n ),<br />

the orthonormality property means that<br />

{ ( )}<br />

η km<br />

∑ ∞<br />

n=<br />

−∞<br />

( n − n m ) f ( n − n m ) = δ ( k − k ) ( m − m )<br />

*<br />

f<br />

k1 k1<br />

1 k 2 k 2 2 1 2<br />

δ<br />

1 2<br />

should be zero, except for those cases where k<br />

1<br />

= k2<br />

and m1<br />

= m2<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

18


SPSC – Signal Processing & Speech Communication Lab<br />

The Continuous - Time Case<br />

Main points:<br />

X<br />

STFT<br />

∞<br />

∫<br />

−∞<br />

− jΩ<br />

t<br />

( jΩ,τ<br />

) = x( t) v( t −τ<br />

) e dt ( STFT )<br />

x<br />

∞<br />

1<br />

2π<br />

∫<br />

j t<br />

()( t v t −τ<br />

) = X ( jΩ,<br />

τ ) e<br />

Ω dΩ<br />

( inv STFT )<br />

−∞<br />

STFT<br />

.<br />

x<br />

1 ∞ ∞<br />

*<br />

STFT<br />

.<br />

jΩ<br />

t<br />

() t = ⎜ X ( jΩ,<br />

τ ) v ( t −τ<br />

) dτ<br />

⎟e<br />

dΩ<br />

( inv STFT )<br />

2π<br />

∫⎜<br />

∫<br />

−∞<br />

⎛<br />

⎝<br />

−∞<br />

⎞<br />

⎟<br />

⎠<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

19


SPSC – Signal Processing & Speech Communication Lab<br />

Choice <strong>of</strong> “Best Window”<br />

R oot<br />

M ean<br />

S quare<br />

duration <strong>of</strong> window function v(t) in<br />

time domain D t<br />

∞<br />

2 1 2 2<br />

D t ∫ t v<br />

E<br />

−∞<br />

() t<br />

= dt<br />

frequency domain D f<br />

∞<br />

2 1 2<br />

2<br />

D f ∫ Ω V ( jΩ)<br />

2πE<br />

−∞<br />

= dΩ<br />

with:<br />

2<br />

E . . . window energy E = v () t dt<br />

∫<br />

Uncertainty principle:<br />

D t D f<br />

≥ 0.5<br />

Iff Gaussian – window, this inequality becomes an equality !<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

20


SPSC – Signal Processing & Speech Communication Lab<br />

Filter Bank Interpretation<br />

figure 10: continuous – STFT<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

21


SPSC – Signal Processing & Speech Communication Lab<br />

THE WAVELET TRANSFORM<br />

Disadvantage <strong>of</strong> STFT<br />

uniform time – frequency box ( D = const., D const. )<br />

t f<br />

=<br />

The accuracy <strong>of</strong> the estimate <strong>of</strong> the Fourier transform<br />

is poor at low frequencies, and improves as the frequency increases.<br />

Expected properties for a new function:<br />

‣ window width should adjust itself with ‘frequency’<br />

‣ as the window gets wider in time, also the step sizes for<br />

moving the window should become wider.<br />

These goals are nicely accomplished by the wavelet transform.<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

22


SPSC – Signal Processing & Speech Communication Lab<br />

Passing from STFT to Wavelets<br />

Step 1:<br />

Giving up the STFT modulation scheme and obtain filters<br />

h<br />

k<br />

−k<br />

() t a ( ) 2 −k<br />

= h a t a > 1Kscaling<br />

factor,<br />

k = int eger<br />

in the frequency domain:<br />

k<br />

k<br />

( jΩ) = a H ( ja Ω)<br />

2<br />

H<br />

k<br />

all reponses are obtained by frequency – scaling <strong>of</strong> a prototype response H(<br />

jΩ)<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

23


SPSC – Signal Processing & Speech Communication Lab<br />

Example:<br />

H<br />

( jΩ)<br />

Assuming is a bandpass with cut<strong>of</strong>f frequencies α and β.<br />

Also a = 2 , β = 2α and the center frequency should be the geometrical<br />

mean <strong>of</strong> the two cut<strong>of</strong>f edges<br />

Ω<br />

k<br />

=<br />

2<br />

−k<br />

αβ = α 2<br />

−k<br />

2<br />

figure 11: frequency – response obtained by scaling process<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

24


SPSC – Signal Processing & Speech Communication Lab<br />

Ratio:<br />

bandwidth<br />

center − frequency<br />

Ω<br />

k<br />

=<br />

2<br />

−k<br />

2<br />

( β − α )<br />

−k<br />

αβ<br />

=<br />

1<br />

2<br />

is independent <strong>of</strong> integer k<br />

In electrical filter theory such a system is <strong>of</strong>ten said to be a ‘constant Q’ system!<br />

( Q ... Quality factor<br />

center − frequency<br />

Q = )<br />

bandwidth<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

25


SPSC – Signal Processing & Speech Communication Lab<br />

filter ouputs can be obtained by:<br />

a<br />

−k<br />

2<br />

e<br />

− jΩ<br />

k<br />

∞<br />

τ<br />

∫<br />

−∞<br />

x<br />

−k<br />

() t h a ( τ − t)<br />

( )<br />

dt<br />

Step 2:<br />

k<br />

↑<br />

→<br />

bandwidth<br />

<strong>of</strong><br />

H<br />

k<br />

( jΩ) ↓ → Samplerate ↓<br />

or in time domain<br />

k<br />

↑<br />

→<br />

window length<br />

↑<br />

→<br />

step<br />

size<br />

↑<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

26


SPSC – Signal Processing & Speech Communication Lab<br />

Therefore:<br />

τ =<br />

na<br />

k<br />

T<br />

nK int eger,<br />

a<br />

k<br />

T Kstep<br />

size<br />

hence:<br />

h<br />

(<br />

−k<br />

(<br />

k<br />

) (<br />

−k<br />

a na T − t = h nT − a t)<br />

Summarizing, we are computing:<br />

<br />

X<br />

X<br />

DWT<br />

DWT<br />

,<br />

∞<br />

∫<br />

−∞<br />

−k<br />

2<br />

−k<br />

( k,<br />

n) a x() t h( nT − a t)<br />

= dt<br />

∞<br />

∫<br />

−∞<br />

k<br />

( k n) x( t) h ( na T − t)<br />

= dt<br />

k<br />

DWT...Discrete Wavelet Transform<br />

figure 12: Analysis bank <strong>of</strong> DWT<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

27


SPSC – Signal Processing & Speech Communication Lab<br />

Time Frequency Grid<br />

figure 13: time – frequency grid<br />

D t<br />

D f<br />

=<br />

const.<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

28


SPSC – Signal Processing & Speech Communication Lab<br />

General Definition <strong>of</strong> the Wavelet Transform<br />

∞<br />

1 ⎛ t − q ⎞<br />

X CWT<br />

( p,<br />

q) = ∫ x()<br />

t f ⎜ ⎟dt<br />

p −∞ ⎝ p ⎠<br />

p,q ... real – valued continuous variables<br />

According to former definition:<br />

p =<br />

k<br />

a<br />

q<br />

k<br />

= a Tn f ( t) = h( − t)<br />

X<br />

CWT<br />

( p,<br />

q) and X ( k,<br />

n) KKK<br />

wavelet coefficients<br />

DWT<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

29


SPSC – Signal Processing & Speech Communication Lab<br />

Inversion <strong>of</strong> Wavelet Transform<br />

x<br />

( t) X ( k,<br />

n) ψ ( t)<br />

= ∑∑<br />

ψ k n<br />

k<br />

( t)<br />

n<br />

DWT<br />

k n<br />

where are the basis functions<br />

Filter Bank Interpretation <strong>of</strong> Inversion<br />

Reconstruction <strong>of</strong> x(t) as a designing problem <strong>of</strong> the following synthesis filter bank<br />

( k,<br />

n) K sequence<br />

( jΩ) K continuous intime<br />

X DWT<br />

F k<br />

output <strong>of</strong> synthesis filter bank :<br />

k<br />

( t) = ∑∑X<br />

( k n) f ( t − a nT )<br />

x ˆ<br />

,<br />

k n<br />

DWT<br />

k<br />

figure 14: synthesis bank<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

30


SPSC – Signal Processing & Speech Communication Lab<br />

All synthesis filters are again generated from a fixed prototype synthesis filter<br />

f(t) ( mother wavelet )<br />

f<br />

k<br />

−k<br />

2 −k<br />

() t = a f ( a t)<br />

Substituting this in the preceding equation and assuming perfect reconstruction, we get<br />

with:<br />

−k<br />

() = ∑∑ ( ) ( − k<br />

t X k,<br />

n a f a t − nT )<br />

2<br />

x<br />

DWT<br />

k n<br />

−k<br />

k<br />

k<br />

−<br />

2 −<br />

−k<br />

k<br />

() t = f () t → ψ () t = a ψ ( a t − nT ) = a ψ [ a ( t − na T )] Kset<br />

<strong>of</strong> basis functions<br />

2<br />

ψ<br />

k n<br />

using this, we can express each basis function in terms <strong>of</strong> the filter f k<br />

( t)<br />

ψ<br />

k n<br />

( ) (<br />

k<br />

t = f t − na T )<br />

k<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

31


SPSC – Signal Processing & Speech Communication Lab<br />

Orthonormal Basis<br />

{ ()}<br />

Of particular interest is the case where ψ k<br />

t is a set <strong>of</strong> orthonormal<br />

n<br />

functions<br />

Therefore, we expect:<br />

∞<br />

∫ψ *<br />

k<br />

−∞<br />

n<br />

() t ψ () t dt = δ ( k − l) δ ( n − m)<br />

l m<br />

using Parseval’s theorem, this becomes<br />

1<br />

2π<br />

∞<br />

∫<br />

−∞<br />

Ψ<br />

*<br />

k n<br />

( jΩ) Ψ ( jΩ) dΩ = δ ( k − l) δ ( n − m)<br />

l m<br />

and get :<br />

X<br />

DWT<br />

∞<br />

∫<br />

−∞<br />

*<br />

( k, n) x() t ψ () t<br />

= dt<br />

k n<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

32


SPSC – Signal Processing & Speech Communication Lab<br />

Comparing these results, we can conclude:<br />

ψ<br />

k n<br />

And in particular for k = 0 and n = 0:<br />

( ) (<br />

k<br />

t = h<br />

* a nT − t)<br />

*<br />

ψ ( t) = ( t) = h ( − t)<br />

for the orthonormal case fk<br />

( t) = h<br />

*<br />

k ( − t)<br />

00<br />

ψ<br />

k<br />

H<br />

Discrete – Time Wavelet Transform<br />

Starting with the frequency domain relation and a scaling factor a = 2<br />

k<br />

k<br />

j<br />

( e ) ( ) ω j2<br />

ω<br />

= H e K k is a nonnegative int eger<br />

H<br />

jω<br />

( e )<br />

for highpass and k = 1, k = 2<br />

figure 15: Magnitude responses<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

33


SPSC – Signal Processing & Speech Communication Lab<br />

Let G(z) be a lowpass with response<br />

Using QMF – banks<br />

figure 16: Magnitude – response <strong>of</strong> G(z)<br />

or<br />

its equivalent<br />

figure 17: 3 level binary tree-structured QMF<br />

figure 18: equivalent 4-channel system<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

34


SPSC – Signal Processing & Speech Communication Lab<br />

2<br />

2 4<br />

Responses <strong>of</strong> the filters H ( z) , G( z) H ( z ),<br />

G( z) G( z ) H ( z ),......<br />

figure 19: combinations <strong>of</strong> H(z) and G(z)<br />

Defining the Discrete –Time Wavelet Transform<br />

M −1<br />

k +<br />

( n) = x( m) h ( 2 1 n − m)<br />

∑ ∞<br />

m=<br />

−∞<br />

y , 0 ≤ k ≤ M − 2<br />

k<br />

k<br />

M −<br />

( n) = x( m) h ( 2 1 n − m) ( D T WT )<br />

∑ ∞<br />

m=<br />

−∞<br />

y ,<br />

M −1<br />

iscrete<br />

ime<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

35


SPSC – Signal Processing & Speech Communication Lab<br />

Inverse Transform<br />

F<br />

2<br />

( z) = H ( z) , F ( z) H ( z ) G ( ),<br />

K<br />

0 s 1<br />

=<br />

s s<br />

z<br />

figure 20: synthesis filters<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

36


SPSC – Signal Processing & Speech Communication Lab<br />

For perfect reconstruction x ˆ( n) = x( n)<br />

we can express<br />

X<br />

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )<br />

2<br />

4<br />

2<br />

2<br />

z = F z Y z + F z Y z + + F z Y z F z Y z<br />

0 0<br />

1 1<br />

...<br />

M −1<br />

M − 2 M −2<br />

+<br />

M −1<br />

M −1<br />

M −1<br />

and in time domain:<br />

x<br />

M −2<br />

∞<br />

∞<br />

2k<br />

+ 1<br />

M −1<br />

( n) = y ( m) f ( n − 2 m) + y ( m) f ( n − 2 m)<br />

∑∑<br />

∑<br />

k k<br />

k=<br />

0 m=−∞<br />

m=−∞<br />

M −1<br />

M −1<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

37


SPSC – Signal Processing & Speech Communication Lab<br />

Main References<br />

Multirate Systems and Filter Banks<br />

(Prentice Hall Signal Processing Series)<br />

by P. P. Vaidyanathan<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

38


SPSC – Signal Processing & Speech Communication Lab<br />

Thank you for attention !<br />

Pr<strong>of</strong>essor Georg Holzmann, Horst Cerjak, Christian 19.12.2005 Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks<br />

39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!