26.02.2015 Views

thin film materials based on v-vi semiconductors and ... - ECT2008

thin film materials based on v-vi semiconductors and ... - ECT2008

thin film materials based on v-vi semiconductors and ... - ECT2008

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THIN FILM MATERIALS BASED ON V-VI SEMICONDUCTORS AND<br />

BINARY SKUTTERUDITE FOR APPLICATIONS ON THERMOELECTRIC<br />

MICROSENSORS<br />

A. Boulouz 1 , L. Koutti 1 , A. Giani 2 , M. Boulouz 1 , J. Shumann 3 ,<br />

<strong>and</strong> F. Pascal-Delannoy 2<br />

1-Faculté des Sciences, Université Ibn Zohr, 80000 Agadir, Morocco<br />

2-Institut d’Electr<strong>on</strong>ique de Sud, IES, Université M<strong>on</strong>tpellier II (cc 075),<br />

Place E. Bataill<strong>on</strong>, 34095 M<strong>on</strong>tpellier, cedex 05, France<br />

3-Institute of Solid State <strong>and</strong> Materials Research, IFW Helmholtzstrasse 20,<br />

D-01069 Dresden, Germany<br />

C<strong>on</strong>tact author: abdellah.boulouz@graduates.centraliens.net<br />

Abstract<br />

The characteristics of Bi 2 Te 3 ,<br />

Sb 2 Te 3 <strong>and</strong> (Bi 1-x Sb x ) 2 Te 3 alloy <str<strong>on</strong>g>film</str<strong>on</strong>g>s<br />

growth by MOCVD will be presented. The<br />

values of Seebeck coefficient (α(T)) at<br />

room temperature for Bi 2 Te 3 , Sb 2 Te 3 , <strong>and</strong><br />

(Bi 1-x Sb x ) 2 Te 3 with x=0.77 are found to be<br />

–220 µV/K, +110 µV/K <strong>and</strong> +240 µV/K,<br />

respectively. In an other h<strong>and</strong>, the<br />

thermoelectric CoSb 3 <str<strong>on</strong>g>film</str<strong>on</strong>g>s are deposited<br />

<strong>on</strong> oxidised Si(100) <strong>and</strong> ceramic Al 2 O 3<br />

substrates using magnetr<strong>on</strong> dc sputtering<br />

technique.<br />

To evaluate the efficiency of some<br />

elaborated <str<strong>on</strong>g>film</str<strong>on</strong>g>s, we present results of gas<br />

<strong>and</strong> pressure micro-sensor<br />

Introducti<strong>on</strong><br />

The efficiency of thermoelectric <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

is usually characterised by the<br />

dimensi<strong>on</strong>less of the product ZT where Z<br />

is known as thermoelectric Figure of merit<br />

<strong>and</strong> T is absolute temperature (in Kel<strong>vi</strong>n).<br />

There are two differents approaches which<br />

can be used for preparing high ZT<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g>: (1) the multi quantum well<br />

structures (MQW) with quantum<br />

c<strong>on</strong>finement effects <strong>and</strong> (2) the c<strong>on</strong>cept of<br />

reducing lattice thermal c<strong>on</strong>ducti<strong>vi</strong>ty K<br />

(especially in high temperature<br />

applicati<strong>on</strong>s) in PGEC (Ph<strong>on</strong><strong>on</strong> Glass<br />

Electr<strong>on</strong> Crystal) systems. The c<strong>on</strong>cept of<br />

MQW is mainly dealt with <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>film</str<strong>on</strong>g>s <strong>and</strong><br />

superlattices [3-5]. CoSb 3 ) are studied<br />

mainly as bulk <str<strong>on</strong>g>materials</str<strong>on</strong>g> [6].<br />

The Figure of merit Z or the potential of a<br />

material for thermoelectric applicati<strong>on</strong>s is<br />

determined by [2]:<br />

Z= α 2 /ρk (1)<br />

k = k L + k e (2)<br />

Where α represent the Seebeck coefficient,<br />

ρ the electrical resisti<strong>vi</strong>ty, <strong>and</strong> k the total<br />

thermal c<strong>on</strong>ducti<strong>vi</strong>ty (the lattice (ph<strong>on</strong><strong>on</strong><br />

part) k L <strong>and</strong> electr<strong>on</strong>ic k e c<strong>on</strong>tributi<strong>on</strong>s) [1-<br />

2]. The power factor, α 2 /ρ, is typically<br />

optimized as a functi<strong>on</strong> of carrier<br />

c<strong>on</strong>centrati<strong>on</strong>, through doping, to give the<br />

largest ZT.<br />

From equati<strong>on</strong> 1, the value of Z can be<br />

raised by decreasing k L. It can also be<br />

raised by increasing α 2 /ρ. However, 1/ρ<br />

(electrical c<strong>on</strong>dicti<strong>vi</strong>ty) is related<br />

proporti<strong>on</strong>aly to the Ke through the<br />

Wiedmann-Franz Law, <strong>and</strong> the ratio is<br />

essentially c<strong>on</strong>stant at a given temperature.<br />

Experimental details<br />

The MOCVD with an horiz<strong>on</strong>tal quartz<br />

reactor was used to elaborat a binary<br />

Bi 2 Te 3 <strong>and</strong> Sb 2 Te 3 , <strong>and</strong> ternary (Bi 1-x<br />

Sb x ) 2 Te 3 alloys <strong>on</strong> pyrex substrate with<br />

total H 2 gas flow rate of 6 litre/minute. All<br />

the <str<strong>on</strong>g>film</str<strong>on</strong>g>s were prepared at a pressure of<br />

700 Torr. The high purity (a few parts per<br />

billi<strong>on</strong>) precursors for Bi, Sb <strong>and</strong> Te were<br />

Trimethylbismuth, Triethylantim<strong>on</strong>y <strong>and</strong><br />

Diethyltellurium, respectively [7-8]. The<br />

depositi<strong>on</strong> rate for all the <str<strong>on</strong>g>film</str<strong>on</strong>g>s was of the<br />

O-16-1


order 0.34 µm/h <strong>and</strong> the final thickness<br />

deposited in all cases was around 600 nm.<br />

DC-magnetr<strong>on</strong> sputtering technique with<br />

an ultra high vacuum chamber with a base<br />

pressure less than 10 -9 mbar was used to<br />

growth binary skutterudite CoSb 3 . The<br />

<str<strong>on</strong>g>film</str<strong>on</strong>g>s were deposited <strong>on</strong> oxidised Si(100)<br />

<strong>and</strong> ceramic Al 2 O 3 substrates under arg<strong>on</strong><br />

atmosphere. During depositi<strong>on</strong>, the<br />

chamber pressure was at 7x10 -3 mbar while<br />

the substrate temperature was kept at<br />

200°C <strong>and</strong> 20°C. The applied dc-power in<br />

the sputtering target was 150W. The rate of<br />

depositi<strong>on</strong> was kept at around 6.3nm/min<br />

<strong>and</strong> the final thickness for CoSb 3 <str<strong>on</strong>g>film</str<strong>on</strong>g>s was<br />

about 190nm.<br />

Results <strong>and</strong> discussi<strong>on</strong><br />

Figure 1 shows the X-ray diffractogram of<br />

a typical (Bi 1-x Sb x ) 2 Te 3 <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>film</str<strong>on</strong>g> with x =<br />

0.77. The presence of (006), (015) <strong>and</strong><br />

(110) plans c<strong>on</strong>firms the polycristalline<br />

structure of the <str<strong>on</strong>g>thin</str<strong>on</strong>g> layers.<br />

The compositi<strong>on</strong> of the deposited Bi 2 Te 3<br />

<strong>and</strong> Sb 2 Te 3 <str<strong>on</strong>g>film</str<strong>on</strong>g>s is measured by means of<br />

the energy dispersive X-ray (EDX)<br />

microanalyser.<br />

Intensity (a.u.)<br />

(006)<br />

(015)<br />

(110)<br />

(Bi 1-x<br />

Sb x<br />

) 2<br />

Te 3<br />

x = 0.77 / BST2<br />

(205)<br />

Intensity (a.u.)<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

(310)<br />

(310)<br />

0<br />

0 20 40 60 80 100 120 140 160<br />

Diffracti<strong>on</strong> angle<br />

CoSb 3<br />

annealed <str<strong>on</strong>g>film</str<strong>on</strong>g><br />

as deposited <str<strong>on</strong>g>film</str<strong>on</strong>g><br />

Fig 2: X-ray diffracti<strong>on</strong> diagram of CoSb 3<br />

Thin <str<strong>on</strong>g>film</str<strong>on</strong>g> elaborated<br />

The lattice parameter of the cubic cell is<br />

found to be around a = 9.0358 Å which is<br />

very close to the value of the bulk<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g> reported earlier by Fleurial et al.<br />

[30] (a = 9.0385 Å).<br />

From the X-ray diffracti<strong>on</strong>, it can be seen<br />

that the polycrystalline grains in the <str<strong>on</strong>g>film</str<strong>on</strong>g>s<br />

exhibit a str<strong>on</strong>g preferred alignment of the<br />

cubic (310) axis perpendicular to the<br />

substrate surface which indicates the<br />

skutterudite phase of CoSb 3 <strong>on</strong>ly.<br />

Seebeck coefficient (µV/K)<br />

280<br />

260<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

(Bi 1-x<br />

Sb x<br />

) 2<br />

Te 3<br />

Seebeck coefficient<br />

Electrical resisti<strong>vi</strong>ty<br />

0,5 0,6 0,7 0,8 0,9 1,0<br />

%Sb (x)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Electrical resisti<strong>vi</strong>ty (µΩ.m)<br />

Tc = 450 °C<br />

Tc = 470 °C<br />

5 10 15 20 25 30 35<br />

Diffracti<strong>on</strong> angle<br />

Fig 1: X-ray diffracti<strong>on</strong> diagram of (Bi 1-x Sb x ) 2 Te 3<br />

Thin <str<strong>on</strong>g>film</str<strong>on</strong>g> elaborated at Tc =450°C <strong>and</strong> TC =<br />

470°C<br />

An annealing at 350°C for 3 hours under<br />

arg<strong>on</strong> atmosphere does not have any<br />

influence <strong>on</strong> the quality of crystallisati<strong>on</strong><br />

of the skutterudite CoSb 3 <str<strong>on</strong>g>film</str<strong>on</strong>g>s (figure 2).<br />

Fig 3: Seebeck coefficient <strong>and</strong> electrical resisti<strong>vi</strong>ty<br />

of (Bi 1-x Sb x ) 2 Te 3 Thin <str<strong>on</strong>g>film</str<strong>on</strong>g> as functi<strong>on</strong> of %Sb (x).<br />

Figure 3 illustrates the variati<strong>on</strong> of the<br />

Seebeck coefficient <strong>and</strong> electrical<br />

resisti<strong>vi</strong>ty of (Bi 1-x Sb x ) 2 Te 3 <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>film</str<strong>on</strong>g>s as a<br />

functi<strong>on</strong> of the antim<strong>on</strong>y compositi<strong>on</strong> x in<br />

the layers. It is observed that for x ≤ 0.30,<br />

The room temperature values of Seebeck<br />

coefficient (α), Hall mobility (µ), electrical<br />

resisti<strong>vi</strong>ty (ρ), <strong>and</strong> carrier c<strong>on</strong>centrati<strong>on</strong> for<br />

optimal n-type Bi 2 Te 3 <strong>and</strong> p-type Sb 2 Te 3<br />

O-16-2


<strong>and</strong> BiSbTe p-type ternary (Bi 1-x Sb x ) 2 Te 3<br />

(x=0.77) <str<strong>on</strong>g>film</str<strong>on</strong>g>s, are presented in the table 1.<br />

Seebeck coefficient (µV/K)<br />

0<br />

-100<br />

-200<br />

-300<br />

ES 193n17 <strong>on</strong> Si<br />

annealed at 350°C/Ar/5h<br />

CoSb 3<br />

wafer 1<br />

wafer 2<br />

wafer 3<br />

300 400 500 600 700<br />

Temperature (K)<br />

Fig4: Reproductibility of temperature dependence<br />

of seebeck coefficient of CoSb 3 <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>film</str<strong>on</strong>g> deposited<br />

<strong>on</strong> silic<strong>on</strong> substrate.<br />

The variati<strong>on</strong> of the Seebeck coefficient<br />

(α ) is shown in Figure 4 for the annealed<br />

CoSb 3 <str<strong>on</strong>g>film</str<strong>on</strong>g>s <strong>on</strong> two different substrates in<br />

the temperature range between 300 <strong>and</strong><br />

700 K.<br />

The value of α in the as-deposited <str<strong>on</strong>g>film</str<strong>on</strong>g> is<br />

found to be near zero at 300K. After the<br />

first measuring cycle up to 700K <strong>and</strong> also<br />

for the sample annealed at 350°C, the<br />

maximum value of -250 µV/K is attained.<br />

The sensor design that can work as gas<br />

detecti<strong>on</strong> or pressure sensor is presented in<br />

Figure 5. This sensor is made of a resistor<br />

(heating element) <strong>and</strong> an integrated<br />

thermocouple deposited <strong>on</strong> a thermally<br />

isolated membrane. In both cases the active<br />

thermoelement is deposited through two<br />

complementary masks of nickel. Thus n-<br />

Bi 2 Te 3 <strong>and</strong> p-(Bi 1_x Sb x ) 2 Te 3 basic<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g> are realised by MOCVD under<br />

optimal growth c<strong>on</strong>diti<strong>on</strong>s setting in<br />

pre<strong>vi</strong>ous secti<strong>on</strong>.<br />

We have found the measure of temperature<br />

in the centre of the active z<strong>on</strong>e in the<br />

resistance as a functi<strong>on</strong> of an injected<br />

current by using three different means: an<br />

infrared camera, a discrete thermocouple,<br />

<strong>and</strong> the integrated thermocouple.<br />

For the infrared camera, we have<br />

determined the emissi<strong>on</strong> of the <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

Bi 2 Te 3 <strong>and</strong> (Bi 1-x Sb x ) 2 Te 3 compared to the<br />

blackbody <strong>on</strong>e which is equal to 1. The<br />

material <strong>on</strong>e has been measured <strong>and</strong> equal<br />

to 0.61. the good functi<strong>on</strong> of this<br />

thermocouple is accuracy verified. The<br />

measure obtained by thermocouple type E<br />

<strong>on</strong> c<strong>on</strong>tact with the resistance field<br />

presents a difference in comparis<strong>on</strong> with<br />

that of infrared camera. This difference<br />

increases with the heating courant: it is due<br />

to the heating dissipati<strong>on</strong> that crosses<br />

through the thermocouple by c<strong>on</strong>ducti<strong>on</strong>. It<br />

unfortunately plays the role of a heat sink.<br />

Generally, the rule of variati<strong>on</strong> of the<br />

resistance temperature is I 2 . This means the<br />

heating by Joule effect of the charge.<br />

X'<br />

Electric c<strong>on</strong>tact<br />

(Ni + Cu)<br />

Electric c<strong>on</strong>tact<br />

(Ni + Cu)<br />

3,5mm<br />

4mm<br />

N<br />

P<br />

Y'<br />

Y<br />

kapt<strong>on</strong> (20 µm)<br />

Resistance<br />

P-N juncti<strong>on</strong><br />

N<br />

kapt<strong>on</strong> ( 20 µm)<br />

5,5mm 5mm<br />

ohmic c<strong>on</strong>tact ( Ni+ Cu)<br />

(Bi 1-x Sb x ) 2 Te 3 (P-type) x = 77,4 %<br />

Bi 2 Te 3 ( N-type)<br />

Fr<strong>on</strong>t side Vue<br />

X<br />

XX' Cross Vue<br />

N P<br />

YY' Cross Vue<br />

Thermocouple<br />

Fig 5: Schematic design of gas <strong>and</strong> pressure microsensor<br />

using n-type Bi 2 Te 3 <strong>and</strong> p-type (Bi 1-x Sb x ) 2 Te 3<br />

for x=0.77 <str<strong>on</strong>g>film</str<strong>on</strong>g>s.<br />

In Figure 6 we represent the tensi<strong>on</strong><br />

variati<strong>on</strong> (V pr - V atm ) of the sensor for<br />

different powers of heating. V pr is the<br />

thermoelectric tensi<strong>on</strong> got by the<br />

thermocouple at a pressure value <strong>and</strong> V atm<br />

Ni<br />

Cu<br />

O-16-3


the tensi<strong>on</strong> measure at atmospheric<br />

pressure.<br />

V p<br />

- V atm<br />

(mV)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

P = 59 mW<br />

P = 38 mW<br />

V(V) measured by integrated thermoucouple<br />

0,05<br />

0,04<br />

0,03<br />

0,02<br />

0,01<br />

0,00<br />

0 2500 5000 7500 10000 12500 15000<br />

Time en (ms)<br />

T f -T 0 = 80°C<br />

T f -T 0 = 120°C<br />

T f -T 0 = 40°C<br />

0<br />

1E-4 1E-3 0,01 0,1 1 10 100 1000<br />

Pressure (torr)<br />

Fig 6: V(mV) (1) variati<strong>on</strong> as functi<strong>on</strong> of the<br />

pressure in the chamber<br />

From 10 -4 to 10 -2 torr, the resistance<br />

changes from the heat caused by thermal<br />

radiance. The resp<strong>on</strong>se of sensor in this<br />

part is c<strong>on</strong>stant. From 10 -3 to 10 torr, the<br />

changes of heat are caused by c<strong>on</strong>vecti<strong>on</strong>,<br />

the coefficient H approaches to the<br />

Knudsen formula <strong>and</strong> it is a functi<strong>on</strong> of the<br />

pressure [10-11]. From 10 to 760 torr, the<br />

resp<strong>on</strong>se of the sensor is saturated because<br />

the exchanges caused by c<strong>on</strong>vecti<strong>on</strong> are<br />

c<strong>on</strong>stants.<br />

Figure 7, shows the V(mv) voltage<br />

variati<strong>on</strong> as functi<strong>on</strong> of time.<br />

V t = V max (1-e -t/τ )<br />

where V t = V at time t, <strong>and</strong> τ=time<br />

c<strong>on</strong>stant of sensor.<br />

when t = τ, (t = <strong>on</strong>e time c<strong>on</strong>stant) :<br />

V τ = V max (1-e -1 ) = V max (0.63)<br />

So, <strong>on</strong>e time c<strong>on</strong>stant or rep<strong>on</strong>se time is the<br />

time it takes for the V(t) to reach 63% of its<br />

maximum value Vmax. τ = 600ms.<br />

C<strong>on</strong>clusi<strong>on</strong><br />

The BiSbTe <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>film</str<strong>on</strong>g>s are prepared by<br />

MOCVD technique. From the room<br />

temperature Seebeck coefficient (α)<br />

measurement, the values of α for Bi 2 Te 3 ,<br />

Sb 2 Te 3 , <strong>and</strong> (Bi 1-x Sb x ) 2 Te 3 with x=0.77 are<br />

found to be –220 µV/K, +110µV/K <strong>and</strong> +<br />

240 µV/K respectively.<br />

Fig 7: Variati<strong>on</strong> of thermocouple voltage as<br />

functi<strong>on</strong> of the time (ms)<br />

The CoSb 3 <str<strong>on</strong>g>film</str<strong>on</strong>g>s with relatively high<br />

Seebeck coefficients can be prepared by dc<br />

magnetr<strong>on</strong> sputtering using compound<br />

targets. The preparati<strong>on</strong> process has to be<br />

carefully optimized, For the pressure<br />

sensor, the optimal sensibility is observed<br />

for the pressure range: 10 -4 to 10 torr. The<br />

resp<strong>on</strong>se time of the sensor, about 600 ms,<br />

does not vary with the injected electric<br />

power. Good sensibility is due to high<br />

thermoelectric power of the <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>film</str<strong>on</strong>g>s <strong>and</strong><br />

the good reproducibility is obtained.<br />

References<br />

[1] P.Magri, C.Boulanger <strong>and</strong> J.M.Lecuire,<br />

J.Mater.Chem.6 (5) (1996)773.<br />

[2] H.Kaibe, Y.Tanaka, M.Sakata <strong>and</strong> I.Nishida,<br />

J.Phys.Chem.Solids, 50 (1989)945.<br />

[3] Rama Venkatasubramanian, Phys. Rev. B 61, (2000)<br />

3091.<br />

[4] Rama Venkatasubramanian, Thomas Colpitts, Brooks<br />

O’Quinn, S<strong>and</strong>ra Liu, NadiaEl Masry, <strong>and</strong> Michael<br />

Lam<strong>vi</strong>k, Appl. Phys. Lett. 75, (1999) 1104.<br />

[5] R. Venkatasubramanian, T. Colpitts, E.Watko, M.<br />

Lam<strong>vi</strong>k, <strong>and</strong> N. ElMasry, J. OfCryst. Growth 170, (1997)<br />

817.<br />

[6] G. S. Nolas, D. T. Morelli, <strong>and</strong> Terry M. Tritt, Annu.<br />

Rev. Mater. Sci. 29, (1999) 89.<br />

[7] B. Aboulfarah, A. Mzerd, A. Giani, A. Boulouz F.<br />

Pascal-Delannoy, A. Foucaran,<br />

<strong>and</strong> A.Boyer, Materials Chemistry <strong>and</strong> Physics 62,<br />

(2000) 179.<br />

[8] A. Giani, A. Boulouz, F. Pascal-Delannoy, A.<br />

Foucaran, <strong>and</strong> A. Boyer, Mater. Sci. A Eng. B 64, (1999)<br />

19.<br />

[9] J. P. Fleurial, T. Caillat <strong>and</strong> A.Borshevsky, Proc. 16 th<br />

Internati<strong>on</strong>alC<strong>on</strong>ference <strong>on</strong> Thermoelectrics, Dresden<br />

(Germany), IEEE Catalog number 97 th 8291, (1997) 1.<br />

[10] T. Shioyama, T. Takiguchi, S. Ogwa, J. Vac. Sci.<br />

Technol. 15 (2) (1978) 761.<br />

[11] L.M. G<strong>on</strong>calves, J.G. Rocha, C. Couto, P. Alpuim,<br />

Gao Min, D.M. Rowe <strong>and</strong> J.H.Correia, J.<br />

Micromechanics & Microengineering 17 (2007)<br />

O-16-4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!